
Keep That Card in Mind: Card Guessing with
Limited Memory
Boaz Menuhin #

Department of Computer Science and Applied Mathematics, Weizmann Institute of Science,
Rehovot, Israel

Moni Naor1 #

Department of Computer Science and Applied Mathematics, Weizmann Institute of Science,
Rehovot, Israel

Abstract
A card guessing game is played between two players, Guesser and Dealer. At the beginning of the
game, the Dealer holds a deck of n cards (labeled 1, ..., n). For n turns, the Dealer draws a card
from the deck, the Guesser guesses which card was drawn, and then the card is discarded from the
deck. The Guesser receives a point for each correctly guessed card.

With perfect memory, a Guesser can keep track of all cards that were played so far and pick at
random a card that has not appeared so far, yielding in expectation ln n correct guesses, regardless
of how the Dealer arranges the deck. With no memory, the best a Guesser can do will result in a
single guess in expectation.

We consider the case of a memory bounded Guesser that has m < n memory bits. We show that
the performance of such a memory bounded Guesser depends much on the behavior of the Dealer.
In more detail, we show that there is a gap between the static case, where the Dealer draws cards
from a properly shuffled deck or a prearranged one, and the adaptive case, where the Dealer draws
cards thoughtfully, in an adversarial manner. Specifically:
1. We show a Guesser with O(log2 n) memory bits that scores a near optimal result against any

static Dealer.
2. We show that no Guesser with m bits of memory can score better than O(

√
m) correct guesses

against a random Dealer, thus, no Guesser can score better than min{
√

m, ln n}, i.e., the above
Guesser is optimal.

3. We show an efficient adaptive Dealer against which no Guesser with m memory bits can make
more than ln m + 2 ln log n + O(1) correct guesses in expectation.

These results are (almost) tight, and we prove them using compression arguments that harness the
guessing strategy for encoding.

2012 ACM Subject Classification Theory of computation → Adversary models

Keywords and phrases Adaptivity vs Non-adaptivity, Adversarial Robustness, Card Guessing,
Compression Argument, Information Theory, Streaming Algorithms, Two Player Game

Digital Object Identifier 10.4230/LIPIcs.ITCS.2022.107

Related Version Full Version: https://arxiv.org/abs/2107.03885
Full Version: https://eccc.weizmann.ac.il/report/2021/096/

Funding Research supported in part by grants from the Israel Science Foundation (no. 950/15 and
2686/20), by the Simons Foundation Collaboration on the Theory of Algorithmic Fairness and by
the Israeli Council for Higher Education (CHE) via the Weizmann Data Science Research Center

Acknowledgements We thank Eylon Yogev and Yotam Dikstein for many suggestions and advice.
We thank Hila Dahari, Uri Feige, Tomer Grossman, and Adi Schindler for meaningful discussions
and insights. We thank Samuel Spiro for his comments. We also thank Gal Vinograd for reading a
preliminary version of this document.

1 Incumbent of the Judith Kleeman Professorial Chair.
© Boaz Menuhin and Moni Naor;
licensed under Creative Commons License CC-BY 4.0

13th Innovations in Theoretical Computer Science Conference (ITCS 2022).
Editor: Mark Braverman; Article No. 107; pp. 107:1–107:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:boaz.menuhin@gmail.com
mailto:moni.naor@weizmann.ac.il
https://doi.org/10.4230/LIPIcs.ITCS.2022.107
https://arxiv.org/abs/2107.03885
https://eccc.weizmann.ac.il/report/2021/096/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

107:2 Keep That Card in Mind: Card Guessing with Limited Memory

1 Introduction

“Those who cannot remember the past are condemned to repeat it”
—George Santayana, The Life of Reason, 1905 [23]

Even if you use randomness and cryptography!

There are n cards in a deck. In each turn, one player, called Dealer, selects a card and a
second player, called Guesser, guesses which card was drawn. The selected cards cannot be
drawn again. The quantity of interest is how many cards were guessed correctly.

A Guesser with perfect memory can guess a card that has not appeared yet. When there
are i cards left, the probability of correctly guessing is 1

i . By linearity of expectation, such a
Guesser is expected to guess correctly about ln n times. On the other hand, at any point in
time, a memoryless Guesser cannot guess with probability better than 1/n, resulting in 1
correct guess on expectation2. We are interested in the case where the Guesser has m < n

bits of memory.
One can think about card guessing as a streaming problem where the algorithm predicts

the next element in a stream, under the promise that all elements in the stream are unique.
In the streaming model, a large sequence of elements is presented to an algorithm, usually
one element at a time. The algorithm, which cannot store the entire input, keeps the
needed information and outputs some function on the stream seen so far. As it may be
impossible to output the exact value of the function without storing the entire input, it is a
typical relaxation to consider an approximate value of the function as output. In this sense,
prediction is a form of approximation3.

Some streaming problems are solvable by a deterministic algorithm, while others require
a randomized one (for a survey on streaming algorithms, see [21]). It is common to analyze
the performance of an algorithm with respect to a worst-case stream that is chosen ahead of
time and is fixed throughout the execution of the algorithm. We call such a stream oblivious,
or static. A recent line of works (see Section 1.3) focuses on analyzing the performance of an
algorithm as if an adversary looks at the algorithm’s output in every turn and thoughtfully
chooses the next element in order to make the algorithm to fail. An algorithm that performs
well against such an adversary is called adversarially robust.

In this paper, we pinpoint the complexity of card guessing in different environments,
especially with respect to the memory requirements of the Guesser.

1.1 Our Results
We study the case where the Guesser has bounded memory, and we ask how well a Guesser
can perform? It turns out that the performance of a memory bounded Guesser is highly
sensitive to the behavior of the Dealer.

A Dealer is called “random shuffle” if every ordering of the deck has equal probability.
This is equivalent to drawing a card at random in every turn.
A static Dealer draws cards one by one from a prearranged deck in some specific order
and may choose the worst order.
An adaptive Dealer is allowed to change the order of the deck throughout the game.

2 These examples are taken from a textbook on algorithms by Kleinberg and Tardos [19], Chapter 13,
Pages 721-722.

3 We elaborate on prediction as a form of approximation in the full version.

B. Menuhin and M. Naor 107:3

Clearly these dealers are presented by increasing power. Our results are as follows:
1. Against the random-shuffle Dealer, there exists a Guesser with log2 n + log n memory bits

that makes at least 1/2 log n correct guesses in expectation, i.e. asymptotically similar to
a Guesser with perfect memory. This Guesser can be amplified at the cost of log n factor
to get closer to ln n.

2. There exists a Guesser with log2 n − log n + 2 bits of memory and 2 log n random bits
that against any static Dealer scores 1/4 ln n−O(1) correct guesses in expectation. This
Guesser can be amplified at the cost of log n factor to get closer to ln n.

3. The above Guessers are optimal: Every Guesser with m bits of memory can score at most
O(
√

m) correct guesses in expectation against the random-shuffle Dealer, regardless of
the amount of randomness that the Guesser uses.

4. For every m there exists a computationally efficient adaptive Dealer against which no
Guesser with m memory bits can make more than ln m + 2 ln log n + O(1) correct guesses
in expectation, regardless of how much randomness and what cryptographic tools and
assumptions that the Guesser uses.

5. Furthermore, there exists a computationally efficient adaptive universal Dealer, i.e., that
makes no assumption on the amount of memory of the Guesser, against which every
Guesser with m bits of memory is expected to make at most (1+o(1))·ln m+8 ln log n+O(1)
correct guesses.

See Table 1 for a comparison of our results.

Table 1 Partial list of results: constructive results above the line, impossibility results below.

Guessing Technique Memory Random
bits Dealer Score

Subset Guesser m - Any ln m

Remember last cards m - Any ln m
log n

Subset+Remember last m ≤
√

n - Random 2 ln m − ln log n − ln 2
Following Subsets O(log2 n) - Random 1/2 log n

Randomized Subsets O(log2 n) 2 log n Static 1/4 ln n

Any Guesser m ∞ Random O(min{ln n,
√

m})
Any Guesser m ∞ Adaptive ln m + 2 ln log n + O(1)

Any Guesser m ∞ Adaptive-
universal (1 + o(1)) · ln m + O(log log n)

To summarize, the main lesson from these results is the significant impact of adaptivity
of the dealer, more than any other factor.

1.2 Our Approaches and Techniques
Our results separate the required amount of memory and randomness that the Guesser
requires for playing against the three types of Dealers.

Quite surprisingly, we show that against the random-shuffle Dealer, a Guesser with very
limited memory, and no randomness at all, can perform similarly to a Guesser with perfect
memory. More formally, the main result of Section 4.1 is:

▶ Theorem 1. There exists a Guesser with log2 n + log n memory bits and no randomness
that scores 1/2 log n correct guesses in expectation when playing against the random-shuffle
Dealer.

ITCS 2022

107:4 Keep That Card in Mind: Card Guessing with Limited Memory

Our Guesser tracks which cards were drawn from multiple subsets of cards. Using at most
2 log n bits per subset, the Guesser can recover the last card that has not appeared from
each subset and guess it. Repeating that guess over and over, the Guesser can guarantee a
single correct guess from each subset.

However, the last cards from the different subsets may be indistinct. The subsets are
built incrementally, i.e., the ith subset is contained in the (i + 1)-th subset, as visualized in
Figure 1. It follows that the probability for the last card from each subset to appear before
the last card from the following subset is fixed (and is at least 1/2). So we get that the
expected number of correct guesses is proportional to the number of subsets tracked by the
Guesser and the ratio between two following subsets.

With more space we can have denser subsets, getting that for 0 < δ ≤ 1 a Guesser with
log1+δ 2 · log2 n+log n can score δ

(1+δ) ln(1+δ) ln n correct guesses in expectation, when playing
against the random-shuffle Dealer. For δ = 1 this is the above theorem. The number of
correct guesses goes to ln n as δ goes to zero.

n

1 w (1 + δ)w (1 + δ)2w

Figure 1 Following-Subsets. The blue lines represents subsets of [n], the top blue line the subset
{1, . . . , w}, the one in the middle {1, . . . , (1 + δ)w} and so on. In the basic construction, (1 + δ) = 2.

Consider a static Dealer, one that fixes the sequence of cards ahead of time but chooses the
worst arrangement. A simple adversarial argument shows that for every Guesser that uses no
randomness, there exists an arrangement of the deck against which that deterministic Guesser
scores at most 1 correct guess (guessing a single card is inevitable, even by a memoryless
Guesser). In Section 4.2 we show that 2 log n random bits suffice for a Guesser with O(log2 n)
bits of memory to score near perfect results when playing against any static Dealer.

▶ Theorem 2. There exists a Guesser with log2 n − log n + 2 bits of memory and 2 log n

random bits that scores 1
4 ln n correct guesses in expectation when playing against any static

Dealer.

We use a pairwise independent permutation to split the cards to log n disjoint subsets of
various sizes and track each subset similarly to the previous construction. We show that in
each turn, the Guesser recovers a correct guess from a certain subset in probability that is
proportional to the number of cards left in the deck. Namely, when t cards are left in the
deck, the probability of a correct guess is at least 1/4t, resulting in 1/4 · ln n correct guesses
in expectation.

Our deterministic and randomized Guessers are inspired by Garg and Schneider [13] and
Feige’s [11] algorithms for the first player in the Mirror Game in that they follow subsets of
cards and track which member appeared. However, it turns out that there are fundamental
differences between strategies for Mirror Game and card guessing against an adaptive dealer.
We elaborate on the relation to the Mirror Game and to Feige’s construction in the full
version.

In Section 4.3 we show that these Guessers are the best possible against the random-shuffle
Dealer for m ≤ log2 n. I.e., that there exists no Guessing technique that uses less memory
and performs similarly.

B. Menuhin and M. Naor 107:5

▶ Theorem 3. Any Guesser with m memory bits can get at most O(min{ln n,
√

m}) correct
guesses in expectation when playing against the random-shuffle Dealer.

We show this by presenting an encoding scheme that utilizes correct guesses to encode an
ordered set in an efficient manner. Using a compression argument we show that log2 n bits
of memory are actually essential for getting O(ln n) correct guesses.

Proof by Compression. This is a quite general method (see below) to prove the success of
an algorithm by showing that some events allow us to compress the random bits used. Say a
randomized algorithm can tolerate some number of bad events. For some specific domain
(e.g. ordered sets of some size), we introduce an encoding scheme that utilizes the occurrence
of certain bad events in order to achieve a shorter description of elements in the domain. We
then consider the amount of bad events required to achieve a description that is shorter than
the entropy of a random element in the domain. We know that for any compression method,
the probability of chopping off (saving) w bits from a random string is at most 2−w. We get
that the probability for too many bad events is negligible.

The method has been applied in a variety of fields, for instance, to prove the success
of the algorithm in the “Algorithmic Lovász Local Lemma” [20], the success probability of
Cuckoo Hashing [22], lower bounds on construction of cryptographic primitives [14] and
space-time trade-off for quantum algorithms [6].

To prove Theorem 3, we introduce an encoding scheme for ordered sets that utilizes correct
guesses to achieve a shorter description of the ordered set. The idea is to simulate a game
between a Guesser and a static Dealer, where the bottom of the deck is arranged according
to the ordered set we wish to encode. If sufficiently many correct guesses occurred, then the
encoding function stores the necessary information required to reproduce the course of the
game.

Namely: the memory state of the Guesser, the set of turns at which the Guesser predicted
correctly and the cards that the Dealer draws in the other turns in their respective order. By
fixing the Guesser’s randomness, every ordered set yields a single description by the encode
function, and every description results in a single course of the game during decode. This
allows the decode function to reconstruct the ordered set. A visual representation of the
stored information is provided in Figure 2.

We get that we pay once for the memory state of the Guesser, and from that point on
any correct guess shrinks the description of the ordered set. We then show that making too
many correct guesses implies compression, i.e., a description of expected length shorter than
the entropy of a random element. By doing so, we bound the expected number of correct
guesses that any Guesser can make. The result holds regardless of how much randomness
and what cryptographic tools and assumptions are used by the Guesser.

first turn last turn

Guesser’s memory state

Cards drawn during incorrect guesses

Correct guesses

Not drawn to scale

Figure 2 Correct guesses encoding. Colored - information stored by the encoding scheme.

ITCS 2022

107:6 Keep That Card in Mind: Card Guessing with Limited Memory

In Section 5, we turn our attention to the adversarial adaptive Dealer. We show that if
the Dealer is allowed to be adaptive, then almost any advantage gained from sophisticated
memory usage vanishes. Furthermore, the adversarial dealer needs to know very little about
the guesser. We show two results:

▶ Theorem 4. For every m there exists an efficient adaptive Dealer against which any
Guesser with m bits of memory can score at most ln m + 2 ln log n + O(1) correct guesses in
expectation.

▶ Theorem 5. There exists a universal efficient adaptive Dealer against which any Guesser
with m bits of memory can score at most (1 + o(1)) · ln m + 8 ln log n + O(1) correct guesses
in expectation.

The two Dealers share the same general strategy that is parameterized differently. The
Dealer’s strategy is simply to refrain from drawing recently guessed cards for some turns. This
result stands even if the Guesser is allowed to use unlimited randomness and cryptographic
tools, while the Dealer is as simple as possible. The computational efficiency and simplicity
of the Dealer, as well as the fact that the result stands even against an all-powerful Guesser
with randomness and cryptography, emphasize that it is the adaptivity that plays the key
role, rather than anything else. Recall that by Theorem 2, a mild amount of randomness
suffices to achieve near optimal results against any static Dealer.

reshufflereshufflereshufflereshuffle

first turn last turn

Draw at random Draw at random

Move to the Back Move to the Back

Figure 3 Adaptive Dealer general scheme.

In more detail, our Dealer shuffles the deck at the beginning of the game and draws cards
one by one. At some point, the Dealer begins to refrain from selecting cards guessed by the
Guesser. When the Guesser guesses a card that resides in the deck, the Dealer takes that
card and moves it to the back of the deck. Moving cards to the back reduces the number of
cards that the Dealer may select, and as a result, makes the Dealer predictable. Therefore,
at some point, the Dealer reshuffles the deck, making all cards available for drawing again,
and repeats this behavior. Towards the end of the game, the Dealer shuffles the deck one
last time and draws cards at random. The period of turns between reshuffles is called an
epoch, and the strategy is called MtBE-strategy (which stands for Move to the Back Epoch
strategy).

Call a guess reasonable if it is a card that can be drawn, that is, a possibly correct guess.
To show that moving cards to the back is an effective strategy, we show that no memory
bounded Guesser is expected to make too many reasonable guesses during each epoch. The
idea is that if the Guesser can produce many reasonable guesses, then she knows something
about the set of cards in the deck and can be used to describe it efficiently. We show an
encoding scheme for sets, and using compression argument, we bound the expected amount
of reasonable guesses in every epoch.

Since our Dealer is adaptive, it is difficult to predict the order in which cards will be
drawn, thus we do not use the same encoding scheme for ordered sets. Instead, we encode
unordered sets using a similar encoding scheme.

B. Menuhin and M. Naor 107:7

As in Theorem 3, the encoding scheme works by simulating a game between the Guesser
and the Dealer, where the Dealer keeps the set of cards we wish to encode for the end. If
sufficiently many reasonable guesses occurred during an epoch, we use that epoch to achieve
a shorter description of the set. In detail, we store the Guesser’s memory state, the cards
drawn by the Dealer while the Guesser guessed incorrectly, the set of turns where the Guesser
guessed reasonably, and which of these guesses were actually correct. These objects allow us
to simulate the same game during decoding and thus to recover the set. Visualization of the
encoded information provided in Figure 4.

first turn last turn

Guesser’s memory state

Epoch begin Epoch end

Cards drawn minus reasonable guess during epoch

Reasonable guesses Correct guessesCorrect guesses

Not drawn to scale

Figure 4 Reasonable guesses encoding. Colored - information stored by the encoding scheme.

Since reasonable guesses allow us to achieve shorter descriptions, we get a bound on
the expected number of reasonable guesses during each epoch. By doing so, we bound the
expected number of correct guesses in each epoch, since the cards are drawn from a large
enough set. At this point, the analysis’s calculations of the two Dealers vary and we analyze
them differently.

Lastly, since a Guesser with m bits of memory can achieve ln m correct guesses in
expectation, these results are almost tight.

1.3 Related Work

Card Guessing. An early work concerning card guessing dates back to 1924 [12], when Ronald
Fisher studied the game in the context of analyzing claims of psychic ability. Fisher suggested
and analyzed a method to measure and determine a Guesser’s claim to have supernatural
abilities (namely clairvoyance and telepathy) by assigning scores to the Guesser’s guesses and
see how much they deviates from the expectation. In 1981, Diaconis and Graham [9] studied
the case where there are ci copies of the ith card, and determined the optimal and worst
strategies for some cases. They considered the cases of no feedback at all, partial feedback
(was the guess correct or not) for ci = 1, and full feedback (which card was drawn). Recently,
Diaconis, Graham, He and Spiro [8] asymptotically determined the expected score that an
optimal strategy achieves for the case of partial feedback where ci ≥ 2.

A more useful yet equally dubious purpose is “Card Counting” in gambling (see Wikipedia
entry [26]). In 1962 Edward Thorp, a Professor of Mathematics, published a bestseller
book [25] about winning strategies in the game of Black-Jack. The book covered analyses of
the game from the viewpoint of the player and the Casino, as well “low-memory” strategies
that increase the player’s expected benefit. The idea behind card counting in this context
is that by knowing the distribution of the next card(s), one can evaluate their own hand
better and thus bet accordingly. Card counting has been applied to other card games, such
as Bridge and Texas hold ’em Poker. In these games, evaluating the probabilities for the
upcoming cards is considered essential. In the context of this paper, card counting is an
applied “low-memory” card guessing technique that utilizes the structure of specific games.

ITCS 2022

107:8 Keep That Card in Mind: Card Guessing with Limited Memory

Mirror Games. Garg and Schneider [13] introduced the Mirror Game, a game closely related
to card guessing. In Mirror Game, there are two players, Alice and Bob, taking turns in
saying numbers from [n]. In every turn, a player says a number that was not said before by
either player. If a player says a number that was already declared, that player loses, and
the other player is the winner. If there are no more numbers to say, then it is a draw. Alice
is first. Bob always has a simple deterministic winning strategy that requires only log n

memory bits. When Alice says x, bob says n + 1− x, and hence the name’s origin.
Garg and Schneider showed that every deterministic winning (drawing) strategy for Alice

requires Ω(n) bits of memory. They have also presented a randomized strategy for Alice that
with high probability end with at least a draw for Alice that requires O(

√
n) bits of storage.

Their strategy relied on access to a secret (from Bob) random matching. Using the same
settings, Feige [11] showed that O(log3 n) bits of memory suffice. Our Guessers for the static
case (Sections 4.1 and 4.2) are inspired by Feige’s construction4.

Adversarial streams and sampling. A streaming algorithm is called adversarially robust if
it’s performance are guaranteed to hold even when the elements in the stream are chosen
adaptively in an adversarial manner. The question concerning the gap in memory consumption
between the static case and the adversarially adaptive case has been the subject of recent
line of works.

On the positive side, Ben-Eliezer, Jayaram, Woodruff and Yogev [3] showed general
transformations for a family of tasks, for turning a streaming algorithm to be adversarially
robust, with some overhead. Woodruff and Zhou [27] suggested another set of transformation
for the same family of problems. A different approach was taken by Hassidim, Kaplan,
Mansour, Matias and Stemmer [16] who showed that it may be possible to get an even smaller
overhead in some cases by using differential privacy as a protection against an adaptive
adversary.

On the negative side, Hard and Woodruff [15] showed that linear sketches are inherently
not adversarially robust. They showed it for the task of approximating LP norms but their
technique stands for other tasks as well. In a recent result, Kaplan, Mansour, Nissim and
Stemmer [18] showed a problem that requires polylogarithmic amount of memory in the
static case but any adversarially robust algorithm for it requires exponentially larger memory.
Our work join that of [18] by showing a simpler, even more natural, streaming problem that
separates adversarial streams from oblivious streams.

In a similar vein, given a large enough sample from some population, then we know that
the measure of any fixed sub-population is well-estimated by its frequency in the sample. The
size of the sample needed is the VC dimension of the set system of the sub-populations of
interest. Ben-Eliezer and Yogev [4] showed that when sampling from a stream, if the sample
is public and an adversary may choose the stream based on the samples so far, then the
VC Dimension may not be enough. Alon, Ben-Eliezer, Dagan, Moran, Naor and Yogev [1]
showed that the Littlestone dimension, which might be much larger than the VC dimension,
captures the size of the sample needed in this case.

Online Computation and Competitive Analysis. Another area where the exact power of
the adversary comes up is in competitive analysis of online algorithms (see Borodin and
El-Yaniv [5]). Here there are various types of adversaries, distinguished by whether they are

4 Additional discussion on the relation and differences between card guessing and Mirror Game is provided
in the full version of this paper.

B. Menuhin and M. Naor 107:9

adaptive or static and whether they decide on the movements of the competing algorithm in
an online manner or an offline one. The result is a hierarchy of oblivious, adaptive online
and adaptive offline adversaries. It turns out that in request-answer games (a very general
form capturing issues like paging), an algorithm competitive against the adaptive offline
adversary may be transformed into a deterministic one with similar competitive ratio [2]. We
do not see a similar phenomenon in our setting, where one should recall that a deterministic
algorithm is hopeless against a static adversary.

Distinguishing Permutations and Functions. A stream of q random elements from the
domain [n] is given to a memory bounded algorithm that attempts to determine whether
the stream was sampled with or without repetitions. When the stream ends, the algorithm
outputs its determination, and is measured by it’s ability to judge better than guessing
at random. If q = Θ(

√
n), then by the birthday paradox, a repetition occurs with high

probability. The algorithm uses O(q log n) memory bits to recognize this repetition.
Motivated by the fact that the task of distinguishing between random permutations

and random functions has significant cryptographic implications, Jaeger and Tessaro [17]
introduced the above problem and showed a conditional bound on the advantage of the
algorithm. In particular, they showed that under an unproved combinatorial conjecture
the advantage of an algorithm with m bits of memory is bounded by

√
q ·m/n. Dinur [10]

showed an unconditional upper bound on the advantage of log q · q ·m/n. This was followed
by the work of Shahaf, Ordentlich and Segev [24] who achieved the unconditional upper
bound on the advantage of

√
q ·m/n.

2 Preliminaries

Throughout this paper we use [n] and [1− n] to denote the set of integers {1, . . . , n}. We
denote the collection of subsets of [n] of size exactly k by

([n]
k

)
= {B ⊆ [n] : |B| = k}. We

denote the set of permutations on n elements by Sn. All logs are base 2 unless explicitly stated
otherwise, ln is the natural logarithm (base e). We denote the set of binary strings of length
ℓ by {0, 1}ℓ. We denote the set of binary strings of any finite length by {0, 1}∗ = ∪i∈N{0, 1}i.

2.1 Information Theory
▶ Definition 6 (Entropy). Given a discrete random variable X that takes values from
domain X with probability mass function p(x) = Pr[X = x]. The Binary Entropy (abbreviated
Entropy) of X, denoted H(X) is

H(X) = −
∑
x∈X

p(x) · log p(x).

▶ Definition 7 (Prefix-free code). A set of code-words C ⊆ {0, 1}∗ is prefix-free if no code-word
c ∈ C is a prefix of another code-word c′ ∈ C.

▶ Proposition 8 (Theorem 5.3.1 in [7]). The expected length L of any prefix-free binary code
for a random variable X is greater than or equal to the binary entropy H(X).

▶ Lemma 9. Given a random variable X uniformly drawn from domain X . For every
encoding function Encode for X, The probability that the encoding of X is d bits less than
it’s entropy is at most 2−d, i.e.

Pr
X∈X

[|Encode(X)| = H(X)− d] ≤ 2−d.

ITCS 2022

107:10 Keep That Card in Mind: Card Guessing with Limited Memory

3 Introduction to the Card Guessing Game

A card guessing game is played between a Dealer and a Guesser. At the beginning of the
game, the Dealer holds a deck of n distinct cards (labeled 1, . . . , n). In every turn, the Dealer
chooses a card from the deck, draws it, and places it face-down. The Guesser guesses which
card was drawn, the card is then revealed and discarded from the Dealer’s deck. The Guesser
gets a point for every correct guess. The game continues, for n turns, until the Dealer has no
cards to draw.

Assume that the Dealer draws cards uniformly at random from the deck. A Guesser with
perfect memory can keep track of all cards played so far and guess cards that are still in the
deck. In turn n− t there are t cards in the Dealer’s deck and the Guesser’s probability to
guess the next card correctly is 1/t. Hence, the expected number of correct guesses is

1
n

+ 1
n− 1 + · · ·+ 1

2 + 1 = Hn ≈ ln n

On the other extreme, a Guesser with no memory at all can guess the same card over and
over again without knowing whether this card was picked already or not. Such a behavior
would result in 1 correct guess with probability 1.

Question: How well can a Guesser with m memory bits play?

A transcript of a card guessing game is a sequence of pairs {(gt, dt)}n
t=1 that describes

that at turn t the Guesser guessed the card gt and that the Dealer drew the card dt. The
number of correct guesses during a game is the number of turns during which gt = dt. In our
game, the Guesser aims to maximize the number of correct guesses.

Guesser. A Guesser consists of two probabilistic functions:
1. State transition function: taking a memory state and a card drawn, and assigning a

new memory state.
2. Guessing function: receiving a memory state and outputing a card to guess.
A memory bounded Guesser can use only m bits to store the memory state, so we refer to
each state as {0, 1}m.

Randomness. We assume that the Guesser has random bits that both of the above functions
may use, e.g. to select a random element of a set as a guess. We differentiate between random
bits that are used on the fly, i.e. “read once”, and random bits that are accessed several times,
i.e. long lasting. We charge the Guesser for the latter but not for the former. The Guesser
may use her long lasting random bits for a secret permutation, seed for a pseudo-random
generator, and any random object that may assist her.

We are not concerned with the number of on the fly random bits. For our constructive
results, we measure the amount of long lasting random bits that the Guesser uses, as well as
suggest computationally efficient solutions which are good against computationally powerful
dealers. As for the impossibility results, we will show that they hold even if the Guesser is
computationally unbounded, uses cryptography, and regardless of how much randomness, of
both kinds, the Guesser uses.

Static vs. Adaptive Dealers. To show that the Guesser’s performance vary with the Dealer’s
abilities, we present the different flavors of Dealers we consider:

The most benign Dealer we consider is a Dealer that shuffles the deck at the beginning of
the game and draws cards one by one. This is equivalent to drawing cards at random
from the deck in every turn. We call this Dealer random shuffle as it remains with the
same shuffle throughout the game, and the deck is shuffled uniformly at random.

B. Menuhin and M. Naor 107:11

The second Dealer we consider may be familiar with the Guesser’s behavior and fixes the
deck in advance in some particular order. As the deck of the Dealer remains the same
throughout the game, we call this Dealer static.
The third possibility we consider is a Dealer that is adaptive and selects the cards
according to past guesses made by the Guesser, thoughtfully, in an adversarial manner.
For our impossibility result, we do not assume that the Dealer is familiar with the
Guesser’s algorithm. We call such a Dealer adversarial adaptive, or just adaptive
for short. If the Dealer is not even aware of the memory size of the Guesser, we call it
adaptive universal.

The static Dealer and the adaptive Dealer aims to minimize the number of correct guesses.
For this purpose, the static Dealer chooses a worst case ordering of the deck in advance,
and the adaptive Dealer uses a choosing strategy, a function from a transcript prefix
{(gt, dt)}k−1

t=1 to a distribution over a set of cards from which the Dealer samples a card dk to
draw. For example, a (silly) adaptive Dealer may look at the last guess and if the guessed
card is still in the deck then draw it.

While the Guesser is limited to using m bits of memory, the Dealer remembers everything
that happened since the beginning of the game and may act accordingly. This puts the
Guesser at a disadvantage, as the Guesser needs to remember and maintain both a sketch of
the history and in particular the parts of history that are relevant to the Dealer’s strategy.
In light of this, we observe that only some guesses may be fruitful. Call a guess reasonable
if it is one of the cards that the Dealer may draw. Clearly, a correct guess is necessarily
reasonable. Against a Dealer that draws cards from the deck at random, a reasonable guess
is a synonym for a card that was not played yet. As remarked above, when showing the
impossibility results we construct a computationally efficient Dealer. This emphasizes the
role of adaptivity, especially when compared to the Guesser.

The state of the Guesser consists of m bits and we assume that they are secret, i.e. that
the adversary cannot access them when choosing the next card. The only inforamtion the
Delaer has is the history (transcript).

3.1 Basic guessing techniques
In this section, we describe basic guessing techniques that a Guesser with m bits of memory
may use. For a comparison of these techniques, see the first three rows of Table 1.

Subset Guessing. The Guesser chooses a random (or predetermined) subset of cards
A ∈

([n]
m

)
and pretends as if there are only m cards in the deck. In every turn, the Guesser

guesses one of the cards from A that were not played so far. Each card requires one bit, so
this strategy requires m bits in total. Counting only turns in which the Dealer draw cards
from A, we get that the Guesser makes ln m correct guesses in expectation over Guesser’s
and Dealer’s randomness.

While this technique ensures that all guesses during the game are reasonable, only on m

turns a card from A will be drawn. These m cards have to be drawn at some point in the
game, and the Guesser is agnostic about when exactly these cards are selected. It follows
that this technique performs equally well against the different kinds of Dealers.

“Remember” the last k cards. With only log n memory bits, the Guesser can correctly
guess the last card in the game: Initialize memory with

∑n
i=1 x (mod n) and remove every

drawn card from the sum. Just before the last turn, the memory will contain the one

ITCS 2022

107:12 Keep That Card in Mind: Card Guessing with Limited Memory

card that was not drawn yet. This technique generalizes well to k cards by storing the
sums Sp =

∑n
x=1 xp (mod n) for p = 1, . . . , k and removing dp from the respective sums

when the card d is drawn. When k cards are left, solving the equation system reveals the
missing cards (See Chapter One in [21]). Since each sum requires log n bits, a total of k log n

bits are required to accurately identify the last k cards. This allows the Guesser to reasonably
guess in the last k turns, and by guessing at random, the Guesser makes ln k correct guesses
in expectation using k · log n bits of memory. Thus, a Guesser with m bits of memory can
score ln⌊ m

log n⌋ correct guesses in expectation, when playing against any Dealer.

As we saw, these techniques works well against any Dealer. The two methods (Remembering
last cards and subset guessing) are compatible and we can combine them against the random-
shuffle Dealer (but not against the others): of the m bits, use m/2 for the first method and
m/2 for second one. The last card from the subset is expected when there are n

1+m/2 < 2n
m

cards left until the end of the game. The Guesser “remembers” the last m
2 log n cards, so for

m ≤
√

n the two useful periods do not overlap. We get that a Guesser with m ≤
√

n memory
bits can expect to score 2 ln m− ln log n− ln 2. For m =

√
n, this is near optimal.

As we will see in Section 4, it is possible to do much better.

4 Static Dealer

We first present a guessing strategy that requires low memory and no randomness, and is
highly effective against the random-shuffle Dealer Section 4.1. We then show a randomized
version of it that requires low memory and little randomness, and is highly effective against
any static Dealer (Section 4.2). In Section 4.3 we show that these guessing techniques are
optimal against the random-shuffle Dealer, and that no memory bounded Guesser with less
memory can perform asymptotically better.

4.1 Following-Subsets Guesser vs. Random shuffle Dealer

We present a computationally efficient guessing technique that requires low memory, no
randomness, and is highly effective against the random-shuffle Dealer. We first show that
log2 n + log n memory bits suffice to score 1/2 log n correct guesses in expectation when
playing against the random-shuffle Dealer, and then we generalize this technique for Guessers
with more memory.

In terms of memory usage, we use the simple idea of summing cards as we did in the
“Remembering last cards” guessing technique. The general idea is to follow the cards that
appeared in various subsets of [n]. For each such subset we store two accumulators:
1. Sum of the values of the cards from the set seen so far (“remember last card”).
2. Number of cards from the set seen so far.
The memory needed for the two accumulators is O(log n) bits. In fact, for a set of size w

only 2 log w bits are needed, log w to count how many cards from the set appeared, and
another log w to recover the last card from the set, by storing the sum of all cards modw.
At the time that all but one card appeared (as can be indicated by the number of cards
accumulator), the Guesser can recover this single card, and be certain that this card wasn’t
played yet by the Dealer, and as a result, the Guesser can reasonably guess this card.

By tracking multiple sets, the Guesser may have more than one card to guess from.
Against the random-shuffle Dealer that plays with a randomly shuffled deck, this doesn’t
really matter which one is guessed (at least not for the expectation).

B. Menuhin and M. Naor 107:13

Subset construction. We consider all the subsets of the form [1− w] for w = 2i. I.e. the
subsets are:

[1− 2], [1− 4], [1− 8], [1− 16], [1− 32], . . . , [1− n]

If there is a subset (range) where a single card is missing, then this card is the current guess.
Observe that in this construction there cannot be competing good cards to guess. For

all k < k′, if a card j is missing from the set [1− k], then there cannot be a different one
missing from the set [1− k′]5.

▷ Claim 10. There exists a Guesser with log2 n + log n memory bits that can score 1/2 log n

correct guesses in expectation when playing against the random-shuffle Dealer.

Having more memory, we can have the subsets denser and have more subsets. Suppose
that the ratio between two successive ranges is 1 + δ for 0 < δ < 1. Then there are log1+δ n

such subsets. The probability of a set being useful now (i.e. that its last member arriving
does not belong to a subset that contains it) is δ/(1 + δ). The expected number of useful
sets is

δ

1 + δ
log1+δ n = δ

(1 + δ)ln(1 + δ) ln n.

This goes to ln n as δ goes to zero.
In terms of space, the number of bits required for tracking log1+δ n buckets is

log2
2 n · log1+δ 2 + log2 n.

Observe that the run time of the Guesser in every turn is at most O(log1+δ n), thus the
Guesser is computationally efficient.

▶ Corollary 11. For 0 < δ ≤ 1, there exists a Guesser with log2 n · log1+δ 2 + log n memory
bits that makes

δ

(1 + δ)ln(1 + δ) ln n

correct guesses in expectation when playing against the random-shuffle Dealer.

A visual representation of the Guesser is provided in Figure 1.

4.2 Random-Subsets Guesser vs. Static Dealer
Consider a static Dealer such that instead of shuffling the deck uniformly at random, selects
a worst case arrangement for the deck, knowing the Guesser’s algorithm (but not her random
bits). For example, assume that the Dealer puts the Card “1” at the top of the deck and the
Card “2” at the bottom of the deck. In this case, the Following-Subsets technique yields a
single correct guess. The fact that the Dealer doesn’t shuffle the deck uniformly but commits
to a deck arrangement as the game begins can be interpreted as a mild adversarial intent
and ability.

5 The Guesser may conclude more than one missing card in some cases. For example, if one card is
missing from [1 − k] and exactly two cards are missing from [1 − k′]. We ignore this ability because it
doesn’t seem to improve the Guesser’s performance.

ITCS 2022

107:14 Keep That Card in Mind: Card Guessing with Limited Memory

The Guesser can defend herself against such behavior by using a secret permutation π,
using her long lasting random bits. She uses π to randomize the subsets, where the subset
[1 − w] tracks the cards π(1), . . . , π(w). The analysis and performance of the Following-
Subsets technique holds as before, but O(n log n) bits of long lasting randomness are needed,
which we wish to avoid.

We will show a related construction. The Guesser uses her randomness to sample a secret
permutation from a family of pairwise independent permutations, for example, from the
family Hpair = {h(x) = ax + b : a ̸= 0, b ≥ 0} over a finite field, and assigns the card x to
the subset Sj if 2j−1 < h(x) ≤ 2j . That is, given a function h, the subset Sj is the set of all
x ∈ [N] such that h(x) ∈ {2j−1 + 1, . . . , 2j}.

The Guesser tracks the cards that appeared from each subset, as we did previously. In
each turn, the Guesser attempts to recover a guess from a specific subset and guesses it. In
detail, when t ≤ n/2 cards are left until the end of the game, the Guesser tries to recover a
guess from the subset Sj for j = log(n/2t). If all cards but one have appeared from Sj , then
the Guesser knows which card it is and guesses it. For the first half of the game, the Guesser
samples a random set of cards and guess cards that have not appeared from it. A procedural
description of the Guesser is provided in Algorithm 1.

Algorithm 1 Randomized-Subsets.

Sample a pairwise independent function h ∼ Hpair

Split the cards to subsets, such that x ∈ Sj if h(x) ∈ {2j−1 + 1, . . . , 2j}
Sample a set of cards A

while t cards left for t ∈ {n, . . . , n/2} do
Guess a random card from A that has not appeared
dt ← card drawn by Dealer
Discard dt from the subset Sj that contains it

while t cards left for t ∈ {n/2 + 1, . . . , 1} do
j ← ⌊log(n/2t)⌋ ▷ Subset to consider
if |Sj | = 1 then ▷ Can recover the last card

gt ← last card in Sj

else
gt ← don’t care

Guess gt

dt ← card drawn by Dealer
Discard dt from the subset Sj that contains it

We will consider what are the chances that, in some turn, a specific subset yields the
correct guess. That is, that the next card that the Dealer draws resides in a specific subset
with a single missing card.

▶ Theorem 12. There exists a Guesser that uses log2 n− log n + 2 memory bits and 2 log n

random bits and is expected to score at least 1
4 ln n correct guesses in a game against any

static Dealer.

4.2.1 Low-memory Case
The guessing techniques seen so far assumed that the Guesser has about log2 n bits of memory.
But what can be done if m is small, say m << log2n? It is possible to fall back to the subset
guessing technique and get ln m correct guesses in expectation. That would work for both
the random shuffle and the static cases (also for the adaptive). But we can do better.

B. Menuhin and M. Naor 107:15

Our Guessers can pretend as if the domain is of size 2
√

m and ignore all other cards! In
that case, the Following-Subsets guessing technique is expected to yield about 1/2 log 2

√
m =

1/2
√

m correct guesses against the random-shuffle Dealer. The Random-Subsets guessing
technique is expected to yield about 1

4 ln 2
√

m correct guesses against a static Dealer, i.e. also
O(
√

m).
So we get that for any m, a Guesser can score at least O(min{ln n,

√
m}) when playing

against any static Dealer.

4.3 Bounds on best possible Guesser against Random Dealer
We show that the guessers of the previous section are the best possible low memory guessers,
up to constants.

▶ Theorem 13. Any Guesser using m bits of memory can get at most O(min{ln n,
√

m})
correct guesses in expectation when playing against the random-shuffle Dealer.

Our proof will use compression argument. We will present an encoding scheme that utilizes
correct guesses to achieve shorter descriptions. As the expected length of the description is
bounded by the entropy of a random input, we get an upper bound on the expected number
of correct guesses for every memory bounded Guesser. Our proof for an adaptive Dealer
(Section 5) will follow a similar structure.

Let γ be the Guesser’s randomness and π be the shuffle sampled by the Dealer’s ran-
domness. Denote by G(γ) a Guesser with fixed randomness γ, and Dπ a static Dealer with a
deck arranged according to π. Let val(Dπ, G(γ)) be the number of correct guesses during the
last k = n1−β turns, for some β > 0. Let a random variable C = val(D,G) and let c be the
expected number of correct guesses during that last k turns where the expectation is taken
over Guesser’s and Dealer’s randomness. Denote by ΠB the set of all deck arrangements such
that the last k cards in the deck are the ordered set B. So we can consider the expectation
over the choice of the last k cards.

c = E
γ,π

[C] = E
γ,B

E
π∈ΠB

[C] =
∑

γ

E
B

E
π∈ΠB

[C|γ] · Pr [γ] .

In particular, we focus on bounding the term

E
B

E
π∈ΠB

[C|γ] = E
B

E
π∈ΠB

[
val(Dπ, G(γ))|γ

]
.

We claim that no Guesser can expect to guess correctly too many times at the last k

turns. We prove this by presenting an encoding scheme for ordered sets B (the last k cards
played by the Dealer) that utilizes correct guesses to achieve shorter descriptions. The encode
function works by simulating the Guesser on a deck of card, where the first n− k cards are
from [n]\B and the k cards are ordered according to B. Record the Guesser’s memory (m
bits) after the first n− k turns and from that point on see when the Guesser gives correct
guesses. These can be used to help describe B. Let the number of correct guesses be C.
If C ≥ α for some α > 0, then to record B, we note the location of some α places with a
correct guess and provide the remaining k − α missing values. So how many possibilities do
we have? For the memory 2m, for the correct guesses locations

(
k
α

)
and for the other values

an ordered set of size k − α out of n.
Recall that ΠB is the set of all deck arrangements for which the last k cards are the ordered

set B. The order of the first n− k cards may lead the Guesser to different memory states;
in terms of correct guesses, some of which may be more beneficial then others, especially

ITCS 2022

107:16 Keep That Card in Mind: Card Guessing with Limited Memory

for a Guesser with fixed randomness. Given an ordered set B and Guesser’s randomness γ,
let πB,γ ∈ ΠB be the deck arrangement for which the Guesser G(γ) makes the most correct
guesses in the last k turns. That is

∀π ∈ ΠB : val(Dπ, G(γ)) ≤ val(DπB,γ
, G(γ)).

The encoding function will simulate a game against a static Dealer with fixed deck order
πB,γ to encode B. Fix some prefix free code (Definition 7) for ordered subsets. The scheme
will use this code for the cases where there are not enough correct guesses to utilize.

▶ Definition 14 (EncodeOγ,α). To encode B, an ordered subset of [n] of size k, the function
EncodeOγ,α records and simulates a game between the Guesser G(γ) and the static Dealer
DπB,γ

. Let T ′ be the set of locations during the last k turns at which G(γ) makes a correct
guess, i.e.

T ′ = {n− ki ≤ t ≤ n− ki + ℓ− 1|gt is a correct guess}.

If |T ′| < α then the code is made of an indicator bit 0 and an explicit prefix-free description
of B.
If |T ′| ≥ α then let T be the first α turns at which the Guesser guessed correctly.
The code is made of:

1. An indicator bit 1.
2. Guesser’s memory state M at turn n− k (m bits).
3. Description of T , the locations of the first α correct guesses made by G(γ) during the

last k turns (log
(

k
α

)
bits).

4. Description of B \ {gt|t ∈ T} (log (n(n− 1) . . . (n− k + α + 1)) bits).

Similarly we define the decode function.

▶ Definition 15 (DecodeOγ,α). If the indicator bit is 0, then decode the set in the natural
way. If the indicator bit is 1, then parse the other bits as a 3-tuple (M, T, B1) as encoded by
EncodeOγ,α. The function DecodeOγ,α works by simulating and recording a partial game
between Dealer D∗

B1
and Guesser G(γ):

Initialize the Guesser G(γ) with memory state M at turn n − k and simulate k turns
against the Dealer D∗

B1
.

If in turn n− k ≤ t ≤ n the guess gt is tagged as correct (by T), then D∗
B1

draws the card
gt, otherwise D∗

B1
draws the next card from B1.

Output the set of cards drawn by Dealer D∗
B1

in the order they were drawn.
A procedural description of DecodeOγ,α is specified in Algorithm 2.

We assume that γ is given to us “for free” and is known during encoding and decoding of
the ordered set B. We justify this assumption in two different ways:

Fixing γ we can consider a specific encoding scheme for ordered sets EncodeOγ,α.
We can assume that we encode a pair (γ, B) where γ is written explicitly in some natural
way right next to EncodeOγ,α(B).

▷ Claim 16. The code produced by EncodeOγ,α is prefix-free.

▶ Corollary 17. If G(γ) makes C ≥ α correct guesses in the last k turns when playing against
the static Dealer DπB,γ

then EncodeOγ,α(B) is of length

log
(

2 · 2m ·
(

k

α

)
· n(n− 1) · · · (n− k + α + 1)

)

B. Menuhin and M. Naor 107:17

Algorithm 2 DecodeOγ,α.

Parameter: k ∈ [n], γ

Input: M ∈ {0, 1}m, T ∈
([k]

α

)
, B1 an ordered subset of [n] of size k − α

Initialize Guesser G(γ) at turn n− k with memory state M .
B′ ← ∅
for t ∈ {n− k, . . . , n} do

gt ← guess made by Guesser G(γ)
if gt is tagged as correct (according to T) then

dt ← gt

else
dt ← next card from B1

Append dt to B′

Update G(γ) memory state according to dt

return B′

So we get that the encoding scheme saves bits for every correct guess while “paying” only
m bits of memory. The contradiction comes from counting the number of the ordered sets B

in two different ways:
n(n− 1) · · · (n− k + 1) are all the possible options for ordered set B,
and

(
k
α

)
· n(n − 1) · · · (n − k + α + 1)2m+1 - upper bound on the possible options for

ordered set B according to the encoding.
So we get

α ≤ m + 1
ln(n− k)− ln k

≈ 1
β
· m + 1

ln n
.

As the code is prefix free, and from Lemma 9, we get that the probability over the choice
of B for any correct guess beyond m+1

β ln n drops exponentially, so the expected number of
correct guesses cannot be larger than that. By the above, we get that

E
B

[val(DπB,γ
, G(γ))|γ] ≤ m + 1

β ln n
+ 2.

Recall that πB,γ is the deck arrangement that ends with B for which the guesser G(γ) makes
the most correct guesses in the last k turns. Since the expected number of correct guesses
over the randomness of both the Guesser and the Dealer, is a convex combination of the
above, we conclude that the expected number of correct guesses in the last k turns is at most

c = E
γ,π

[C] ≤ m + 1
β ln n

+ 2.

Now, consider the expected number of correct guesses throughout the game, where the
expectation is over the deck shuffle and the Guesser’s randomness. Suppose that the Guesser
is perfect in the first n− k steps, in the sense that all the guesses are reasonable. Then the
expected number of correct guesses in the first turns is Hn −Hk = β ln n. So we get that
the total number of correct guesses is not expected to be better than

β ln n + m + 1
β ln n

+ 2.

Taking the best β to be
√

m + 1/ ln n, we get that this is not better than 2
√

m + 1 + 2.

ITCS 2022

107:18 Keep That Card in Mind: Card Guessing with Limited Memory

Note that this bound still holds even if the Guesser has at its disposal a large amount of
randomness that it can repeatedly access (i.e. storing the randomness is not charged to the
memory). So we conclude with tight bounds up to constants:

▶ Theorem 18. There is a Guesser using m bits of memory that obtains 1/2 min{log n,
√

m}
correct guesses in expectation against the random-shuffle Dealer and any Guesser using m

bits of memory can get at most O(min{ln n,
√

m}) correct guesses in expectation.

The same impossibility result also stands against the static Dealer.

5 Adaptive Dealer

We show that for every m there exists an adaptive Dealer Dm such that every Guesser
with m memory bits is expected to make at most ln m + 2 ln log n + O(1) correct guesses
when playing against Dealer Dm.

Our proof is similar in structure to that in Section 4.3 in showing that a too successful
Guesser can be used to compress a random set. We present our “Move-to-the-Back Dealer”
in Section 5.1. We describe an encoding scheme for unordered sets (Section 5.3) that utilizes
reasonable guesses made against our Dealer in order to achieve a shorter description of
unordered sets. In Section 5.4 we show that having too many reasonable guesses implies
compression, i.e. descriptions that are too short, and we get that the expected number of
reasonable guesses is bounded and thus the expected number of correct guesses. We analyze
the performance of the entire Dealer, as a whole, in Section 5.5.

In Section 5.6 we show a universal adaptive Dealer that doesn’t know how much memory
the Guesser has, against which any Guesser with m bits of memory can score at most
(1 + o(1)) · ln m + 8 ln log n + O(1).

5.1 Move-to-the-Back Dealer
Consider a game between some memory bounded Guesser and a Dealer who selects cards
adaptively in an adversarial manner. Assume that at some turn the Guesser makes an
incorrect guess. This guess may be incorrect because the Guesser had no luck, but it may
also be incorrect because that card was played earlier and the Guesser did not recall that.

The idea is to use the Guesser’s past guesses against her, and by doing so, forcing the
Guesser to keep track of both past guesses and cards drawn. We achieve this by making
incorrect available card guesses undrawable for some turns, i.e. “moving cards to the back of
the deck”. The Dealer we present begins the game with a properly shuffled deck, similarly to
the random-shuffle Dealer. At a certain turn the Dealer begins to “move cards to the back”
and every once in a while the Dealer reshuffles the deck, making undrawable cards available
again. Towards the end of the game our Dealer makes one last reshuffle and draws cards one
by one.

Epochs and the MtBE-strategy. The span of turns between reshuffles is called an epoch
In particular, for k ∈ [n], ℓ ∈ [k], the span of ℓ turns that begins when k cards are left, and
ends when k − ℓ + 1 cards are left, is called a (k, ℓ)-epoch. We refer to applying the strategy
of “moving cards to the back” during a span of turns (epoch) by MtBE-strategy (which
stands for Move-to-the-Back Epoch strategy).

B. Menuhin and M. Naor 107:19

▶ Definition 19 ((k, ℓ, u)-MtBE-strategy). Given k ∈ [n], ℓ ∈ [k] and u ≤ min {k − ℓ, ℓ},
when t cards are left s.t. k ≤ t ≤ k− ℓ + 1: Let At be the set of t available cards, let B′

t be the
set of reasonable guesses made by the Guesser since when there were k cards in the back and
until there are t, let ut = min{u, |B′

t|} and let Bt be the set of the first ut guesses from B′
t.

A Dealer that follows (k, ℓ, u)-MtBE-strategy, draws a card uniformly at random from the
set At \Bt when t cards are left in the deck for k ≤ t ≤ k − ℓ + 1.

The upper bound u is necessary to make sure that during any point in (k, ℓ)-epoch the
Dealer has cards to draw and that these cards are not too predictable. Though implicit, this
definition describes a reshuffle, as when t = k the set Bt is empty. A procedural description
of this strategy is specified in Algorithm 3.

Algorithm 3 (k, ℓ, u)-MtBE-strategy.

Parameter: k ∈ [n], ℓ ∈ [k], u ≤ min {k − ℓ, ℓ}, A ⊆
([n]

k

)
B ← ∅
for t ∈ {k, . . . , k − ℓ + 1} do

Draw a card c ∈R A \B and discard c from A

g ← guess made by Guesser
if g ∈ A and |B| < u then ▷ Move to the back

B ← B ∪ {g}

We notice that, when the Dealer follows a (k, ℓ, u)-MtBE-strategy, a guess is reasonable
if it is available and being guessed for the first time in the current epoch, assuming no
more than u cards were moved to the back. We get that moving cards to the back works
well against guessing techniques that repeat the same guess over and over. Recall that the
guessing techniques that were successful against a static Dealer (namely the Following-Subsets
technique from Section 4.1 and the Random-subsets technique from Section 4.2) did exactly
that.

Observe that the Dealer cannot move cards to the back for too many rounds, as cards
will become too predictable as At \Bt shrinks. Therefore, we apply the MtBE-strategy in a
sequence and reshuffle the deck at the beginning/end of each epoch. Reshuffling the deck
sets Bt to be the empty set again.

As the Dealer refrains from drawing reasonably guessed cards during an epoch, a significant
portion (if not all) of these cards would reside in the deck at the beginning of the following
epoch. Therefore, a Guesser can repeat her reasonable guesses from the previous epoch to
get another chance, and most of these guesses will be reasonable. Repeating reasonable
guesses can be done either by generating a pseudorandom sequence of guesses from which
some portion would be reasonable, or by tracking cards using memory. We discuss this in
detail after Lemma 22.

Finally, we present the Dealer, termed Move-to-the-Back Dealer, in all her glory.

▶ Definition 20 (Move-to-the-Back Dealer). Given m ≤ n
log2 n

, a Move-to-the-Back Dealer
Dm plays according to the strategy:
1. Shuffle the deck uniformly at random and draw cards one by one until n

8e log n cards are
left.

2. Play the MtBE-strategy d times in a sequence, where d = (n
8e log n − 2m · log n)/ℓ, each

epoch for ℓ = m · log n turns, and move at most u = ℓ cards to the back during each epoch.
Begin when k1 = n

8e log n cards are left in the deck.
3. When 2m log n cards left, shuffle the deck and draw cards one by one for the rest of the

game.

ITCS 2022

107:20 Keep That Card in Mind: Card Guessing with Limited Memory

Note that Dm is computationally efficient.
We refer to the turn at which the first epoch begins as n− k1. Observe that for every

epoch in the sequence played by our Dealer we get that ℓ ≤ ki − ℓ so we can set the maximal
number of cards moved to the back u to ℓ.

The main theorem of this section states that Move-to-the-Back Dealer works well against
any memory bounded guesser.

▶ Theorem 21. For any m, every Guesser with m bits of memory is expected to make at
most

ln m + 2 ln log n + O(1)

correct guesses when playing against the Move-to-the-Back Dealer Dm (Definition 20).

Thinking about this theorem, it is clear that a Guesser with m memory bits can easily
achieve ln m correct guesses in expectation by using the simple Subset Guessing strategy
(from Section 3.1). So essentially, this theorem states that moving cards to the back and
reshuffling every once in a while, is a very effective strategy against a memory bounded
Guesser.

5.2 Towards a proof
Consider m and Move-to-the-Back Dealer Dm. Let γ be the Guesser’s randomness and let ∆
be the Dealer’s randomness. Let Ri denote the number of reasonable guesses made during
the ith epoch. Let ri be the expectation of Ri taken over the Guesser’s and the Dealer’s
randomness, i.e.

ri = E
γ,∆

[Ri] .

To prove that our Dealer works well against any memory bounded Guesser we analyze
the reasonable guesses during a single epoch. We claim that no Guesser can expect to
make too many reasonable guesses during any of the epochs while our Dealer follows the
MtBE-strategy. Consider the (ki, ℓ)-epoch where the Dealer follows the MtBE-strategy.

▶ Lemma 22 (Informal). A Guesser with m bits of memory that plays against a Move-to-
the-Back Dealer Dm is expected to make at most

ri ≤ max
{

8 · e · k1 · ℓ
n

, m

}
+ 2.

reasonable guesses during any (ki, ℓ)-epoch played by the Dm.

Observe that when k1 cards are left, the probability that a random guess is a card that is
still in the deck is k1

n . By linearity of expectation we get that guessing randomly for ℓ turns
would yield at most k1ℓ

n reasonable guesses in expectation. These cards are a reasonable
guess exactly once during each epoch, as the Dealer avoids drawing them, but for the same
reason it follows that a significant portion of them would still be available (and reasonable)
in the next epoch. So we get that by using the same set of random guesses in each epoch the
Guesser can get near the claimed upper bound of reasonable guesses. On the other hand,
with carefully managed m bits, it may be possible in some cases to keep track of m cards that
have not appeared (as we did in the Subset guessing technique in Section 3.1). So essentially,
this lemma states that any memory bounded Guesser that plays against our Dealer cannot
do much better then guessing cards at random or tracking m cards.

B. Menuhin and M. Naor 107:21

At any turn, the Dealer’s strategy determines a distribution to sample a card from. In
our case, this distribution is uniform on the available cards that were not moved to the back.
We think of the Dealer as using precedence represented by a permutation π in order to make
this choice:

▶ Definition 23 (min-order). Given a permutation π ∈ Sn and a set C ⊆ [n] we say that a
card x ∈ C is the π-min-order card from C if x is the element of C with the smallest π value.

We describe the randomness ∆ of the Dealer in an indirect way: the Dealer has two
independent parts for its randomness, (i) a sequence of permutations {πt}n

t=1 and (ii) a set
D ∈

([n]
k1

)
. The way they are used is:

For turn 1 ≤ t ≤ n− k1 the Dealer draws the πt-min-order card from At \D.
For turn n− k1 + 1 ≤ t ≤ n the Dealer draws πt-min-order card from At \Bt.

As the Move-to-the-Back Dealer draws cards uniformly at random at the first n− k1 turns,
it follows that every set D can be kept for the last k1 turns, so this is well defined.

▶ Observation 24. If the sequence of permutations {πt}n
t=1 and a set D ∈

([n]
k1

)
are chosen

uniformly at random, then this implementation is equivalent to Definition 20.

Note that it was important to choose a permutation πt independently for each turn t, since
a common permutation π for all turns might leak information regarding the relative ranking
of cards that were moved to the back at different times during an epoch. In particular, for
any two reasonable guesses during some epoch, the earlier one has a higher probability of
preceding the latter. As a result, the earliest reasonably guessed card has a higher probability
of being drawn at the first turn in the following epoch, i.e., cards are drawn in a non-uniform
manner.

We conclude that:

ri = E
γ,∆

[Ri] = E
γ,{πt},D

[Ri] =
∑

γ,{πt}
E
D

[Ri|γ, {πt}] · Pr [γ, {πt}] .

The next two sections are dedicated to bounding the term

E
D

[Ri|γ, {πt}]

for any permutations sequence {πt} and any Guesser’s randomness γ.

5.3 Encoding scheme
In order to bound the expected number of reasonable guesses in a single epoch we present
an encoding scheme for subsets of [n] of size k1. The encoding scheme utilizes reasonable
guesses against our Dealer during any of the epochs to achieve a shorter description.

Consider some Guesser G that plays against the Move-to-the-Back Dealer Dm (Defini-
tion 20) and fix one of the epochs (ki, ℓ)-epoch played by Dm. For every triplet γ, {πt}n

t=1, D

we associate the Guesser G(γ) with fixed randomness γ and the Dealer Dm,(D,{πt}) with fixed
randomness that corresponds to {πt}n

t=1 and D as the last cards to be played.
Fix some prefix-free code (Definition 7) for sets of size k1. The encoding scheme will use

this code for the cases when there are not enough reasonable guesses to utilize.

▶ Definition 25 (EncodeU). To encode a set D ∈
([n]

k1

)
, the function EncodeUγ,{πt},α,i

simulates a game between Guesser G(γ) and Dealer Dm,(D,{πt}).
Denote by T ′ the set of turns during the (ki, ℓ)-epoch at which G(γ) made a reasonable

guess, i.e.

T ′ = {n− ki ≤ t ≤ n− ki + ℓ− 1|gt is a reasonable guess}.

ITCS 2022

107:22 Keep That Card in Mind: Card Guessing with Limited Memory

If |T ′| < α, then the code is made of an indicator bit set to 0 and an explicit prefix free
representation of D.
If |T ′| ≥ α, then let T be the first α turns from T ′ during which the Guesser guessed
reasonably during the (ki, ℓ)-epoch. The code is made of:

1. Indicator bit set to 1 (1 bit).
2. Guesser’s memory state M at turn n− k1 (m bits).
3. Description of T , the first α turns at which the Guesser guessed reasonably during the

(ki, ℓ)-epoch (log
(

ℓ
α

)
bits).

4. Binary vector V of length α that tags which of the reasonable guesses described in T

were also correct (α bits6).
5. Description of D \ {gt|t ∈ T} (log

(
n

k1−α

)
bits).

We first define the Dealer we will use during the decoder simulation. Since we simulate
this Dealer, we can break the usual course of the game. In particular, we will assume that
the Dealer begins playing the game at the middle and with a partial deck, that the Dealer is
aware of the Guesser’s guess before placing a card and that the Dealer can place cards that
do not reside in the deck.

▶ Definition 26. The Dealer D∗
m,(D1,{πt},T,V) plays according to the MtBE-strategy, as

configured for Dm (Definition 20) with few modifications:
When t cards are left for t ∈ {k1, . . . , ki + 1}: play according to the MtBE-strategy with
deck D1 moving cards to the back when they are guessed and still in the deck.
When t card are left, for t ∈ {ki, . . . , ki − ℓ + 1}, and until the αth reasonable guess:
if turn t is tagged both as reasonable (by T) and correct (by V), then draw the card gt

guessed by the Guesser. Otherwise draw the πt-min-order card from the deck that was not
moved to the back.
Once α reasonable guesses occurred during the ith epoch, stop playing.

A procedural description of the Dealer D∗
m,(D1,{πt},T,V) is specified in Algorithm 4.

Note that after turn n− k1, the Dealer simulated by the encoder recognizes a guess as
reasonable if it is from D and wasn’t drawn yet. But when the Dealer simulated by the
decoder observes a guess of a card not in D1, then the Dealer cannot tell whether this is a
card that will turn to be reasonable at the (ki, ℓ)-epoch or a card that has been played before
turn n− k1. Therefore, the Dealer simulated by the decoder recognizes a guess as reasonable
(and moves it to the back) if it is from D1. We will soon see that this behavior allows the
decoder to reproduce the same game transcript, and by doing so, decode the original set.

We now define the decode function.

▶ Definition 27 (DecodeUγ,{πt},α,i). If the indicator bit is 0 then decode a set from the
remaining bits in the natural way. Otherwise, the function parses the remaining bits as
a 4-tuple (M, V, T, D1) as encoded by EncodeUγ,{πt},α,i, and then simulates and records a
partial game between the Dealer D∗

m,(D1,{πt},T,V) (see Definition 26) and the Guesser G(γ):
Initialize Guesser G(γ) with memory state M at turn n− k1 and simulate a game against
D∗

m,(D1,{πt},T,V) until the αth reasonable guess in the (ki, ℓ)-epoch.
Let D2 be the set of card guesses that were tagged as reasonable (by T).
Output D′ = D1 ∪D2.

A procedural description of DecodeUγ,{πt},α,i is specified in Algorithm 5.

6 Though a shorter representation is possible, it suffices for our purpose.

B. Menuhin and M. Naor 107:23

Algorithm 4 Behavior of D∗
m,(D1,{πt},T,V) while simulated by DecodeUγ,{πt},α,i.

Parameter: D1 ⊆
([n]

k−α

)
, {πt}n

t=1, T , V , α, i

for j ∈ [i] do ▷ For epochs prior to i

B ← ∅
for t ∈ {kj , . . . , kj − ℓj + 1} do

Draw the πt-min-order card from D1 \B and discard from D1
gt ← guess made by Guesser
if gt ∈ D1 and |B| < u then ▷ Move to the back

B ← B ∪ {gt}
B ← ∅ ▷ ith epoch
for t ∈ {ki, . . . , ki − ℓ + 1} do

gt ← guess made by Guesser
if gt is tagged as both reasonable and correct (according to T and V) then

dt ← gt

else
dt ← πt-min-order card from D1 \B and discard from D1

Draw dt

if gt is tagged as reasonable (according to T) then ▷ Move to the back
B ← B ∪ {gt}

if |B| = α then
Stop playing

Algorithm 5 DecodeUγ,{πt},α,i.

Parameter: ki ∈ [n], ℓ ∈ [ki], {πt}n
t=1, γ

Input: x ∈ {0, 1}∗

if x1 = 0 then
Parse D′ from x

return D′

Parse M ∈ {0, 1}m, V ∈ {0, 1}α, T ∈
([ℓ]

α

)
, D1 ∈

([n]
k1−α

)
from x

Initialize Guesser G(γ) at turn n− k1 with memory state M .
D2 ← ∅
for t ∈ {k1, . . . , ki + 1} do

Simulate a turn between G(γ) and D∗
m,(D1,{πt},T,V) and update Guesser’s memory

accordingly
for t ∈ {ki, . . . , ki − ℓ + 1} do

Simulate a turn between G(γ) and D∗
m,(D1,{πt},T,V) and update Guesser’s memory

accordingly
gt ← guess made by Guesser G(γ)
if gt is tagged as reasonable (according to T) then

D2 ← D2 ∪ {gt}
return D1 ∪D2

ITCS 2022

107:24 Keep That Card in Mind: Card Guessing with Limited Memory

We assume that both the Dealer’s precedence {πt}n
t=1 and the Guesser’s randomness γ

are given to us “for free” and are known during encoding and decoding of the set D. We
justify this assumption in two different ways:

Fixing γ and {πt}n
t=1 (i.e. fix the Dealer’s random source for the order) we can consider

an encoding scheme for sets D ∈
([n]

k1

)
.

We can assume that we encode a triplet (γ, {πt}n
t=1, D) where γ and π are written

explicitly in some natural way right next to EncodeUγ,{πt},α,i(D).

▷ Claim 28. The code produced by EncodeUγ,{πt},α,i is prefix-free.

Denote by Xα ⊆
([n]

k1

)
the collection of all sets D ∈

([n]
k1

)
such that G(γ) makes at least α

reasonable guesses against Dm,(D,{πt}) during the (ki, ℓ)-epoch. Observe that all sets in Xα

are encoded by EncodeUγ,{πt},α,i to bit strings of the same length. Denote by w(m, k1, ℓ, α)
the length in bits of EncodeUγ,{πt},α,i(D) for D ∈ Xα.

▶ Corollary 29. If G(γ) makes at least α reasonable guesses against the Dealer Dm,(D,{πt})
during the (ki, ℓ)-epoch, then the length of EncodeUγ,{πt},α,i(D) is

w(m, k1, ℓ, α) ≜ log
(

2 · 2m · 2α ·
(

n

k1 − α

)
·
(

ℓ

α

))
.

Looking at the term from this corollary, it can be seen that for every increase in α we save
roughly log n bits and pay roughly 1 + log ℓ bits. In our Dealer (Definition 20) each epoch
consists of ℓ = m log n turns, so we get that we expect to save order of log n− log m bits for
every reasonable guess. We analyze this in detail in Claim 30.

5.4 Upper Bound on the Number of Reasonable Guesses
The function EncodeUγ,{πt},α,i yields descriptions of lengths that varies with α. For example,
for α = 0, we get that in every simulation there are at least 0 reasonable guesses, so all
descriptions are of length log

(
2 · 2m

(
n
k1

))
, which is much larger than storing the set explicitly.

We first claim that making more reasonable guesses implies shorter descriptions, and more
specifically, that each additional guess saves at least a bit. We then describe the amount of
reasonable guesses required to achieve compression, i.e. descriptions of length shorter than
the entropy of a random input. Consider a random set D chosen uniformly at random from([n]

k1

)
. The entropy of D is

H(D) = log
∣∣∣∣([n]

k1

)∣∣∣∣ = log
(

n

k1

)
.

▷ Claim 30. For every m < n, k1 ∈ [n/8e], ℓ ∈ [k1], if α ≥ max
{ 8·e·k1·ℓ

n , m
}

then:
1. The encoding length decreases with reasonable guesses:

w(m, k1, ℓ, α + 1) ≤ w(m, k1, ℓ, α)− 1.

2. The encoding achieves compression:

w(m, k1, ℓ, α) < log
(

n

ki

)
.

Combining the above we get that no Guesser can make too many reasonable guesses
against our Dealer. Recall the random variable Ri that denotes the number of reasonable
guesses that a Guesser makes during the (ki, ℓ)-epoch. Consider the sequence of epochs
{(ki, ℓ)-epoch}d

i=1 played by the Move-to-the-Back Dealer Dm (from Definition 20).

B. Menuhin and M. Naor 107:25

▷ Claim 31. For every Guesser G with m bits of memory, and for every epoch i ∈ [d], for
β < ℓ − max

{ 8·e·k1·ℓ
n , m

}
, the probability that G makes more than β + max

{ 8·e·k1·ℓ
n , m

}
reasonable guesses during the (ki, ℓ)-epoch, is at most

Pr
D∈([n]

k1)

[
Ri ≥ max

{
8 · e · k1 · ℓ

n
, m

}
+ β

]
≤ 2−β .

What about the upper bound u? Recall that while the Dealer follows the (k, ℓ, u)-MtBE-
strategy (Definition 19), only the first u reasonably guessed cards are moved to the back;
therefore only the first u reasonable guesses are guaranteed to be distinct. Any reasonable
guess beyond u may be useless for set encoding. Further, if the Guesser is somehow able to
reach u reasonable guesses, then moving cards to the back works in the Guesser’s favor (as
cards become predictable), and the probability to guess reasonably grows with every guess.
We address this concern by recalling that our Move-to-the-Back Dealer (Definition 20) plays
the MtBE-strategy in a sequence of epochs for which u = ℓ, therefore, it is impossible to
make more than than u reasonable guesses in an epoch. In Section 5.6 we present a Dealer
for which u < ℓ, and we restate the Claim to consider the upper bound u (see Claim 37).

As a corollary we get a bound on the expected number of reasonable guesses.

▶ Corollary 32 (Formal). For every Guesser with m bits of memory, every epoch i ∈ [d], the
expected number of reasonable guesses during (ki, ℓ)-epoch is at most

ri ≤ max
{

8 · e · k1 · ℓ
n

, m

}
+ 2.

For this corollary to be meaningful we require that k1 ≤ n
8e , as otherwise it implies that

ri < ℓ, i.e. that the expected number of reasonable guesses in the epoch is less than the
number of turns in the epoch, which is always true. Observe this corollary is meaningful for
every epoch played by our Dealer as the first epoch begins at turn n− n

8e log n .
Denote by ci the expected number of correct guesses during the ith epoch, where the

expectation is taken over the Guesser’s and Dealer’s randomness γ, ∆.

▶ Lemma 33. For every Guesser G with m bits of memory and every epoch i ∈ [d], the
expected number of correct guesses during the (ki, ℓ)-epoch is at most

ci ≤
max

{ 8·e·k1·ℓ
n , m

}
+ 2

ki − ℓ− u
.

5.5 Analysis of the Move-to-the-Back Dealer
Having established a bound for a single epoch, we are ready to conclude the analysis of our
Dealer and show its overall performance.

We recall that our Move-to-the-Back Dealer (Definition 20) starts the game with a properly
shuffled deck from which the Dealer draws until k1 cards are left, the Dealer then follows
the MtBE-strategy over and over again and reshuffles every ℓ turns, and when 2m · log n

cards are left, our Dealer shuffles the deck one last time and draws cards randomly until
the end of the game. In particular, the Dealer plays the MtBE-strategy in a sequence of d

epochs, where d = (n
8e log n − 2m · log n)/ℓ, each epoch consists of ℓ = m · log n turns, and as

for every epoch it holds that ℓ ≤ ki − ℓ it follows that we can set u = ℓ.
In the upcoming lemma, we will analyze and bound the cumulative number of correct

guesses that any memory bounded Guesser can expect to make throughout the sequence of
epochs.

ITCS 2022

107:26 Keep That Card in Mind: Card Guessing with Limited Memory

▶ Lemma 34. For m ≤ n
log2 n

, every Guesser with m memory bits that play against the
Move-to-the-Back Dealer Dm is expected to guess correctly at most 1 time in total throughout
the sequence of epochs that follows the MtBE-strategy.

▶ Theorem 35. For any m ≤ n there exists a Dealer Dm such that every Guesser G with m

memory bits is expected to make at most ln m + 2 ln log n + O(1) correct guesses throughout
the game.

5.6 Universal Move-to-the-Back Dealer
So far, we have configured our Dealer differently according to the amount of memory bits
that the Guesser had. Using the building blocks and ideas seen so far in the section, we
present a universal adaptive Dealer that works well against any Guesser with any amount
of memory, without knowing how much memory the Guesser has. Albeit, with a drawback
that a Guesser with m bits of memory is expected to make slightly more than ln m correct
guesses. I.e. a Guesser with perfect memory is expected to achieve more than

(1 + o(1)) · ln n + 8 ln log n + O(1)

correct guesses in expectation.
The starting point for the universal Dealer is the same as that of the Move-to-the-Back

Dealer (Definition 20). Similarly, our universal Dealer separates the turns to epochs during
which the Dealer follows the MtBE-strategy. However, the epochs will shrink and become
shorter as more cards are drawn, and the analysis will be different.

▶ Definition 36. The universal Dealer Duniversal plays according to the strategy:
1. Shuffle the deck uniformly at random, and draw cards one by one until n

8e log2 n
cards are

left in the deck.
2. Play the MtBE-strategy in a sequence of d epochs, where d = loglog n

(
n

8e log6 n

)
, such that

the ith epoch begins when ki = n
8e log1+i n

cards are left, i.e. the length of the ith epoch is
ℓi = ki(1− 1

log n), and during each epoch at most ui = 2ℓi

log2 n
cards are moved to the back.

3. When log4 n cards left, shuffle the deck one last time and draw cards at random.

We begin our analysis in the same way as we did for the Move-to-the-Back Dealer. We
consider the same implementation of the Dealer (Section 5.2), and the same encoding scheme
for sets (Section 5.3).

Recall the discussion about the maximal number of cards moved to the back during an
epoch, right before Corollary 32. In that discussion we argued that we may ignore the role
of the bound u since it is impossible to make more than u = ℓ reasonable guesses. This is
not the case for the universal Dealer, as during the ith epoch at most ui = ℓi

log2 n
cards are

moved to the back. We restate, without proof, Claim 31.

▷ Claim 37 (Restate Claim 31). For every Guesser G with m bits of memory, and every
epoch i ∈ [d], for β < ui − max

{ 8·e·k1·ℓi

n , m
}

, the probability that G makes more than
β + max

{ 8·e·k1·ℓi

n , m
}

reasonable guesses during the ith epoch, is at most

Pr
D∈([n]

k1)

[
Ri ≥ max

{
8 · e · k1 · ℓi

n
, m

}
+ β

]
≤ 2−β .

As the universal Dealer begins following the MtBE-strategy when n
8e log2 n

cards are left, we
get that the probability for more than max{ ℓi

log2 n
, m} reasonable guesses decays exponentially.

B. Menuhin and M. Naor 107:27

It follows that the expected number of reasonable guesses per epoch depends on the amount
of memory the Guesser has. In particular, this Claim clarifies that we must analyze differently
the epochs for which m ≥ ℓi

log2 n
than the other epochs.

Therefor, for every m, we separate the epochs into two eras. During the low-memory era,
moving cards to the back works in the Dealer’s favor as the MtBE-strategy guarantees that
no Guesser can guess well. During the high-memory era, moving cards to the back works in
the Guesser’s favor, and we assume that the Guesser gains the maximal advantage from it.

▷ Claim 38. During the low-memory era, that is for i ∈ [d] and m < ℓi

log2 n
, any Guesser

with m bits of memory, makes on expectation at most

ci ≤
1

log(n)− 2

correct guesses during the (ki, ℓi)-epoch.

The above Claim states that the MtBE-strategy works well while the Guesser has
insufficient memory. However, as mentioned already, once the Guesser reaches the maximal
number of cards moved to the back, the MtBE-strategy works in the Guesser’s favor. We
want to bound the Guesser’s benefit during such an epoch.

▷ Claim 39. For every epoch, the expected number of correct guesses that any Guesser
makes, is at most

ln (log(n) + 3) .

We therefore have two upper bounds on the number of correct guesses, one for the
low-memory era (Claim 38) and a general one (Claim 39) that we will use for epochs during
the high-memory era.

▶ Theorem 40. There exists an adaptive universal Dealer against which any Guesser with m

bits of memory can score at most

(1 + o(1)) · ln m + 8 ln log n + O(1)

correct guesses in expectation.

References
1 Noga Alon, Omri Ben-Eliezer, Yuval Dagan, Shay Moran, Moni Naor, and Eylon Yogev.

Adversarial laws of large numbers and optimal regret in online classification, 2021. arXiv:
2101.09054.

2 Shai Ben-David, Allan Borodin, Richard M. Karp, Gábor Tardos, and Avi Wigderson. On
the power of randomization in on-line algorithms. Algorithmica, 11(1):2–14, 1994. doi:
10.1007/BF01294260.

3 Omri Ben-Eliezer, Rajesh Jayaram, David Woodruff, and Eylon Yogev. A framework for
adversarially robust streaming algorithms. In PODS’20, pages 63–80, 2020.

4 Omri Ben-Eliezer and Eylon Yogev. The adversarial robustness of sampling. In Proceedings
of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
PODS’20, pages 49–62, 2020.

5 Allan Borodin and Ran El-Yaniv. Online computation and competitive analysis. Cambridge
University Press, 1998.

6 Kai-Min Chung, Tai-Ning Liao, and Luowen Qian. Lower Bounds for Function Inversion
with Quantum Advice. In 1st Conference on Information-Theoretic Cryptography (ITC 2020),
volume 163, pages 8:1–8:15, 2020.

ITCS 2022

http://arxiv.org/abs/2101.09054
http://arxiv.org/abs/2101.09054
https://doi.org/10.1007/BF01294260
https://doi.org/10.1007/BF01294260

107:28 Keep That Card in Mind: Card Guessing with Limited Memory

7 Thomas M. Cover and Joy A. Thomas. Elements of Information Theory, 2nd Edition. Wiley,
2006.

8 Persi Diaconis, Ron Graham, Xiaoyu He, and Sam Spiro. Card guessing with partial feedback.
CoRR, October 2020. arXiv: 2010.05059. arXiv:2010.05059.

9 Persi Diaconis and Ronald Graham. The analysis of sequential experiments with feedback to
subjects. The Annals of Statistics, 9 (1), January 1981.

10 Itai Dinur. On the Streaming Indistinguishability of a Random Permutation and a Random
Function. In Advances in Cryptology – EUROCRYPT 2020, Lecture Notes in Computer
Science, pages 433–460, 2020.

11 Uriel Feige. A randomized strategy in the mirror game, 2019. arXiv:1901.07809.
12 Ronald Fisher. A method of scoring coincidences in tests with playing cards. In Proceedings

of the Society for Psychical Research Volume XXXIV, pages 181–185. Society of Psychical
Research, July 1924. URL: http://iapsop.com/archive/materials/spr_proceedings/spr_
proceedings_v34_1924.pdf.

13 Sumegha Garg and Jon Schneider. The Space Complexity of Mirror Games. In 10th Innovations
in Theoretical Computer Science Conference (ITCS 2019), volume 124, pages 36:1–36:14, 2018.

14 Rosario Gennaro and Luca Trevisan. Lower bounds on the efficiency of generic cryptographic
constructions. In Proceedings 41st Annual Symposium on Foundations of Computer Science
(FOCS ‘00), pages 305–313, 2000.

15 Moritz Hardt and David P. Woodruff. How robust are linear sketches to adaptive inputs? In
Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing, STOC ’13,
pages 121–130, 2013.

16 Avinatan Hassidim, Haim Kaplan, Yishay Mansour, Yossi Matias, and Uri Stemmer. Ad-
versarially robust streaming algorithms via differential privacy. In NeurIPS 2020, 2020.

17 Joseph Jaeger and Stefano Tessaro. Tight Time-Memory Trade-Offs for Symmetric Encryption.
In Advances in Cryptology – EUROCRYPT 2019, Lecture Notes in Computer Science, pages
467–497, 2019.

18 Haim Kaplan, Yishay Mansour, Kobbi Nissim, and Uri Stemmer. Separating adaptive streaming
from oblivious streaming, 2021. arXiv:2101.10836.

19 Jon Kleinberg and Éva Tardos. Algorithm Design. Pearson, 2006.
20 Robin A. Moser and Gábor Tardos. A constructive proof of the general lovász local lemma. J.

ACM, 57(2), 2010.
21 S. Muthukrishnan. Data Streams: Algorithms and Applications. Foundations and Trends in

Theoretical Computer Science, 1(2):117–236, 2005.
22 Mihai Pătraşcu. Cuckoo hashing, 2010. WebDiarios de Motocicleta. Blog post available at

http://infoweekly.blogspot.com/2010/02/cuckoo-hashing.html.
23 George Santayana. The Life of Reason or The Phases of Human Progress: Introduction and

Reason in Common Sense, Volume VII, Book One. MIT Press, 1905.
24 Ido Shahaf, Or Ordentlich, and Gil Segev. An Information-Theoretic Proof of the Streaming

Switching Lemma for Symmetric Encryption. In 2020 IEEE International Symposium on
Information Theory (ISIT), pages 858–863, 2020.

25 Edward O. Thorp. Beat the Dealer: A Winning Strategy for the Game of Twenty-One. Vintage,
1962.

26 Wikipedia. Card counting — Wikipedia, the free encyclopedia, 2004. [Online; accessed 11-
June-2021]. URL: https://en.wikipedia.org/w/index.php?title=Card_counting&oldid=
1016853614.

27 David P. Woodruff and Samson Zhou. Tight bounds for adversarially robust streams and
sliding windows via difference estimators, 2020. arXiv:2011.07471.

http://arxiv.org/abs/2010.05059
http://arxiv.org/abs/1901.07809
http://iapsop.com/archive/materials/spr_proceedings/spr_proceedings_v34_1924.pdf
http://iapsop.com/archive/materials/spr_proceedings/spr_proceedings_v34_1924.pdf
http://arxiv.org/abs/2101.10836
http://infoweekly.blogspot.com/2010/02/cuckoo-hashing.html
https://en.wikipedia.org/w/index.php?title=Card_counting&oldid=1016853614
https://en.wikipedia.org/w/index.php?title=Card_counting&oldid=1016853614
http://arxiv.org/abs/2011.07471

	1 Introduction
	1.1 Our Results
	1.2 Our Approaches and Techniques
	1.3 Related Work

	2 Preliminaries
	2.1 Information Theory

	3 Introduction to the Card Guessing Game
	3.1 Basic guessing techniques

	4 Static Dealer
	4.1 Following-Subsets Guesser vs. Random shuffle Dealer
	4.2 Random-Subsets Guesser vs. Static Dealer
	4.2.1 Low-memory Case

	4.3 Bounds on best possible Guesser against Random Dealer

	5 Adaptive Dealer
	5.1 Move-to-the-Back Dealer
	5.2 Towards a proof
	5.3 Encoding scheme
	5.4 Upper Bound on the Number of Reasonable Guesses
	5.5 Analysis of the Move-to-the-Back Dealer
	5.6 Universal Move-to-the-Back Dealer

