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Abstract

The maximum matching problem in dynamic graphs subject to edge updates (insertions and deletions)
has received much attention over the last few years; a multitude of approximation/time tradeoffs
were obtained, improving upon the folklore algorithm, which maintains a maximal (and hence
2-approximate) matching in O(n) worst-case update time in n-node graphs.

We present the first deterministic algorithm which outperforms the folklore algorithm in terms of
both approximation ratio and worst-case update time. Specifically, we give a (2 − Ω(1))-approximate
algorithm with O(m3/8) = O(n3/4) worst-case update time in n-node, m-edge graphs. For sufficiently
small constant ϵ > 0, no deterministic (2 + ϵ)-approximate algorithm with worst-case update time
O(n0.99) was known. Our second result is the first deterministic (2 + ϵ)-approximate weighted
matching algorithm with Oϵ(1) · O( 4√m) = Oϵ(1) · O(

√
n) worst-case update time. Neither of our

results were previously known to be achievable by a randomized algorithm against an adaptive
adversary.

Our main technical contributions are threefold: first, we characterize the tight cases for kernels,
which are the well-studied matching sparsifiers underlying much of the (2 + ϵ)-approximate dynamic
matching literature. This characterization, together with multiple ideas – old and new – underlies
our result for breaking the approximation barrier of 2. Our second technical contribution is the first
example of a dynamic matching algorithm whose running time is improved due to improving the
recourse of other dynamic matching algorithms. Finally, we show how to use dynamic bipartite
matching algorithms as black-box subroutines for dynamic matching in general graphs without
incurring the natural 3

2 factor in the approximation ratio which such approaches naturally incur
(reminiscent of the integrality gap of the fractional matching polytope in general graphs).
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1 Introduction

We study the dynamic (weighted) matching problem, where our goal is to maintain an
approximately maximum (weight) matching subject to edge updates (insertions and deletions)
in a dynamically evolving graph.

For approximation and update time, there are two natural barriers for the dynamic
matching problem: an approximation ratio of 2, and an update time of O(n). Both bounds
are achieved by a folklore deterministic algorithm maintaining a maximal matching in worst-
case update time O(n) (see Figure 1). Moreover, both bounds stand at the frontier of
known time/approximation tradeoffs for randomized and deterministic dynamic matching
algorithms. For example, an approximation ratio of 2 is the best approximation ratio known to
be achievable in polylogarithmic worst-case update time [6] or constant amortized time [33] for
randomized algorithms.1 Similarly, an approximation ratio of 2 + ϵ is the best approximation
ratio known to be achievable in polylogarithmic amortized update time deterministically
[13, 12] or worst-case polylogarithmic update time without the oblivious adversary assumption
[35].2 On the other hand, O(

√
m) = O(n) is the current best worst-case update time for

deterministic algorithms achieving better than 2 approximation [21, 31, 29]. Moreover,
an update time of Ω(n) (ignoring sub-polynomial factors) is known to be necessary for
(exact) dynamic matching, assuming any one of several widely believed conjectures, including
the Strong Exponential Time Hypothesis, and the 3SUM, APSP, and OMv conjectures
[16, 23, 26].

Init: M ← ∅.
Insert(e): If both u, v ∈ e are unmatched in M , then M ←M ∪ {e}.
Delete(e): If e ∈ M , for each v ∈ e, if v has an unmatched neighbor w, then
M ←M ∪ {(v, w)}.

Figure 1 The Folklore Algorithm.

Given the above, breaking the approximation ratio of 2 and worst-case update time of
O(n) barriers stand as two recurring goals of the rich literature on the dynamic matching
problem. A concentrated effort, starting with the influential work of Onak and Rubinfeld
[30], has resulted in numerous algorithms breaking either one of these barriers individually
[2, 30, 33, 14, 1, 6, 12, 11, 13, 21, 29, 7, 8, 31, 35, 3, 9]. However, despite this long line of work,
both barriers were not known to be surpassable simultaneously without assuming sparsity or
bipartiteness [21, 7, 29, 31, 35], settling for amortized update time [8], or using randomness
and the oblivious adversary assumption [4]. Whether or not there exists a deterministic
algorithm that beats the trivial folklore O(n)-time maximal matching algorithm both in
terms of worst-case update time and approximation ratio, thus simultaneously breaking these
two natural barriers for this problem in its full generality, remained a vexing open problem.

1 A dynamic algorithm has amortized update time f(n) if for any sequence of t updates starting with the
empty graph, the algorithm takes t · f(n) time.

2 The oblivious adversary assumption stipulates that the update sequence is generated non-adaptively,
and in particular each update is independent of the algorithm’s previous random coin tosses. This
assumption, needed for the analysis of many randomized dynamic algorithms, rules out their black-box
use in many applications. See [28, 35] for discussions.
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1.1 Results

We resolve the above open problem, and present the first deterministic algorithm which
outperforms the folklore dynamic matching algorithm, in terms of both approximation and
worst-case update time. Our main result is the following.

▶ Theorem 1. (Beating the Folkore Algorithm) There exists a deterministic 1.999999-
approximate dynamic matching algorithm with worst-case update time O(m3/8).

Prior to this work, no deterministic algorithm was known to achieve 2+ϵ approximation in
Oϵ(n0.99) worst-case update time, where Oϵ(·) suppresses dependencies on ϵ. As a byproduct
of the algorithm given for Theorem 1, we obtain a secondary result, rectifying this state of
affairs for both the matching and weighted matching problem and present the first (2 + ϵ)-
approximate matching algorithm with (polynomially) sub-linear update time for any constant
ϵ > 0.

▶ Theorem 1.1 (Informal for Weighted). There exist deterministic (2+ϵ)-approximate dynamic
matching and weighted matching algorithms with worst-case update time Oϵ(1) ·O( 4

√
m) =

Oϵ(1) ·O(
√

n).

For constant ϵ > 0, the update time of the algorithms of Theorem 1.1 is O( 4
√

m). Such
worst-case update time was only previously known to yield a (9/4 + ϵ) approximation (see [5,
Section 7] and the full version of the paper for details), or worse [35].

We contrast our results with prior linear- and sublinear-time deterministic algorithms in
Table 1.

Table 1 Known O(n) Time Deterministic Dynamic Matching Algorithms in General Graphs
(References are to the latest publication, with the first publication venue in parentheses).

Approx. Update Time Worst Case Notes Reference

4 + ϵ O( 3√m/ϵ2) ✓
Bhattacharya et al. (SODA ’15) [11]

3 + ϵ O(
√

n/ϵ) ✗

9/4 + ϵ O( 4√m) · poly(1/ϵ) ✓ Bernstein et al. (STOC ’21) [5]

(2 + ϵ) · c Õ(n1/c) · poly(1/ϵ) ✓ ∀c ≥ 1 Wajc (STOC ’20) [35]

2 + ϵ O( 4√m/
√

ϵ) ✓ This Work

2 + ϵ poly(log n, 1/ϵ) ✗
Bhattacharya et al. (STOC ’16) [12]

Bhattacharya and Kiss (ICALP’21) [13]

2 O(n) ✓ Folklore

1.999999 O(
√

n · 8√m) ✓ This Work

3/2 + ϵ O( 4√m/ϵ2.5) ✗ Bernstein and Stein (SODA ’16) [8]

3/2 O(
√

m) ✓ Neiman and Solomon (STOC ’13) [29]

1 + ϵ O(
√

m/ϵ2) ✓ Gupta and Peng (FOCS ’13) [21]

ITCS 2022
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1.2 Our Approach in a Nutshell
Warm-up: Faster (2 + ϵ)-Approximate Matching. Our starting point is the highly
successful matching sparsifiers of Bhattacharya, Henzinger, and Italiano [11] – termed kernels
– previously used in numerous dynamic matching algorithms [11, 1, 35, 12, 5]. Kernels are
(2 + ϵ)-approximate matching sparsifiers (i.e., these subgraphs contain a (2 + ϵ)-approximate
matching), of small maximum degree, d = o(n). To obtain approximation ratios close
to (2 + ϵ), it is therefore natural to combine kernel-maintenance algorithms with known
near-maximum (i.e., (1 + ϵ)-approximate) algorithms with worst-case update time linear in
the maximum degree [21, 31]. This seems to suggest an O(T +d) time (2+O(ϵ))-approximate
algorithm, where T is the update time for maintaining the kernel.

Unfortunately, combining these two ideas does not immediately result in an O(T + d)
update time. This is because near-maximum matching algorithms take O(d) time per update
to the kernel, and not per update to the input dynamic graph G. Consequently, if c is the
number of changes to the kernel per update to G, then combining these algorithms yields an
update time of O(T + c · d). Prior deterministic kernel maintenance algorithms [11] all had
c · d = Ω(n) in the worst case. Consequently, no deterministic (2 + ϵ)-approximate algorithm
with worst-case o(n) time was previously known.

In Section 4, we show how to de-amortize an Oϵ(n/d) update time kernel maintenance
algorithm of Bhattacharya et al. [11] (and speed it up by an O(n/

√
m) factor in the full

version of the paper), while making only c = O(1) updates to the kernel K per update to
G. Setting the kernel’s (tunable) maximum degree to d = 4

√
m yields our sublinear (2 + ϵ)-

approximate unweighted algorithm of Theorem 1.1. Our weighted algorithm of the same
theorem (see the full version) uses our kernel algorithm and the recent dynamic weighted
matching framework of Bernstein et al. [5].

Breaking the Barrier of Two. If the kernel K which we maintain happens to be a (2− ϵ)-
approximate matching sparsifier, then a near-maximum matching in K would be a (2−Ω(ϵ))-
approximate matching in G, maintainable in worst-case o(n) update time. Unfortunately,
the (2 + ϵ) approximation ratio can be tight for kernels. Nonetheless, we show that it is
possible to use kernels to obtain better-than-two-approximate matchings dynamically.

Our high-level approach is a natural one: we find a bounded-degree subgraph A, whose
union with the kernel contains, say, 2ϵ · µ(G) disjoint augmenting paths with respect to
some maximum matching in the kernel K. Since the kernel K is (2 + ϵ)-approximate, the
augmented kernel AK := A∪K is therefore (2− ϵ)-approximate, whether or not the kernel is
(2− ϵ)-approximate. Therefore, we can maintain in o(n) worst-case update time, a (1 + O(ϵ))-
approximate matching in this low-degree subgraph, AK, giving a (2−O(ϵ))-approximate
matching in G.

The above approach seems simple, but its dynamic implementation presents two challenges.
The first challenge is to identify a dynamically maintainable sparse subgraph A whose edges
“augment” the kernel. The second challenge is to guarantee that following each update to G,
the worst-case number of changes to the augmented kernel AK = A ∪K is small. This is
crucial, since the time to update the output matching, i.e., a near-maximum matching in
AK, is proportional to the product of the maximum degree of AK and the number of edge
updates to AK per update to G.

Identifying Good Augmentations. Our first key observation is a structural characterization
of kernels which are worse than (2− ϵ)-approximate. First, we show that such a kernel K

contains a maximum matching M such that nearly all connected components of M ∪M∗
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(where M∗ is any maximum matching in G) are augmenting paths of length three w.r.t. M .
Moreover, in the vast majority of these augmenting paths, the edges of M∗ connect a high-
and a low-degree node in K. This motivates us to compute a large matching M ′ in the
bipartite subgraph between high- and low-degree nodes in K, in the hope that such an M ′

contains edges of G \K whose addition to the kernel K increases its maximum matching size.
(Foreshadowing our use of the dynamic bipartite matching algorithm of Bernstein and Stein
[7], we focus on (3/2 + ϵ)-approximate matchings in this subgraph.) While a single such
matching M ′ is insufficient, we show in Section 3.3 that the union of two (3/2+ϵ)-approximate
matchings in two similarly-defined bipartite subgraphs do constitute a good bounded-degree
augmentation A of the kernel. That is, the augmented kernel, AK = A ∪ K, contains a
(2 − ϵ)-approximate matching. This allows us to use kernels and (3/2 + ϵ)-approximate
bipartite matching algorithms to obtain (2− ϵ)-approximate matchings in general graphs in
a static setting.

Dynamizing Our Approach. An intricate part of this work is in dynamizing our outlined
approach. For this, we must (i) make few changes to the bipartite subgraphs derived from K

(as each such change will cost the update time of the bipartite matching algorithm), and
(ii) make few changes to the matchings computed in these subgraphs (as each such change
will cost the update time of the bounded-degree algorithm in K). However, the bipartite
subgraphs discussed in our static approach above are defined by degrees in the kernel K,
which may change abruptly, resulting in vertex updates (vertex insertions and deletions) in
these bipartite subgraphs. This is problematic, as no (2−Ω(1))-approximate algorithm is
known with o(n) vertex update time, even in bipartite graphs.

Approximate Degrees, and Star Updates. To overcome the above bottleneck, we extend
our static approach, and prove that a sparse augmentation A of the kernel K is also obtained
from the union of large matchings in some O(1) bipartite subgraphs, B1, B2, . . . , BO(1),
defined based on approximate degrees in K (see Section 3.4 for precise definition). The key
advantage of basing these subgraphs on approximate degrees is that (i) we can maintain such
approximate degrees, and hence these subgraphs, in o(n) update time (see the full version),
and (ii) these bipartite subgraphs {Bi}i change less abruptly than their exact-degree-based
counterparts. In particular, each change in G (and hence in K) results in local changes to
the approximate degrees. Specifically, each update to G causes the bipartite subgraphs {Bi}i

to change by star updates – addition/removal edges of a star graph with b = o(n) edges.
These star updates are doubly beneficial: first, they allow us to maintain, using the

bipartite algorithm of Bernstein and Stein [7], a (3/2 + ϵ)-approximate matching Mi in each
Bi in worst-case update time b ·Oϵ( 4

√
m), which for our values of b is sublinear in n. Second,

since a star update only increases or decreases the size of any matching by at most one,
we can appeal to (a slight extension of) the recent framework of Solomon and Solomon
[32] for decreasing recourse (number of changes to the output per update) to guarantee
that each matching Mi only changes by O(1/ϵ) = O(1) edges per star update, and hence
per update to G. We then take the union of these dynamic matchings {Mi}i to be our
dynamic augmentation, A =

⋃
i Mi, which changes by O(1) edges per update to G. Since

the kernel likewise changes by O(1) edges per update to G, we have that the augmented
kernel AK = A ∪ K, which has maximum degree d + O(1), has c = O(1) edge changes
per update to G. This then allows us to maintain a near-maximum matching in AK in an
additional O(c · d) = O(d) = o(n) worst-case time per update in G. By our structural results
of Section 3, this last matching is a (2−Ω(ϵ))-approximate matching in G, yielding our main
result, Theorem 1.

ITCS 2022
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1.2.1 Conceptual Contributions
As the above overview suggests, our main result requires a careful combination of a number
of ideas. Here we outline the key novel ideas.

Our first new contribution is a structural characterization of “tight” kernels, i.e., kernels
whose approximation is no better than roughly two approximate. Given the use of kernels in
the dynamic matching literature [11, 1, 35, 5], it seems plausible that this characterization
will prove useful in subsequent developments in the area.

Our second contribution is in exhibiting the power of dynamic matching algorithms for
restricted class families – bipartite graphs – to improve algorithms in general graphs. Prior
work has relied on fast algorithms for bounded-degree [21] or bounded-arboricity graphs
[31] to improve their running time [7, 8, 1, 35, 13]. We present the first use of dynamic
matching algorithms for bipartite graphs to improve dynamic matching algorithms in general
graphs (beyond the trivial, yet overlooked reduction which incurs a loss factor of 3

2 in the
approximation ratio (see details in the full version). This adds to the list of tools for dynamic
matching algorithms.

Finally, our work reinforces the message of prior work, that the study of dynamic
algorithms with bounded recourse (number of changes to the output) may be of interest
beyond its fundamental nature: reducing recourse may prove useful in reducing algorithms’
update time (as we show – even for the same problem!). This suggests that some slow but
recourse-bounded algorithms, may prove useful in designing fast algorithms for problems for
which no such algorithms are known (e.g., [20, 10]).

1.3 Related Work
We briefly review the most relevant algorithmic results for the dynamic matching problem.
For a more detailed survey of the rich literature on dynamic matching and dynamic algorithms
more broadly, we refer to the recent survey of Hanauer et al. [22].

Breaking the Approximation Barrier of Two. For many computational models with
dynamic inputs, such as streaming and online algorithms, an approximation ratio of two
is easy to achieve for the maximum matching problem, and beating this bound is either a
major open problem, or is provably impossible [18]. In the dynamic graph setting, Neiman
and Solomon [29] were the first to break the natural approximation ratio of two, giving an
O(
√

m) = O(n) worst-case time algorithm with approximation ratio of 3
2 , later improved to

(1 + ϵ) [21]. Bernstein and Stein [7, 8] then showed how to maintain a 3
2 + ϵ approximation in

O( 4
√

m/poly(ϵ)) = O(
√

n/poly(ϵ)) time – worst-case for bipartite graphs, and amortized for
general graphs. In a recent work, Behnezhad et al. [4] showed that for any ϵ > 0, there exists
a randomized algorithm with worst-case O(∆ϵ) = O(nϵ) update time, and approximation
ratio of 2− 1

1000·213/ϵ , also relying on the search for short augmenting paths. For this, their
algorithm crucially relies on the oblivious adversary assumption. Whether the barrier of 2
can be broken in o(n) worst-case time by an algorithm (whether deterministic or randomized)
which does not require this assumption remained a tantalizing open question, which we
resolve in the affirmative.

Breaking the O(n) Worst-Case Time Barrier. As mentioned above, Ω(n) update time is
likely impossible for exact dynamic matching algorithms [16, 23, 26]. On the other hand,
the dynamic matching literature abounds with (approximate) algorithms breaking the O(n)
time barrier [35, 1, 14, 6, 13, 11, 12, 33, 30]. For example, Wajc [35] presented a family of
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deterministic algorithms trading off worst-case update time and approximation, requiring
Õ(n1/c · poly(1/ϵ)) update time for (2 + ϵ) · c approximation, for any c ≥ 1 and ϵ > 0.
This, however, does not result in o(n) update time for all 2 + ϵ approximation, let alone
for 2− Ω(1) approximation. The only sub-linear time sub-2-approximate algorithms known
in general graphs are the aforementioned randomized algorithm of Behnezhad et al. [4]
and the deterministic amortized time algorithm of Bernstein and Stein [8]. Indeed, for 9/4-
approximate matching (or better), no deterministic algorithm for general graphs with o(n)
worst-case update time was previously known. On the other hand, the extent of the usefulness
of randomization and amortization are key questions in the dynamic algorithms literature.
Fittingly, much effort has been spent on de-randomizing and de-amortizing dynamic matching
results (see, e.g., [13, 6]). In this work, we show that neither randomization nor amortization
are needed to achieve sub-linear-time sub-two-approximate dynamic matching algorithms.

Subsequent work. Following the posting of this work, two papers obtaining improved
3/2 + ϵ approximation in deterministic o(n) worst-case update time (respectively, in Oϵ( 4

√
m)

and Oϵ(
√

n)) were posted [19, 24]. Those later papers’ techniques are orthogonal to ours.

2 Preliminaries

Problem statement. Our input is a dynamically changing graph G = (V, E), initially
empty, undergoing edge updates (insertions and deletions). We denote by Gt this graph after
t updates. The objective is to maintain a matching, i.e., a node-disjoint set of edges, of size
close to the maximum matching size, µ(G), spending little time following each update. We
denote a maximum (weight) matching in G by M∗. For a weighted graph G = (V, E, w), we
wish to compute a matching whose weight approximate the maximum weight matching in G,
denoted by MWM(G) := w(M∗) :=

∑
e∈M∗ w(e).

Matching Theory Basics. A matching M is (inclusion-wise) maximal in G = (V, E) if G

contains no matching M ′ ⊋ M . For a matching M in G = (V, E), an alternating path P

in G is a path whose edges alternate between M and E \M . An augmenting path is an
alternating path whose endpoints are unmatched in M . For a set of k disjoint augmenting
paths P1, P2, . . . , Pk with respect to M , the symmetric difference between M and P :=

⋃
i Pi,

denoted by M
⊕

P , is a matching of cardinality |M |+ k, matching all nodes matched by M

(and others). The symmetric difference of M and M∗ consists of even length paths and cycles,
as well as |M∗| − |M | odd-length augmenting paths. We say an edge e ∈M is 3-augmentable
if the connected component of M

⊕
M∗ containing e is an augmenting path of length three.

A standard result in matching theory (see, e.g., [25, Lemma 1]) is that a maximal matching
which is not much better than 2-approximate must consist mostly of 3-augmentable edges.

▶ Proposition 2.1. Let ϵ ≥ 0. Let M be a maximal matching of G s.t. |M | ≤
( 1

2 + ϵ
)
· µ(G).

Then M contains at least
( 1

2 − 3ϵ
)
· µ(G) edges which are 3-augmentable.

2.1 Dynamic Matching Background
In addition to our new structural results and algorithms, our work will rely on a number of
previous algorithms from the dynamic matching literature, which we now outline.

Bounded-Degree Algorithms. One useful property for approximate dynamic matching is
the “stability” of the matching problem, first used in a dynamic setting by Gupta and Peng
[21], which implies that for an α-approximate matching M in Gt, the undeleted edges of

ITCS 2022
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M by time t′ ∈ [t + 1, t + ϵ · µ(Gt)] constitute an α(1 + ϵ)-approximate matching in Gt′ .
Combined with static linear-time near-maximum matching algorithms [27, 17], this yields
near-maximum algorithms with worst-case update time linear in the maximum degree. This
is implied by the work of Gupta and Peng [21] (first observed in Bernstein and Stein [7]) and
by the arboricity-time algorithm of Peleg and Solomon [31]. For completeness, we provide a
short proof in the full version of the paper.

▶ Proposition 2.2 (Bounded-Degree Algorithm). For any ϵ ≤ 1/3, there exists a deterministic
(1 + ϵ)-approximate matching algorithm with worst-case update time O(∆/ϵ2) in dynamic
graphs with maximum degree at most ∆.

Kernels. Proposition 2.2 motivates the study of dynamic matching sparsifiers – sparse
(specifically, low-degree) subgraphs which approximately preserve the maximum matching
in the dynamic graph G. This is the approach followed by numerous works in this area
[1, 11, 7, 8, 5, 21, 35, 13]. One family of sparsifiers which have proven useful in a number of
these works are kernels, introduced by [11].

▶ Definition 2.3 (Kernels [11]). An (ϵ, d)-kernel of a graph G = (V, E) is an edge-induced
subgraph K = (V, EK) satisfying the following properties:
(P1) maxv∈V dH(v) ≤ d.
(P2) maxv∈e dH(v) ≥ d(1− ϵ) for each edge e ∈ E \ EK .

By definition, kernels are low-degre subgraphs, and hence one can maintain a near-
maximum degree in these graphs in time Oϵ(d), by Proposition 2.2. The following proposition
implies that such a near-maximum matching in a kernel K is also large in G. (See [1, 35, 11]
for proofs.)

▶ Proposition 2.4 (The Basic Kernel Lemma). Let ϵ ∈ (0, 1/2) and d ≥ 1/ϵ. If K = (V, EK)
is an (ϵ, d)-kernel of G = (V, E), then µ(G) ≤ 2(1+ϵ)

1−ϵ · µ(K) ≤ (2 + 8ϵ) · µ(K).

Combining propositions 2.2 and 2.4, one obtains (2 + O(ϵ))-approximate matching
algorithms with update time O((d/ϵ2) · C(ϵ, d) + T (ϵ, d)) from (ϵ, d)-kernel maintenance
algorithms with T (ϵ, d) update time and C(ϵ, d) changes to the kernel per update to G. Our
result of Theorem 1.1 follows precisely this well-trodden path. The key novelty in our work
is showing how to surpass the approximation factor of 2 + ϵ obtainable using kernels alone.

Fast Bipartite Matching. In our main algorithm we dynamically maintain large matchings
in dynamically changing bipartite subgraphs of G, using the following result of Bernstein
and Stein [7].

▶ Proposition 2.5. (Dynamic Bipartite Matching) Let ϵ > 0. There exists a (3/2 + ϵ)-
approximate dynamic bipartite matching algorithm with worst-case update time O( 4

√
m ·

poly(1/ϵ)).

Bounding Recourse. Recall that to dynamize our main approach, we need that the aug-
menting edges A, which are the union of large matching Mi in appropriately-chosen bipartite
subgraphs Bi, must change slowly. That is, the number of changes to these Mi per update,
also referred to as recourse, should be small. For this, we rely on the following (minor
extension) of the recent black-box reduction of Solomon and Solomon [32, Theorem 3], which
we prove in the full version of the paper for completeness.
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▶ Proposition 2.6 (Bounded Recourse). For any α ≥ 1 and ϵ ∈ (0, 1/6), if there exist an
α-approximate dynamic matching algorithm with worst-case update time T , then there exists
an α(1 + ϵ)-approximate dynamic matching algorithm with worst-case update time T + O(1/ϵ)
and worst-case recourse bound O(1/ϵ). This applies under edge and/or node updates and/or
star updates.

Solomon and Solomon [32] note that in some settings, bounded recourse translates to bounded
running time. Our work provides another concrete example of this phenomenon, in a dynamic
setting.

3 Identifying Augmentations to Kernels

In this section we characterize a bounded-degree subgraph A whose addition to K results
in a better-than-two-approximate matching sparsifier, AK := A ∪K. In following sections
we will show that this subgraph AK is also efficiently maintainable. To focus on the key
ideas, we mostly provide brief proof sketches here, deferring most full proofs with detailed
calculations to the full version of the paper.

Our starting point, in Section 3.1, is an extension of the proof of the approximation ratio
of kernels, to obtain bounds on degrees in K of endpoints of any maximum matching M∗ in
G, whenever such K is worse than (2 − δ)-approximate. In Section 3.2 we leverage these
degree bounds to characterize (most) augmenting paths of some maximum matching M in K

in terms of the K-degree of their nodes. In Section 3.3 we use this characterization to prove
that large matchings in two bipartite subgraphs, defined by degrees in K (broadly: low-degree
and high-degree nodes on opposite sides), are precisely the desired set A. Unfortunately,
defining these subgraphs based on degrees in K, which may change abruptly, causes updates
to G (and hence to K) to result in node updates in these subgraphs, requiring Ω(n) update
time. In Section 3.4 we show that large matchings in some O(1) bipartite subgraphs defined
by approximate degrees in K (causing these graphs to only change by small star updates)
still result in a sufficient Ω(δ · µ(G)) augmenting paths with respect to M .

Notation and parameters. In this section we fix an (ϵ, d)-kernel K = (V, EH) of graph
G = (V, E) with ϵ = 2×10−8 and d ≥ 1/ϵ. We also fix two additional parameters δ = 2×10−6

and s = 2×10−4. We assume that µ(G) ≥ (2−δ)·µ(K), and search for a sparse augmentation
A of K, resulting in a sparse subgraph AK := A∪K with µ(G) ≤ (2−δ) ·µ(AK). Our choices
of values for ϵ, d, s and δ are taken to make these numbers rather round, while allowing δ to
be close to its highest possible value. We indicate by f(ϵ, s, δ)

⋆
≤ g(ϵ, s, δ) inequalities which

hold for sufficiently small ϵ, s, δ, ϵ/δ and δ/s, and which specifically hold for our particular
choices of ϵ, s and δ.

3.1 The Extended Kernel Lemma
By Proposition 2.4, kernels are (2 + O(ϵ))-approximate sparsifiers. In this section we prove
that for a kernel K to be not much better than a 2-approximation, most edges of any
maximum matching M∗ in G must have their endpoint degrees in K sum to roughly d. More
precisely, we prove the following.

▶ Lemma 3.1 (Extended Kernel Lemma). For any maximum matching M∗ in G, at most
δ
s · |M

∗| edges e ∈M∗ satisfy either of the following conditions.
1.

∑
v∈e dK(v) ≥ d · (1 + s− 2ϵ).

2.
∑

v∈e dK(v) ≤ d · (1− s + 2ϵ) and e ∈ EK .
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We now outline the proof approach, deferring a full proof with detailed calculations to
the full version of the paper.

Proof (Sketch). The basic kernel lemma, Proposition 2.4, which this lemma extends, is
obtained by considering a fractional matching x⃗ in K, with values determined by a maximum
matching M∗ in G. For this fractional matching x⃗, nodes’ fractional degrees, yv :=

∑
e∋v xe,

satisfy the following bound.∑
v∈e

yv ≥ 1− ϵ ∀e ∈M∗. (1)

This bound directly implies that this fractional matching x has large value in terms of
|M∗| = µ(G).∑

e

xe = 1
2

∑
v

yv ≥
1
2 ·

∑
e∈M∗

∑
v∈e

yv ≥
1
2 · (1− ϵ) · µ(G). (2)

In bipartite graphs G, where the fractional matching polytope is integral, this immediately
implies that µ(K) ≥

∑
e xe ≥ 1−ϵ

2 · µ(G). In general graphs, using an application of Vizing’s
edge coloring theorem (see the full version), one can show that for this particular fractional
matching x⃗, the kernel K contains a large integral matching M of nearly the same size as
x’s value, namely

µ(K) ≥ |M | ≥ 1
1 + 1/d

·
∑

e

xe ≥
1

1 + ϵ
· xe. (3)

Combining equations (2) and (3) directly yields Proposition 2.4.
Our key observation is that the fractional degree bound of Equation (1) is loose if either

condition (1) or (2) hold for edge e ∈M∗. For such edge e we have that
∑

v∈e yv ≥ 1 + s−4ϵ.
Consequently, if r is the number of edges of M∗ satisfying either condition, then the
above observation and Equation (1) imply that the fractional matching x⃗ has size at least∑

e xe ≥ 1−ϵ
2 · µ(G) + r · (s− 3ϵ). By Equation (3), an increase in r therefore increases our

lower bound on µ(K) in terms of µ(G). Thus, the inequality µ(G) ≥ (2 − δ) · µ(K), and
some simple calculations, implies the claimed upper bound on r. ◀

3.2 Characterizing augmenting path node classes
In this section, we characterize the structure of length-three augmenting paths based on
node degree classes, which we now define.

▶ Definition 3.2. A node v has super-high/high/medium/low degree in K for i ∈ [ 1
ϵ ], if it

belongs to the following sets, respectively.3

V
(i)

SH :=
{

v ∈ V | dK(v) ≥ d ·
(
1− ϵ− iϵ2)}

V
(i)

H :=
{

v ∈ V | dK(v) ≥ d ·
(
1− 2s− iϵ2)}

V
(i)

M :=
{

v ∈ V | dK(v) ∈
(
d ·

(
s + iϵ2)

, d ·
(
1− 2s− iϵ2))}

V
(i)

L :=
{

v ∈ V | dK(v) ≤ d ·
(
s + iϵ2)}

.

3 For notational simplicity, we assume that d is an integer multiple of 1/ϵ. Since d =≥ 1/ϵ, this is WLOG,
up to rounding of d, which at most increases our running time by an O(1) factor.
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The proofs of sections 3.2 and 3.3 will hold for any i ∈ [ 1
ϵ ]. Therefore, for notational

simplicity, we fix some such i, and drop the notation (i) from the node’s classes. The reader
will be relieved to know that they need not commit to memory the exact formulae defining
the sets VSH , VH , VM and VL. In particular, until Section 3.4, these formulae will only be
used explicitly in the following two observations and lemma.

▶ Observation 3.3. We have that VSH ⊆ VH . Also, VH , VM , and VL are disjoint.

Next, we note that Lemma 3.1 implies constraints on degree classes of endpoints of M∗

edges.

▶ Observation 3.4. At most δ
s · µ(K) edges (u, v) ∈ M∗ satisfy either of the following

conditions.
1. (u, v) ∈ (VM × VSH) ∪ (VH × VH).
2. (u, v) ∈ VL × (VL ∪ VM ).

Proof. Condition (1) is a special cases of Condition (1) of Lemma 3.1. On the other hand,
every edge (u, v) ∈ VL × (VL ∪ VM ) has no super-high degree endpoint, and so by Property
(P2) of a kernel, must belong to EK . Therefore, Condition (2) is a special case of Condition
(2) of Lemma 3.1 too. The bound on the number of edge in M∗ satisfying either condition
above therefore follows from Lemma 3.1. ◀

Next, we note that some maximum matching M in K matches most VH nodes.

▶ Lemma 3.5. Some maximum matching M in K leaves at most 7s · µ(K) nodes of VH

unmatched.

Proof (Sketch). First, we note that there exists a (possibly non-maximum) matching M ′

in K which leaves at most O(s) · µ(K) high-degree nodes in K unmatched. This follows by
considering a (d + 1)-edge-coloring of K (guaranteed to exist by ∆(K) ≤ d and Vizing’s
theorem), and noting that a high degree node v in such a color is matched with probability at
least dK(v)/(d+1) ≥ 1−O(s). Linearity of expectation then implies a bound of O(s) · |VH | on
the number of nodes in VH unmatched by M ′. However, |VH | can be shown to be O(µ(K)),
and so we find that M ′ leaves at most O(s) · µ(K) unmatched nodes in VH . The proof is
completed by augmenting M ′ to be a maximum matching in M while only adding to the set
of matched nodes. ◀

For the remainder of Section 3, we let M be the maximum matching in K guaranteed
by Lemma 3.5. That lemma, and Property (P2) of kernel K implies that M is an O(s)-
approximately maximal matching, i.e., it is a matching which is maximal in a subgraph
obtained by removing some O(s) · µ(G) nodes (and their edges). These type of matchings
were useful for Peleg and Solomon [31] when studying bounded-arboricity graphs, and will
prove useful for us, too. In particular, since such a matching is maximal in a graph G[V \U ]
with essentially the same matching size as G, we can appeal to Proposition 2.1 to argue that
M has many 3-augmentable edges (see the full version).

▶ Lemma 3.6. At least (1− 88s) · µ(K) edges of M are 3-augmentable.

In what follows, we will show that most length-three augmenting paths in M ∪M∗ belong
to one of a small number of types, which we now define. Note that since M is maximum in
K, it admits no augmenting paths in EK , and hence an augmenting path v1 − v2 − v3 − v4
cannot have both of its M∗ edges (v1, v2) and (v3, v4)) in EK . Therefore, we assume WLOG
that (v3, v4) ̸∈ EK .
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▶ Definition 3.7. We say a length-three augmenting path p : v1 − v2 − v3 − v4 with edges
ei = (vi, vi+1) for i ∈ [3] and e3 = (v3, v4) ̸∈ EK is frequent if it belongs to one of the
following types (see Figure 2):

Type 1: (v1, v2, v3, v4) ∈ VL × VSH × VSH × VL.
Type 2: (v1, v2, v3, v4) ∈ VL × (VH \ VSH)× VSH × VL and e1 ∈ EK .
Type 3: (v1, v2, v3, v4) ∈ VM × (VH \ VSH)× VSH × VL and e1 ∈ EK .
Type 4: (v1, v2, v3, v4) ∈ VM × VM × VSH × VL and e1 ∈ EK .

v1

VL

v4

VL

v2

VSH

v3

VSH

(1)

v1

VL

v4

VL

v2

VSH

v3

VSH

(1)

v1

VL

v4

VL

v2

VH \ VSH

v3

VSH

(2)

v1

VM

v4

VL

v2

VH \ VSH

v3

VSH

(3)

v1

VM

v4

VL

v2

VM

v3

VSH

(4)

Figure 2 Frequent length-three augmenting paths.
Subfigures are labeled by their path’s type number. (Note the two type (1) paths.)
Kernel edges are solid and non-kernel edges are dashed. Nodes are labeled by their class.

We now prove that these path types are indeed frequent, as their name suggests. Let
nf and nif denote the number of frequent and infrequent (i.e., not frequent) length-three
augmenting paths in M ∪M∗, respectively. We prove the following.

▶ Lemma 3.8. We have that nif ≤
(
7s + δ

s

)
· µ(K) and nf ≥ (1− 100s− δ

s ) · µ(K).

Proof. In what follows, whenever discussing a length-three augmenting path, we denote
it by p : v1 − v2 − v3 − v4, and denote its edges by ei = (vi, vi+1) for i ∈ [3]. Since M is
a maximum matching in K, we cannot have e1, e3 ∈ EK , since the converse would entail
an augmenting path for M in K, contradicting |M | = µ(K). So, we assume WLOG that
e3 ̸∈ EK . We start by upper bounding the number of infrequent paths, first considering them
by their first node, v1.

By Observation 3.4, at most δ
s · µ(K) length-three augmenting paths are infrequent paths

due to (v1, v2) ∈ VL× (VL∪VM ) or (v1, v2) ∈ VM × (VL∪VSH). Now, by Lemma 3.5, at most
7s · µ(K) length-three augmenting paths have a VH node as one of their endpoints (i.e., their
nodes v1, v4, which are unmatched in M). This accounts for infrequent paths with v1 ∈ VH , as
well infrequent paths with v4 ∈ H. In all remaining paths, since e3 = (v3, v4) /∈ EK , we have
by Property (P2) of the kernel that v3 ∈ VSH , and v4 ∈ VL (the case (v3, v4) ∈ VSH× (V \VL)
is accounted for by the at most δ

s ·µ(K) edges satisfying conditions 1 or 2 of Observation 3.4).
All remaining paths with (v3, v4) ∈ (VSH × VL) \ EK correspond to frequent paths of types
(1), (2), (3) and (4), since they satisfy, respectively,

(v1, v2) ∈ (VL × VSH) ∪ (VL × (VH \ VSH)) ∪ (VM × (VH \ VSH)) ∪ (VM × VM ).

To summarize, the number of infrequent length-three augmenting paths is at most
nif ≤

(
7s + δ

s

)
· µ(K). By Lemma 3.6, the number of length-three augmenting paths

is at least (1 − 88s) · µ(K). Combined, these two bounds imply the second claim, i.e.,
nf ≥ (1− 95s) · µ(K) ≥ (1− 100s) · µ(K). ◀

By Lemma 3.8, many edges of length-three augmenting paths in M ∪M∗ have a (possibly
super-)high-degree node as one endpoint, and a low-degree node as the other endpoint. This
motivates us to compute large bipartite matchings between high- and low-degree nodes in K.
We address this strategy in the following section.
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3.3 Two bipartite matchings suffice
In this section, we prove that large matchings in judiciously-chose bipartite subgraphs contain
many augmenting paths. We start by noting that one such naturally-chosen matching does
not yield such augmenting paths.

One matching does not suffice. Let G[A, B] := G[A×B] denote the bipartite subgraph of
G induced by bipartition (A, B). The previous section’s characterization of most augmenting
paths suggests that a large matching in G[VSH , VL] together with edges of K might contain
many augmenting paths with respect to M . However, this is not the case. For example,
if all augmenting paths are of type (2), then matching all copies of v3 to v1 in the same
path (the unmatched VL neighbor of v2 ∈ VH) would not result in any augmenting paths.
This example might suggest to instead compute a large matching in the subgraph G[VH , VL].
However, a similar problem then arises in paths of type (3).

To conclude, a large matching in either G[VSH , VL] or G[VH , VL] may not constitute
an augmentation A of the kernel K. We will prove that a large matching in G[VSH , VL]
and a large matching in G[VH , VL] together form the desired augmentation A of the kernel.
Formally, we prove the following.

▶ Lemma 3.9. Let MH and MSH be a (3/2 + ϵ)-approximate matching in G[VH , VL] and
G[VSH , VL], respectively. If A(MH) and A(MSH) denote the minimum number of disjoint
augmenting paths induced by the union of K and each of MH and MSH , respectively, then
max (A(MH), A(MSH)) ≥ (δ + ϵ) · µ(K).

The proof of the above lemma will require some setting up, starting with the following
definition.

▶ Definition 3.10. Node v is bad if v ∈ V (M) and v is not in a frequent length-three
augmenting path.

▶ Observation 3.11. If node v ∈ VL is not bad, then it is unmatched in M .

▶ Observation 3.12. The number of bad nodes is at most b ≤ (200s + 2δ
s ) · µ(K).

Proof. First, by Lemma 3.6, there are at most 88s · µ(K) edges of M that are not 3-
augmentable. On the other hand, by Lemma 3.8 we have that nif ≤ (7s + δ

s ) · µ(K).
Combining both bounds on the number of edges containing a bad node, and noting that each
such edge contributes two bad nodes, we have that b ≤ 2·(88s+7s+ δ

s )·µ(K) ≤ (200s+ δ
s )·µ(K),

as claimed. ◀

We now lower bound the number of augmemting paths in MH ∪ EK and MSH ∪ EK in
terms of numbers of frequent augmenting paths of the various types.

▶ Lemma 3.13. Let MH , MSH , A(MH) and A(MSH) be as in Theorem 3.19. Let ni the
number of frequent augmenting paths of type i ∈ [4] (noting that nf = n1 + n2 + n3 + n4).
Then,

A(MH) ≥ |MH | − b− nf .

A(MSH) ≥ |MSH | − b− (n1 + n2).

Proof. Whenever discussing a frequent length-three augmenting path in this proof, we denote
it by v1 − v2 − v3 − v4, as in Definition 3.7. We say an edge in MH or MSH is good if
neither of its endpoints is bad. Consequently, we have at least |MH | − b and |MSH | − b good

ITCS 2022



111:14 Beating the Folklore Algorithm for Dynamic Matching

edges in MH and MSH , respectively. We say a node is free if it is not matched in M . By
Observation 3.11, for any good edge e ∈MH ∪MSH , the endpoint v ∈ e ∩ VL must be free.
We will show that these good edges form part of large sets of disjoint augmenting paths in
MH and MSH .

We first consider the good edges of matching MH , which by definition are between a
free node in VL and a VH node which is either free or belongs to a frequent length-three
augmenting path. Any edge in MH between a free VH node and a free VL node constitutes
an augmenting path of length one. Also, if two VH nodes v2, v3 of the same frequent path of
types (1), (2), or (3) match to free VL nodes, u2, u3, then u2 − v2 − v3 − u3 is an augmenting
path in MH ∪EK . Finally, if the unique VSH node v3 of a frequent path v1 − v2 − v3 − v4 of
type (4) is matched to a free node u in VL, then v1 − v2 − v3 − u is an augmenting path in
MH ∪ EK . (See Figure 3 for an illustration of some of the above cases.) We note further
that the augmenting paths above are node disjoint, since no VH or VL node is matched twice,
and therefore none of these nodes appear in two of these augmenting paths, and moreover,
the node v1 in paths of type (4) is not matched in MH , since it belongs to VM , which by
Observation 3.3 is disjoint from VL and VH . We conclude that any more than one good
match per path of type (1), (2) or (3) and any other kind of good match all contribute one
augmenting path to this disjoint set of augmenting paths. Therefore, the maximum number
of disjoint augmenting paths in MH ∪ EK is, as claimed, at least

A(MH) ≥ |MH | − b− (n1 + n2 + n3) ≥ |MH | − b− nf .

VL VL VLVL VL VL VL VL VL VL

VH VL VLVL

VS H VS H VS H VS H VS H VS H VS H VS H VS H VS H

VS H VS H VS H VS H VH \ VS H VH \ VS H VH \ VS H VH \ VS H VM VM

VL VL VLVL VL VL VM VM VM VM

(1) (1) (1) (1) (2) (2) (3) (3) (4) (4)

Figure 3 (Non-exhaustive) options for matches in MH and relation to A(MH).
Kernel edges are solid and non-kernel edges are dashed, while edges in MH are curved and red.
The number below each vertical line corresponds to the path type of the lowest four nodes in the
line.
The blue boxes show augmenting paths in EK ∪ MH .

We now consider the good edges of matching MSH , only outlining the differences compared
to the analysis for MH . For matching MSH , the only good matches which are guaranteed to
form an augmenting paths are: (i) a good match between a free u ∈ VSH and a free v ∈ VL

node, for which (u, v) is an augmenting path of length one, and (ii) matches between two
VSH nodes v2, v3 of the same frequent path of type (1) to free VL nodes, u2, u3, for which
u2 − v2 − v3 − u3 is an augmenting path. By similar reasoning to our study of MH , we
therefore conclude that the maximum number of disjoint augmenting paths in MSH ∪EK is,
as claimed, at least

A(MSH) ≥ |MSH | − b− (n1 + n2). ◀
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Armed with Lemma 3.13, we are now ready to prove that the matchings MH and MSH

form a good augmentation of K. That is, we can now prove Lemma 3.9.

Proof of Lemma 3.9. By Observation 3.12, the number of bad nodes is at most b ≤ (200s +
2δ
s ) · µ(K), and by Lemma 3.8, the number of frequent length-three augmenting paths is at

least nf ≥ (1 − 100s − δ
s ) · µ(K). However, in this proof, we will use the following looser

bounds, b ≤ (200s + 2δ
s + 16ϵ) · µ(K) and nf ≥ (1− 100s− δ

s − 8ϵ) · µ(K). Our use of these
looser bounds will prove useful in Section 3.4.

We lower bound |MH | and |MSH |, by first lower bounding the maximum matching sizes
in the bipartite graphs G[VH , VL]. The matchings obtained by considering all VH × VL

and VSH × VL edges in frequent length-three augmenting paths immediately imply that
µ(G[VH , VL]) ≥ nf + n1 + n2, and similarly µ(G[VSH , VL]) ≥ nf + n1. Here too, we will use
the looser bounds µ(G[VH , VL]) ≥ nf + n1 + n2, and similarly µ(G[VSH , VL]) ≥ nf + n1. On
the other hand, MH and MSH are ( 3

2 + ϵ) ≤ 1
2/3−ϵ -approximate matchings in these bipartite

subgraphs. Combining the above with Lemma 3.13, we therefore get the following bounds
on A(MH) and A(MSH).

A(MH) ≥
(

2
3 − ϵ

)
· (n1 + n2 + nf )− nf − b ≥ 2

9 · n1 + 2
3 · n2 −

1
3 · nf − b,

A(MSH) ≥
(

2
3 − ϵ

)
· (n1 + nf )− n1 − n2 − b ≥ 2

3 · nf −
1
3 · n1 − n2 − b.

Therefore, we have that

A(MH) + A(MSH) ≥ A(MH) + 2
3 ·A(MSH) ≥ 1

9 · nf −
5
3 · b.

Combining the above with lemmas 3.8 and 3.12, we obtain the desired inequality

max (A(MH), A(MSH)) ≥ 1
2 · (A(MH) + A(MSH))

≥ 1
2 ·

(
1
9 ·

(
1−100s− δ

s
−8ϵ

)
− 5

3 ·
(

200s+ 2δ

s
+16ϵ

))
· µ(K)

⋆
≥ (δ + ϵ) · µ(K). ◀

3.4 Approximate degrees in the kernel
In the previous sections we show that the union of the kernel, a large matching in G[VSH , VL],
and a large matching in G[VH , VL] contains a (2− δ)-approximate matching of G. However,
just maintaining subgraph G[VSH , VL] and G[VH , VL] is costly and takes Ω(n) time to update
in the dynamic setting as nodes join and leave these subgraphs when their degrees in K

changes. In order to have less abrupt changes, we use approximate degrees for classifying
nodes.

▶ Definition 3.14. Let α ≥ 0. Elements of set {du(v) | u, v ∈ V } are α-approximate degrees
in K if for every pair of nodes u, v ∈ V ,

dK(v)− α ≤ du(v) ≤ dK(v) + α.

ITCS 2022



111:16 Beating the Folklore Algorithm for Dynamic Matching

In the full version of the paper, we show how to maintain α-approximate degrees in K

efficiently. For now, we will show that large matchings in bipartite subgraphs defined by
ϵ2d-approximate degrees contain many disjoint augmenting paths, mirroring Lemma 3.9 for
bipartite subgraphs based on exact degrees in K. Specifically, we will consider the following
bipartite subgraphs.

▶ Definition 3.15. Let {du(v) | u, v ∈ V } be ϵ2d-approximate degrees in K. For i ∈ [ 1
ϵ ], we

denote by B
(i)
H := (V, E

(i)
H ) and B

(i)
SH := (V, E

(i)
SH) bipartite subgraphs of G induced by the

following edge sets.

E
(i)
H =

{
(u, v) | du(v) ≥ d ·

(
1− 2s− iϵ2)

, dv(u) ≤ d ·
(
s + iϵ2)}

.

E
(i)
SH =

{
(u, v) | du(v) ≥ d · (1− ϵ− iϵ2), dv(u) ≤ d ·

(
s + iϵ2)}

.

We recall that (informally) ϵ≪ s≪ 1, and so the above subgraphs are indeed bipartite.
As in previous sections, we will drop the superscript (i) when i is clear from context.

Intuitively, subgraphs BH and BSH are similar to the bipartite subgraphs G[VH , VL] and
G[VSH , VL], respectively. However, since we use approximate degrees, these subgraphs are
not equal to each other, since a node’s degree class can be incorrectly classified by some of
its neighbors, as in the following definition.

▶ Definition 3.16. Fix i ∈ [ 1
ϵ ]. Let v ∈ S, where S ∈ {VSH , VH \ VSH , VM , VL}. We say v is

misclassified for i if some neighbor u of v has du(v) = d′, but if we had dK(v) = d′, then we
would have v ̸∈ S.

Intuitively, misclassifications may result a large number of matches in MH and MSH

which do not increase A(MH) and A(MSH) compared to the exact degree case. That is,
such misclassifications result in a lower number of augmenting paths in the exact degree case.
However, as we show, for some i∗ ∈ [ 1

ϵ ], such problematic miscalssifications are rare.

▶ Observation 3.17. Let {du(v) | u, v ∈ V } be ϵ2d-approximate degrees in kernel K. Then
there exists an i∗ ∈ [ 1

ϵ ] such that at most 8ϵ · µ(K) nodes in length-three augmenting paths
are misclassified for i∗.

Proof. Since M is a maximum matching in K, length-three augmenting paths contain at
most 4µ(K) nodes. Since Let {du(v) | u, v ∈ V } are (ϵ2d)-approximate degrees, for a node v,
we have that maxu|du(v)− dK(v)| ≤ ϵ2d. Hence, a node can be misclassified if the difference
between its degree and the thresholds used to define a node’s degree class is less than ϵ2d.
Since the difference between thresholds in Definition 3.2 for different i and j is at least ϵ2d,
each such node can be misclassified for at most two such indices i ∈ [ 1

ϵ ]. Therefore, there
exists an i∗ such that at most 8µ(K)/( 1

ϵ ) = 8ϵ · µ(K) nodes are misclassified for i∗. ◀

We are now ready to generalize Lemma 3.9 to the approximate degree setting.

▶ Lemma 3.18. Let i∗ ∈ [ 1
ϵ ] be the index guaranteed by Observation 3.17. Let MH and

MSH be (3/2 + ϵ)-approximate matchings in B
(i∗)
H and B

(i∗)
SH , respectively. Let A(MH) and

A(MSH) denote the number of disjoint augmenting paths induced by the union of EK and
each of MH and MSH , respectively. Then,

max (A(MH), A(MSH)) ≥ (δ + ϵ) · µ(K).

Proof. We slightly abuse notation, and say a length-three augmenting path is frequent if it
is of types (1), (2), (3), or (4) as in Definition 3.7 and none of its nodes are misclassified. By
Lemma 3.8 and Observation 3.17, the number of frequent paths (under this new definition)
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is at least n′
f ≥ nf − 8ϵ · µ(K) ≥ (1 − 100s − δ

s − 8ϵ) · µ(K). Now that with this new
definition, a node v is bad if v belongs to both V (M) and to an infrequent augmenting
path, where infrequent paths also include paths with misclassified nodes. Therefore, by
observations 3.12 and 3.17 the number of bad nodes (under this new definition) is at most
b′ ≤ b+16ϵ·µ(K) ≤ (200s+ 2δ

s +16ϵ)·µ(K). The maximum matching size in BH and BSH are
the same as their counterparts without misclassifications, only replacig nf and ni for i ∈ [4]
by their tagged counterparts. That is, we have µ(BSH) ≥ n′

f + n′
1 and µ(BH) ≥ n′

f + n′
1 + n′

2.
The above bounds on the number of bad nodes, frequent paths, and maximum matching
sizes in BH and BSH are precisely the loose bounds in the proof of the desired inequality in
Lemma 3.9. Repeating the same final calculations as in that proof, this lemma follows. ◀

Lemma 3.18 suggests a method for computing a sparse augmentation for K: compute
large matchings in each B

(i)
H and B

(i)
SH . Formally, we have the following.

▶ Theorem 3.19. For i ∈ [ 1
ϵ ], let M

(i)
H and M

(i)
SH be a (3/2 + ϵ)-approximate matching in

B
(i)
H and B

(i)
SH , respectively. The the edge set A =

⋃
i∈[ 1

ϵ ]

(
M

(i)
H ∪M

(i)
SH

)
augments K as

follows.

µ(G) ≤ (2− δ) · µ(G[EK ∪A]).

Proof. By Lemma 3.18, there exists an i∗ ∈ [ 1
ϵ ] such that G[EK ∪M

(i∗)
H ∪M

(i∗)
SH ] has at least

(δ + ϵ) · µ(K) augmenting paths with regards to M . Therefore, since µ(G) ≤ (2 + 8ϵ) · µ(K),
by Proposition 2.4, and since δ ≤ 1, we obtain the desired inequality.

µ(G[EK ∪A]) ≥ µ(G[EK ∪M
(i∗)
H ∪M

(i∗)
SH ])

≥ µ(K) + (δ + ϵ) · µ(K) ≥ 1 + δ + ϵ

2 + 8ϵ
· µ(G)

⋆
≥ 1

2− δ
· µ(G). ◀

In Section 5 we show how to efficiently make use of the above structural characterizations
of kernels and their augmentations to obtain the dynamic algorithm of our main result,
Theorem 1. But first, we require an efficient algorithm for maintaining kernels, which we
present in the following section.

4 Kernel Maintenance

In this section we describe a key component of our results: algorithms for kernel maintenance.
Bhattacharya et al. [11], in their paper introducing kernels, provided two algorithms for

kernel maintenance, with amortized update times O( 3
√

m/ϵ2) and O(
√

n/ϵ), respectively.4
They further showed how to de-amortize the former algorithm. Unfortunately for our needs,
this algorithm maintains a kernel of maximum degree d = Ω( 3

√
m), and the number of changes

to the kernel in this algorithm is c = Ω( 3
√

m). Consequently, maintaining near-maximum
matchings in this kernel K would require c · d = Ω(m2/3) update time, which is super-linear
in n for moderately dense graphs.

In this section we show that the second algorithm of [11] can also be de-amortized (and
sped up for sparse graphs). Crucially for our needs, the obtained algorithm will only cause
c = O(1) edge changes to the maintained kernel per edge update in G. This sub-linear
update time and small number of edge changes in these kernels will prove useful for all of
our results. We now turn to describing this kernel maintenance algorithm.

4 Unlike in the preceding section, in this section ϵ > 0 will not be a fixed constant.
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4.1 The Basic Kernel Maintenance Algorithm
Next, we present a slightly simplified version of our kernel maintenance algorithm, with
running time O(n/(ϵd)). For simplicity, we defer the details of our O(

√
m/(ϵd)) time

algorithm to the full version of the paper.
Our algorithm maintains the edge set EK using arrays and lists in a way to allow for

insertion and deletions of edges in constant time. (See [15].) In addition, it maintains E in a
similar structure, with the refinement that for each vertex v ∈ V , its list of neighbors in G,
denoted by NG(v), is stored in a bidirectional circular list, and we maintain a pointer ptr(v)
in this list.

Our algorithm proceeds as follows: For insertion of an edge, we simply add it to K if both
endpoints have degree below d in K (i.e., insertion does not violate Property (P1)). Else, we
do not change K. Regardless, for both endpoints of e, we insert the second endpoint into
their linked list NG(v), before the node ptr(v) points to. See the pseudocode in Algorithm 1.
Removal is the more intricate procedure. For this procedure, we maintain, for each vertex v,
a pointer ptr(v) to its list of edges in G, stored in circular order. When v loses an edge in
K due to a removal of an edge in G, we move ptr(v) through the next neighbors of v in G,
until we encounter a neighbor w of v in G with dK(w) < d. In this case, we add (v, w) to K

and terminate the procedure. Otherwise, the procedure terminates after n/(ϵd) neighbors of
v are inspected. See the pseudocode in Algorithm 2.

Algorithm 1 kernel-update:insert(e).

1: if maxv∈e dK(V ) < d then
2: EK ← EK ∪ {e}
3: for v ∈ e do
4: insert u ∈ e \ {v} into NG(v) before the element ptr(v) is pointing to

Algorithm 2 kernel-update:remove(e).

1: for v ∈ e do
2: remove u ∈ e \ {v} from NG(v)
3: if e ∈ EK then
4: EK ← EK \ {e}
5: for v ∈ e do
6: for i = 1, 2, . . . , n/(ϵd) do
7: advance ptr(v) in NG(v) ▷ advance to next element in cyclic list of NG(v)
8: w ← ptr(v).element ▷ get node in NG(v) pointed to by ptr(v)
9: if dK(w) < d then

10: EK ← EK ∪ {(v, w)}
11: return

The intuition behind Algorithm 2 is that for any edge not added to the kernel upon
insertion, at least one of its endpoints v must have degree dK(v) = d. The point of iterating
through n/(ϵd) neighbors of a vertex who lost an edge in EK is to guarantee that by the time
ϵd edges of this vertex have been deleted from EK without a replacement edge of v being
found in Algorithm 2, this vertex v must have considered each of its n (or fewer) neighbors
u. When this happened, either (u, v) was added to EK (and never removed), or dK(v) ≥ d.
In either case, Property (P2) is satisfied for edge (u, v).
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Formalizing the above discussion, we now analyze the above algorithm.
For any ϵ > 0 and d, the algorithm handling edge insertions and deletions using algorithms

1 and 2 is a deterministic dynamic algorithm for maintaining an (ϵ, d)-kernel using O(n/(ϵd))
worst-case update time and causing O(1) changes to the kernel per update.

Proof. The running time and number of changes to EK per update are immediate from the
pseucodode. Property (P1) is also apparent, as we never add an edge to a vertex v which
already has dK(v) = d. The only non-trivial property is Property (P2), which we now prove.

Fix an edge e ∈ E and time point t. If e was added to EK upon insertion of e, then,
since edges are only removed from EK when they are removed from G, edge e is still in EK

at time t, and so it vacuously satisfies Property (P2). Suppose instead e was not added to
EK upon insertion. Therefore, by Algorithm 1, at that time we had that maxv∈e dK(v) = d.
Let v ∈ e be such that dK(v) = d at the latest time t′ < t. Now, if dK(v) < d(1− ϵ) at time
t, vertex v must have had at least ϵd edges deleted from EK without a replacement edge
found in lines 6-11. But then, during these ϵd applications of the n/(ϵd) iterations of lines
6-11 for vertex v, we inspect all (at most) n neighbors of v which were not added after time
t′, and in particular we have had in one of these iterations w = u, where u is the second
endpoint of e = (v, u). Since we chose v to be the vertex in e which had dK(v) at the last
point t′ < t, we have that dK(w) < d, and so we add e to EK in Algorithm 2. Consequently,
again relying on edges only being removed from EK when they are removed from G, we have
that edge e is in EK at time t, and therefore vacuously satisfies Property (P2) at time t. ◀

In full version of the paper, we refine the result of Section 4.1, by relying on the dynamic
edge orientation algorithm of [7]. This allows us to speed up our kernel algorithm for sparse
graphs, replacing the n factor in the running time of Section 4.1 by

√
m ≤ n. From this,

we obtain the following lemma. For any ϵ > 0 and d, there exists a deterministic dynamic
algorithm for maintaining an (ϵ, d)-kernel with O(

√
m/(ϵd)) worst-case update time, with

O(1) changes to the kernel per update.

4.2 Applications: Fast (2 + ϵ)-Approximate (Weighted) Matching
Since (ϵ, d)-kernels have degree at most d (by property (P1)), we can maintain near-maximum
matchings in dynamic kernels in time Oϵ(d) per edge change in kernels, by Proposition 2.2.
Combined with Section 4.1 and Proposition 2.4, our deterministic kernel maintenance
algorithms therefore yield the first deterministic (2 + ϵ)-approximate dynamic matching
algorithm with worst-case sublinear update time. Specifically, we obtain the following.

▶ Theorem 4.1. There exists a deterministic (2+ϵ)-approximate dynamic matching algorithm
with worst-case update time O( 4

√
m/
√

ϵ) = O(
√

n/
√

ϵ).

Proof. Let d = 4
√

m/
√

ϵ. Our algorithm maintains an (ϵ, d)-kernel K in deterministic
O(
√

m/(ϵd)) worst-case update time, Section 4.1. By Proposition 2.2 and property (P1),
we can maintain a (1 + ϵ)-approximate matching in K in deterministic O(d/ϵ2) worst-case
update time per edge update in K. By Section 4.1, our kernel K has O(1) edges added or
removed per update, and so maintaining this matching in K contributes an O(d/ϵ2) term to
the (deterministic, worst-case) update time. Finally, by the kernel lemma 2.4, this matching
satisfies |M | ≥ 1

1+ϵ · µ(K) ≥ 1
1+ϵ ·

1
2+ϵ · µ(G). Consequently, this algorithm maintains a

(1 + ϵ) · (2 + ϵ) = 2 + O(ϵ) approximate matching in G in deterministic O(
√

m/(ϵd) + d/ϵ2)
worst-case update time. By our choice of d = 4

√
m/
√

ϵ, the theorem follows. ◀
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For weighted matching, we obtain the same asymptotic running time in terms of n and
m, albeit with an exponential dependence on ϵ, by relying on the recent weighted matching
framework of Bernstein et al. [5]. Letting R denote the ratio of the maximum weight and
minimum weights ever in the graph, we obtain the following. (See the full version for details,
as well as a discussion on exponentially decreasing this dependence on R.)

▶ Theorem 4.2. There exists a deterministic (2+ϵ)-approximate dynamic weighted matching
algorithm with worst-case update time O( 4

√
m/ϵO(1/ϵ) · log R) = O(

√
n/ϵO(1/ϵ) · log R).

Theorem 1.1 follows by combining the preceding two theorems.

5 Putting it all Together: Beating the Folklore Algorithm

In this section we combine our ideas from the previous section to obtain our main result
– a deterministic algorithm which outperforms the folklore algorithm in terms of both
approximation ratio and worst-case update time. Specifically, we prove the following.

▶ Theorem 1. (Beating the Folkore Algorithm) There exists a deterministic 1.999999-
approximate dynamic matching algorithm with worst-case update time O(m3/8).

Proof. As in Section 3, we let ϵ = 2× 10−8 and δ = 2× 10−6. Set d = m3/8 ≥ 1/ϵ. This last
inequality is WLOG, since if m3/8 < 1/ϵ, then we can trivially maintain a 1-approximate
matching in worst-case time poly(n) = poly(1/ϵ) per update, by recomputing a maximum
matching after each update. Furthermore, in this proof we assume that m is fixed (up to
some multiplicative constant). This too is WLOG, since whenever m increases or decreases
by a constant factor, we can (gradually) re-run the dynamic matching algorithm with an
appropriately larger/smaller value of m, incurring a constant multiplicative overhead.

Our algorithm consists of a number of subroutines applied to several subgraphs of the
dynamic graph G. Our algorithm maintains an (ϵ, d)-kernel K = (V, EK). In addition, it
maintains ϵ2d-approximate degrees {du(v) | u, v ∈ V } for all node pairs u, v ∈ V , and, for all
i ∈ [1/ϵ], the subgraphs B

(i)
SH and B

(i)
H induced by these approximate degrees, as defined in

Section 3.4, where all (star) updates to approximate degree counters du(v) affect the O(1)
appropriate subgraphs B

(i)
SH and B

(i)
H . In each of the bipartite subgraphs B

(i)
SH and B

(i)
H , we

maintain (3/2 + ϵ)-approximate matchings, M
(i)
SH and M

(i)
H , respectively, using the bipartite

matching algorithm of [7], making it incur only O(1/ϵ) recourse per star update in B
(i)
SH

and B
(i)
H , using Proposition 2.6. Finally, we maintain a (1 + δ/8)-approximate matching to

use as our output, Mout, in the low-degree graph AK := G
[
EK ∪

⋃
i

(
MH

i ∪MSH
i

)]
, using

Proposition 2.2.
As we shall show, the above is a ((2−δ)·(1+δ/8))-approximate algorithm with O( 4

√
m·
√

∆)
update time. To speed up this algorithm for sparse graphs, we combine our algorithm with
dynamic sparsification (essentially a corollary of the sparsification scheme of [34]), which
allows us to decrease ∆ to O(

√
m/ϵ) at the cost of increasing the approximation ratio by a

(1 + ϵ) factor.

Approximation Ratio. By Theorem 3.19, we have that µ(G) ≤ (2− δ) · µ(AK). Also, by
applying dynamic sparsification (see details in the full version) to our algorithm, we lose a
(1 + ϵ) factor in approximation ratio. Therefore, the (1 + δ/8) approximate matching Mout

which we maintain satisfies the following.

µ(G) ≤ (2− δ) · µ(AK) ≤ (2− δ) · (1 + ϵ) · (1 + δ/8) · |Mout| ≤ (2− δ/2) · |Mout|.

That is, this algorithm is (2− 10−6)-approximate, as claimed.



M. Roghani, A. Saberi, and D. Wajc 111:21

Running Time.5 By Section 4.1, the maintenance of the (ϵ, d)-kernel K = (V, EK) requires
O(
√

m/(ϵd)) time and O(1) changes to EK per update. For each insertion or removal of
an edge (u, v) in EK , we update the approximate degrees, in O(∆/(ϵ2d)) time, causing
an insertion or removal of O(1) stars (centered on u or v) with O(∆/(ϵ2d)) leaves in the
bipartite subgraphs of the form B

(i)
SH and B

(i)
H (see the full version). Consequently, the time

to maintain the auxiliary approximate matchings {M (i)
H , M

(i)
SH}i in these bipartite subgraphs

B
(i)
H and B

(i)
SH following a star update is O(∆/(ϵ2d)) ·O( 4

√
m/poly(ϵ)) = O(∆ · 4

√
m/d), by

Proposition 2.5. Therefore, since only O(1) such star updates occur per update in G, the
time per update to maintain the 1/ϵ = O(1) matchings M

(i)
SH and M

(i)
H is O(∆ · 4

√
m/d).

Moreover, each star update results in O(1/ϵ) = O(1) changes to each of these auxiliary
matchings, by Proposition 2.6, and so A :=

⋃
i(M

(i)
SH ∪M

(i)
H ) changes by O(1/ϵ) edges per

update to G. We conclude that the graph AK := G[A ∪EK ] is a graph of maximum degree
d + O(1) = O(d), which changes by O(1) edges per update: O(1) changes to the kernel
per update, by Section 4.1 and O(1) changes in the matchings, by the preceding discussion.
Therefore, we can maintain a (1 + δ/8)-approximate matching in AK in O(d/δ2) = O(d)
time per update to AK, by Proposition 2.2, which is O(d) ·O(1) = O(d) time per update to
G. We conclude that this algorithm’s (worst-case) update time is O(d + ∆ · 4

√
m/d), which

can decrease to O(d + m3/4/d) for sparse graphs by using dynamic sparsification (see the
full version). Choosing d = m3/8, yielding the claimed time bound. ◀
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