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Abstract
We study infinite two-player win/lose games (A, B, W ) where A, B are finite and W ⊆ (A × B)ω. At
each round Player 1 and Player 2 concurrently choose one action in A and B, respectively. Player 1
wins iff the generated sequence is in W . Each history h ∈ (A × B)∗ induces a game (A, B, Wh) with
Wh := {ρ ∈ (A × B)ω | hρ ∈ W }. We show the following: if W is in ∆0

2 (for the usual topology),
if the inclusion relation induces a well partial order on the Wh’s, and if Player 1 has a winning
strategy, then she has a finite-memory winning strategy. Our proof relies on inductive descriptions
of set complexity, such as the Hausdorff difference hierarchy of the open sets.

Examples in Σ0
2 and Π0

2 show some tightness of our result. Our result can be translated to games
on finite graphs: e.g. finite-memory determinacy of multi-energy games is a direct corollary, whereas
it does not follow from recent general results on finite memory strategies.
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1 Introduction

Two-player win/lose games have been a useful tool in various areas of logic and computer
science. The two-player win/lose games in this article consist of infinitely many rounds. At
each round i, Player 1 and Player 2 concurrently choose one action each, i.e. ai and bi in
their respective sets A and B. Player 1 wins and Player 2 loses if the play (a0, b0)(a1, b1) . . .

belongs to a fixed W ⊆ (A × B)ω. Otherwise Player 2 wins and Player 1 loses. We call
W the winning set of Player 1, or the winning condition for Player 1. A strategy is a map
that tells a player how to play after any finite history of actions played: a Player 1 (resp.
2) strategy is a map from (A × B)∗ to A (resp. B). A strategy is finite-memory (FM) if
the map can be implemented by a finite-state machine. Also, each history h ∈ (A × B)∗

induces a game starting at h and taking the past into account, i.e. with winning set
Wh := {ρ ∈ (A × B)ω | hρ ∈ W}.

For now we state a slightly weaker version of our main result: if A and B are finite, if the
(Wh)h∈(A×B)∗ constitute a well partial order (wpo) for the inclusion, if W ∈ ∆0

2, i.e. in the
usual cylinder topology W is a countable union of closed sets and a countable intersection
of open sets, and if Player 1 has a winning strategy, then she has a finite-memory winning
strategy. Of course, our result also applies to the turn-based version of such games.
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8:2 Finite-Memory Strategies in Two-Player Infinite Games

On the proof of the main result. The proof of our main result relies on descriptive set
theory. The Hausdorff-Kuratowski theorem (see, e.g., [5]) states that each set in ∆0

2 can be
expressed as an ordinal difference of open sets, and conversely. In general, this implies that
properties of sets in ∆0

2 may be proved by induction over the countable ordinals. Accordingly,
we prove our main result by induction on W , but the inductive step suggested by the
Hausdorff-Kuratowski theorem does not suit us completely. Instead, we mix it with a folklore
alternative way of describing ∆0

2 by induction. After this mix, our base case consists of
the open sets, the first inductive step consists of union with a closed set, and the second
inductive step of open union.

To prove our result, the base case, where W is open, amounts to reachability games, and
the wpo assumption is not needed. The case where W is closed is easy, and it includes the
multi-energy games (where Player 1 keeps all energy levels positive). Just above these, the
case where W is the union of an open set and a closed set is harder to prove. It includes
disjunctions of a reachability condition and a multi-energy condition. We will present this
harder case in details because it shows part of the complexity of the full result.

Yet another representation of ∆0
2. Above, we mentioned two hierarchies that describe ∆0

2.
In addition, this paper (re-)proves the folklore result that Π0

2 corresponds to Büchi winning
conditions and Σ0

2 to co-Büchi. If labeling each history with 0 or 1, the Büchi (co-Büchi)
condition requires that infinitely (only finitely) many 1’s be seen on a branch/play. The ∆0

2
sets are therefore the sets that can be expressed both by Büchi and co-Büchi conditions.
This is possible exactly if on every infinite play not both 0 and 1 occurs infinitely often. This
corresponds to the play’s crossing only finitely many layers in the previous paragraph.

From the four representations and the layer intuition, we can conclude that ∆0
2 sets are

infinite Boolean combinations of open sets, of course in a restricted sense.

Tightness of the result. The collection of the countable unions of closed sets is called Σ0
2,

and the collection of their complements, i.e. the countable intersections of open sets, is called
Π0

2. So ∆0
2 = Σ0

2 ∩ Π0
2. In this article we provide one example of a winning set W in Σ0

2
and one example in Π0

2 that satisfy the wpo assumption but not the FM-strategy sufficiency.
Hence tightness.

Note that without the wpo assumption, even Turing-computable strategies may not suffice
to win for closed winning sets: take a non-computable binary sequence ρ and a game where
Player 1 wins iff she plays ρ. She has a winning strategy, but no computable ones.

Connections with graph games. Our game ⟨A, B, W ⟩ can be seen as a one-state concurrent
graph game where the winning condition is defined via the actions rather than the visited
states. Winning strategies (resp. FM strategies) coincide in both models.

Alternatively, we can unfold any concurrent graph game into an infinite tree game
⟨A, B, W ⟩ whose nodes are the histories of pairs of actions. Winning strategies coincide in
both models. Moreover, an FM strategy in the tree game is, up to isomorphism, also an
FM strategy in the graph game. The converse may not hold since, informally, the player
may observe the current state only in the graph model. Nevertheless for finite graphs, the
observation of the state can be simulated by an additional finite memory, i.e. the graph itself.
To sum up, any FM result in our tree games can be translated into an FM result in graph
games. Almost conversely, FM results in finite-graph games can be obtained from our tree
games, possibly with non-optimal memory.
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Related works and applications. The two articles [7] and [2] provide abstract criteria
to show finite-memory determinacy in finite-graph games: [7] by Boolean combination of
complex FM winning conditions with simple winning conditions defined via regular languages;
[2] by characterizing, for a fixed memory, the winning conditions that yield, in all finite-graph
games, FM determinacy via this fixed memory. The FM determinacy of multi-energy games
is a corollary of neither, but as mentioned above, it is a direct corollary of our result. (Note
that this specific result was already proved in [10].)

More generally on a finite-graph game, consider the conjunction or disjunction of a
multi-energy winning condition and a Boolean combination of reachability conditions. This
is in ∆0

2 (actually low at some finite level of the hierarchy), this induces a wpo, so if Player 1
has a winning strategy she has an FM one.

However, the FM determinacy of Büchi games in finite-graph games is not a corollary of
our result, because the Büchi conditions may not be in ∆0

2. We mention three things about
this. First, this determinacy does not contradict our tightness results: in Π0

2 or Σ0
2, FM

determinacy holds when the corresponding labeling is regular. Second, in future work we
plan to seek a general theorem having both this determinacy and our main result as special
cases. Third, in finite-graph games, many winning conditions that yield memoryless or FM
determinacy can be simulated by finite games, and therefore clopen winning conditions, i.e.
∆0

1 instead of our more general ∆0
2. For instance, see [1], [8], [4]. This suggests that our work

could be used to prove more FM sufficiency results by reduction of finite-graph games to
tree games with wpo winning condition in ∆0

2.

Structure of the article. Section 2 defines our games and finite-memory strategies; Section 3
presents the related descriptive set theory; Section 4 presents our main result; Section 5
discusses tightness of our main result; Section 6 mentions possible future work.

2 Setting and definitions

We study two-player games, which consist in a tuple (A, B, W ): A is the action set for
Player 1, B is the action set for Player 2 and W ⊆ (A × B)ω is the winning set. Here we only
consider finitely branching games, where A and B are both finite. Such a game is played in
the following way: at each round, each player chooses an action from their respective action
set in a concurrent way, thus producing a pair of actions in A × B. The game then continues
for infinitely many rounds, generating a play which consists in an infinite word in (A × B)ω.
Player 1 then wins if the generated play belongs to the winning set W , while Player 2 wins if
it does not. In the following we will focus on Player 1.

To describe the Players’ behavior in such a game, we use the concepts of histories and
strategies. A history is a finite word in (A × B)∗ and represents the state of the game after
finitely many rounds. We call H the set of histories. For a (finite or infinite) word w and
k ∈ N, we denote by wk the k-th letter of w and by w<k the prefix of w of length k. A
strategy s : H → A for Player 1 is a function that maps histories to actions and represents a
behavior for Player 1: in history h, she will play action s(h). Given a strategy s, a history h

and a word β ∈ Bω, we call out(h, s, β) the only play where both players first play h, then
Player 1 plays according to s and Player 2 plays the actions of β in order. This play is
defined inductively as follows:

for k ≤ |h|, out(h, s, β)<k = h<k;
for k > |h|, out(h, s, β)<k = out(h, s, β)<k−1(s(out(h, s, β)<k−1), βk−|h|−1).

CSL 2022



8:4 Finite-Memory Strategies in Two-Player Infinite Games

We say that a play ρ is compatible with a given strategy s if there exists β ∈ Bω such that
ρ = out(ε, s, β), where ε is the empty history. Similarly, a history is compatible with s

if it is the finite prefix of a compatible play. We say that a strategy is winning if all the
plays compatible with it belong to W : if Player 1 plays according to such a strategy, she is
guaranteed to win. We can extend this concept to say that a strategy s is winning from a
history h when for all β ∈ Bω we have out(h, s, β) ∈ W (if after history h Player 1 starts
playing according to s then she will win). We call a winning history a history from which
there exists a winning strategy.

We call a tree any subset of (A × B)∗ which is closed by prefix, and a branch any (finite
or infinite) sequence of elements e0 = ε ⊏ e1 ⊏ e2 ⊏ ... of a tree. In particular, all histories
compatible with a given strategy form a tree, which we call the strategic tree induced by
the strategy. We makes extensive use of Kőnig’s lemma [6], which states that if a finitely
branching tree has no infinite branch then it is a finite tree. Specifically, we often use the
derived result that if some family in a tree intersects all infinte branches of the tree then it
has a finite subset that also does.

Given a history h ∈ Γ, we say that an action a ∈ A is non-losing for h if for any action
b ∈ B, h(a, b) is a winning history. Among all histories, we are particularly interested in
the set of histories along which Player 1 has only played non-losing actions: we call Γ this
particular set. Notice that Player 1 has a winning strategy from any history h ∈ Γ, but that
playing only non-losing actions for Player 1 might be a losing strategy.

A history h ∈ H induces a winning set Wh defined as Wh = {ρ ∈ (A × B)ω | hρ ∈ W}.
The set Wh contains all the infinite continuations ρ such that hρ is a winning play.

Recall that we introduced strategies for Player 1 as functions mapping histories to actions
in A. Among these strategies, we are particularly interested in those that can be described as
finite machines: we call them finite-memory strategies. Let us introduce first the concept of
finite-memory decision machines. A finite-memory decision machine is a tuple (M, σ, µ, m0)
such that:

M is a finite set (the memory);
σ : M → A is the decision function;
µ : M × (A × B) → M is the memory update function;
m0 ∈ M is the initial memory state.

Given a finite-memory decision machine (M, σ, µ, m0), we extend µ by defining µ(m, h)
for h ∈ H in the following inductive way:

µ(m, ε) = m

for all h in H and (a, b) ∈ A × B, µ(m, h(a, b)) = µ(µ(m, h), (a, b)).
For readability’s sake, in case m = m0 and the context is clear, we write µ(h) for µ(m, h).

A finite-memory decision machine (M, σ, µ, m0) induces a strategy s for Player 1 defined
for all h ∈ H as s(h) = σ(µ(m0, h)). We say that a strategy s is a finite-memory strategy if
it is induced by some finite-memory decision machine, and abusively write s = (M, σ, µ, m0)
(identifying the finite-memory decision machine with the strategy it induces) when it is the
case.

We often describe a finite-memory decision machine by only defining µ for the action
pairs that are compatible with σ (i.e. for m ∈ M we only define µ(m, (a, b)) when a = σ(m)).
Such a partial machine can be easily extended to a complete one, and contains all the relevant
information to decide on the winning aspect of the strategy (or rather, strategies, as many
different extensions are possible) it induces as it describes all plays compatible with itself.
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3 Descriptive set theory

3.1 Open sets and the Borel hierarchy

Given a set C and a finite word w ∈ C∗, we call cylinder of w the set cyl(w) = {wρ | ρ ∈ Cω}.
This set contains all the infinite words that start with w. In concordance with the usual
cylinder topology on Cω, the cylinders serve as the basis for the open sets, in the sense that
we define as an open set any set that can be written as an arbitrary union of cylinders. We say
that a family of words F is a generating family for an open set O if we have O = ∪f∈F cyl(f),
that is, O is the set of all plays that have at least one finite prefix in F .

These open sets allow to define a Borel algebra on Cω as the smallest σ-algebra that
contains all open sets. More precisely, the Borel algebra is the smallest collection of sets that
contains the open sets and is closed under both countable union and complement (for more
information about Borel sets, see [5]). This collection of sets can be organized into what is
called the Borel hierarchy, which is defined for countable ordinals in the following way:

Σ0
1 is the collection of all the open sets;

for all countable ordinals θ, Π0
θ is the collection of sets whose complements are in Σ0

θ;
for all countable ordinals θ, Σ0

θ is the collection of sets that can be defined as a countable
union of sets belonging to lower levels of the hierarchy;
finally, for all countable ordinals θ, ∆0

θ is the collection of sets that are in both Σ0
θ and Π0

θ.
To illustrate, let us detail the lowest levels of the hierarchy:

as per the definition, Σ0
1 is the collection of all the open sets;

the sets in Π0
1 are the sets whose complement is an open set, we call them the closed sets;

Σ0
2 contains the sets which can be written as a countable union of closed sets;

Π0
2 contains the sets which complement can be written as a countable union of closed sets:

by properties of the complement, these are the sets that can be written as a countable
intersection of open sets;
finally, ∆0

2 is the collection of sets that can be written both as a countable union of closed
sets and as a countable intersection of open sets.

In the following we will focus on the collection of sets ∆0
2.

3.2 The Hausdorff difference hierarchy

The Hausdorff difference hierarchy (see for instance [5]) provides us with a way of defining
inductively all the sets in ∆0

2. Formally, given an ordinal θ and an increasing sequence of
open sets (Oη)η<θ, the set Dθ((Oη)η<θ) is defined by:

ρ ∈ Dθ((Oη)η<θ) ⇔ ρ ∈ ∪η<θOη and the least η such that ρ ∈ Oη

has parity opposite to that of θ.

For any ordinal θ, we call Dθ the collection of sets S such that there exists an increasing
family of open sets (Oη)η<θ such that S = Dθ((Oη)η<θ). To illustrate, D1 is the collection
of all the open sets, D2 is the collections of the sets that can be written as O1 \ O0 where O1
and O0 are two open sets (and hence contains the closed sets), D3 is the collection of the
sets that can be written as O2 \ (O1 \ O0) where O2, O1 and O0 are three open sets, etc.

The Hausdorff-Kuratowski theorem [5] then states that a set S belongs to ∆0
2 if and only

if there exists an ordinal θ such that S ∈ Dθ.

CSL 2022



8:6 Finite-Memory Strategies in Two-Player Infinite Games

3.3 The fine Hausdorff hierarchy
In the spirit of the Hausdorff difference hierarchy, we propose another inductive way of
defining the sets in ∆0

2. This other hierarchy was already introduced in [9], and may have
appeared earlier in the literature but to our knowledge has never been studied in similar
depth. Most of the related results can however be considered folklore. First we introduce the
concept of open union: we say that the union of a family of sets (Si)i∈I is an open union if
there exists a family of disjoint open sets (Oi)i∈I such that for all i ∈ I have Si ⊆ Oi. We
denote such a union by ⋓i∈ISi.

We then define inductively collections of sets Λθ and Kθ, with θ a positive ordinal, in the
following way:

a set S is in Λ1 if and only if it is an open set;
a set S is in Kθ if and only if its complement is in Λθ;
a set S is in Λθ with θ > 1 if and only if there exists a family of sets (Si)i∈I such that for
each i there exists ηi < θ such that Si ∈ Ληi

∪ Kηi
and we have S = ⋓i∈ISi.

This definition is akin to the definition of the Borel hierarchy, with the exception that
the union operation is replaced with an open union. We then prove the following theorem,
which shows our hierarchy is a refinement of the Hausdorff difference hierarchy (and hence
justifies its name):

▶ Theorem 1 (folklore). For all ordinals θ, we have Dθ = Λθ.

This theorem is naturally proven by induction on θ and requires intermediate results
which help understand the nature of the two hierarchies. In particular, we have: (i) for all
ordinals θ the collection Dθ is closed under open union, (ii) for all ordinals θ the collection
Λθ is closed by intersection with an open set, (iii) for all ordinals θ the two collections Λθ and
Kθ are closed under intersection with a cylinder and (iv) for all limit ordinals θ the collection
Dθ is the collection of sets that can be written as the open unions of sets in ∪η<θDη. One
observation which proves pivotal for proving our main result on the existence of finite-memory
strategies is that for all ordinals θ, all sets in Kθ can be written as the union of a closed set
and a set that belongs to Λθ (if θ is a successor odinal, we can be even more precise as Kθ is
the collection of all sets that can be written as the union of a closed set and a set in Λθ−1).
All the details surrounding these two views and the proof of theorem 1 can be found in [3]

3.4 The 0-1 eventually constant labelling
A third possible view of sets in ∆0

2 is given via eventually constant labelling functions. We
say that a labelling function l : C∗ → {0, 1} is eventually constant if for all infinite words
ρ in Cω, the sequence (l(ρ<n))n∈N is eventually constant, which means that there exists a
finite k ∈ N and i ∈ {0, 1} such that for all n ≥ k we have l(ρ<n) = i. We then call 1l the
set of infinite words ρ ∈ C such that the set {n | l(ρ<n) = 1} is infinite. As we will see, the
sets S that belong to ∆0

2 are the sets such that there exists an eventually constant labelling
function l such that S = 1l.

3.5 Equivalence of representations
3.5.1 Representations of sets in ∆0

2

As expressed by the following theorem, the Hausdorff difference hierarchy, fine Hausdorff
hierarchy and eventually constant labelling functions actually define the same sets, which
are exactly the sets that belong to ∆0

2.
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▶ Theorem 2 (folklore). Given a subset S of Cω, the following propositions are equivalent:
(1) S ∈ ∆0

2;
(2) S belongs to the Hausdorff difference hierarchy;
(3) S belongs to the fine Hausdorff hierarchy;
(4) there exists an eventually constant labelling function l such that S = 1l.

The detailed proof can be found in [3], but we give some elements here: the Hausdorff-
Kuratowski theorem [5] shows that (1) ⇔ (2), and Theorem 1 shows that (2) ⇔ (3). We
prove that (3) ⇒ (4) by showing that the collection of sets of the form 1l where l is an
eventually constant labelling function is closed under both open union and complement, and
finally prove that (4) ⇒ (1) by showing that all sets of the form 1l where l is an eventually
constant labelling function can be expressed both as countable intersection of open sets and
countable union of closed sets.

3.5.2 Correspondence between Büchi/co-Büchi conditions and Π0
2/Σ0

2

Two much studied types of winning condition in computer science are the Büchi and co-Büchi
conditions. Such winning conditions are given by a coloring function c that provides a color
(elements in {0, 1}) for every history. In the case of a Büchi condition, a play is then winning
if infinitely many of its prefixes are associated with the color 1 while in the case of a co-Büchi
condition it is winning if finitely many of its prefixes are associated with the color 1 (Büchi
and co-Büchi conditions are thus the complement of each other). As stated by the following
lemma, whose proof can be found in [3], Büchi conditions actually describe the sets in Π0

2:

▶ Lemma 3. A subset S of Cω belongs to Π0
2 if and only if it can be expressed as a Büchi

condition.

A trivial corollary is that co-Büchi conditions describe the sets in Σ0
2:

▶ Corollary 4. W belongs to Σ0
2 if and only if it can be expressed as a co-Büchi condition.

4 On the existence of finite-memory winning strategies when the
winning set belongs to the Hausdorff difference hierarchy

Our aim is to exhibit conditions on W that ensure Player 1 has a finite-memory winning
strategy when some winning strategy exists.

Consider a game (A, B, W ) where the winning set W belongs to ∆0
2. We introduce a new

hypothesis on the induced winning sets of this game: the set inclusion relation, denoted by ⊆,
induces a well partial order (wpo) on the winning sets induced by the histories in Γ. That is,
for any sequence (hn)n∈N of histories in Γ, there exists k < l such that Whk

⊆ Whl
. A known

property of well partial orders which we will use is that any set S ⊆ Γ contains a finite subset
M such that for all h ∈ S there exists m ∈ M such that Wm ⊆ Wh. The set of winning sets
induced by the histories in M effectively functions as a finite set of under-approximations for
the winning sets induced by the histories in S.

Such hypotheses might seem exotic and restrictive, but are effectively satisfied for well-
studied classes of games, such as energy games or multi-energy games played on graphs (see
for instance [10]), or games with a winning condition expressed as a boolean combination
of reachability/safety conditions. Indeed, in the first case the induced winning sets are
isomorphic to the cartesian product of the state space and Nk, where k is the number of
energy dimensions, while in the second case they are isomorphic to the cartesian product of
the state space and the set of possible valuations.

CSL 2022



8:8 Finite-Memory Strategies in Two-Player Infinite Games

Under these specific conditions, we prove that Player 1 always has a finite-memory
winning strategy when she has a winning strategy:

▶ Theorem 5. Assume that W belongs to ∆0
2 and ⊆ induces a well partial order on {Wh |

h ∈ Γ}. If Player 1 has a winning strategy from ε, then she also has a finite-memory one.

Given a set S in the Hausdorff difference hierarchy, the rank of S is the least ordinal θ

such that S ∈ Dθ. We prove Theorem 5 by a transfinite induction on the rank of W .
First notice that the inclusion of induced winning sets has the nice property of being

preserved by the addition of a suffix, which is formally expressed by the following lemma:

▶ Lemma 6. If Wh ⊆ Wh′ then for all (a, b) ∈ A × B we have Wh(a,b) ⊆ Wh′(a,b).

▶ Corollary 7. If Wh ⊆ Wh′ then all non-losing actions of h are also non-losing for h′.

4.1 Proof for open sets
We begin by the case where W is an open set (W has rank 1), generated by a set F of
histories.

▶ Lemma 8. If W is an open set and ε ∈ Γ, then Player 1 has a finite-memory winning
strategy from ε.

Proof. Suppose that there exists a winning strategy s from ε. Then consider the strategic
tree T induced by s, and consider the tree T ′ = T \ {h ∈ H | ∃f ∈ F , f ⊏ h}, where ⊏ is the
strict prefix relation. Since s is winning, there is no infinite branch in T ′. By Kőnig’s lemma,
this means that T ′ is finite and by definition all maximal elements (with regards to ⊑, the
prefix relation) of T ′ belong to F . T ′ can then serve as the memory of a finite-memory
winning strategy sf = (T ′, σ, µ, m0) defined by:

for t ∈ T ′ \ F , σ(t) = s(t);
for t ∈ T ′ ∩ F , we set σ(t) as any action a ∈ A;
for t ∈ T ′ and b ∈ B, µ(t, (σ(t), b)) = t(σ(t), b) if t /∈ F and µ(t, (σ(t), b)) = t if t ∈ F ;
m0 = ε.

The strategy sf works by simply following s alongside the branches of T ′ until it reaches a
history in F , and is thus winning. ◀

4.2 Proof for closed sets
We now focus on the study of the case where the winning set W is a closed set. In that case,
the plays ρ such that ρ ∈ W are precisely the plays for which all finite prefixes h are such
that Wh ̸= ∅. As a consequence, any strategy playing non-losing actions for Player 1 is a
winning strategy: such a strategy only generates histories h in Γ, and in particular Wh ̸= ∅.

Furthermore, if ⊆ induces a well partial order on the partial winning sets, then:
(∗) there exists a finite subset M of Γ such that for all h ∈ Γ there exists m ∈ M such that

Wm ⊆ Wh;
(∗∗) any play ρ has two finite prefixes ρ0 and ρ1 such that ρ0 ⊏ ρ1 and Wρ0 ⊆ Wρ1 .
These two observations are the basis for two different approaches to prove the next lemma.

▶ Lemma 9. If W is a closed set, if ⊆ induces a well partial order on (Wh)h∈Γ and if ε ∈ Γ,
then Player 1 has a finite-memory winning strategy from ε.
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Proofs using the two approaches. Consider indeed a game (A, B, W ) where W is a closed
set, ⊆ induces a well partial order on the partial winning sets associated with the winning
histories and such that ε is a winning history. We consider a strategy s that is a winning
strategy for Player 1.

The first approach, derived from observation (∗), consists in building a finite-memory
strategy (M, σ, µ, m0) with memory set M in the following way:

for m ∈ M , we let σ(m) be any non-losing action from m,
for m ∈ M and b ∈ B, since σ(m) is non-losing we know that m(σ(m), b) ∈ Γ, which means
that there exists m′ ∈ M such that Wm′ ⊆ Wm(σ(m),b); we then let µ(m, (σ(m), b)) = m′;
finally m0 ∈ M is chosen such that we have Wm0 ⊆ Wε.

Informally, we have as our memory the set M which contains under-approximations for all
winning sets induced by the histories of Γ. We use the transition function to maintain an
under-approximation of the “real” induced winning set associated to the current history, and
play according to this under-approximation. By Corollary 7, this ensures that we always
play a non-losing action, which is enough to guarantee the win because W is a closed set.

The second approach is derived from observation (∗∗). Consider the winning strategy
s and its associated strategic tree Ts. Along every infinite branch ρ of Ts, there exist two
histories h, h′ such that h ⊏ h′ and Wh ⊆ Wh′ . Consider then the tree T f

s obtained by
pruning Ts along these histories: T f

s = {h′ ∈ Ts | ∀h ∈ Ts, h ⊏ h′ ⇒ Wh ⊈ Wh′}. By Kőnig’s
lemma, T f

s is a finite tree. We call P the set {h ∈ Ts | h /∈ T f
s and h′ ⊏ h ⇒ h′ ∈ T f

s } of the
minimal elements (with regards to the prefix relation) of Ts that do not belong to T f

s . We
then build a finite-memory strategy (M ′, σ, µ, m0) in the following way:

M ′ = T f
s

for m ∈ M ′, we let σ(m) = s(m),
for m ∈ M ′ and (a, b) ∈ A × B such that a = σ(m) = s(m),

if m(a, b) ∈ T f
s then we let µ(m, (a, b)) = m(a, b),

else by construction we have m(a, b) ∈ P and there exists m′ ∈ T f
s such that m′ ⊏

m(a, b) and Wm ⊆ Wm(a,b); we then let µ(m, (a, b)) = m′,
finally m0 = ε.

Informally, this approach consists in playing according to s until we reach a history whose
induced winning set is bigger than one we already met. We then forget the current history
and continue playing as if we were in the history with the smaller induced winning set. This
second approach also ensures that the memory consists of an under-approximation of the
“real” induced winning set, and hence by Corollary 7 it guarantees that the resulting strategy
is non-losing, and thus winning since W is a closed set. ◀

4.3 Limitations to the above approaches
Until now, we have studied the lowest levels of the Hausdorff difference hierarchy, focusing
on the cases where the winning sets belongs to Λ1, the open sets, and K1, the closed sets.
We will explain later how to handle the case for Λ2 and for now turn our attention to K2, as
it proves pivotal to the understanding of our method.

The sets in K2 are the sets that can be written as the union of a closed set and an open
set. Informally, this means that Player 1 can win in two different ways, by ensuring that
either the generated play lies in the closed set or they reach a history which belongs to the
generating family of the open set.

CSL 2022



8:10 Finite-Memory Strategies in Two-Player Infinite Games

({0} × B)ω ∅ ∅

({0} × B)ω ∅ ∅

(A × B)ω (A × B)ω (A × B)ω

(A × B)ω (A × B)ω (A × B)ω

...

00 01 10 11

00 01 10 11

00 01 10 11

00 01 10 11

00

Figure 1 A game for which the naive algorithm does not work. For the sake of concision, the
pairs of actions in A × B are written as two-letter words. In red is the partial winning set of the
corresponding history.

ε (0, 1)

0 0

(0, 0) {0} × B

(0, 1)

Figure 2 The finite-memory strategy generated by approaches (∗) and (∗∗) for the game
represented in Figure 1. Each state is labeled by the history associated to it, and in red is the action
associated to that state.

The first condition is akin to a safety objective (Player 1 manages to never go out of a
certain region) while the second condition is akin to a reachability objective (Player 1 meets
a certain given condition at a finite time and it suffices to ensure the win). As shown by the
following example, the two simple approaches we detailed previously for closed sets do not
suffice here:

▶ Example 10. Consider the game (A, B, W ) with A = B = {0, 1} and W =
(0, 0)∗(0, 1)({0} × B)ω + (0, 0)2(0, 0)∗({1} × B + A × {1})(A × B)ω. This game is described
in Figure 1. In other words, Player 1 has two ways to win:

either the players play (0, 1) or (0, 0)(0, 1) and Player 1 then only has to play action 0
forever;
or the players play (0, 0) twice and then one player plays action 1, reaching a point where
all possible continuations are winning for Player 1.

As W can be expressed via a regular expression, it induces finitely many partial winning
sets, which means that ⊆ trivially induces a well partial order over said partial winning sets.
Moreover, W can be expressed as the union of an open set and a closed set (the closed set
corresponds to the first item above, while the open set corresponds to the second item), and
hence belongs to the Hausdorff difference hierarchy (more precisely it belongs to K2).
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Moreover, one can easily check that Wε ⊆ W(0,0). As a consequence, both approach (∗)
and approach (∗∗) yield the finite-memory strategy described in Figure 2. This strategy is
not winning for Player 1, as if Player 2 always plays action 0 it will generate the play (0, 0)ω,
which does not belong to W .

4.4 Proofs for sets in K2

To better understand how the proof works in the general case, we propose here to study the
basic case of sets in K2. As we have seen previously, the two approaches that worked well
for the case where the winning set is a closed set do not suffice in that case. Nevertheless,
we prove the following result:

▶ Theorem 11. If W is in K2, if ⊆ induces a well partial order on (Wh)h∈Γ and if ε ∈ Γ,
then Player 1 has a finite-memory winning strategy from ε.

Let us suppose then that W is in K2: as already mentioned, W is the union of a closed set
C and an open set O. We let F be the generating family of O and denote by Pref(C) the set of
histories which have at least one continuation in C, that is Pref(C) = {h ∈ H | ∃ρ, hρ ∈ C}.

As a preliminary observation, recall we already know how to handle the case when the
winning set is open. The method also works well for the general case when Player 1 is able to
reach O by herself (that is, she have a winning strategy for O). We also know that finding a
finite-memory non-losing strategy for Player 1 is always possible (see for instance the method
(∗) for the case where the winning set is closed). As a consequence, a simple method one
would be tempted to try would be the following:

follow some non-losing strategy as long as the current history belongs to Pref(C);
as soon as we detect we have left Pref(C), play some finite-memory winning strategy to
reach a history in F (this is possible because if we have played in a non-losing fashion so
far and the current history does not belong to Pref(C), then the only way to win from
there is to produce a play that belongs to O).

This method should produce a finite-memory winning strategy, however it relies on the
assumption that one is able to detect whether or not the current history belongs to Pref(C)
using only finite memory. This assumption does not rely on any solid ground, which makes
this method incorrect. We propose another construction of a finite-memory winning strategy,
which does not need to detect when the current history stops belonging to Pref(C), but
which ensures that F will be reached if it were the case (despite not knowing it).

Consider indeed a history h in Γ∩Pref(C) and a history h in Γ such that h /∈ Pref(C) and
Wh ⊆ Wh. We call TC(h, h) the set {hl | hl ∈ Pref(C)} consisting of the finite continuations
from h that belong to Pref(C), but rooted in h. Notice that for all infinite continuations ρ

such that hρ ∈ C, we have hρ ∈ W , which means that hρ ∈ W (since Wh ⊆ Wh) and hence
that hρ ∈ O since h /∈ Pref(C) (which means that all winning continuations of h belong to O

because they cannot belong to C). We thus know that TC(h, h) contains a family of histories
Fh,h included in F (or in the case where h itself has a strict prefix in F , we set Fh,h = {h})
and such that all infinite branches of TC(h, h) have a finite prefix in Fh,h, and by Kőnig’s
lemma we know this family is finite. We call depth(h, h) the maximal length of the elements
in Fh,h. Intuitively, this means that, if the current history were h but Player 1 only knew of
its under-approximation h, she could ensure the win by following a play whose finite prefixes
l were such that hl ∈ Pref(C) for depth(h, h) steps. This however still requires to compute
the value of depth(h, h) and hence to know of h. However, as stated by the following lemma,
the value of depth(h, h) for all eligible h is bounded.

CSL 2022



8:12 Finite-Memory Strategies in Two-Player Infinite Games

▶ Lemma 12. For all h in Pref(C), {depth(h, h) | h ∈ Γ, h /∈ Pref(C), Wh ⊆ Wh} is bounded.

The proof of this lemma can be found in appendix [3], and makes use of the well partial
order hypothesis.

For h in Γ ∩ Pref(C), we will then call depth(h) the upper bound of depth(h, h) for h

meeting the criteria described above. The idea is the following: if the current history is
h ∈ Γ, but Player 1 only knows of its under-approximation h, and then plays some finite
continuation l of length depth(h) (which is independent of h) such that hl ∈ Pref(C), then
she ensured the win as hl has a finite prefix in F . This is formally stated in the following
lemma:

▶ Lemma 13. Let h ∈ Pref(C) and h /∈ Pref(C) such that Wh ⊆ Wh. Let ρ ∈ (A × B)ω such
that for all finite prefixes l of ρ such that |l| ≤ depth(h) we have hl ∈ Pref(C). Then hρ ∈ O.

Proof. Let l be the finite prefix of ρ of length depth(h). As depth(h, h) ≤ depth(h) we know
that hl has a prefix in F , hence the result. ◀

Consider now a finite family (hi)i∈I of histories in Γ\Pref(C) such that for all h ∈ Pref(C)
there exists i ∈ I such that Whi ⊆ Wh. For all i ∈ I there exists a finite-memory decision
machine (Mi, σi, µi, mi) associated with a of finite-memory strategy (si)i∈I such that si wins
from hi. As a consequence, for all h ∈ Γ \ Pref(C) there exists i ∈ I such that si wins from h.
Consider also a finite family (hj)j∈J of histories in Γ ∩ Pref(C) indexed by J ⊆ N such that
for all histories h in Pref(C) ∩ Γ there exists j ∈ J such that Whj

⊆ Wh. For all j ∈ J , let
Tj = {hj l | |l| ≤ depth(hj)}. Up to renaming, we can suppose that the Tj ’s are disjoint from
one another. We build our finite-memory winning strategy s = (M, σ, µ, m0) in the following
way:

M = ∪i∈IMi ∪ ∪j∈JTj ;
for m ∈ Mi we let σ(m) = σi(m);
for t ∈ Tj we let σ(t) be any non-losing action from t;
for m ∈ Mi and (a, b) ∈ A × B we let µ(m, (a, b)) = µi(m, (a, b));
for t ∈ Tj and (a, b) ∈ A × B such that a = σ(t):

if t(a, b) ∈ Tj then µ(t, (a, b)) = t(a, b);
else if t(a, b) ∈ Γ \ Pref(C) then there exists i ∈ I such that si wins from t(a, b): we let
µ(t, (a, b)) = mi;
else if t(a, b) ∈ Γ ∩ Pref(C) then there exists j ∈ J such that Whj

⊆ Wt(a,b) and we let
µ(h, (a, b)) = hj ;

m0 = hj where j ∈ J is such that Whj
⊆ Wε.

We prove this finite-memory strategy is winning for Player 1. To this end, let us first
show that for all compatible histories h such that µ(h) ∈ Tj for some j ∈ J , the memory
state µ(h) provides an under-approximation of the winning set induced by h:

▶ Lemma 14. If µ(h) ∈ Tj for some j ∈ J then we have Wµ(h) ⊆ Wh.

Proof. The proof is by induction on h. First we have µ(ε) = m0 and per the definition
Wm0 ⊆ Wε. Now consider h ∈ H such that µ(h) ∈ Tj for some j ∈ J and Wµ(h) ⊆ Wh. Let
(a, b) ∈ A × B such that µ(h(a, b)) ∈ Tj′ for some j′ ∈ J . Then,

if µ(h)(a, b) ∈ Tj then we have µ(h(a, b)) = µ(h)(a, b) and the desired result follows by
Lemma 6,
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else we must have µ(h)(a, b) ∈ Γ ∩ Pref(C) (else we would not have µ(h(a, b)) ∈ Tj′) and
µ(h(a, b)) = hj′ with j′ such that Whj′

⊆ Wµ(h)(a,b), and Wµ(h)(a,b) ⊆ Wh(a,b) once again
by Lemma 6, which ensures the result. ◀

As a consequence of Lemma 14, when h is such that µ(h) ∈ Tj for some j ∈ J then we
have Wµ(h) ⊆ Wh. As a consequence, for all (a, b) ∈ A × B we have Wµ(h)(a,b) ⊆ Wh(a,b).
This ensures that if µ(h)(a, b) ∈ Γ \ Pref(C) and the strategy si wins from µ(h)(a, b) then si

also wins from h(a, b), which explains why our finite-memory strategy is winning. Formally,
we have the following lemma:

▶ Lemma 15. If ρ ∈ (A × B)ω is compatible with s and there exists k ∈ N and i ∈ I such
that µ(ρ≤k) = mi then ρ ∈ W .

Proof. Without loss of generality, we can suppose that k is the smallest integer such that
µ(ρ≤k) /∈ ∪j∈JTj . We want to prove there exists a history h such that Wh ⊆ Wρ≤k

and si is
winning from h, as this will yield the desired result. Our candidate for h is µ(ρ≤k−1)(a, b)
where (a, b) = ρk.

By Lemma 14 we know that Wµ(ρ≤k−1) ⊆ Wρ≤k−1 , and thus Wµ(ρ≤k−1)(a,b) ⊆ Wρ≤k−1 .
Furthermore, we know per the definition of s that si is winning from µ(ρ≤k−1(a, b)) since
µ(ρ≤k) = mi.

Finally, a trivial induction shows that for any β ∈ Bω we have out(ρ≤k, s, β) = out(ρ≤k, si, β),
and since si is winning from ρ≤k we have ρ ∈ W . ◀

Finally, with the help of Lemma 14 and Lemma 15, we can prove the following, which
concludes the proof of Theorem 11.

▶ Lemma 16. s is winning from ε.

Proof. Let us consider ρ ∈ (A × B)ω compatible with s. We want to show that ρ ∈ W . If
there exists k ∈ N such that µ(ρ≤k) ∈ ∪i∈IMi then Lemma 15 suffices to conclude. Suppose
then that for all k ∈ N we have µ(ρ≤k) ∈ ∪j∈JTj . If ρ ∈ C then obviously we have ρ ∈ W , so
let us suppose that there exists n0 ∈ N such that ρ≤n0 /∈ Pref(C). Due to the construction of
s, there exists some n1 ≥ n0 and some j ∈ J such that µ(ρ≤n1) = hj . By Lemma 14 we then
have Wµ(ρ≤n1 ) ⊆ Wρ≤n1

. Notice that we also have ρ≤n1 /∈ Pref(C). Finally, let l be the prefix
of ρ>n1 of length depth(hj). By construction and since we do not have µ(ρ≤k) ∈ ∪i∈IMi for
any k, for all k ≤ depth(hj) we have µ(ρ≤n1+k) = hj l≤k ∈ Pref(C), and hence by application
of Lemma 13 we can conclude that ρ ∈ O and thus ρ ∈ W . ◀

We illustrate our method on the game described in Figure 1:

▶ Example 17. Consider once again the game represented in 1. We recall here that we have
A = B = {0, 1} and W = (0, 0)∗(0, 1)({0} × B)ω + (0, 0)2(0, 0)∗({1} × B + A × {1})(A × B)ω.
We let C = (0, 1)({0} × B)ω + (0, 0)(0, 1)({0} × B)ω and O = (0, 0)2(0, 0)∗[(0, 1) + (1, 0) +
(1, 1)](A × B)ω, and we have W = C ∪ O. One can check easily that C is a closed set and O

is an open set generated by the family of histories F = (0, 0)2(0, 0)∗[(0, 1) + (1, 0) + (1, 1)].
The histories in Pref(C) are of three different types: ε, whose induced winning set is W ,

(0, 0), whose induced winning set is included in W , and all the other histories in Pref(C),
whose induced winning set is ({0} × B)ω. We choose two histories in Pref(C) that provide
under-approximations for the open sets induced by all elements of Pref(C): ε and (0, 1).
Except for histories which already have a prefix in F , no history out of Pref(C) induces a
winning set that includes W(0,1), which means that depth((0, 1)) = 0. However Wε is included
in all winning sets induced by the histories in (0, 0)2(0, 0)∗. Since (0, 0)2(0, 0)∗(0, 0)(0, 1) ⊆ F ,
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ε

(0, 0) (0, 1)

(0, 0)(0, 1) (0, 1)(0, 0) (0, 1)(0, 1)

(0, 1)

m

(0, 0) (0, 1)

(0, 1) (0, 0) (0, 1)

(0, 0)

{0} × B

{0} × B

{0} × B

{0} × B

{1} × B

Figure 3 The finite-memory strategy for the game represented in Figure 1.

we have depth(ε) = 2. The only continuation of length 2 from ε that goes out of Pref(C) is
(0, 0)(0, 0), and the finite-memory strategy we chose that reaches O from (0, 0)(0, 0) is one
where Player 1 always plays action 1.

4.5 Proof for sets in Λθ

We study now the case where W ∈ Λθ for an ordinal θ > 1 and Theorem 5 is true for all
winning sets belonging to Λη or Kη for all η < θ. As always, we suppose that Player 1 has a
winning strategy from ε and we want to show she has a finite-memory winning strategy.

As W ∈ Λθ, there exists a family of sets (Si)i∈I such that W = ⋓i∈ISi and for each i

there exists θi < θ such that Si ∈ Λθi
or Si ∈ Kθi

. Furthermore, there exists a disjoint family
of open sets (Oi)i∈I such that for each i ∈ I we have Si ⊆ Oi. Finally, for each i the set Oi

is generated by a family of histories Fi.

Consider then a winning strategy s for Player 1 and let Ts be its induced strategic tree.
Consider the tree T ′

s = Ts \ {h ∈ H | ∃i ∈ I, ∃f ∈ Fi, f ⊏ h}. Since s is winning, all infinite
branches of Ts belongs to Oi for some i, and hence T ′

s does not have any infinite branch. By
Kőnig’s lemma, this means that T ′

s is a finite tree. Let us consider the set L of maximal
elements (with regards to the prefix relation) in T ′

s. By construction all histories h in L are
such that there exists a unique (because the Oi’s are disjoint from one another) i ∈ I such
that h ∈ Fi. This means that the winning plays which have h as a prefix are included in
Si and hence for h ∈ L we have Wh = h−1(Si ∩ cyl(h)). Since both Λθi

and Kθi
are closed

under intersection with a cylinder (see [3]) we know that Wh ∈ Λθi or Wh ∈ Kθi (depending
on whether Si belongs to Λθi

or Kθi
). Moreover, since all histories in L belong to Ts and s is

winning we know that L ⊆ Γ. This means that we have all the hypotheses we need to apply
the induction hypothesis to any l ∈ L (namely, l ∈ Γ and Wl ∈ Λη or Wl ∈ Kη for some
η < θ), and hence for all l ∈ L there exists a finite-memory strategy sl = (Ml, σl, µl, ml) that
wins from l (up to renaming, we suppose that the Ml’s are disjoint from one another and
from Ts).
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We will build a finite-memory strategy sf = (M, σ, µ, m0) for Player 1 in the following way:
M = T ′

s ∪ ⊎l∈LMl;
σ(m) = s(m) for m ∈ T ′

s, and σ(m) = σl(m) for m ∈ Ml;
µ(m, (a, b)) = m(a, b) if m ∈ T ′

s and m(a, b) ̸= l for all l ∈ L (where a = σ(m));
µ(m, (a, b)) = ml if m ∈ T ′

s and m(a, b) = l for some l ∈ L (where a = σ(m));
µ(m, (a, b)) = µl(m(a, b)) if m ∈ Ml;
m0 = ε if ε ̸= l for all l ∈ L, and m0 = ml if there exists l ∈ L such that l = ε.

The idea behind this construction is the following: we follow the winning strategy s until
we reach some l ∈ L, from which we know the strategy sl is winning. It remains only to
emulate sl from this point onwards to guarantee the win. The formal proof that this strategy
is winning can be found in [3].

4.6 Proof for sets in Kθ

The full induction step for Kθ is more complex than for K2, in term of overall structure as
well as detail-level technicalities. Especially, it involves nested inductions on the Hausdorff
difference hierarchy. We do not present it here, but provide a detailed proof in appendix [3].

5 Tightness of the result

We explore the tightness of our result. In particular, the winning sets of the two games in
Example 18 below are in Π0

2 and Σ0
2, respectively, just above ∆0

2 in the Borel hierarchy; the
two games satisfy the well partial order assumption and Player 1 has winning strategies, but
no finite-memory winning strategies. Note that the example in Π0

2 is harder to define and
deal with than the one in Σ0

2. (See details in [3].)

▶ Example 18. For the counter-example in Π0
2, let A be a finite set of at least two elements and

w a disjunctive sequence on A × {0}. We define the labeling function l : (A × {0})∗ → {0, 1}
in the following way: l(h) = 1 if and only if there exists h0 and h′ such that h = h0h′ and h′

is the longest factor of h that is also a prefix of w. Let then W be the set defined by ρ ∈ W

if and only if infinitely many prefixes h of ρ are such that l(h) = 1 and consider the game
(A, {0}, W ).

For the counter-example in Σ0
2, let A be a finite set of at least two elements and w

an irregular word (i.e. a word with infinitely many different suffixes) in (A × {0})ω. Let
W = {ρ ∈ (A × {0})ω | ∃h ∈ (A × {0})∗, ρ = hρ0 where ρ0 is a suffix of w}. W is the set of
sequences which have a suffix in common with w. Consider then the game (A, {0}, W ).

We also considered a relaxation of the well partial order assumption, but found a counter-
example with a closed winning set. (See details in [3].)

Finally, we studied the following statement “given a two-player game (A, B, W ) where W

belongs to the Hausdorff difference hierarchy and such that ⊆ induces a well partial order on
the induced winning sets for Player 1, if Player 2 has a winning strategy for ε then is it the
case that he also has a finite-memory winning strategy?”. When W is a closed set (and hence
its complement an open set), the answer is obviously yes, but we found a counter-example
where W ∈ Λ2.

6 Conclusion

To conclude, we have proven the existence of finite-memory winning strategies under certain
conditions on the winning set for Player 1. These conditions are met for well studied games
such as energy games [10] or games where the winning condition is a Boolean combination of
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reachability and safety objectives, which makes our result a generalization of known results
on the topic. This result relies on descriptive set theory, in particular representation of sets
in ∆0

2.
We have also studied the tightness of our result. The results we currently have in this

direction encourage us to think that our hypotheses are tight and that weakening them is
no easy task. In the future, we want to extend these tightness results by exploring other
possible hypotheses, as well as study infinitely branching games, when the action sets of the
players are not finite.
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