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Abstract
Many algorithmic results on the modal mu-calculus use representations of formulas such as alternating
tree automata or hierarchical equation systems. At closer inspection, these results are not always
optimal, since the exact relation between the formula and its representation is not clearly understood.
In particular, there has been confusion about the definition of the fundamental notion of the size of
a mu-calculus formula.

We propose the notion of a parity formula as a natural way of representing a mu-calculus formula,
and as a yardstick for measuring its complexity. We discuss the close connection of this concept
with alternating tree automata, hierarchical equation systems and parity games. We show that
well-known size measures for mu-calculus formulas correspond to a parity formula representation of
the formula using its syntax tree, subformula graph or closure graph, respectively. Building on work
by Bruse, Friedmann & Lange we argue that for optimal complexity results one needs to work with
the closure graph, and thus define the size of a formula in terms of its Fischer-Ladner closure. As a
new observation, we show that the common assumption of a formula being clean, that is, with every
variable bound in at most one subformula, incurs an exponential blow-up of the size of the closure.

To realise the optimal upper complexity bound of model checking for all formulas, our main
result is to provide a construction of a parity formula that (a) is based on the closure graph of a
given formula, (b) preserves the alternation-depth but (c) does not assume the input formula to be
clean.

2012 ACM Subject Classification Theory of computation → Modal and temporal logics; Theory of
computation → Logic and verification

Keywords and phrases modal mu-calculus, model checking, alternating tree automata, hierachical
equation systems

Digital Object Identifier 10.4230/LIPIcs.CSL.2022.29

Related Version This paper is largely based on our technical report:
Full Version: https://arxiv.org/abs/2010.14430 [15]

Funding Clemens Kupke: Supported by Leverhulme Trust Research Project Grant RPG-2020-232.
Johannes Marti: The research of this author has been made possible by a grant from the Dutch
Research Council NWO, project nr. 617.001.857.

1 Introduction

The modal µ-calculus, introduced by Kozen [14] and surveyed in for instance [2, 12, 4, 9],
is a logic for describing properties of processes that are modelled by labelled transition
systems. It extends the expressive power of propositional modal logic by means of least and
greatest fixpoint operators. This addition permits the expression of all bisimulation-invariant
monadic second order properties of such processes [13]. As a logic, µML has many desirable
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29:2 Succinct Graph Representations of µ-Calculus Formulas

properties, such as a natural complete axiomatisation [14, 19], uniform interpolation and
other interesting model-theoretical properties [8, 11], and a complete cut-free proof system [1].
Here we will be interested in some of its computational properties.

The µ-calculus is generally regarded as a universal specification language for reactive
systems, since it embeds most other logics that are used for this purpose, such as ltl, ctl,
ctl∗ and pdl. Given this status, the computational complexity of its model checking and
satisfiability problems is of central importance. While the satisfiability problem has been
shown to be exptime-complete [10] already thirty years ago, the precise complexity of
its model checking problem turned out to be a challenging problem. A breakthrough was
obtained by Calude et alii [7] who gave a quasi-polynomial algorithm for deciding parity
games; since model checking for the modal µ-calculus can be determined by such games, this
indicates a quasi-polynomial upper bound of the complexity of the model checking problem.

Generally, to determine the complexity of a proposed algorithm operating on µ-calculus
formulas, one needs sensible measures of the complexity of the formula that is (part of)
the input to the algorithm; the most important of these concern size and alternation depth.
Different notions of size have been used, depending on how precisely formulas are represented
in the input. Standard size measures include: (1) length, corresponding to a representation of
the formula as a string or syntax tree; (2) subformula size, corresponding to a representation of
the formula as the directed acyclic graph of its subformulas; and (3) closure size, corresponding
to a similar representation of a formula via its (Fischer-Ladner) closure.

The choice between these representations is non-trivial because the subformula size
of a formula may be exponentially smaller than its length, and, as was shown by Bruse,
Friedmann & Lange [6], its closure size may be exponentially smaller than its subformula size.
Consequently, complexity results about the µ-calculus may be suboptimal when expressed
in terms of subformula size, in the sense that a stronger version of the result holds when
formulated in terms of closure size. In other words, it is desirable to design algorithms that
operate on a representation of a formula that is based on its closure.

At closer inspection it turns out that generally, the literature on algorithmic aspects of the
µ-calculus is crystal clear in terms of the structures on which the algorithms operate, but less
so on the precise way in which these structures represent formulas. As a consequence, when
formulated in terms of the actual formulas, complexity results as given may be suboptimal or
somewhat fuzzy. Our long-term goal is to study the representation of µ-calculus formulas in
more detail, and to develop a framework in which various approaches can easily be compared,
and in which complexity results can be formulated and proved optimally and unambiguously.

As a starting point, we note that in the literature different frameworks are used to
represent µ-calculus formulas. The parity games that feature in model checking algorithms
are usually based on an arena which is some kind of Cartesian product of a graph that
represents the formula with the model where this formula is evaluated. Other prominent ways
to represent formulas are (alternating) tree automata and (hierarchical) equation systems; as
we shall see further on, in these cases we can think of the structures that represent formulas
in graph-theoretic terms as well. In all cases then, the mathematically fundamental structure
representing a formula is a graph, whose nodes are labelled with logical connectives or
atomic formulas, and with priorities that are used to determine some winning or acceptance
condition. The graph itself can be based on the syntax tree, the subformula dag or the
closure graph of the formula that it represents.
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We make this fundamental labelled graph structure explicit and call the resulting concept
a parity formula.1 Intuitively, parity formulas generalise standard formulas by dropping the
requirement that the underlying graph structure of the formula is a tree with back edges,
and adding an explicit parity acceptance condition. A good way to think about a parity
formula is as the formula component of a model checking game. As we shall see below,
parity formulas are closely related to alternating tree automata and hierarchical equation
systems. Compared to these however, parity formulas have a very simple mathematical
structure, which allows for a straightforward and unambiguous definition of its size and its
index (alternation depth).

The explicit introduction of this notion is not a goal in itself. We intend to use it as a
tool to analyse some underexposed sides of the theory of the modal µ-calculus. In this paper
we discuss some key constructions turning standard formulas into parity formulas and vice
versa. Along the way we make two observations that we consider the key contributions of
this paper:
1) A common assumption in the literature on the µ-calculus is that one may assume, without

loss of generality, that formulas are clean or well-named, in the sense that bound variables
are disjoint from free variables, and each bound variable determines a unique subformula.
In Proposition 10 we show that this assumption may lead to an exponential blow-up in
terms of closure-size. This means that, if one is interested in optimal complexity results,
one should not assume the input formula to be clean.

2) To the best of our knowledge, all representations of µ-calculus formulas known from the
literature, are suboptimal in one way or another: they are based on the subformula dag,
they presuppose cleanness, or they use a priority function which yields an unnecessarily
big index. The main result of our paper, Theorem 12, concerns a construction that
provides, for every µ-calculus formula, an equivalent parity formula that is based on its
closure graph, and has an index that matches its alternation depth. The fact that we do
not assume the input formula to be clean makes our proof non-trivial.2

Because of Proposition 10, Theorem 12 has an impact on the quasi-polynomial time
complexity of the model checking problem for the modal µ-calculus. If one wants to formulate
an optimal version of this complexity result, by the observations of Bruse, Friedmann &
Lange [6] one needs to measure the formula in terms of closure-size; but then Theorem 12 is
needed to ensure that the result applies to all formulas, not just to the ones that are clean.

2 Preliminaries

In this section we briefly review the syntax and semantics of the modal µ-calculus.

Syntax. It will be convenient to assume that µ-calculus formulas are in negation normal
form. That is, the formulas of the modal µ-calculus µML are given by the following grammar:

µML ∋ φ ::= p | p | ⊥ | ⊤ | (φ ∨ φ) | (φ ∧ φ) | 3φ | 2φ | µxφ | νxφ,

where p, x are variables, and the formation of the formulas µxφ and νxφ is subject to the
constraint that φ is positive in x, i.e., there are no occurrences of x in φ. Elements of µML
will be called µ-calculus formulas or standard formulas. Formulas of the form µx.φ or νx.φ

1 Parity formulas are almost the same structures as the alternating binary tree automata of Emerson &
Jutla [10] and as the version of Wilke’s alternating tree automata where the transition conditions are
basic formulas, i.e., contain at most one logical connective [20, 12].

2 Proof details, which we could not include here for lack of space, can be found in the technical report [15].
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29:4 Succinct Graph Representations of µ-Calculus Formulas

will be called fixpoint formulas. We define Lit(Q) := {p, p | p ∈ Q} as the set of literals over
Q, and At(Q) := {⊥,⊤} ∪ Lit(Q) as the set of atomic formulas over Q. We will associate µ
and ν with the odd and even numbers, respectively, and for η ∈ {µ, ν} define η by putting
µ := ν and ν := µ. The notion of subformula is defined as usual; we write φ P ψ if φ is a
subformula of ψ, and define Sfor(ψ) as the set of subformulas of ψ.

We use standard terminology related to the binding of variables. We write BV (ξ) and
FV (ξ) for, respectively, the set of bound and free variables of a formula ξ. A formula ξ is
tidy3 if FV (ξ) ∩ BV (ξ) = ∅. We fix a set Q of proposition letters and let µML(Q) denote
the set of formulas ξ with FV (ξ) ⊆ Q. We let φ[ψ/x] denote the formula φ, with every
free occurrence of x replaced by the formula ψ; we will make sure that we only apply this
substitution operation if ψ is free for x in φ (meaning that no free variable of ψ gets bound
after substituting). This saves us from involving alphabetical variants when substituting.
The unfolding of a formula ηx.χ is the formula χ[ηx.χ/x]; this formula is tidy if χ is so.

Semantics. The modal µ-calculus is interpreted over Kripke structures. A (Kripke) model is
a triple S = (S,R, V ) where S is the set of states or points of S, R ⊆ S × S is its accessibility
relation, and V : Q → P(S) its valuation. A pointed model is a pair (S, s) where s is a
designated state of S. Inductively we define the meaning [[φ]]S ⊆ S of a formula φ ∈ µML(Q)
in a model S as follows:

[[p]]S := V (p) [[p]]S := S \ V (p)
[[⊥]]S := ∅ [[⊤]]S := S

[[φ ∨ ψ]]S := [[φ]]S ∪ [[ψ]]S [[φ ∧ ψ]]S := [[φ]]S ∩ [[ψ]]S
[[3φ]]S := {s ∈ S | R[s] ∩ [[φ]]S ̸= ∅} [[2φ]]S := {s ∈ S | R[s] ⊆ [[φ]]S}
[[µx.φ]]S :=

⋂
{U ⊆ S | [[φ]]S[x 7→U ] ⊆ U} [[νx.φ]]S :=

⋃
{U ⊆ S | [[φ]]S[x 7→U ] ⊇ U}.

Here S[x 7→ U ] := (S,R, V [x 7→ U ] where V [x 7→ U ] is the Q ∪ {x}-valuation mapping x to
U and any p ̸= x to V (p). If a state s ∈ S belongs to the set [[φ]]S, we write S, s ⊩ φ, and say
that s satisfies φ.

Complexity measures. The size of a formula ξ ∈ µML can be measured in at least three
different ways. First, its length |ξ|ℓ is defined as the number of symbols that occur in ξ.
Second, we define its subformula size |ξ|s := |Sfor(ξ)| as the number of distinct subformulas
of ξ.

Third, we can measure the size of ξ by counting the number of formulas in its (Fischer-
Ladner) closure. We need some notation and terminology here, where we assume that ξ is
tidy. The set Clos0(ξ) is defined by the following case distinction:

Clos0(φ) := ∅ if φ ∈ At(Q)
Clos0(φ0 ⊙ φ1) := {φ0, φ1} where ⊙ ∈ {∧,∨}
Clos0(♡φ) := {φ} where ♡ ∈ {3,2}
Clos0(ηx.φ) := {φ[ηx.φ/x]} where η ∈ {µ, ν}.

We write ξ →C φ if φ ∈ Clos0(ξ) and call →C the trace relation on µML. We let ↠C

denote the reflexive and transitive closure of →C , and define the closure of ξ as the set
Clos(ξ) := {φ | ξ ↠C φ}. The closure graph of ξ is the directed graph (Clos(ξ),→C). The
closure size |ξ|c of ξ is given as |ξ|c := |Clos(ξ)|.

3 In the literature, some authors make a distinction between proposition letters (which can only occur
freely in a formula), and propositional variables, which can be bound. Our tidy formulas correspond to
sentences in this approach, that is, formulas without free variables.
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Next to its size, the most important complexity measure of a µ-calculus formula is its
alternation depth. We shall work with the definition originating with Niwiński [16]. By
natural induction we first define classes Θµ

n,Θν
n ⊆ µML (corresponding to, respectively, the

sets Πn+1 and Σn+1 in [16]). Intuitively, Θη
n consists of those µ-calculus formulas where

n bounds the length of any alternating nesting of fixpoint operators of which the most
significant formula is an η-formula. For the definition, we set, for η, λ ∈ {µ, ν}:
1. all atomic formulas belong to Θη

0 ;
2. if φ0, φ1 ∈ Θη

n, then φ0 ∨ φ1, φ0 ∧ φ1,3φ0,2φ0 ∈ Θη
n;

3. if φ ∈ Θη
n then ηx.φ ∈ Θη

n (where we recall that µ = ν and ν = µ);
4. if φ(x), ψ ∈ Θη

n, then φ[ψ/x] ∈ Θη
n, provided that ψ is free for x in φ;

5. all formulas in Θλ
n belong to Θη

n+1.
The alternation depth ad(ξ) of a formula ξ is the least n such that ξ ∈ Θµ

n ∩ Θν
n. It measures

the maximal number of alternations between least and greatest fixpoint operators in ξ.

3 Representations of µ-calculus formulas

In this section we discuss two of the most widely used representations for formulas of the
modal µ-calculus that one may find in the literature: alternating tree automata (atas) and
hierarchical equation systems (hess). Both of these come in many different shapes, and in
some of these shapes the two notions are actually very similar to one another. For lack of
space we cannot give a proper survey here, and so we focus on a perspective, in which these
similarities come out most clearly.4 In this perspective, both kinds of representation can be
defined using the syntactic notion of a transition condition. Recall that we have fixed a set Q
of proposition letters; in addition to this we need a set A of objects that we shall call states
in the setting of atas and variables in that of hess. Now consider the following definitions
of, respectively, the sets of basic, standard and extended transition conditions over Q and A.

BTC(Q, A) ∋ β ::= ⊥ | ⊤ | p | p | a | 3a | 2a | a ∧ a | a ∨ a,

STC(Q, A) ∋ β ::= ⊥ | ⊤ | p | p | a | 3a | 2a | β ∧ β | β ∨ β,

ETC(Q, A) ∋ β ::= ⊥ | ⊤ | p | p | a | 3β | 2β | β ∧ β | β ∨ β,

where p ∈ Q and a ∈ A.

▶ Definition 1. An alternating tree automaton or ata is a quadruple A = (A,∆,Ω, aI)
where A is a non-empty finite set of states, of which aI ∈ A is the initial state, Ω : A → ω

is the priority map, and ∆ : A → STC(Q, A) is the transition map. An ata will be called
basic if the range of its transition map consists of basic transition conditions.

Before we move on to the definition of the semantics of atas, we make two comments.
First and foremost, the atas that were introduced by Wilke [20] are in fact what we call
basic; as we shall see in the next section, these are the ones that are in close correspondence
with our parity formulas. In the subsequent literature however, it seems to have become
quite common to allow for the more complex conditions that we here call “standard”, and
that may feature nesting of boolean connectives in transition conditions, (possibly restricted
to disjunctive normal form).

Second, if we think of the powerset P(Q) as an alphabet, then tree-based Kripke models
correspond to P(Q)-labelled trees. In such a setting it is common to consider tree automata
with a transition map of the form ∆ : A × P(Q) → TC(∅, A) for some set of transition

4 This means in particular that we only consider amorphous tree automata here, i.e., we disregard
automata operating on trees where the children of a node are given by a bounded number of functions.
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29:6 Succinct Graph Representations of µ-Calculus Formulas

conditions in which the proposition letters in Q may not occur. That is, the proposition
letters in Q move from the co-domain of the transition map to its domain. It is in fact quite
easy to transform automata of the one kind into devices of the other kind, but for lack of
space we cannot go into detail here.

The semantics of alternating tree automata is usually given in terms of run trees, but we
may also use parity games [12, ch. 9]. A simple version is the acceptance game A(A,S) for an
ata A and a model S = (S,R, V ); it takes positions in the set VA × S, where VA is given as

VA := {aI} ∪
⋃
a∈A

Sfor(∆(a)).

For each of these positions Table 1 below lists the set of possible moves and the player that is
to move. (We need not assign a player to positions that admit a single move only.) As usual
in parity games finite matches are lost by the player who gets stuck (i.e., needs to pick an
element from the empty set) and infinite matches are won by ∃ iff the maximal priority Ω(a)
of all positions (a, s) ∈ A× S that occur infinitely often in the match is even. The starting
position is (aI , s), with (S, s) the pointed model for which we want to check acceptance.

Table 1 The acceptance game A(A, S).

Position Player Admissible moves
(⊥, s) ∃ ∅
(⊤, s) ∀ ∅
(p, s) for s ∈ V (p) ∀ ∅
(p, s) for s ̸∈ V (p) ∃ ∅
(p, s) for s ∈ V (p) ∃ ∅
(p, s) for s ̸∈ V (p) ∀ ∅
(a, s) for a ∈ A - {(∆(a), s)}
(α0 ∨ α1, s) ∃ {(α0, s), (α1, s)}
(α0 ∧ α1, s) ∀ {(α0, s), (α1, s)}
(3a, s) ∃ {(a, t) | sRt}
(2a, s) ∀ {(a, t) | sRt}

As a second way of representing µ-calculus formulas we now discuss hierarchical equation
systems [18, 6]. As with alternating tree automata there are multiple definitions of hierarchical
equation systems in the literature. Here we recall the definition from [9] (where they are
called modal equation systems).

▶ Definition 2. A hierarchical equation system or hes consists of a finite set of variables
A = {X1, . . . , Xn}, together with a set

E = {X1 =p1 β1, . . . , Xn =pn
βn}.

of prioritised modal equations. That is, for each i, the number pi ∈ ω denotes the priority of
the i-th equation, and βi is an expression in the set ETC(Q, A).

By convention the first variable X1 is the entry point of the equation system, which
functions similarly to the initial state of an ata. In [18, 6] the semantics of hierarchical
equation systems is defined on the basis of the Knaster-Tarski fixpoint theorem, as in the
compositional semantics of standard formulas defined in Section 2. It is however also possible
to give a semantics in terms of parity games, completely analogous to the game semantics
for atas mentioned above. We leave the details to the reader.
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It is clear that there is a close correspondence between hierarchical equation systems and
alternating tree automata. In fact one might view an hes as a generalised version of an ata
in which modalities can be nested inside of the transition conditions – such a generalised
notion of ata has been used for example in [5]. With this in mind, in the sequel we will take
this generalised perspective on atas, so that we include hess when we refer to atas.

It is not entirely obvious what is the right measure for the size of an alternating tree
automaton A = (A,∆,Ω, aI). One might simply consider the number of states in A, but since
any actual representation of the automaton needs to encode the arbitrarily large transition
conditions a more adequate measure of the size of A should take these into account as well.
Moreover, since the acceptance game A(A,S) is based on the set VA × S, it makes sense to
define |A| := |VA|, but also, to consider a representation of A that is more directly based on
this set VA. This is what we will do in the next section.

4 Parity formulas

As the backbone of our framework we introduce the notion of a parity formula. These are
like ordinary (modal) formulas, with the difference that (i) the underlying structure of a
parity formula is a directed graph, possibly with cycles, rather than a tree; and (ii) one adds
a priority labelling to this syntax graph, to ensure a well-defined game-theoretical semantics
in terms of parity games.

▶ Definition 3. A parity formula over Q is a quintuple G = (V,E,L,Ω, vI), where
(V,E) is a finite, directed graph, with |E[v]| ≤ 2 for every vertex v;
L : V → At(Q) ∪ {∧,∨,3,2, ϵ} is a labelling function;
Ω : V ◦→ ω is a partial map, the priority map of G; and
vI is a vertex in V , referred to as the initial node of G;

such that (with E[v] := {u ∈ V | Evu}):
1. |E[v]| = 0 if L(v) ∈ At(Q), and |E[v]| = 1 if L(v) ∈ {3,2} ∪ {ϵ};
2. every cycle of (V,E) contains at least one node in Dom(Ω).
A node v ∈ V is called silent if L(v) = ϵ, constant if L(v) ∈ {⊤,⊥}, literal if L(v) ∈ Lit(Q),
atomic if it is either constant or literal, boolean if L(v) ∈ {∧,∨}, and modal if L(v) ∈ {3,2}.
The elements of Dom(Ω) will be called states.

The semantics of parity formulas is given in terms of a model checking game, which is
defined as the following parity game between ∃ and ∀.

▶ Definition 4. Let S = (S,R, V ) be a model, and let G = (V,E, L,Ω, vI) be a parity formula.
We define the model checking game E(G,S) as the parity game (G,E,Ω′) of which the board
(or arena) consists of the set V × S, the priority map Ω′ : V × S → ω is given by putting
Ω′(v, s) := Ω(v) if v ∈ Dom(Ω) and Ω′(v, s) := 0 otherwise. and the game graph is given in
Table 2. G holds at or is satisfied by the pointed model (S, s), notation: S, s ⊩ G, if the pair
(vI , s) is a winning position for ∃ in E(G,S).

Equivalence of parity formulas, and between parity formulas and standard formulas (or
atas or hess), is defined in the obvious way.

▶ Example 5. Figure 1 to the right displays an example of a parity formula that is based on
the standard µ-calculus formula ξ = µx.(p ∨ 3x) ∨ νy.(q ∧ 2(x ∨ y)), by adding back edges
to the subformula dag of ξ. Nodes in the domain of the priority map are indicated by the
notation ·|n, where n is the priority. The initial node is ϵ|1.

CSL 2022
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Table 2 The model checking game E(G, S).

Position Player Admissible moves
(v, s) with L(v) = p and s ∈ V (p) ∀ ∅
(v, s) with L(v) = p and s /∈ V (p) ∃ ∅
(v, s) with L(v) = p and s ∈ V (p) ∃ ∅
(v, s) with L(v) = p and s /∈ V (p) ∀ ∅
(v, s) with L(v) = ϵ - E[v] × {s}
(v, s) with L(v) = ∨ ∃ E[v] × {s}
(v, s) with L(v) = ∧ ∀ E[v] × {s}
(v, s) with L(v) = 3 ∃ E[v] × R[s]
(v, s) with L(v) = 2 ∀ E[v] × R[s]

ϵ|1

∨

ϵ|0

∧

✷

∨

yx

q

∨

✸p

Figure 1 Example of a parity formula.

▶ Example 6. One can also build a parity formula from the closure graph of some standard µ-
calculus formula. As an example we consider the formula ξ2 from our proof of Proposition 10
in Section 5:

ξ2 := µx0.γ2 ∧ (γ1 ∧ x0),

where

γ1 := µx1.x1 ∧ (µx0.γ2 ∧ x1 ∧ x0), and
γ2 := µx2.x2 ∧

(
(µx1.x1 ∧ (µx0.x2 ∧ x1 ∧ x0))

∧ (µx0.x2 ∧ (µx1.x1 ∧ (µx0.x2 ∧ x1 ∧ x0)) ∧ x0)
)
.

A picture of the closure graph (Clos(ξ2),→C) of ξ2 is on the left in Figure 2 below (where
γ2 is represented by γ0). This closure graph gives rise to a parity formula whose vertices
are the elements of Clos(ξ2) and edges are given by the trace relation →C . The labelling is
obvious and the initial node is the node ξ2 = γ0. The priority map Ω can be defined such
that Ω(γ0) = Ω(γ1) = Ω(γ2) = 1 and Ω is undefined on all other vertices.

We impose a bound on the outdegree of vertices in parity formulas, so that the size of any
reasonable encoding of a parity formula is linear in the number of vertices. This facilitates
the following simple definition of size:
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▶ Definition 7. The size of a parity formula G = (V,E, L,Ω, vI) is defined as its number of
nodes: |G| := |V |.

The second fundamental complexity measure for a parity formula is its index, which
corresponds to the alternation depth of standard formulas. The most straightforward
definition of this notion would be to take the size of the range of the priority map; a slightly
more sophisticated approach5 involves the notions of an alternating Ω-chain and of a cluster
(or maximal strongly connected component) of G

▶ Definition 8. Let G = (V,E, L,Ω, vI) be a parity formula.
A set C ⊆ V is a cluster in G if C is a maximal set such that E∗uv and E∗vu for all

u, v ∈ C. Clusters are partially ordered by placing one cluster C higher than another cluster
C ′ if E∗uu′ for all u ∈ C and u′ ∈ C ′. A cluster C in G is degenerate if C = {v} is a
singleton and we do not have Evv; otherwise, C is called nondegenerate.

An alternating Ω-chain of length k in G is a finite sequence v1 · · · vk of states that
all belong to the same cluster, and satisfy, for all i < k, that Ω(vi) < Ω(vi+1) while vi
and vi+1 have different parity. Such a chain is called an µ-chain (ν-chain) if Ω(vk) is
odd (even, respectively). Given a cluster C of G and η ∈ {µ, ν} we define indη(C), the
η-index of C, as the maximal length of an alternating η-chain in C, and the index of C as
indG(C) := max

(
indµ(C), indν(C)

)
. Finally, we define

ind(G) := max{indG(C) | C ∈ Clus(G)}.

Note that if G has cycles then Dom(Ω) ̸= ∅, so that G has alternating chains. If G is
cycle-free then we can assume that Dom(Ω) is empty, in which case ind(G) = 0.

Parity formulas, alternating tree automata and hierarchical equation systems

It should be clear from the definitions that parity formulas are very similar to both alternating
tree automata and hierarchical equation systems. To transform a given ata A = (A,∆,Ω, aI)
into an equivalent parity formula GA = (V,E, L,Ω′, vI), one just builds a graph on the
set VA in the obvious way, and defines Ω′ := Ω (with the understanding that Ω′ is now a
partial map on V ), and vI := aI . Finally, one defines L(a) := ϵ if a ∈ A, whereas L(α)
for α ∈ STC(Q, A) \ A is given as L(α) := α in case α is atomic, and L(α) is the main
connective of α otherwise. It is then straightforward to show that A ≡ GA, whereas GA
obviously has the same size as A. In the opposite direction, it is as straightforward to define,
for an arbitrary parity formula G, an equivalent basic ata A of the same size and index.

Parity formulas, then, can be seen as a definitional variation of atas or hess. We prefer
the graph-based format of parity formulas, since this shows more clearly how to generalise
standard formulas, and allows for very perspicuous definitions of complexity measures. What
matters most, however, is that the results that we prove in the next two sections apply to
atas and hess, in the same way as to parity formulas, see for instance Remark 11 where we
make this point explicit.

5 Size issues

It follows from our observations in the previous paragraphs that we may solve the model
checking problem for the modal µ-calculus by transforming an arbitrary formula ξ ∈ µML into
an equivalent parity formula G, and then use the model checking game for parity formulas,

5 Note that these two definitions almost coincide, since we may shift the priorities of any cluster to either
0, . . . , d or 1, . . . , d + 1.
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together with an algorithm for solving parity games.6 While the complexity of solving
parity games is still not exactly understood, there is no doubt that the key parameters that
determine this complexity are the size and the index of the game. Thus, given the definition
of the model checking game for parity formulas, it is of crucial importance to find, for an
arbitrary µ-calculus formula ξ, an equivalent parity formula G of minimal size and index.
While Kozen [14] already showed that the closure set Clos(ξ) of a clean µ-calculus formula ξ
never exceeds the number of subformulas of ξ, Bruse, Friedmann & Lange [6] revealed that
Clos(ξ) can in fact be exponentially smaller than Sfor(ξ) of its subformulas. This difference
in size indicates that for optimal complexity results, rather than building a parity formula
for ξ on the set Sfor(ξ), one should work with the closure graph of ξ.

In the next section we will give a concrete definition of such a parity formula. Here we
point out a complication in this definition that seems to have gone unnoticed until now; it
concerns the notion of a formula being clean or well-named.

▶ Definition 9. A tidy µ-calculus formula ξ is clean or well-named if we may associate
with each x ∈ BV (ξ) a unique subformula of the form ηx.δ. This unique subformula will be
denoted as ηxx.δx, and we call x a µ-variable if ηx = µ, and a ν-variable if ηx = ν.

It is generally very convenient to work with clean formulas, since the bound variables of
a clean formula are in 1-1 correspondence with its fixpoint subformulas.7 For this reason
one often sees in the literature that authors assume that the formulas they work with are
clean. It is easy to rewrite a µ-calculus formula into an equivalent clean variant, by a suitable
renaming of bound variables. The problem, however, is that such a renaming comes at a
high cost, as is stated by the following proposition.

▶ Proposition 10. There exists a family ξ1, ξ2, . . . of formulas in µML such that |ξn|c ≤ 2n+2,
but |ψn|c ≥ 2n for every clean alphabetic variant ψn of ξn.

Proof. Fix a number n. The formula ξn is defined in terms of simpler families of formulas
βi, γi for all i ∈ {0, . . . , n} and αi,j for all i, j ∈ {0, . . . , n} with j ≤ i. First we define βi by
an induction on i ≤ n:

β0 := µx0.xn ∧ · · · ∧ x0
βi := µxi.αi,i ∧ · · · ∧ αi,0,

where αi,j for j ≤ i is defined by an inner downwards induction such that αi,i := xi and for
all j with 0 ≤ j < i we set

αi,j := βj [αi,i/xi] · · · [αi,j+1/xj+1].
Note that FV (βi) ⊆ {xn, . . . , xi+1} and FV (αi,j) ⊆ {xn, . . . , xi} for all j ≤ i. In the
definition of βi and the remainder of this section we assume that conjunction associates to
the right. We then define γi with a downwards induction on i such that

γi := βi[γn/xn] · · · [γi+1/xi+1].

Finally, we set ξn := γ0. Figure 2 depicts the closure graphs for ξ2 and ξ3. The formula ξ2 is
given in Example 6. The formula ξ3 is already too large to be written out.

6 Because the correspondence between parity formulas and atas and hess, this is the standard way of
approaching model checking for µML.

7 In some situations it is even necessary to work with clean formulas. Suppose, for instance, that for a
formula ξ ∈ µML one wants to base an equivalent ata Aξ on the set of subformulas of ξ. If we cannot
associate a unique subformula of ξ with some bound variable x of ξ, then there is no sensible way to
define the value of the transition map for this x.
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γ0

γ1 γ2

γ1 ∧ γ0 γ2 ∧ (γ1 ∧ γ0)

γ0

γ1 γ2 γ3

γ1 ∧ γ0 γ2 ∧ (γ1 ∧ γ0) γ3 ∧ (γ2 ∧ (γ1 ∧ γ0))

Figure 2 Structure of the closure graphs for ξ2 (represented by γ0 in the left graph) and for ξ3

(represented by γ0 in the right graph).

To show that |ξn|c ≤ 2n+ 2 one needs to verify that

Clos(ξn) = {γ0, . . . , γn, γ1 ∧ γ0, γ2 ∧ (γ1 ∧ γ0), . . . , γn ∧ · · · ∧ γ0}.

The crucial observation behind this result is that for all j ≤ i it holds that

αi,j [γn/xn] · · · [γi+1/xi+1][γi/xi] = γj .

This equation can be proved by a downward induction over j ∈ {i, . . . , 0} for every fixed i.
To prove the result on the closure size of clean renamings of ξn we use the notion of fixpoint

depth. Inductively we define fd(φ) := 0 if φ is atomic, fd(φ0 ⊙ φ1) := max(fd(φ0), fd(φ1)),
fd(♡φ) := fd(φ), and fd(ηx.φ) := 1 + fd(φ). As we sketch below one can then show that

fd(ξn) ≥ 2n. (1)

To see how the claim about clean alphabetic variants follows from (1) let ψn be some clean
alphabetical variant of ξn; it is not hard to see that we have fd(ψn) ≥ 2n as well. The claim
then follows by the observation that

every clean µ-calculus formula χ satisfies |χ|c ≥ fd(χ). (2)

For a proof of this statement, first observe that for any subformula ηx.φ P χ, the closure of
χ contains a formula of the form ηx.φ′. This implies that |χ|c = |Clos(χ)| ≥ |BV (χ)|. But if
χ is a formula of fixpoint depth k, then there is a chain of subformulas η1x1.φ1 P η2x2.φ2 P
· · · P ηkxk.φk, and if χ is clean, then all these variables xi must be distinct. This shows that
|BV (χ)| ≥ fd(χ). Combining these observations, we see that |χ|c ≥ fd(χ) indeed.

To prove (1) we need the auxiliary notion of the fixpoint depth of a variable in a
formula. Given a formula φ and variable x, we let fd(x, φ), the fixpoint depth of x in φ,
denote the maximum number of fixpoint operators that one may meet on a path from
the root of the syntax tree of φ to a free occurrence of x in φ, with fd(x, φ) = −∞
if no such occurrence exists. Formally, we set fd(x, x) := 0, fd(x, y) := −∞ if x ̸= y,
fd(x, φ0 ⊙ φ1) := max

(
fd(x, φ0), fd(x, φ1)

)
, fd(x,♡φ) := fd(x, φ), fd(x, ηx.φ) := −∞, and

fd(x, ηy.φ) = 1 + fd(x, φ) if x ̸= y. Without proof we mention that, provided x ̸= y and ψ is
free for y in φ:

fd(x, φ[ψ/y]) = max
(
fd(x, φ), fd(y, φ) + fd(x, ψ)

)
.

From this we immediately infer that

fd(x, φ[ψ/y]) ≥ fd(y, φ) + fd(x, ψ), (3)
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which shows that every substitution doubles the fixpoint depth of a variable and leads to the
exponential bound in (1). More concretely one can show that for all k and i such that k > i

it holds that

fd(xk, βi) ≥ 2i (4)

From this (1) follows because βn is a subformula of ξn. The statement (4) is shown by
an induction over i, where in the inductive step one proves with an inner induction over
j ∈ {i− 1, . . . , 0} that fd(xk, αi,j) ≥ 2i−1 + · · · + 2j . We leave the details to the reader. ◀

6 Standard formulas and parity formulas

In this section we show how to move back and forth between standard µ-calculus formulas
and parity formulas, in such a way that the closure-size of the standard formula corresponds
linearly to the size of the parity formula and the alternation depth is preserved.

From standard formulas to parity formulas

Our main theorem states that for an arbitrary tidy formula, we can find an equivalent parity
formula that is based on the formula’s closure graph, and has an index which is bounded by
the alternation depth of the formula.

▶ Remark 11. To stress our point that our results apply to atas and hess too, suppose that
we want to base an ata Aξ on the closure set of a formula ξ, or, for the sake of a perspicuous
definition, on the set A := {φ̂ | φ ∈ Clos(ξ)}. It is clear how to define the transition map ∆:
we simply put ∆(φ̂) := φ if φ is atomic, ∆(φ̂⊙ ψ) := φ̂⊙ ψ̂ (for ⊙ ∈ {∧,∨}), ∆(♡̂φ) := ♡φ̂
(for ♡ ∈ {3,2}), and ∆(η̂x.φ) := ̂φ[ηx.φ/x] (for η ∈ {µ, ν}). What is not obvious, however,
is how to define the priority map on the set A (unless ξ is clean); this is exactly the issue we
address here.

▶ Theorem 12. There is a construction transforming an arbitrary tidy formula ξ ∈ µML into
an equivalent parity formula Gξ, which is based on the closure graph of ξ, so that |Gξ| = |ξ|c
and ind(Gξ) ≤ ad(ξ).

The formula Gξ = (V,E,L,Ω, vI) is defined such that (V,E) is the closure graph of ξ, vI = ξ

and L is the labelling that maps a literal to itself, a boolean or modal formula to its main
connective and a fixpoint formula to ϵ. Clearly this guarantees |Gξ| = |ξ|c. The main
difficulty is in defining the priority map Ω on Clos(ξ) such that Gξ is equivalent to ξ and
ind(Gξ) ≤ ad(ξ), without assuming that ξ is clean.

The definition of Ω is such that it assigns priorities to the fixpoint formulas in the closure
of ξ. Because every cycle in the trace relation needs to pass over at least one fixpoint formula
this makes sure that condition 2) of Definition 3 is satisfied by Gξ. In fact we can take Ω to
be the restriction of a global priority map Ωg, which uniformly assigns a priority to every
tidy fixpoint formula in µML. The function Ωg itself is defined cluster-wise from a strict
partial ordering <C over the set of all tidy fixpoint formulas. To define <C we make use of
the following notion of a free subformula.

▶ Definition 13. Let φ and ψ be µ-calculus formulas. We say that φ is a free subformula of
ψ, notation: φ Pf ψ, if ψ = ψ′[φ/x] for some formula ψ′ such that x ∈ FV (ψ′) and φ is
free for x in ψ′.
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The following is a useful characterisation of the free subformula relation (see [15] for a proof):

φ Pf ψ iff φ ∈ Sfor(ψ) ∩ Clos(ψ).

▶ Definition 14. We let ≡C denote the equivalence relation generated by the relation →C ,
in the sense that: φ ≡C ψ if φ↠C ψ and ψ ↠C φ. We will refer to the equivalence classes
of ≡C as (closure) clusters, and denote the cluster of a formula φ as C(φ).

We define the closure priority relation ⊑C on fixpoint formulas by putting φ ⊑C ψ

precisely if ψ ↠ψ
C φ, where ↠ψ

C is the relation given by ρ ↠ψ
C σ if there is a trace ρ =

χ0 →C χ1 →C · · · →C χn = σ such that ψ Pf χi, for every i ∈ [0, .., n]. We write φ <C ψ

if φ ⊑C ψ and ψ ̸⊑C φ.

Using <C we can define the priority of a fixpoint formula as follows:

▶ Definition 15. An alternating <C -chain of length n is a sequence (ηixi.χi)i∈[1,..,n] of tidy
fixpoint formulas such that ηixi.χi <C ηi+1xi+1.χi+1 and ηi+1 = ηi for all i ∈ [0, .., n− 1].
We say that such a chain starts at η1x1.χ1 and leads up to ηnxn.χn.

Given a tidy fixpoint formula ξ, we let h↑(ξ) and h↓(ξ) denote the maximal length of any
alternating <C-chain starting at, respectively leading up to, ξ. Given a closure cluster D, we
let cd(D) denote the maximal length of an alternating <C-chain in D.

The global priority function Ωg : µMLt → ω is defined cluster-wise, as follows. Take an
arbitrary tidy fixpoint formula ηy.φ, and define

Ωg(ηy.φ) :=
{

cd(C(ψ)) − h↑(ψ)) if cd(C(ψ) − h↑(ψ)) has parity η(
cd(C(ψ)) − h↑(ψ)

)
+ 1 if cd(C(ψ)) − h↑(ψ)) has parity η,

where we recall that we associate µ and ν with odd and even parity, respectively. If ψ is not
of the form ηy.φ, we leave Ωg(ψ) undefined.

Finally we define the priority function Ω of the parity formula Gξ to be Ω := Ωg ↾Clos(ξ) .

▶ Remark 16. The definition of the priority map Ωg and of the priority order <C on which
it is based, may look overly complicated. In fact, simpler definitions would suffice if we are
only after the equivalence of ξ with Gξ and we do not need an exact match of index and
alternation depth.

In particular, we could have introduced an alternative priority order <′
C by putting

φ <′
C ψ if φ ≡C ψ and ψ ◁f φ. This definition of <′

C is similar to the definition of a valid
thread in [3]. If we would base a priority map Ω′

g on <′
C instead of on <C , then we could

prove the equivalence of any tidy formula ξ with the associated parity formula G′
ξ that is

just like G but uses Ω′
g as its priority map. However, we would not be able to prove that the

index of G′
ξ is bounded by the alternation depth of ξ.

To see this, consider the following formula:

αx := νx.
(
(µy.x ∧ y) ∨ νz.(z ∧ µy.x ∧ y)

)
.

We leave it for the reader to verify that this formula has alternation depth two, and that its
closure graph looks as in the picture to the right (where we only indicate the main connective
of the formulas):
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νx

∨

νz

∧

µy

∧

Let αy and αz be the other two fixpoint formulas in the cluster of αx, that is, let
αy := µy.αx ∧ y and αz := νz.z ∧ αy. These formulas correspond to the nodes in the graph
that are labelled µy and νz, respectively. Now observe that we have αx ◁f αy ◁f αz, so that
this cluster has an alternating <′

C-chain of length three: αz <′
C αy <′

C αx. Note however,
that any trace from αy to αz must pass through αx, the <C -maximal element of the cluster.
In particular, we do not have αz <C αy, so that there is no <C-chain of length three in the
cluster.

A different kind of simplification of the global priority map would be to define

Ω′′
g (ψ) :=

{
h↓(ψ) if h↓(ψ) has parity η
h↓(ψ) − 1 if h↓(ψ) has parity η. (5)

Using this definition for a priority map Ω′′
g , we would again obtain the equivalence of ξ and

the resulting parity formula G′′
ξ := (Cξ,Ω′′

g ↾Clos(ξ) ). In addition, we would achieve that the
index of the parity formula G′′

ξ satisfies ind(G′′
ξ ) ≤ ad(ξ) + 1. However, the above formula

αx would be an example of a formula ξ where ind(G′′
ξ ) exceeds ad(ξ): We leave it for the

reader to verify that we would get Ω′′
g (αz) = 0, Ω′′

g (αy) = 1 and Ω′′
g (αx) = 2, implying that

ind(G′′
ξ ) = 3.

With our definition of the priority map Ωg, we find the same values for αy and αx as
with Ω′′

g , but we obtain Ωg(αz) = 2, implying that ind(Gx) = 2 = ad(ξ) as required.
In our technical report [15] we prove in detail that Gξ is in fact equivalent to ξ and

that ind(Gξ) ≤ ad(ξ). The proof of the equivalence proceeds by induction on the length
of ξ, where we use the strengthened inductive hypothesis that each formula φ ∈ Clos(ξ) is
equivalent to Gξ⟨φ⟩ (that is, the version of G where we take φ as the initial state). In the
crucial case of the inductive step we have ξ = ηx.χ and because of our strengthened inductive
hypothesis we can assume that ξ /∈ Clos(χ). We then apply the inductive hypothesis to the
tidy variant χ[x′/x] of χ. The claim follows from a comparison of the evaluation games for
Gξ with the evaluation games for Gχ[x′/x]. For this we need the following proposition:

▶ Proposition 17. Let ξ = ηx.χ be a tidy fixpoint formula such that x ∈ FV (χ) and
ξ /∈ Clos(χ). Let χ′ := χ[x′/x] for some fresh variable x′. Then χ′ is tidy and we have:
1. the substitution ξ/x′ is a bijection between Clos(χ′) and Clos(ξ).
Let φ,ψ ∈ Clos(χ′). Then we have
2. if φ ̸= x′, then φ →C ψ iff φ[ξ/x′] →C ψ[ξ/x′] and LC(φ) = LC(φ[ξ/x′]);
3. if x′ ∈ FV (φ) then φ Pf ψ iff φ[ξ/x′] Pf ψ[ξ/x′];
4. if φ and ψ are fixpoint formulas then ψ ⊑C φ iff ψ[ξ/x′] ⊑C φ[ξ/x′];
5. if (φn)n∈ω is an infinite trace through Clos(χ′), then (φn)n∈ω has the same winner as

(φn[ξ/x′])n∈ω.
The crucial step in proving that ind(Gξ) ≤ ad(ξ) is to establish a link between the

alternation depth of ξ and the length of alternating <C-chains in the closure graph of
ξ. This is done by the following proposition, which can be seen as giving an alternative
characterisation of the alternation depth of a formula. With η ∈ {µ, ν}, we let cdη(ξ) denote
the maximal length of an alternating <C-chain in Clos(ξ) that leads up to an η-formula.
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▶ Proposition 18. For any tidy formula ξ and η ∈ {µ, ν}, we have

cdη(ξ) ≤ n iff ξ ∈ Θη
n. (6)

Hence the alternation depth of ξ is equal to the length of its longest alternating <C-chain.
The main challenge in proving Proposition 18 is the direction from right to left, and more

specifically the case of the definition of alternation depth that concerns the closure of Θη
n

under substitutions. Here we carefully analyse how the alternating <C-chains in C(ψ[ξ/x])
relate to the ones in C(ψ). For the details, which are fairly complex, we refer to our technical
report [15]. Here we just state the crucial proposition that establishes this relation.

▶ Proposition 19. Let ξ and χ be formulas such that ξ is free for x in χ, ξ ̸Pf χ, and
x ̸∈ FV (ξ). Furthermore, let ψ ∈ Clos(χ) be such that ψ[ξ/x] /∈ Clos(χ) ∪ Clos(ξ). Then
1. the substitution ξ/x : C(ψ) → C(ψ[ξ/x]) is a bijection between C(ψ) and C(ψ[ξ/x]).
Let φ0, φ1 ∈ C(ψ). Then we have
2. φ0 →C φ1 iff φ0[ξ/x] →C φ1[ξ/x] and LC(φ0) = LC(φ0[ξ/x]);
3. φ0 Pf φ1 iff φ0[ξ/x] Pf φ1[ξ/x];
4. h↓(φ0) = h↓(φ0[ξ/x]), if φ0 is a fixpoint formula.

From parity formulas to standard formulas

The construction of an equivalent µ-calculus formula from a parity formula is well known,
see for instance [17, 20]. The following theorem provides an analysis on how it behaves in
terms of closure size and alternation depth. Given a parity formula G, we let G⟨v⟩ denote
its variant that takes v as its initial state.

▶ Theorem 20. For any parity formula G = (V,E,L,Ω, vI) there is a map trG : V → µML
such that, for every v ∈ V :
1. G⟨v⟩ ≡ trG(v);
2. |trG(v)|c ≤ 2 · |G|;
3. ad(trG(v)) ≤ ind(G).

The details of the definition of trG and the proofs of items 1–3 can be found in our
technical report [15]. Here, we illustrate the basic idea behind the construction by considering
the simplified case where the priority map Ω is injective.8 The definition of trG proceeds by
an induction on the lexicographic order over the pairs of numbers (|Dom(Ω)|, |G|), and we
allow ourselves to be sloppy in considering structures consisting of parity formulas without
initial vertex. Let T be a top cluster of G, that is, the states in T are not reachable from
any state outside T . We make the following case distinction:
Case 1: T is degenerate. In this case we have T = {v} for some v ̸∈ Ran(E). Let G′ be

the structure we obtain from G by removing v from V . We may apply the induction
hypothesis to G′ because it is strictly smaller than G, while having no more elements in
the domain of the priority map. We define trG(u) := trG⟨u⟩(u) for u ̸= v, while for v
we set define trG(v) by connecting the formulas trG⟨u⟩(u) for u ∈ E(v) with L(v) in the
obvious way.

Case 2: T is non-degenerate. In this case we have T ∩Dom(Ω) ̸= ∅; let m ∈ T be the state
in T of maximal priority, which is unique because of our assumption that Ω is injective.

8 In fact, it is not hard to see that by shifting priorities we can reduce the general case to this.
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For the induction we then consider a fresh propositional variable pm and define G− =
(V −, E−, L−,Ω−, vI) as the parity formula over Q ∪ {pm}, given by

V − := V ∪ {m∗}
E− := {(v, x) | (v, x) ∈ E, x ̸= m} ∪ {(v,m∗) | (v,m) ∈ E}
Ω− := Ω↾V \{m} ,

while its labelling L− is defined by putting

L−(v) :=
{
L(v) if v ∈ V

pm if v = m∗.

Since |Dom(Ω−)| < |Dom(Ω)|, inductively we have a map trG− : V − → µML(Q ∪ {pm}).
Let η be the parity of m and define trG as

trG(m) := ηpm.trG−(m)
trG(v) := trG−(v)[trG(m)/pm] for v ∈ V.

The key claim that entails item 2 of Theorem 20 is that

|Clos(G)| ≤ |G| + |Dom(Ω)|,

where Clos(G) :=
⋃ {

Clos(trG(v)) | v ∈ V
}

. This claim can be proved by the same
induction as is used in the definition of trG: The point is to treat the closures of all the
translations for vertices in G in parallel. The inductive case for non-degenerate clusters
then follows with the observation that Clos(G) ⊆ {φ[trG(m)/pm] | φ ∈ Clos(G−)}.

7 Conclusion

This paper contributes to the theory of the modal µ-calculus by studying in detail some
representations that are commonly used in order to prove complexity-theoretic results on
problems such as model checking or satisfiability. We introduced the notion of a parity
formula as a natural graph-based structure for representing formulas, and, building on work by
Bruse, Friedmann & Lange [6] we focused on defining succinct parity formula representation
on the closure graph of a standard formula. We showed in Proposition 10 that the renaming
of bound variables can cause an exponential blow-up if the target formula is required to be
clean. To realise the optimal upper complexity bound of model checking for all µ-calculus
formulas, as our main contribution, Theorem 12 provides a construction of a parity formula
that is based on the closure graph of a given formula, preserves its alternation-depth but
does not assume the input formula to be clean.

There is a lot more to say about parity formulas as graph-based representations of
µ-calculus formulas, but here we confine ourselves to the following.

Our example in Section 5 shows that closure size is not invariant under alphabetical
equivalence. This matter could be investigated more thoroughly – here are some pertinent
questions. Can we compute alphabetical variants of minimal closure size? If we make the
reasonable assumption that alphabetical variants should be identified, then we should define
the size of a formula as the size of its closure, up to alpha-equivalence; but can we base a
parity formula on the quotient of the closure set under α-equivalence? Some answers to these
questions can be found in our technical report [15].

Second, we used parity formulas here as a means to understand complexity-theoretic
results pertaining to the modal µ-calculus, but it could be interesting to study these structures
in their own right. A natural first question is to find a good notion of a morphism or an
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equivalence between parity formulas. One might then for instance investigate whether Kozen’s
expansion map [14] is a morphism from the parity formula based on the subformula dag to the
parity formula on the closure. Furthermore, because parity formulas are representations of
µ-calculus formulas one might also take a more logical perspective, and develop, for instance,
their model theory or proof theory.
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