
Realising Intensional S4 and GL Modalities
Liang-Ting Chen #Ñ

Institute of Information Science, Academia Sinica, Taipei, Taiwan

Hsiang-Shang Ko #Ñ

Institute of Information Science, Academia Sinica, Taipei, Taiwan

Abstract
There have been investigations into type-theoretic foundations for metaprogramming, notably Davies
and Pfenning’s (2001) treatment in S4 modal logic, where code evaluating to values of type A is
given the modal type Code A (□A in the original paper). Recently Kavvos (2017) extended PCF
with Code A and intensional recursion, understood as the deductive form of the GL (Gödel-Löb)
axiom in provability logic, but the resulting type system is logically inconsistent. Inspired by
staged computation, we observe that a term of type Code A is, in general, code to be evaluated
in a next stage, whereas S4 modal type theory is a special case where code can be evaluated in
the current stage, and the two types of code should be discriminated. Consequently, we use two
separate modalities ⊠ and □ to model S4 and GL respectively in a unified categorical framework
while retaining logical consistency. Following Kavvos’ (2017) novel approach to the semantics of
intensionality, we interpret the two modalities in the P-category of assemblies and trackable maps.
For the GL modality □ in particular, we use guarded type theory to articulate what it means by
a “next” stage and to model intensional recursion by guarded recursion together with Kleene’s
second recursion theorem. Besides validating the S4 and GL axioms, our model better captures the
essence of intensionality by refuting congruence (so that two extensionally equal terms may not be
intensionally equal) and internal quoting (both A → □A and A → ⊠A). Our results are developed
in (guarded) homotopy type theory and formalised in Agda.

2012 ACM Subject Classification Theory of computation → Type theory

Keywords and phrases provability, guarded recursion, realisability, modal types, metaprogramming

Digital Object Identifier 10.4230/LIPIcs.CSL.2022.14

Supplementary Material The results were formalised in Agda 2.6.2 in the guarded cubical mode:
Software (Source Code): https://doi.org/10.5281/zenodo.5602771

Funding This work was partially supported by EPSRC grant number EP/N028139/1 and supported
by the Ministry of Science and Technology of Taiwan under grant MOST 109-2222-E-001-002-MY3.

Acknowledgements We are grateful to Alex Kavvos and Tsung-Ju Chiang for insightful discussions.
We would also like to thank Jacques Carette, Martín Escardó, Tom de Jong, Churn-Jung Liau,
Rasmus Ejlers Møgelberg, Chad Nester, Anton Setzer, Andrea Vezzosi, Ren-June Wang, and Zhixuan
Yang for useful exchanges. Finally, we thank the anonymous reviewers for their thoughtful comments.

1 Introduction

Metaprogramming is the activity of writing metaprograms that manipulate program code.
Executing a metaprogram can result in another program to be executed, and these successive
executions are abstractly referred to as computation stages. A particular form of metapro-
gramming is staged computation, where fragments of a program are internally marked to
be evaluated in multiple stages, so that the program can be partially evaluated to produce
more efficient code. The stratification of computation stages forms possible worlds and can
be ideally reasoned about by modal logic. Therefore, there have been investigations into
type-theoretic foundations for staged computation with modalities [9, 10, 16, 22], which have
influenced the design of practical implementations [17, 27, 28] to varying degrees.

© Liang-Ting Chen and Hsiang-Shang Ko;
licensed under Creative Commons License CC-BY 4.0

30th EACSL Annual Conference on Computer Science Logic (CSL 2022).
Editors: Florin Manea and Alex Simpson; Article No. 14; pp. 14:1–14:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:liang.ting.chen.tw@gmail.com
https://l-tchen.github.io
https://orcid.org/0000-0002-3250-1331
mailto:joshko@iis.sinica.edu.tw
https://josh-hs-ko.github.io
https://orcid.org/0000-0002-2439-1048
https://doi.org/10.4230/LIPIcs.CSL.2022.14
https://doi.org/10.5281/zenodo.5602771
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Realising Intensional S4 and GL Modalities

Let Code A denote the type of code that evaluates to values of type A in a next stage.
In Davies and Pfenning’s analysis of staged computation [10], Code corresponds to the
modality ⊠ in the intuitionistic modal logic S4. More specifically, the 4 axiom ⊠A → ⊠⊠A

corresponds to the use of code in the stage after the next, so code can be shared across all
stages, a.k.a. cross-stage persistence; the T axiom ⊠A → A corresponds to the evaluation
of code to its value in the same stage. For instance, in λ-calculus, it is well-known [4] that
there are terms encoding the Gödel code of a code and evaluating a code respectively.

Recently, Kavvos proposed intensional recursion [16] for Code to construct a value
recursively from its own code (intension). Logically, intensional recursion amounts to the
Gödel-Löb axiom □(□A → A) → □A for the modal logic GL [5], where □A stands for
“A is provable”. Computationally, the behaviour of the GL axiom mirrors Kleene’s second
recursion theorem. In contrast to general recursion (A → A) → A, which constructs a value
recursively from its value (extension), intensional recursion alone does not lead to logical
inconsistency. Kavvos explored the computational capabilities of a variant of PCF extended
with Code viewed as both S4 and GL modalities. Unfortunately, when Code is designed in
this way, the type system is inconsistent so that it cannot be treated as a logical foundation.

To make S4 and GL coexist in a single system while maintaining logical consistency, our
approach is to keep the two modalities ⊠ and □ separate. Intuitively, while both modalities
model code and appear similar, there are crucial differences: In general, programs are to
be evaluated in a next stage, but S4 is a special case where next stages include the current
one, so the result of evaluating a program can be immediately used in the current stage, as
witnessed by T. On the other hand, a program constructed with GL can recursively refer to
its own code, which must not be evaluated within the same stage or risk non-termination
computationally and inconsistency logically, so stage distinction has to be kept for GL.

To illuminate the difference, we present in this paper a denotational semantics of two
types of code – a type ⊠A of code that can be evaluated in the current stage and a type □A

of code to be evaluated in a next stage. To distinguish between intensions and extensions, we
build upon the previous work using P-categories [8, 15], which have an additional partial
equivalence relation on morphisms that models extensional equality, while the underlying
equality on morphisms models intensional equality. We revisit elements of realisability and
construct a P-category of assemblies on λ-calculus. Roughly speaking, an assembly X on
λ-calculus is a set |X| of extensions associated with at least an intension in the form of a
λ-term (the existence of such an intension is merely a property that holds for the extension),
while trackable maps are pairs of a function and one of its intensions, and can be equipped
with both extensional and intensional equalities (taking only the function part or both
parts into account). The denotations ⊠X and □X of the two types of code both consist of
pairs (M, x) of an extension x and an associated λ-term M whose associated intensions are
λ-terms that are reducible to the Gödel code ⌜M⌝. The choice of using ⌜M⌝ (rather than M

as chosen by Kavvos [15]) as the intensions of (M, x) prevents X → ⊠X from having the
meaning of generic quoting. The difference between ⊠X and □X is what extensions are.

For ⊠X, the extension part x in (M, x) coincides with the values of the set |X|. We can
then validate the S4 axioms, for example ⊠X → X (natural in X) by just projection.
For □X, the extension x does not come from |X| but a different set ▷|X| whose elements
denote values of |X| that are available in a next, or later, stage. This set ▷|X| can be
expressed directly in a guarded type theory which features Nakano’s later modality ▷ and
guarded recursion [21]. By working in guarded type theory, □X → X can no longer be
validated by projection (because x from (M, x) is available later rather than now) and is
actually not possible; also intensional recursion can be modelled by guarded recursion.

L.-T. Chen and H.-S. Ko 14:3

The above constructions do not give rise to P-functors but “exposures” [15] so that congruence
(the preservation of extensional equality) is not required by definition and is actually false.
Hence, by refuting both congruence and generic quoting, which previous work [12, 15] did
not achieve, our denotational semantics is more intensional in the sense that it provides a
finer-grained equality which allows us to distinguish computationally equivalent intensions.

We use homotopy type theory (HoTT) [29] as our metalanguage, but this is only for access
to a small subset of convenient HoTT features, which in particular does not include univalence.
Specifically, our work is built upon the reformulated set theory and logic within HoTT,
which enable us to be precise about notions such as sets and propositions, and existence with
explicit witnesses versus “mere” existence (for example, within HoTT we can easily distinguish
between “pairs of an extension and an intension” and “extensions associated with at least
an intension”). Moreover, implementations of HoTT are readily available, so we are able to
formalise and verify our constructions, for which HoTT provides essential features that some
other type theories lack, notably function extensionality: (∀(x : A). f x =B g x) → f =A→B g.
Indeed, our work has been formalised in Agda [11], which implements HoTT and guarded
type theory respectively in the forms of cubical type theory [7, 32] and ticked cubical type
theory [31] with clock quantification [18]. However, we do not use cubical arguments.

Plan of the paper

After recalling preliminaries on homotopy type theory, untyped λ-calculus, and P-categories
in Section 2, we present the P-category of assemblies on λ-calculus and trackable maps
developed in HoTT in Section 3 and the denotational semantics of ⊠A and □A in Sections 4
and 5 respectively, and discuss related work in Section 6 and future work in Section 7.

2 Preliminaries

Most, if not all, of the materials in this section are standard, so we do not go into details.

2.1 Homotopy type theory
In type theory, between every two inhabitants x and y of a type A, there is a type x =A y

of proofs that x and y are (propositionally) equal; given an equality proof p : x =A y, any
z : B(x) can be converted to transport(p, z) : B(y). Between equality proofs p, q : x =A y

there is again a higher-dimensional equality type p =x=Ay q, and so on. HoTT identifies
this infinite-dimensional structure of equality types as an abstract form of homotopy theory,
where types are interpreted as spaces and equality proofs as paths; in particular, equality
types are path spaces, and paths between paths are homotopies. We do not make use of
the full generality of HoTT but work exclusively with propositions and sets, whose equality
structure degenerates at higher dimensions.

A proposition P is a type whose equality types x =P y, for x and y : P , are all inhabited
– all inhabitants of P are deemed equal, so all we care about P is whether it is inhabited,
not its specific inhabitants. Hence, we will simply write ⋆ when referring to an inhabitant of
any proposition. If P and Q are propositions, then so is their product P × Q. Similarly, if a
family R(x) of types indexed by x : A (where A is any type) are all propositions, then so is
the product

∏
(x:A) R(x). Logically these give us conjunction and universal quantification;

therefore we may write ∀(x : A). R(x) in place of
∏

(x:A) R(x). Function types A → P are a
special case of

∏
, so we have implication too. On the other hand, the disjoint sums P + Q

and
∑

(x:A) R(x) are usually not propositions. This reflects the fact that they are constructive
disjunction and existential quantification. In particular, from a proof of

∑
(x:A) R(x) we can

project a witness x : A and a proof of R(x).

CSL 2022

14:4 Realising Intensional S4 and GL Modalities

For any type A, the propositional truncation of A is a type ∥A∥ for which there is an
introduction rule that wraps any a : A into |a| : ∥A∥, and a higher one that introduces an
inhabitant of |a| =∥A∥ |b| for any a, b : A, equating all inhabitants of ∥A∥ and making ∥A∥
a proposition; its recursion principle maps ∥A∥ to a proposition P provided that A → P .
With truncation, we introduce a propositional version of existential quantification by defining
∃(x : A). R(x) :≡

∥∥∥∑
(x:A) R(x)

∥∥∥, from which we cannot project a witness x and a proof of

R(x) in general, but can only derive another proposition P provided that
(∑

(x:A) R(x)
)

→ P .
Following the HoTT convention, if an existential quantification in an informal statement is
truncated, we will use the words “mere” or “merely” to make it clear.

Sets are types whose equality types are all propositions, so for any two inhabitants of
a set, there is at most one way for them to be equal. It is easy to check that the types we
work with in this paper are sets: types constructed from sets and the type formers ×, +,
→,

∏
, and

∑
are all sets, and Hedberg’s theorem is useful for proving that a base type A is

a set – if A has decidable equality, that is,
∏

(x,y:A)(x =A y) + ¬(x =A y), then A is a set
(which we will write as A : Set for short).

2.2 λ-calculus, Gödel encoding, and the second recursion theorem
For λ-calculus we only fix notations. The details are left to, for example, the classic textbook
by Barendregt [4]. Terms are defined informally by

M :≡ x | M N | λx. M

where variables x’s are in the typewriter font. Λ denotes the type of terms and Λn the type
of terms with at most n free variables. In particular, Λ0 is the type of closed terms. Our
formalisation uses the de Bruijn representation, so the α-equivalence =α coincides with the
equality type =Λ by construction. For the presentation in this paper, the variable with index i

is written xi , and given F : Λn+1 we write F [M] instead of F [M/x0] for the substitution
for the first free variable x0. The type M −↠β N of reductions from M to N consists of
sequences of reduction rules such as β : (λx. M) N −→β M [N/x]; as a special case, the type
M −↠β M has exactly one inhabitant refl↠M , or just refl↠, which can be understood as
either the empty sequence or (the proof of) the reflexivity of reduction. The types Λ and
M −↠β N have decidable equality, so they are sets by Hedberg’s theorem.

There is a function between λ-terms ⌜·⌝ : Λ → Λ0 such that ⌜M⌝ is normal and M =α N

whenever ⌜M⌝ =α ⌜N⌝. Moreover, there are ap, subst ∈ Λ2 and quote, eval ∈ Λ1 satisfying

ap[⌜M⌝][⌜N⌝] −↠β ⌜M N⌝ subst[⌜F⌝][⌜N⌝] −↠β ⌜F [N]⌝
quote[⌜M⌝] −↠β ⌜⌜M⌝⌝ eval[⌜M⌝] −↠β M.

This function ⌜·⌝ is called a Gödel encoding. Traditionally, a quoted term ⌜M⌝ is called a
Gödel number since the encoding ⌜·⌝ assigns to every term M a Church numeral c#M . An
encoding needs not be a number at all, however, so we simply call ⌜M⌝ a code of M rather
than a number. For details on the axiomatic characterisation of encoding, see Polonsky [24].

Note that the term quote can only compute the code of a term ⌜M⌝ which is already in
quoted form. Indeed, no term can compute the code of any arbitrary closed term.

▶ Proposition 2.1. There is no Q : Λ1 such that Q[M] −↠β ⌜M⌝ for all M : Λ0.

Contrary to the well-known first recursion theorem, Kleene’s second recursion theorem
works for code instead of values and will be used to model the GL modality.

▶ Theorem 2.2 (SRT). For every F : Λn there exists M : Λn such that M −↠β F ⌜M⌝.

L.-T. Chen and H.-S. Ko 14:5

2.3 P-Categories and exposures
Instead of ordinary categories, we work with P-categories pioneered by Čubrić et al. [8],
where morphisms are equipped with an additional partial equivalence relation (PER) as
another level of equality between morphisms. Kavvos [15] recently advocated its use and
introduced a construct called exposure, which is similar to a (P-)functor but does not enforce
the preservation of PERs of P-categories, to manifest the essence of intensionality.

▶ Definition 2.3. A partial equivalence relation is a symmetric and transitive relation. A
P-set (X, ∼X) is a set X with a PER ∼X . A P-function from (X, ∼X) to (Y, ∼Y) is a
function f : X → Y which respects the relation ∼ in the sense that f x ∼Y f y whenever
x ∼X y. An element x ∈ X is well-defined (with respect to ∼) if x ∼ x.

The identity function idX is a P-function, and the composite of P-functions is also a
P-function. Then we recall the notion of P-categories as follows.

▶ Definition 2.4 ([8, Definition 2.4]). A P-category C consists of a class of objects, a P-
set (C(X, Y), ∼) for each pair of objects X and Y , and an identity morphism idX : X → X

for each object X satisfying the associativity and identity laws up to ∼ in the sense that
(i) idX ∼ idX always,
(ii) g ◦ f ∼ g′ ◦ f ′ whenever g ∼ g′ and f ∼ f ′,
(iii) id ◦ f ∼ f ′ and f ◦ id ∼ f ′ whenever f ∼ f ′,
(iv) h ◦ (g ◦ f) ∼ (h′ ◦ g′) ◦ f ′ whenever h ∼ h′, g ∼ g′, and f ∼ f ′.

A P-category has two kinds of equality for morphisms – the underlying equality = and
the PER ∼, where the former can be used to model the intensional equality and the latter the
extensional equality akin to the structure of multiple judgemental equalities in the modal type
theory by Pfenning [23]. Having two different equalities = and ∼ reflects the fact that, for
example, α-equivalent terms are β-equivalent but not vice versa. For categorical semantics,
where terms are interpreted as morphisms, an interpretation into a P-category is able to
discriminate these two kinds of equality, enabling us to model intensionality. To emphasise
the categorical notions up to the extensional equality ∼, the “P-” prefix are added so that
we have P-functors, P-initiality, etc.

We recall the notion of exposures, which are like P-functors but are intended to “expose”
intensional differences at the extensional level: if an exposure is applied to intensionally
different morphisms (which may or may not be identified extensionally), the resulting
morphisms may be distinguished extensionally. Consequently, exposures are not required
to preserve the extensional equality. Moreover, exposures are only supposed to refine the
extensional equality and do not eliminate existing extensional differences, that is, exposures
are faithful with respect to ∼. Put differently, intensionally equal morphisms, with respect
to an exposure, should be extensionally equal. The precise definition is given as follows.

▶ Definition 2.5. Given P-categories C and D, an exposure Q : C ↬ D consists of (a) a
mapping Q from objects X of C to objects QX of D and (b) from well-defined morphisms
f : X → Y to well-defined morphisms Qf : QX → QY satisfying the following properties:

(i) QidX ∼ idQX ,
(ii) Q(g ◦ f) ∼ Qg ◦ Qf , and
(iii) f ∼ g whenever Qf ∼ Qg for any two well-defined morphisms f, g : X → Y .
The identity exposure I maps every object or morphism to itself. Composing two exposures
in the usual way clearly gives us an exposure.

Similarly, the notion of natural transformations is introduced for exposures, sharing the
same idea with ordinary natural transformations but only up to ∼.

CSL 2022

14:6 Realising Intensional S4 and GL Modalities

▶ Definition 2.6. Given exposures P, Q : C ↬ D, a natural transformation of exposures
t : P → Q is a family of well-defined morphisms tX : PX → QX such that Qf ◦ tX ∼ tY ◦ Pf

for every well-defined morphism f : X → Y .

An evaluator for an endo-exposure Q is a natural transformation from Q to I, modelling
the T axiom ⊠A → A. To model the S4 modality, we may define comonadic exposures
introduced by Kavvos [15] as an endo-exposure equipped with an evaluator and a natural
transformation δ : Q → Q2, modelling the 4 axiom ⊠A → ⊠⊠A, subject to comonad laws.
In the presence of intensionality, however, we observe that the naturality is not always
appropriate as discussed later in Remark 4.5.

3 P-Category of assemblies on λ-calculus

Assemblies are used to accommodate the information of how extensions are realised by
intensions. Accordingly an appropriate notion of morphisms between assemblies is introduced
to form a P-category, laying the technical foundation for Sections 4 and 5.

3.1 Assembly and trackable map
Traditionally, an assembly on natural numbers is a set |X| with a realisability relation
⊩ ⊆ N × |X| such that for every x in |X| there exists some a with a ⊩ x, where a is said
to realise x or a is a realiser of x. The modern notion of assemblies [30] is often defined
on a partial combinatory algebra (A, ·), called PCA for short, where · is a partial binary
operation. For the sake of formalisation and potential applications in programming language
design, we base our definition on λ-calculus subject to α-equivalence, which is more akin to
the one based on an ordered PCA [14].

▶ Definition 3.1. An assembly X on λ-calculus consists of a carrier set |X| : Set and a
family ⊩X of sets indexed by Λ0 and |X| as its realisability relation such that (a) there is
merely a realiser M : Λ0 of every x : |X|, and (b) M ⊩X x whenever M −↠β N and N ⊩X x.
In other words, an assembly is a quadruple (|X|,⊩X , rX , tX) of type

Asm0 :≡
∑

(|X|:Set)

∑
(⊩X :Λ0→|X|→Set)

Respects (⊩X ,↠β) × RightTotal(⊩X)

where

Respects (⊩,↠β) :≡
∏

(MN :Λ0)

∏
(x:|X|)

(M ↠β N) → (N ⊩ x) → (M ⊩ x) (3.1)

RightTotal(⊩) :≡ ∀(x : |X|). ∃(M : Λ0). M ⊩ x (3.2)

Our type-theoretic formulation is almost a direct translation from the set-theoretic
formulation except that the realisability relation ⊩ is not really a relation but an indexed
family of sets. As we would like to account for intensional equality in addition to extensional
equality between terms, computationally equivalent terms should not be identified a priori.
It turns out that formulating the interaction with reduction −↠β as (3.1) in line with the
definition on an ordered PCA suffices to derive familiar properties.

▶ Example 3.2. The type Λ0 of closed terms with −↠β as its realisability relation is
an assembly (Λ0, −↠β , rΛ0 , tΛ0) where rΛ0 and tΛ0 are given by the transitivity and the
reflexivity of −↠β . That is, each term M is realised by those reducible to M .

L.-T. Chen and H.-S. Ko 14:7

Note that the assembly Λ0 does not yet model code. Indeed, in such case, M should be
realised by its code ⌜M⌝ instead. This is exactly the point of forthcoming sections.

▶ Example 3.3. Every natural number n : N is realised by terms reducible to its Church
numeral cn. That is, the type N of natural numbers with M ⊩N n whenever M −↠β cn is
an assembly where rN and tN are given by the transitivity and the reflexivity of −↠β .

A morphism between assemblies on a PCA (A, ·) is defined as a function f merely tracked
by some b ∈ A in the sense that there merely exists some b such that b · a ⊩ f x whenever
a ⊩ x. In this case, b is called the tracker of f . It is noted by Kavvos [15] that to bring out
intensionality the tracker should be considered as part of the structure instead of a property.

▶ Definition 3.4. Given assemblies X and Y , a trackable map f from X to Y consists of a
function |f | : |X| → |Y | and a term F : Λ1 such that F [M] ⊩ |f | x whenever M ⊩ x. That
is, the type Asm1(X, Y) of trackable maps is

∑
(|f |:|X|→|Y |)

∑
(F :Λ1) TracksX,Y (F, |f |) where

TracksX,Y (F, |f |) :≡
∏

(M :Λ0)

∏
(x:|X|)

(M ⊩X x) → (F [M] ⊩Y |f | x) .

A merely trackable map is an inhabitant of
∑

(|f |:|X|→|Y |) ∃(F : Λ1). TracksX,Y (F, |f |).

By definition, a trackable map f ≡ (f, F, f) consists of not only a function |f | between
carriers but also its tracker F and a transformation f of realisability.

▶ Example 3.5. Every assembly X has an identity map idX :≡ (id|X| , x0, pr3) where

pr3 :≡ λM. λx. λr. r :
∏

(M :Λ0)

∏
(x:|X|)

(M ⊩X x) → (M ⊩X x)

since x0[M] is judgementally equal to M .

Now we proceed with defining the composition of trackable maps. Let f : X → Y

and g : Y → Z be trackable maps. Then, the term substitution (G, F) 7→ G[F] can be
thought of as (intensional) function composition, since G[F [M]] =Λ0 G[F][M] holds for
any term M . Given any r : M ⊩X x, the inhabitant g(f r) has type G[F [M]] and its
transportation along a witness p : G[F [M]] =Λ0 G[F][M] has type G[F][M], defining a
function λM x r. transport(p, g(f r)). The above discussion amounts to defining a composition
operation (g, f) 7→ g ◦ f .

3.2 Extensional equality and P-category of assemblies
We define the partial equivalence relation ∼, referred to as the extensional equality, on
trackable maps by f1 ∼ f2 (f1 is extensionally equal to f2) if |f1| = |f2|.

▶ Proposition 3.6. The type Asm0 of assemblies and the family of types Asm1(X, Y) for any
two assemblies X and Y with the extensional equality form a P-category Asm(Λ).

We now investigate some of its basic properties.

▶ Example 3.7 (P-Terminal object). The unit ⊤ :≡ (1,⊩⊤, r⊤, t⊤) is P-terminal where
(i) 1 is the unit type,
(ii) ⊩⊤ a relation defined by M ⊩⊤ ⋆ :≡ M −↠β I where I :≡ λx. x,
(iii) r⊤ : (M −↠β N) → (N −↠β I) → (M −↠β I) given by the transitivity of −↠β ,
(iv) and t⊤ the fact that the only inhabitant ⋆ : 1 has a realiser I (by reflexivity).

The finality follows from function extensionality.

CSL 2022

14:8 Realising Intensional S4 and GL Modalities

The construction of binary P-products is also typical – the carrier of a product is the
cartesian product and a pair (x, y) is realised by M if its Church-encoded projections realise
x and y. It follows that Asm(Λ) has finite P-products.

Every inhabitant of an assembly X corresponds to a merely trackable map to X from
the terminal object ⊤, which are called (global) elements of X, and distinct merely trackable
maps can be separated by elements of X. In Asm(Λ), as trackers are part of trackable maps,
an element has to be constructed with an intension.

▶ Lemma 3.8. Let X be an assembly. Then the following statements hold:
1. Every inhabitant x : |X| corresponds to a merely trackable map from ⊤ to X.
2. Every pair of x : |X| and M : Λ0 with r : M ⊩X x defines a closed element of X, i.e. a

trackable map (λ . x, M, λ . λ . λ . r) from ⊤ to X.

As expected, the P-terminal object ⊤ in Asm(Λ) is a P-separator in the sense that for
any two trackable maps f1 and f2 we have f1 ∼ f2 if f1 ◦ x ∼ f2 ◦ x for every element x of X.
Even further, we can restrict to closed elements.

▶ Proposition 3.9. Two trackable maps f1, f2 : X → Y are extensionally equal if and only if
f1 ◦ x ∼ f2 ◦ x for every closed element x : ⊤ → X. In particular, the P-terminal object ⊤
is a P-separator in Asm(Λ).

Proof sketch. The proof from left to right is trivial. For the proof from right to left, let
f1 and f2 be two trackable maps. By function extensionality, to prove that |f1| = |f2|, we
define for any inhabitant x : |X| a closed element x̂ of X constructed by Lemma 3.8 using
Mx and r : Mx ⊩ x given by the right totality tX . By the recursion principle of propositional
truncation and |Y | being a set, it follows from our assumption that there exists a path
|f1| x = |f2| x independent of the choice of Mx and Mx. ◀

▶ Example 3.10 (Initial object). The empty assembly ⊥ is P-initial consisting of the empty
type 0 and a relation ⊩⊥: Λ0 → 0 → Set given by the elimination rule for the empty type.
The other two components r⊥ and t⊥ are trivial.

In addition, one can show that ⊥ is even a strict P-initial object. That is,

▶ Proposition 3.11. Any trackable map from some assembly X to ⊥ is a P-isomorphism.

From the strictness of the initial object, no morphism from ⊤ to ⊥ could exist.
The construction of P-exponential X ⇒ Y is a bit laborious and, perhaps surprisingly,

X ⇒ Y has the type of merely trackable maps as its carrier.

▶ Example 3.12 (P-Exponential). Given assemblies X and Y , define

|X ⇒ Y | :≡
∑

f :|X|→|Y |

∃(F : Λ1). TracksX,Y (F, f) ≡
∑

f :|X|→|Y |

∥∥∥∥∥∥
∑
F :Λ1

TracksX,Y (F, f)

∥∥∥∥∥∥
with L ⊩X⇒Y (f, ⋆) :≡

∏
(M :Λ0)

∏
(x:|X|) (M ⊩X x) → (L M ⊩Y f x).

It remains to construct rX⇒Y and tX⇒Y : We know that L′ −↠β L implies L′ M −↠β

L M , so L′ realises (f, ⋆) whenever L realises (f, ⋆) and L′ −↠β L by rY . For every
(f, ⋆) : |X ⇒ Y |, there merely exists a tracker of f , say F . We see that L :≡ λx. F realises
(f, ⋆), since (λx. F) M −→β F [M] for any M and F [M] ⊩Y f x whenever M ⊩X x. By
applying the recursion principle of the truncated type

∥∥∥∑
(F :Λ1) TracksX,Y (F, f)

∥∥∥ to the
second component of (f, ⋆), there merely exists a realiser of (f, ⋆) for the right totality.

L.-T. Chen and H.-S. Ko 14:9

The evaluation map (X ⇒ Y) × X
evX,Y−−−−→ Y natural in X and Y consists of a function

((f, ⋆), x) 7→ f x and its tracker (proj1 x0) (proj2 x0) : Λ1 where x0 is the free variable
(thought of as a pair of realisers for a function and its argument) and proji the projection
function between λ-terms.

The curried map (f∗, F ∗, f∗) of a trackable function (f, F, f) from Z ×X to Y consists of a
function f∗ :≡ λz. ((λx. f (z, x)), ⋆z), where by the recursion principle on the mere existence
of a realiser Lz :≡ tZz there is merely a tracker F [⟨Lz, x0⟩] of λx. f (z, x), and a term
F ∗ :≡ λx0. F [⟨x1, x0⟩] with a witness f∗ of

∏
(L:Λ0)

∏
(z:|Z|) (L ⊩Z z) → (F ∗[L] ⊩X⇒Y f z)

because of the reduction

(λx0. F [⟨L, x0⟩]) M −→β F [⟨L, M⟩]

and that F is indeed a tracker of f : |Z × X| → |Y |. It is routine to verify remaining details.

▶ Corollary 3.13. Asm(Λ) is a cartesian closed P-category with a strict P-initial object.

4 Realisability semantics for the S4 modality

We are now ready to introduce an exposure ⊠ : Asm(Λ) ↬ Asm(Λ) modelling the S4 modality
(validating the K axiom ⊠(A → B) → ⊠A → ⊠B, the 4 axiom A → ⊠⊠A, and the T axiom
⊠A → A) and show that a generic quoting X → ⊠X cannot exist.

4.1 An exposure for the S4 modality
Given an assembly X, which describes a set of extensions merely realised by some intensions
(i.e. terms), we can expose the intensions at the level of extensions by constructing an
assembly ⊠X where an inhabitant (M, x, r) : |⊠X| is an extension x : |X| and a term
M : Λ0 that realises x, witnessed by r : M ⊩X x. This term M becomes the main part of
the extension (with respect to ⊠X) and should be (merely) realised by some intensional
representation of M ; a natural choice of such representation is ⌜M⌝, or indeed any term
β-reducible to ⌜M⌝. In short, the carrier and the realisability relation of ⊠X are defined as

|⊠X| :≡
∑

(M :Λ0)

∑
(x:|X|)

M ⊩X x and (N ⊩⊠X (M, x, r)) :≡ N −↠β ⌜M⌝

respectively. It turns out that ⊠X :≡ (|⊠X|,⊩⊠X , r⊠X , t⊠X) is indeed an assembly where
r⊠X and t⊠X are the transitivity and the reflexivity of −↠β .

To make ⊠ an exposure, we should also define the mapping on morphisms. Consider any
trackable map f from X to Y and define ⊠f :≡ (|f |⊠, F⊠, f⊠) : ⊠X → ⊠Y as follows. First
define a function from |⊠X| to |⊠Y | by

|f |⊠ : (M, x, r) 7→ (F [M], |f | x, fM x r).

To give a tracker of ⊠f , recall that there is a term subst performing term substitution on
codes (Section 2.2), and then the term F⊠ :≡ subst ⌜F⌝ x tracks |f |⊠ because

subst ⌜F⌝N −↠β subst ⌜F⌝ ⌜M⌝ −↠β ⌜F [M]⌝ ⊩⊠Y |f |⊠(M, x, r)

completing the definition of f⊠. In short, ⊠f :≡ (|f |⊠, F⊠, f⊠) is a trackable map.

▶ Definition 4.1. By ⋆ : ⊤ → ⊠⊤ we denote a closed element of ⊠⊤ given by Lemma 3.8
with (I, ⋆, refl↠) : |⊠⊤| and its realiser ⌜I⌝.

CSL 2022

14:10 Realising Intensional S4 and GL Modalities

▶ Remark 4.2. Given elements a, b of X with a ∼ b but with different trackers, it follows that
by definition ⊠a ◦ ⋆ ̸∼ ⊠b ◦ ⋆ are two extensionally different elements. That is, ⊠ does not
preserve extensional equality.

The assembly ⊠⊤ cannot be P-isomorphic to ⊤, since there are countably many inhabit-
ants of |⊠⊤| while there is exactly one inhabitant of |⊤| ≡ 1. Similarly, there are trackable
maps from ⊠(X × Y) to ⊠X ×⊠Y and vice versa, but they are not P-isomorphic. It follows
that the exposure ⊠ does not preserve finite P-products.

▶ Theorem 4.3. ⊠ : Asm(Λ) ↬ Asm(Λ) is an exposure of assemblies. Moreover, there is an
evaluator ϵ for ⊠, i.e. a natural transformation ϵ from ⊠ to I.

Proof sketch. It is routine to prove the preservation of identities and composition. For
example, it follows by definition that id⊠

|X|(M, x, r) ≡ (x[M], x, pr3 M x r) ≡ (M, x, r).
Now we show that ⊠ reflects the extensional equality. Let f and g be trackable maps

from X to Y . By assumptions that ⊠f ∼ ⊠g and that there is merely M : Λ0 with
r : M ⊩X x, we can apply the recursion principle of propositional truncation to derive

⊠f(M, x, r) = (F [M], |f | x, fM x r) = (G[M], |g| x, gM x r) = ⊠g(M, x, r)

since the equality type on ⊠Y is a proposition. Therefore, we have
∏

(x:|X|)|f | x =Y |g| x.
By function extensionality it then follows that

(
|f | =|X|→|Y | |g|

)
≡ f ∼ g.

As for the evaluator ϵX : ⊠X → X, recall the term eval which evaluates a code (Sec-
tion 2.2). We simply define |ϵX | by (M, x, r) 7→ x. Then, given N : Λ0 with N −↠β ⌜M⌝,
we have eval[N] −↠β eval[⌜M⌝] −↠β M where M ⊩X x is witnessed by r. That is, |ϵX |
is tracked by eval. The naturality of ϵ follows by definition. ◀

Given an element a of X, define its quotation as the element ⊠a ◦ ⋆ of ⊠X. The choice
of ⋆ does not matter if a is closed, since ⊠a ◦ ⋆′ ∼ ⊠a ◦ ⋆ for any element ⋆′ of ⊠⊤. We
say that a trackable map q : X → ⊠X quotes an element a of X whenever q ◦ a ∼ ⊠a ◦ ⋆.
The (4) axiom can be realised by a family of trackable maps which quote closed elements:

▶ Proposition 4.4. There is a family of functions |δX |(M, x, r) :≡ (⌜M⌝, (M, x, r), refl↠)
indexed by objects X from |⊠X| to |⊠⊠X| and tracked by quote, which quote closed elements
of ⊠X.

The fact that δX quotes closed elements justifies the computational meaning categorically.
Yet, δX may fail to quote an element a if a is not closed, since in general the intension part
of ⊠a is applied only verbatim. That is, |⊠a|(I, ⋆, refl↠) is (F [I], (M, x, r), s) where F [I] is
not necessarily α-equivalent to ⌜M⌝. The subtlety goes on:
▶ Remark 4.5. One may expect that (⊠, ϵ, δ) is comonadic in the sense that δ is a natural
transformation up to ∼ satisfying comonad laws, but these maps δX are not natural in X.
In detail, for each trackable map f : X → Y the inhabitant

δY (⊠f(M, x, r)) ≡ (⌜F [M]⌝, (F [M], f x, fM x r), refl↠) : ⊠⊠Y

is not equal to

⊠⊠f(δX(M, x, r)) ≡ (subst ⌜F⌝ ⌜M⌝, (F [M], f x, fM x r), subst↠) : ⊠⊠Y

despite that their extensions are the same, where subst↠ is the witness of the reduction
sequence subst ⌜F⌝ ⌜M⌝ −↠β ⌜F [M]⌝. Let us define (M, x, r) ≤ (N, y, s) if M −↠β N and
x = y and f ≤ g if |f | x ≤ |g| x for all x. Then we only have |⊠⊠f ◦ δX | ≤ |δY ◦ ⊠f |. In
general, the lax naturality appears more appropriate in the presence of intensionality.

L.-T. Chen and H.-S. Ko 14:11

The normality condition is realised exactly by ap without naturality:

▶ Proposition 4.6. There is a family of trackable maps from ⊠(X ⇒ Y) to ⊠X ⇒ ⊠Y

tracked by λx0. ap[x1] x0.

On the other hand, it is impossible for the rule A → ⊠A to compute quotations for
arbitrary A, since this is already impossible for the particular case of Λ0 → ⊠Λ0 (where Λ0
was given in Example 3.2).

▶ Theorem 4.7. No trackable map from Λ0 to ⊠Λ0 quotes closed elements of Λ0.

Proof. Assume η : Λ0 → ⊠Λ0 with η ◦ a ∼ ⊠a ◦ ⋆ for any a : ⊤ → Λ0 given by Lemma 3.8.
Every closed term M defines an element M̂ :≡ (λ . M, M, λ . λ . λ . refl↠) of Λ0 and thus∣∣∣⊠M̂

∣∣∣(N, y, s) = (M, M, refl↠) for any (N, y, s) : ⊠⊤ by definition. By assumption

|η| M ≡ |η|
(∣∣∣M̂ ∣∣∣ ⋆

)
=

∣∣∣⊠M̂
∣∣∣ (|⋆| ⋆) = (M, M, refl↠),

so the tracker Q of η should satisfy Q[N] −↠β ⌜M⌝ whenever N −↠β M . In particular, it
follows that Q[M] −↠β ⌜M⌝. By Proposition 2.1 such Q cannot exist. ◀

As the choice of ⋆ does not matter for closed elements a, the above theorem shows
that even a very limited form of naturality for any two morphisms ηΛ0 and η⊤ satisfying
ηΛ0 ◦ a ∼ ⊠a ◦ η⊤ for any closed element a remains impossible. It is unclear how to state
“parametricity” for ⊠ so that any family of morphisms from A to ⊠A, satisfying a reasonable
naturality, can be rejected.

5 Realisability semantics for the GL modality

Kavvos [15] advocated that the provability modality □ and the GL axiom □(□A → A) → □A

can also be understood as the type of code of type A and as intensional recursion respectively
from the computational perspective. Since we already have an exposure ⊠ modelling typed
code, a natural approach is to extend ⊠ to model the GL axiom in addition to S4. However,
it is known that the GL axiom is incompatible with the reflection principle □A → A. Indeed,
let A be the falsity ⊥ for both laws. Then, we have □(□⊥ → ⊥) → □⊥ and □⊥ → ⊥. By
the necessitation rule we can derive □(□⊥ → ⊥) and thus by modus ponens we can derive
□⊥ and finally ⊥. Therefore, by Proposition 3.11 and Theorem 4.3, we cannot expect the
exposure ⊠ to model the GL axiom if we want the type system to be logically consistent.

To untie the knot and retain consistency and the understanding of □A as code of type A,
we observe that in general □A and ⊠A are types for different kinds of code and should be
kept separate: code constructed with intensional recursion can only be expanded in stages
(or otherwise may result in non-termination), whereas code supporting S4 is only a special
case where next stages include the current one, so that ϵX : ⊠X → X is allowed. Therefore,
separately from ⊠, we give an exposure □ : Asm(Λ) ↬ Asm(Λ) modelling the GL modality
in a staged setting (Section 5.2). The construction refutes both X → □X (by the same
argument for ⊠) and the reflection principle □X → X. We also derive the GL axiom as well
as its deductive form. To express staged constructions more conveniently (without stage
indexing), we work within guarded type theory.

CSL 2022

14:12 Realising Intensional S4 and GL Modalities

5.1 Digression: Clocked cubical type theory
We use a particular version of guarded type theory – clocked cubical type theory [18], CCTT
for short. It extends HoTT with a later modality ▷κ, parametrised by a “clock” κ, and
guarded recursion. Here we only intuitively introduce the constructs and properties of CCTT
that are necessary for the informal presentation of the constructions in Section 5.2, but the
formal details are all checked in Agda in the guarded cubical mode.

CCTT features a new type ▷(α : κ). A of suspended computations that take in a tick α on
a clock κ to produce an inhabitant of A in a next stage. (Clocks will be discussed towards the
end and can be ignored for now.) An inhabitant of ▷(α : κ). A therefore resembles a function
computationally, and can be introduced as a λ-expression λ(α : κ). t, often abbreviated
to λα. t, where t : A, or eliminated by application to a tick, denoted by f [α] : A where
f : ▷(α : κ). A and α : κ. For brevity, ▷(α : κ). A is written as ▷κ A if α is not referred to
in A. For example, the following term implements the normality axiom for ▷κ:

apκ :≡ λf. λx. λα. f [α] (x[α]) : ▷κ(A → B) → ▷κA → ▷κB.

Viewed as a function, apκ takes f : ▷κ(A → B) and x : ▷κA as arguments, both of which are
values that can be used in a next stage, and should produce a result of type ▷κB, that is, a
value of type B in a next stage; this result is constructed by first taking in a tick α – after
which the rest of the term describes a construction in the next stage – and then applying
both f and x to α to produce f [α] : A → B, x[α] : A, and eventually f [α] (x[α]) : B in the
next stage. Another important example is delaying a value to a next stage:

nextκ :≡ λx. λα. x : A → ▷κA.

In contrast to nextκ, there is no term of type ▷κA → A, matching our intuition about a series
of stages happening in order: in the current stage we should not be able to obtain a value
that is only available in the next stage. Also there is no term of type ▷κ▷κA → ▷κA – it
might be tempting to write λx. λα. x[α][α], but the two consecutive applications to α are
prohibited in CCTT.

An important primitive is guarded recursion, also known as Löb induction: every func-
tion f : ▷κA → A has a delayed fixed point dfixκ f : ▷κA with the fixed point equation
(dfixκ f)[α] =A f (dfixκ f) where the right-hand side can be seen as a fixed point of f without
delay.

We now list some properties needed for Section 5.2. The first one helps to assure that we
are still working with propositions and sets even when ▷κ is involved.

▶ Lemma 5.1. If A[α] is a proposition/set for arbitrary α : κ, then so is ▷(α : κ). A[α].

The later modality distributes over a Σ-type.

▶ Lemma 5.2. Let B(x) be a family of types indexed by x : A. Then there are functions
from ▷κ

∑
(x:A) B(x) to

∑
(x:▷κA) ▷(α : κ). B(x[α]) and vice versa. In fact, the two types are

equivalent.

Therefore guarded recursion has a specialised form for Σ-types.

▶ Corollary 5.3. Let B(x) be a family of types indexed by x : A. Then∑
x:▷A

▷(α : κ). B(x[α]) →
∑
x:A

B(x) implies
∑
x:A

B(x).

L.-T. Chen and H.-S. Ko 14:13

The final property states that if two values delayed to a next stage are equal, then they are
equal in the current stage. It may be tempting to formulate the property as nextκ x =▷κA

nextκ y → x =A y, but this is in fact invalid, since (analogously to function extensionality)
the antecedent equality is equivalent to ▷κ(x =A y) rather than x =A y [20]. The correct
formulation is the following, where the antecedent includes a clock quantification “∀κ”.

▶ Lemma 5.4. Let x and y : A. Then x =A y if ∀κ. nextκ x =▷κA nextκ y.

This lemma holds because, with clock quantification, it is possible to write Atkey and
McBride’s [3] operator force : (∀κ. ▷κA) → (∀κ. A), which can then be applied to the equality
∀κ. ▷κ(x =A y) equivalent to the antecedent and yield ∀κ. x =A y, which is equivalent to
x =A y. One way to think about (fully) clock-quantified types is that they are independent of
the choice of clocks and can be viewed as the types of pure, completed descriptions of staged
computation rather than ongoing computations that are taking effect in stages with respect
to a particular clock in scope. We can manipulate such descriptions at will, irrespective
of our current timeline – in particular, it is perfectly fine to take a description of a staged
computation that produces results from the second stage onwards and make it produce the
results right from the first stage instead, which is what force does.

5.2 An exposure for the GL modality
First we adapt the definition of exposures to the setting of CCTT.

▶ Definition 5.5 (Clocked exposure). Given P-categories C and D, a clocked exposure
Q : C ↬ D consists of (a) a mapping Qκ for each clock κ from objects X of C to objects QκX

of D and (b) for each clock κ from well-defined morphisms f : X → Y to well-defined
morphisms Qκf : QκX → QκY satisfying following properties

(i) QκidX ∼ idQX ,
(ii) Qκ(g ◦ f) ∼ Qκg ◦ Qκf , and
(iii) f ∼ g whenever ∀κ. Qκf ∼ Qκg for any two well-defined morphisms f, g : X → Y .
Notably, the faithfulness of a clocked exposure mirrors the form of Lemma 5.4, and is the
main reason that we need CCTT.

Now we introduce the clocked exposure □ : Asm(Λ) → Asm(Λ) modelling GL. For an
assembly X, the carrier |□κX| and the realisability relation ⊩□κX are defined as

|□κX| :≡
∑

(M :Λ0)

∑
(x:▷κ|X|)

▷(α : κ). M ⊩X x[α] and (N ⊩□κX (M, x, r)) :≡ N −↠β ⌜M⌝

where ⊩□κX is defined in the same way as the exposure ⊠. The main difference between
the carriers |⊠X| and |□κX| is that the extension part |X| becomes ▷κ|X|. That is, the
extension x is available in a next stage but not earlier (with respect to the clock κ), but the
intension M remains the same type. Similarly, □κX :≡ (|□κX|,⊩□κX , r□κX , t□κX) is an
assembly where r□κX and t□κX are given by the transitivity and the reflexivity of −↠β .

For any trackable map f from X to Y , also define □κf in the same way as ⊠f except
that a later modality is involved:

|□κf |(M, x, r) :≡ (F [M], ▷κ|f | x, λα. fM (x[α]) (r[α]))

where ▷κ|f | : ▷κ|X| → ▷κ|Y | is given by the functoriality of the later modality ▷κ. The very
same argument for ⊠f shows that □κf is indeed a trackable map from |□κX| to |□κY |.
▶ Remark. By Lemma 5.2, the carrier of □κX and the type

∑
(M :Λ0) ▷κ

∑
(x:|X|) M ⊩X x

are interchangeable. The latter form is more convenient when using guarded recursion.

CSL 2022

14:14 Realising Intensional S4 and GL Modalities

It is straightforward to show that □ is a clocked exposure by Lemma 5.4.

▶ Theorem 5.6. □ : Asm(Λ) ↬ Asm(Λ) is a clocked exposure.

▶ Proposition 5.7. There is a family of trackable maps from □κ(X ⇒ Y) to □κX ⇒ □κY

tracked by λx0. ap[x1] x0.

Similar to Theorem 4.7, no morphism Λ0 → □κΛ0 can be quoting.

▶ Theorem 5.8. There is no trackable map from Λ0 to □κΛ0 which quotes closed elements.

It is also not possible to have a family of trackable maps ϵX from □κX to X natural in
X, since the extension of (M, x, r) can only be projected in a time step away from now.

▶ Theorem 5.9. There is no function from |□κ⊥| to |⊥|. In particular, there is no natural
transformation from □κ to I for any κ.

Proof. Assume ϵ⊥ : |□κ⊥| → |⊥| exists. We show that there is bang : ▷0 → 0, so by guarded
recursion a contradiction fix bang : 0 is derivable. Let x be an inhabitant of ▷0. We construct
an inhabitant (M, x, r) of □κ⊥ so that the function |ϵ⊥| from |□κ⊥| to |⊥| ≡ 0 can be
applied. Choose an arbitrary closed term M , say λx. x, and apply the recursion principle rec0
of the empty type to x in a time step to get r :≡ λα. rec0 (M ⊩⊥ x[α]) x[α], which is an
inhabitant of ▷(α : κ). M ⊩⊥ x[α], so (M, x, r) is of type |□κ⊥|. ◀

The pay-off for disallowing evaluation is to be able to derive intensional recursion, which
is logically the GL axiom and its deductive form(s).

▶ Theorem 5.10 (Intensional recursion). For every trackable map f : □κX → X, there are
1. an element f† of □κX realised by ⌜fix F⌝ and
2. an element f‡ of X realised by fix F satisfying f‡ ∼ f ◦ □κf‡ ◦ ⋆
where fix F : Λ0 is a term that can be reduced to F [⌜fix F⌝].

Proof. Let f be a trackable map from □κX to X tracked by F : Λ1. Applying Theorem 2.2
to λx0. F : Λ0, we obtain a term fix F : Λ0 with fix F −↠β (λx0. F) ⌜fix F⌝ −→β F [⌜fix F⌝].
Now we construct the first element by Löb induction on a Σ-type (Corollary 5.3): assuming

x : ▷|X| and r : ▷(α : κ). F [⌜fix F⌝] ⊩ x[α]

we show an inhabitant of type |X| realised by ⌜fix F⌝ as follows.
1. First, ▷(α : κ). (fix F ⊩ x[α]) has an inhabitant, say r′, since fix F reduces to F [⌜fix F⌝].
2. Then, we derive an inhabitant of type |X| realised by F [⌜fix F⌝] as witnessed by

f(refl↠⌜fix F⌝) : F [⌜fix F⌝] ⊩ |f |(fix F, x, r′)

since F tracks |f | and the set ⌜fix F⌝ ⊩□κX (fix F, x, r′) is judgementally equal to
⌜fix F⌝ −↠β ⌜fix F⌝, which is inhabited by refl↠.

3. By Löb induction,
∑

(x:▷|X|) ▷(α : κ). F [⌜fix F⌝] ⊩ x[α] has an inhabitant (x0, r0).
4. By fix F −↠β F [⌜fix F⌝], we have (fix F, x0, r′

0) : |□κX| where r′
0 : ▷(α : κ). fix F ⊩ x0[α].

Clearly (fix F, x0, r′
0) is realised by ⌜fix F⌝, and by Lemma 3.8 it gives an element f† of □X.

To construct the second element f‡, we follow the same steps except the third: we
conclude (x0, r0) :

∑
(x:|X|) F [⌜fix F⌝] ⊩ x[α] without any delay and thus x0 : |X| is realised

by r′
0 : fix F ⊩ x0. The equation f‡ ∼ f ◦ □κ(f‡) ◦ ⋆ follows from the fixed point equation

for guarded recursion. ◀

L.-T. Chen and H.-S. Ko 14:15

From the above proof, we can see that the intensional information available in the trackable
map □κX → X, i.e. the tracker F , does matter, since it is essential for constructing the
fixpoint fix F . To internalise the inductive form as the GL axiom, we also need the intension:

▶ Theorem 5.11. There is a family of trackable maps from □κ(□κX ⇒ X) to □κX.

The reader may wonder whether the strong Löb axiom, interpreted as a map from □κX ⇒ X

to X, can also be realised by the SRT in a similar way, but from □κX ⇒ X, which amounts
to a merely trackable map, we do not get the tracker F explicitly needed by the SRT.

6 Related work

Kavvos introduced a comonadic exposure [15, Theorem 11], which we denote by ⊠K here,
on P-category of assemblies on a PCA (instead of λ-calculus) to model the intensional S4
modality. For an assembly X on a PCA (A, ·), the assembly ⊠KX is defined by

|⊠KX| :≡ { (a, x) | a ⊩ x } and b ⊩⊠KX (a, x) :≡ a = b,

without the use of Gödel encoding. The morphism mapping is similar to ⊠. The difference
between ⊠K and ⊠ mainly comes from the chosen notion of realisability and the use of
Gödel encoding. First, the exposure ⊠K preserves finite products, while ⊠ does not. Some
β-equivalent intensions have to be identified to satisfy equations of PCA. For example ⋆ : |⊤|
has only one realiser I, so |⊠K⊤| has only one element (⋆, I), too. Second, ⊠K is comonadic
by a similar reason, while our δ is not even natural. Third, ⊠K is idempotent, i.e. δK

are isomorphisms, which is impossible for ⊠ because of Gödel encoding. Finally, a generic
quoting for ⊠K can be defined:

▶ Observation 6.1. For the one-element PCA, there exists a natural transformation from
the identity exposure to ⊠K .

Further, assuming the axiom of choice, there is (merely) a function q from |X| to |⊠KX|
because of the right totality of ⊩. It is likely that q could be realised in the sense of Krivine’s
classical realisability [19], which would establish a non-trivial example of generic quoting
for ⊠K or alike. On the other hand, using λ-terms subject to α-equivalence as realisers and
⌜M⌝ as realisers for (M, x, r) allows the exposure ⊠ to distinguish β-equivalent intensions, so
⊠ – being more intensional than ⊠K – lacks well-behaved extensional properties, as expected.

As a reviewer pointed out, Remark 4.5 is reminiscent of categorical simulation studied by
Cockett and Hofstra [6].

Artemov and Beklemishev [2] pointed out that Gödel attempted to use classical S4
modal logic to capture provability for Peano Arithmetic (PA) but realised that Prov(A) :≡
∃x. Proof(x, A) cannot be S4. Löb found the well-known GL axiom and Solovay showed
that GL is complete with respect to PA. On the other hand, Artemov [1] proposed logic
of proofs extending S4 and argued that S4 is for explicit proofs. Goris [13] discussed two
modalities GL and S4 over classical logic by presenting a bi-modal logic and provides a
Kripke semantics for both. We took Goris’ notation for the S4 modality ⊠. Our work is
partly inspired by Shamkanov’s [25, 26] provability semantics for GL using circular proofs.

7 Conclusion

In this paper we follow the principle of modality-as-intension [10] and the P-categorical
semantics [15] to manifest the concepts of denotations, extensions, and intensions. We have
studied the P-category of assemblies on λ-calculus developed and formalised in HoTT as
a semantic foundation for intensionality, on which we modelled S4 and GL modalities.

CSL 2022

14:16 Realising Intensional S4 and GL Modalities

Notably, our denotational semantics of the S4 modality ⊠ is more intensional than that of
Kavvos’ ⊠K . For the GL modality □, we have given the first denotational semantics, which
is shown (Theorem 5.10 and Theorem 5.11) to satisfy the Gödel-Löb axiom and its deductive
form – the intensional recursion – using guarded type theory.

As future work, an important issue we have not discussed yet is the connection between
⊠ and □ – for example, it is easy to construct a family of trackable maps from ⊠X to □κX

natural in X by deferring the extension part of (M, x) to a later stage, and Goris’ bi-modal
logic [13] suggests that there are more rules to discover. In the long term, based on the
P-category of assemblies and the denotational semantics of modalities, we intend to design
a type theory with two modes of Code and prove its meta-properties such as consistency,
confluence, and decidability of type checking by interpreting judgements into Asm(Λ).

References
1 Sergei N. Artemov. Explicit provability and constructive semantics. Bulletin of Symbolic Logic,

7(1):1–36, 2001. doi:10.2307/2687821.
2 Sergei N. Artemov and Lev D. Beklemishev. Provability logic. In D.M. Gabbay and

F. Guenthner, editors, Handbook of Philosophical Logic, 2nd Edition, volume 13 of Handbook of
Philosophical Logic, pages 189–360. Springer, Dordrecht, 2005. doi:10.1007/1-4020-3521-7_
3.

3 Robert Atkey and Conor McBride. Productive coprogramming with guarded recursion. In
Proceedings of the 18th ACM SIGPLAN International Conference on Functional Programming
(ICFP), page 197, New York, New York, USA, 2013. ACM Press. doi:10.1145/2500365.
2500597.

4 Henk Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of Studies in
Logic. North Holland, 1984.

5 George S. Boolos. The Logic of Provability. Cambridge University Press, 1994. doi:10.1017/
cbo9780511625183.

6 J.R.B. Cockett and Pieter J.W. Hofstra. Categorical simulations. Journal of Pure and Applied
Algebra, 214(10):1835–1853, 2010. doi:10.1016/j.jpaa.2009.12.028.

7 Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubical type theory:
A constructive interpretation of the univalence axiom. In Tarmo Uustalu, editor, 21st
International Conference on Types for Proofs and Programs (TYPES), volume 69 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 5:1–34, Dagstuhl, Germany, 2015.
Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.TYPES.2015.5.

8 Djordje Čubrić, Peter Dybjer, and Philip J. Scott. Normalization and the Yoneda embed-
ding. Mathematical Structures in Computer Science, 8(2):153–192, 1998. doi:10.1017/
S0960129597002508.

9 Rowan Davies. A temporal logic approach to binding-time analysis. Journal of the ACM,
64(1):1–45, 2017. doi:10.1145/3011069.

10 Rowan Davies and Frank Pfenning. A modal analysis of staged computation. Journal of the
ACM, 48(3):555–604, 2001. doi:10.1145/382780.382785.

11 Agda development team. Agda 2.6.2 documentation. Accessed: 2021-06-20. URL: https:
//agda.readthedocs.io/en/v2.6.2/.

12 Murdoch J. Gabbay and Aleksandar Nanevski. Denotation of contextual modal type theory
(CMTT): Syntax and meta-programming. Journal of Applied Logic, 11(1):1–29, 2013. doi:
10.1016/j.jal.2012.07.002.

13 Evan Goris. A modal provability logic of explicit and implicit proofs. Annals of Pure and
Applied Logic, 161(3):388–403, 2009. doi:10.1016/j.apal.2009.07.020.

14 Pieter Hofstra and Jaap van Oosten. Ordered partial combinatory algebras. Mathematical
Proceedings of the Cambridge Philosophical Society, 134(3):445–463, 2003. doi:10.1017/
S0305004102006424.

https://doi.org/10.2307/2687821
https://doi.org/10.1007/1-4020-3521-7_3
https://doi.org/10.1007/1-4020-3521-7_3
https://doi.org/10.1145/2500365.2500597
https://doi.org/10.1145/2500365.2500597
https://doi.org/10.1017/cbo9780511625183
https://doi.org/10.1017/cbo9780511625183
https://doi.org/10.1016/j.jpaa.2009.12.028
https://doi.org/10.4230/LIPIcs.TYPES.2015.5
https://doi.org/10.1017/S0960129597002508
https://doi.org/10.1017/S0960129597002508
https://doi.org/10.1145/3011069
https://doi.org/10.1145/382780.382785
https://agda.readthedocs.io/en/v2.6.2/
https://agda.readthedocs.io/en/v2.6.2/
https://doi.org/10.1016/j.jal.2012.07.002
https://doi.org/10.1016/j.jal.2012.07.002
https://doi.org/10.1016/j.apal.2009.07.020
https://doi.org/10.1017/S0305004102006424
https://doi.org/10.1017/S0305004102006424

L.-T. Chen and H.-S. Ko 14:17

15 G. A. Kavvos. On the semantics of intensionality. In Javier Esparza and Andrzej S. Murawski,
editors, Proceedings of the 20th International Conference the Foundations of Software Science
and Computation Structures (FoSSaCS), volume 10203 of Lecture Notes in Computer Science,
pages 550–566. Springer, Berlin, Heidelberg, 2017. doi:10.1007/978-3-662-54458-7_32.

16 G. A. Kavvos. Intensionality, intensional recursion, and the Gödel-Löb axiom. Journal of Ap-
plied Logics - The IfCoLog Journal of Logics and their Applications, 8(8):2287–2311, 2021. Spe-
cial Issue: Intuitionistic Modal Logic and Applications. URL: http://collegepublications.
co.uk/ifcolog/?00050.

17 Oleg Kiselyov. The design and implementation of BER MetaOCaml. In Michael Codish and
Eijiro Sumii, editors, Proceedings of the 12th International Symposium on Functional and Logic
Programming (FLOPS), volume 8475 of Lecture Notes in Computer Science, pages 86–102.
Springer, Cham, 2014. doi:10.1007/978-3-319-07151-0_6.

18 Magnus Baunsgaard Kristensen, Rasmus Ejlers Møgelberg, and Andrea Vezzosi. Greatest
HITs: Higher inductive types in coinductives via induction under clocks. ArXiv preprint, 2021.
arXiv:2102.01969.

19 Jean-Louis Krivine. A program for the full axiom of choice. Logical Methods in Computer
Science, 17(3):21:1–22, 2021. doi:10.46298/lmcs-17(3:21)2021.

20 Rasmus Ejlers Møgelberg and Niccolò Veltri. Bisimulation as path type for guarded recursive
types. Proceedings of the ACM on Programming Languages, 3(POPL):4:1–29, 2019. doi:
10.1145/3290317.

21 Hiroshi Nakano. A modality for recursion. In Proceedings of the 15th Annual IEEE Symposium
on Logic in Computer Science (LICS). IEEE Computer Society, 2000. doi:10.1109/LICS.
2000.855774.

22 Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contextual modal type theory.
ACM Transactions on Computational Logic, 9(3):1–49, 2008. doi:10.1145/1352582.1352591.

23 Frank Pfenning. Intensionality, extensionality, and proof irrelevance in modal type theory. In
Proceedings of the 16th Annual IEEE Symposium on Logic in Computer Science (LICS), pages
221–230. IEEE Computer Society, 2002. doi:10.1109/LICS.2001.932499.

24 Andrew Polonsky. Axiomatizing the quote. In Marc Bezem, editor, Computer Science Logic
(CSL)—25th International Workshop/20th Annual Conference of the EACSL, volume 12 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 458–469, Dagstuhl, Germany,
2011. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.CSL.2011.458.

25 Daniyar S. Shamkanov. Circular proofs for the Gödel-Löb provability logic. Mathematical
Notes, 96(3–4):575–585, 2014. doi:10.1134/S0001434614090326.

26 Daniyar S. Shamkanov. A realization theorem for the Gödel-Löb provability logic. Sbornik:
Mathematics, 207(9):1344–1360, 2016. doi:10.1070/SM8667.

27 Tim Sheard and Simon Peyton Jones. Template meta-programming for Haskell. In Proceedings
of the 2002 ACM SIGPLAN Workshop on Haskell, pages 1–16, New York, New York, USA,
2002. ACM Press. doi:10.1145/581690.581691.

28 Walid Taha and Tim Sheard. MetaML and multi-stage programming with explicit annota-
tions. Theoretical Computer Science, 248(1–2):211–242, 2000. doi:10.1016/S0304-3975(00)
00053-0.

29 The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of
Mathematics. https://homotopytypetheory.org/book, Institute for Advanced Study, 2013.

30 Jaap van Oosten. Realizability: An Introduction to its Categorical Side. Studies in Logic and
the Foundations of Mathematics. Elsevier, 2008. doi:10.1016/S0049-237X(08)80001-8.

31 Niccolò Veltri and Andrea Vezzosi. Formalizing π-calculus in guarded cubical Agda. In
Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs and
Proofs (CPP), pages 270–283, New York, NY, USA, 2020. ACM. doi:10.1145/3372885.
3373814.

32 Andrea Vezzosi, Anders Mörtberg, and Andreas Abel. Cubical Agda: A dependently typed
programming language with univalence and higher inductive types. Journal of Functional
Programming, 31:e8:1–47, 2021. doi:10.1017/s0956796821000034.

CSL 2022

https://doi.org/10.1007/978-3-662-54458-7_32
http://collegepublications.co.uk/ifcolog/?00050
http://collegepublications.co.uk/ifcolog/?00050
https://doi.org/10.1007/978-3-319-07151-0_6
http://arxiv.org/abs/2102.01969
https://doi.org/10.46298/lmcs-17(3:21)2021
https://doi.org/10.1145/3290317
https://doi.org/10.1145/3290317
https://doi.org/10.1109/LICS.2000.855774
https://doi.org/10.1109/LICS.2000.855774
https://doi.org/10.1145/1352582.1352591
https://doi.org/10.1109/LICS.2001.932499
https://doi.org/10.4230/LIPIcs.CSL.2011.458
https://doi.org/10.1134/S0001434614090326
https://doi.org/10.1070/SM8667
https://doi.org/10.1145/581690.581691
https://doi.org/10.1016/S0304-3975(00)00053-0
https://doi.org/10.1016/S0304-3975(00)00053-0
https://homotopytypetheory.org/book
https://doi.org/10.1016/S0049-237X(08)80001-8
https://doi.org/10.1145/3372885.3373814
https://doi.org/10.1145/3372885.3373814
https://doi.org/10.1017/s0956796821000034

	1 Introduction
	2 Preliminaries
	2.1 Homotopy type theory
	2.2 λ-calculus, Gödel encoding, and the second recursion theorem
	2.3 P-Categories and exposures

	3 P-Category of assemblies on λ-calculus
	3.1 Assembly and trackable map
	3.2 Extensional equality and P-category of assemblies

	4 Realisability semantics for the S4 modality
	4.1 An exposure for the S4 modality

	5 Realisability semantics for the GL modality
	5.1 Digression: Clocked cubical type theory
	5.2 An exposure for the GL modality

	6 Related work
	7 Conclusion

