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Abstract
In this note, we design a discrete random walk on the real line which takes steps 0, ±1 (and one
with steps in {±1, 2}) where at least 96% of the signs are ±1 in expectation, and which has N (0, 1)
as a stationary distribution. As an immediate corollary, we obtain an online version of Banaszczyk’s
discrepancy result for partial colorings and ±1, 2 signings. Additionally, we recover linear time
algorithms for logarithmic bounds for the Komlós conjecture in an oblivious online setting.
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1 Introduction

In the (oblivious) online vector discrepancy problem an adversary fixes vectors {vi}i∈[t] in
advance and the objective is to assign signs ϵi ∈ {−1, 1} based only on vectors v1, . . . , vi to
maintain that ∥

∑
i≤t′ ϵivi∥∞ is small at all times t′ ∈ [t]. Vector balancing includes a number

of different problems in discrepancy theory including Spencer’s [17] work on set discrepancy.
Spencer’s “six standard deviations suffice” result states that given vectors v1, . . . , vn ∈ {0, 1}n

there exists a ±1-signing such that ∥
∑

i≤n ϵivi∥∞ ≤ 6
√

n. Conjecturally, however, the
restriction to {0, 1}n vectors can be relaxed to a norm condition. In particular, the Komlós
conjecture states that given v1, . . . , vt, each of at most unit length, there exists a sequence
of signs ϵ1, . . . , ϵt such that ∥

∑
i≤t ϵivi∥∞ = O(1). Despite substantial effort, the Komlós

conjecture is still open and the best known bounds due to Banaszczyk [4] give the existence
of a sequence of signs so that ϵ1, . . . , ϵt such that ∥

∑
i≤t ϵivi∥∞ = O(

√
min(log n, log t)).

However, these original proofs were by their nature non-algorithmic.
More recent research in theoretical computer science has focused on developing algorithmic

versions of these results starting with the Bansal [5] and Lovett and Meka [15] polynomial-
time algorithms for Spencer’s [17] “six standard deviations suffice”. Since then, there have
been several other constructive discrepancy minimization algorithms [16, 14, 6, 8, 7, 13].
Notably for our purposes, Bansal, Dadush, and Garg [6] and Bansal, Dadush, Garg, and
Lovett [7] have made the work of Banaszczyk [4] algorithmic. However in all cases these
algorithms require all vectors to be known at the start and hence do not extend to the
online setting.
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101:2 A Gaussian Fixed Point Random Walk

In the online setting, significant work has been devoted to the case where vi are drawn from
a fixed (and known) distribution p supported on [−1, 1]n. In the setting where p is uniform
on [−1, 1]n, Bansal and Spencer [11] showed one can maintain maxt′≤t∥

∑
i≤t′ ϵivi∥∞ ≤

O(
√

n log t). In the more general setting where p is a general distribution supported on
[−1, 1]n, Aru, Narayanan, Scott, and Venkatesan [3] achieved a bound of On(

√
log t) (where

the implicit dependence on n is super-exponential) and Bansal, Jiang, Meka, Singla, and
Sinha [9] (building on work of Bansal, Jiang, Singla, and Sinha [10]) achieved an ℓ∞ guarantee
of O(

√
n log(nt)4).

In this work we focus on the online setting where the only guarantee is ∥vi∥2 ≤ 1. The
only previous work in this oblivious online setting is the following result of Alweiss, Liu, and
Sawhney [1].

▶ Theorem 1 ([1, Theorem 1.1]). For any vectors v1, v2, · · · , vt ∈ Rn with ∥vi∥2 ≤ 1
for all i ∈ [t], there exists an online algorithm Balance(v1, · · · , vt, δ) which maintains
∥
∑

i≤t′ ϵivi∥∞ = O (log(nt/δ)) for all t′ ∈ [t] with probability at least 1− δ.

The proof in [1] relies on a coupling procedure which compares the distribution of
∑

i≤t ϵivi

to a Gaussian at each stage via a stochastic domination argument and then deduces the
necessary tail bounds. In this work, we recover Theorem 1 (in fact with a slightly improved
dependence) as well as the following corollary.

▶ Corollary 2. For any vectors v1, v2, · · · , vt ∈ Rn with ∥vi∥2 ≤ 1 for all i ∈ [t], there exists an
online algorithm which assigns ϵi ∈ {±1, 2} and maintains ∥

∑
i≤t′ ϵivi∥∞ = O(

√
log(nt/δ))

for all t′ ∈ [t] with probability at least 1− δ.

This result essentially recovers the best known bound on the Komlós conjecture due
to Banaszczyk [4] in an online algorithmic fashion, with the slight defect of requiring a
+2-signing option. Furthermore due to the online nature of the algorithm, the algorithm will
run in essentially input-sparsity time which is substantially faster than the Gram-Schmidt
walk [7] which gives an algorithmic proof of the result of [4] (without the defect of requiring
a +2-signing option). Additionally, our signings achieve small discrepancy for all prefixes,
while the Gram-Schmidt walk only achieves small discrepancy for the entire sum.

1.1 Approach
Our results are based on the observation that there exists Markov chains on R with transition
steps of 0,±1 (where most of the steps are ±1) or ±1, 2 such that N (0, 1) is a stationary
distribution (as well as N (0, σ2) for appropriate values of σ). Now, rotational invariance of
normal distributions in Rn allows us to use these one-dimensional walks to give a random
signing of an input vector v with ∥v∥2 ≤ 1 (with signs either {0,±1} or {±1, 2}) that
preserves the n-dimensional normal distribution exactly. Note that the argument crucially
uses that we are maintaining the normal distribution exactly, as opposed to inductively
maintaining a weaker subgaussian property (that was used in previous works [7, 1]).

1.2 Additional Remarks
We note that no one-dimensional Markov chains with steps ±1 can preserve N (0, 1) exactly,
as

∑
n∈Z(−1)ne−n2/2 ≠ 0 and therefore N (0, 1) fails the natural “parity constraint” that the

total mass on even integers and odd integers is the same. Our arguments suggest that this
is essentially the only constraint. More precisely, an extension of the arguments presented
likely demonstrates that for any distinct integers {a, b, c} where there is at least one positive
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and one negative integer and there is no “modular constraint”, i.e. gcd(b − a, c − b) = 1,

then there is a Markov chain on R with signs {a, b, c} and stationary distribution N (0, σ2)
as long as σ2 is a sufficiently large constant (in terms of a, b, c).

1.3 Organization
The remainder of the paper is organized as follows. In Section 2 we construct the required
Markov chain on R with transition steps of 0,±1 such thatN (0, σ2) is a stationary distribution.
In Section 3 we extend this to a walk with transition steps of ±1, 2 as long as σ ≥ 1. Finally,
in Section 4 we deduce the various algorithmic consequences.

1.4 Notation
Throughout this paper let N (µ, σ2) denote the Gaussian random variable with mean µ and
variance σ2. Furthermore, let nnz({vi}i∈S) denote the total number of non-zero entries of
the vectors {vi}i∈S .

2 0, ±1 walk

▶ Definition 3. Given σ > 0 and f ∈ [−1/2, 1/2], consider the following random walk on
f + Z. For n ≥ 1 the state n + f moves to n + 1 + f with probability pσ(n + f) and to
n− 1 + f otherwise, and the state −n + f moves to −n− 1 + f with probability pσ(n− f)
and to −n + 1 + f otherwise. Finally, the state f moves to 1 + f with probability pσ(f), to
state −1 + f with probability pσ(−f), and stays at f with probability rσ(f). Here

pσ(x) =
∑
j≥1

(−1)j−1 exp
(
− j2 + 2xj

2σ2

)

rσ(f) =
∞∑

j=−∞
(−1)j exp

(
− j2 + 2fj

2σ2

)

for all x ∈ R.

These series clearly absolutely converge. We prove that these indeed correspond to
consistent probabilities giving a walk, and additionally show that this walk preserves the
discrete Gaussian distribution on f + Z (i.e., N (0, σ2)|f+Z).

▶ Lemma 4. For σ > 0 and f ∈ [−1/2, 1/2], we have that pσ(n± f) ∈ (0, 1) for all n ≥ 0,
that pσ(f) + rσ(f) + pσ(−f) = 1, that rσ(f) ∈ [0, 1], and that furthermore

rσ(f) ≤ e−σ2

if σ ≥ 1/2. Additionally, N (0, σ2)|f+Z is stationary under a step of random walk defined in
Definition 3 with parameters σ, f .

Proof. First, note that exp(−(j2 + 2xj)/σ2) is strictly decreasing on integers j ≥ 1 as long
as x ≥ −1/2. Therefore pσ(x) is given by an alternating series with strictly decreasing terms,
and we immediately deduce

0 < pσ(x) ≤ exp
(
− j2 + 2xj

2σ2

)
< 1.

ITCS 2022
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Since n + f, n− f ≥ −1/2 for n ≥ 0, we see that pσ(n± f) ∈ (0, 1), as desired. Second, note
that

pσ(−f) + rσ(f) + pσ(f) = 1

holds as trivially everything except the j = 0 term of the sum for rσ(f) cancels. Third, we
have for u = exp(−1/(2σ2)) and v =

√
−1 exp(−f/(2σ2)) that |u| < 1 and v ̸= 0, hence the

Jacobi triple product identity (see [2] for a short but slick proof) yields

rσ(f) =
∞∑

j=−∞
uj2

v2j =
∞∏

j=1
(1− u2j)(1 + u2j−1v2)(1 + u2j−1v−2)

=
∞∏

j=1
(1− e−j/σ2

)(1− e−(2j+2f−1)/(2σ2))(1− e−(2j−2f−1)/(2σ2)).

(1)

Since f ∈ [−1/2, 1/2] we see each term is nonnegative and clearly less than 1, so rσ(f) ∈ [0, 1]
is immediate. Therefore we indeed have a well-defined walk. In fact, we see that

rσ(f) ≤ rσ(0) ≤
∞∏

j=1
(1− e−j/σ2

)3 ≤
⌊σ2⌋∏
j=1

(1− e−j/σ2
)3 ≤ (1− e−1)3⌊σ2⌋.

This is at most exp(−σ2) for σ ≥ 2, and we can further numerically check that rσ(0) ≤
exp(−σ2) for σ ∈ [1/2, 2].

Now we show that this walk preserves N (0, σ2)|f+Z. Note that

1− pσ(x) =
∑
j≥0

(−1)j exp
(
− j2 + 2xj

2σ2

)
.

Therefore

pσ(x− 1) exp
(
− (x− 1)2

2σ2

)
+ (1− pσ(x + 1)) exp

(
− (x + 1)2

2σ2

)
=

∑
j≥1

(−1)j−1 exp
(
− (j + x− 1)2

2σ2

)
+

∑
j≥0

(−1)j exp
(
− (j + x + 1)2

2σ2

)

= exp
(
− x2

2σ2

)
.

Since the pdf of N (0, σ2)|f+Z at n + f is proportional to exp(−(n + f)2/(2σ2)), we find
that the random walk preserves this distribution at n + f for all n ̸= 0 (applying the above
equation at values x = n± f). Furthermore, the final distribution is clearly still supported
on f + Z, therefore the probability at n = 0 is also preserved as the total sum is 1. ◀

We immediately derive a walk which preserves N (0, σ2) by piecing together all f ∈
[−1/2, 1/2). Let Jσ

x be the random variable defined by writing x = n + f , where f ∈
[−1/2, 1/2), and then performing a step according to Definition 3.

▶ Lemma 5. If Z = N (0, σ2) then Z + Jσ
Z is distributed as N (0, σ2).
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3 ±1, 2 walk

We now consider a variant of the above random walk with discrete ±1 and 2 steps. Recall the
definition of pσ(x) and rσ(f) from earlier. We will require the following numerical estimate
which is deferred to Appendix A.

▶ Lemma 6. If σ ≥ 1 and f ∈ [−1/2, 1/2] then

pσ(1 + f) ≥ rσ(f) exp
(

2f + 1
2σ2

)
.

▶ Remark 7. This inequality is immediate for large σ as the left uniformly tends to 1/2 and
the right uniformly decays to zero.

▶ Definition 8. Given σ ≥ 1 and f ∈ [−1/2, 1/2], consider the following random walk on
f +Z. For n ≥ 2 the state n+f moves to n+1+f with probability pσ(n+f) and to n−1+f

otherwise. For n ≥ 1 the state −n + f moves to −n− 1 + f with probability pσ(n− f) and
to −n + 1 + f otherwise. The state f moves to 1 + f with probability pσ(f), to state −1 + f

with probability pσ(−f), and moves to 2 + f with probability rσ(f). Finally, for n = 1 the
state 1 + f moves to 2 + f with probability pσ(1 + f)− rσ(f) exp((2f + 1)/(2σ2)) and to f

otherwise.

▶ Lemma 9. For σ ≥ 1 and f ∈ [−1/2, 1/2], we have that the walk in Definition 8 is
well-defined, and that N (0, σ2)|f+Z is stationary under a step of the walk with parameters
σ, f .

Proof. That all probabilities are valid follows from Lemma 4, except that we need to
additionally verify

pσ(1 + f) ≥ rσ(f) exp
(

2f + 1
2σ2

)
.

This is precisely Lemma 6.
To verify that N (0, σ2)|f+Z is preserved under the walk defined in Definition 8, recall that

N (0, σ2)|f+Z is preserved under walk defined in Definition 3 by Lemma 4. This walk only
differs in its probabilities that f goes to f, 2 + f and that 1 + f goes to f, 2 + f . Therefore
the probabilities at n + f for n ∈ Z \ {0, 2} are correct. Since the probabilities sum to 1, it is
enough to check the probability at 2 + f is correct. It therefore suffices to show that

rσ(f) exp
(
− f2

2σ2

)
+

(
pσ(1 + f)− rσ(f) exp

(
2f + 1

2σ2

))
exp

(
− (1 + f)2

2σ2

)
+ (1− pσ(3 + f)) exp

(
− (3 + f)2

2σ2

)
= exp

(
− (2 + f)2

2σ2

)
.

We already verified in the proof of Lemma 4 that

pσ(x− 1) exp
(
− (x− 1)2

2σ2

)
+ (1− pσ(x + 1)) exp

(
− (x + 1)2

2σ2

)
= exp

(
− x2

2σ2

)
.

Plugging in x = 2 + f gives the desired identity, upon canceling the terms containing
rσ(f). ◀

Again, we immediately derive a walk which preserves N (0, σ2) by piecing together all
f ∈ [−1/2, 1/2). Let Rσ

x be the random variable defined by writing x = n + f , where
f ∈ [−1/2, 1/2), and then performing a step according to Definition 3.

▶ Lemma 10. If σ ≥ 1 and Z = N (0, σ2) then Z + Rσ
Z is distributed as N (0, σ2).

ITCS 2022
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4 Algorithmic Applications

We now derive a number of algorithmic consequences.

Algorithm 1 PartialColoringσ(v1, · · · , vt).

1 w0 ← N (0, σ2In)
2 for 1 ≤ i ≤ t do
3 σ′ ← σ/∥vi∥2
4 x′ ← ⟨wi−1, vi⟩/∥vi∥2

5 wi ← wi−1 + Jσ′

x′ vi.

6 w ← wt − w0

Algorithm 2 Balancingσ(v1, · · · , vt).

1 w0 ← N (0, σ2In)
2 for 1 ≤ i ≤ t do
3 σ′ ← σ/∥vi∥2
4 x′ ← ⟨wi−1, vi⟩/∥vi∥2

5 wi ← wi−1 + Rσ′

x′ vi.

6 w ← wt − w0

In both Balacingσ and PartialColoringσ, J and R are sampled independently every
time. Additionally, note that Balacingσ is only well-defined when σ ≥ 1. Finally, we clearly
see that PartialColoringσ assigns a sign of ±1 to each given vector online, or chooses
to omit it (a sign of 0), while Balancingσ does the same except that the sign 2 is the
additional alternative.

Our first algorithm application is a (weak version) of the partial coloring lemma.

▶ Theorem 11. Let ∥v1∥2, . . . , ∥vt∥2 ≤ 1 and δ ∈ (0, 1/2). With probability at least 1− δ we
have that wℓ−w0 in PartialColoring1(v1, . . . , vt) is 2

√
2 log(2nt/δ)-bounded for all times

ℓ ∈ [t]. Furthermore, with probability at least 1− δ we have that wt − w0 is 2
√

2 log(2n/δ)-
bounded. Finally, at least 96.3% of vectors are used with probability 1− exp(−Ω(t)).

Proof. By Lemma 5 we immediately see that wi ∼ N (0, σ2In) for all i ∈ [t]. The discrepancy
results follow by trivial Gaussian estimates. For example, we see that the jth coordinate
of wℓ is

√
2 log(2nt/δ)-bounded with probability at least δ/(2nt). Taking a union bound

over 0 ≤ ℓ ≤ t and j ∈ [n] yields that w0, . . . , wt are bounded with probability at least 1− δ.
Therefore each difference is also bounded.

The fraction of vectors used being large follows from Chernoff’s inequality and the fact
that at every step, conditional on all previous choices, a vector is used with probability at
least

min
f∈[−1/2,1/2]

(1− r1(f)) ≥ 0.9639. ◀

Our second algorithmic application recovers the online vector balancing results of Alweiss,
Liu, and Sawhney [1, Theorems 1.1, 1.2].
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▶ Theorem 12. Let ∥v1∥2, . . . , ∥vt∥2 ≤ 1, δ ∈ (0, 1/2), and set σ =
√

log(t/δ). With
probability at least 1 − δ we have that wℓ − w0 in PartialColoringσ(v1, · · · , vt) is
2
√

2 log(t/δ) log(2nt/δ)-bounded for all times ℓ ∈ [t]. Furthermore, with probability at
least 1− δ we have that wt − w0 is 2

√
2 log(t/δ) log(2n/δ)-bounded. Finally, all vectors are

used with probability at least 1− δ.

Proof. The proof is essentially identical to that of Theorem 11. The only difference is that
we see that at each step, a vector is not used with probability at most

max
f∈[−1/2,1/2]

rσ(f) ≤ e−σ2
= δ

t

due to our choice of σ, by the inequality in Lemma 4. A union bound shows that all vectors
are used with probability at least 1− δ. ◀

In fact, we can design an algorithm achieving the same bounds by using Algorithm 1 for any
value of σ ≥ 1 as follows. To do this, first run Algorithm 1, and then rerun Algorithm 1 on
the vectors which were given a 0 sign until no vectors remain (note that this can still be done
in an online manner). By Lemma 4, specifically rσ(f) ≤ e−σ2

, this process will terminate
with probability 1− δ in O(σ−2 log(t/δ)) rounds. Each run produces a random vector with
variance O(σ2) in every coordinate, hence the total variance is O(log(t/δ)) per coordinate as
desired.

Finally we recover an online version of Banaszczyk [4], except using ±1, 2-signings. The
proof is identical to that of Theorem 11 so we omit it.

▶ Theorem 13. Let ∥v1∥2, . . . , ∥vt∥2 ≤ 1 and δ ∈ (0, 1/2). With probability at least 1− δ we
have that wℓ−w0 in Balancing1(v1, . . . , vt) is 2

√
2 log(2nt/δ)-bounded for all times ℓ ∈ [t].

Furthermore, with probability at least 1− δ we have that wt − w0 is 2
√

2 log(2n/δ)-bounded.

All three algorithmic procedures are online.

4.1 Computational details
In the previous section the above idealized algorithms ignored the cost of computing rσ(f)
and pσ(n± f) to sufficient precision in order to be used for algorithmic purposes. The key
claim is that one can approximate the above sums within δ in poly(log(σ/δ))-time.

In order to do so first note that we can truncate the sums pσ(n± f) and rσ(f) to values
of j ≥ 1 where (j2 + 2(n± f)j)/(2σ2) = O(log(σ/δ)). We now note that∣∣∣∣ex −

m∑
j=0

xj

j!

∣∣∣∣ ≤ xm+1

(m + 1)!e
max(0,x),

so taking m = Θ(log(σ/δ)) gives a very good approximation to exp(−(j2 + 2(n± f)j)/(2σ2))
in the range of terms considered. Now we can compute the desired sums by interpreting it
as a sum of low degree (i.e. O(log(σ/δ))) polynomials on a sequence of integers, which can
be evaluated quickly.

In the implementation of the algorithms above, at time t if we are given a vector shorter
than 1/(2t2), we deterministically add it but ignore it for the purposes of maintaining a
Gaussian distribution. These vectors have total length at most 1, so contribute only O(1)
discrepancy in each coordinate. For the remaining vectors, we have σ ≤ 2t2. We thus
can approximate the relevant probabilities to within δ/(2t2) efficiently, and then sample

ITCS 2022
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appropriately. This will preserve the Gaussians in question up to total variation distance of
at most∑

t≥1

δ

2t2 ≤ δ.

Therefore, the running time of all probability computations is poly(log(t/δ)) at
time t. Thus the modified versions of the algorithms in Theorems 11–13 run in
O

(
t poly(log(t/δ)) + n + nnz({vi}i∈[t])

)
time with discrepancy guarantees that are an abso-

lute multiplicative factor worse. (The second term arises due to sampling the initial Gaussian
point.) This running time essentially matches (up to logarithmic factors) the results of
[1] and make progress towards input-sparsity time algorithms for discrepancy, a direction
suggested by [12].

A variant of our algorithms which run in O
(
t poly(log(t/δ)) + n log t + nnz({vi}i∈[t])

)
time is achieved by “disregarding vectors” at time t which are shorter than 1/(2t2) (as above)
and otherwise grouping vectors by length into dyadic scales and running the algorithms
separately with independent randomness on each of the scales. Note that when vector lengths
are forced to live in a dyadic scale then sampling an appropriate Gaussian leads us to compute
the above probabilities only when σ ∈ [1, 2] and hence directly evaluation of the series is
efficient.
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A Proof of Lemma 6

Proof of Lemma 6. First note rσ(f) ≤ rσ(0) and rσ(0) ≤ r1(0) follow immediately from
the Jacobi triple product identity Equation (1) and nonnegativity. Therefore it suffices to
prove that

pσ(1 + f) ≥ exp(1/σ2)r1(0)

for all σ ≥ 1 and f ∈ [−1/2, 1/2].
First suppose that σ ∈ [1, 2]. Then since pσ(1 + f) is an alternating series with decreasing

terms,

pσ(1 + f) ≥ exp
(
− 1 + 2(1 + f)

2σ2

)
− exp

(
− 2 + 2(1 + f)

σ2

)
.

Fixing σ, the right has derivative

− 1
σ2 exp

(
− 1 + 2(1 + f)

2σ2

)
+ 2

σ2 exp
(
− 2 + 2(1 + f)

σ2

)
,

which we can check is positive for f underneath some cutoff and negative above this cutoff.
Therefore the earlier expression is minimized over f ∈ [−1/2, 1/2] at some f ∈ {±1/2}.
Then, numerical checking shows that for each case f ∈ {±1/2} the resulting expression is
minimized on σ ∈ {1, 2} for similar reasons. We find the true minimum is at f = 1/2 and
σ = 1, which gives

pσ(1 + f) ≥ 0.12 ≥ er1(0) ≥ exp(1/σ2)r1(0).

Now we suppose that σ ≥ 2. Let 2k − 1 be the smallest odd integer larger than
σ − 1− f , which is clearly always a positive integer as σ ≥ 1 and f ≤ 1/2. We know that
t 7→ exp(−t2/(2σ2)) is convex for t ≥ σ, hence t 7→ exp(−(t2 + 2(1 + f)t)/(2σ2)) is certainly
convex and decreasing for t ≥ σ− 1− f . Therefore the difference between the values at j and
j + 1 is at least the difference between the values at j + 1 and j + 2 when j ≥ 2k− 1, yielding
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pσ(1 + f) =
∑
j≥1

(−1)j−1 exp
(

− j2 + 2(1 + f)j
2σ2

)
≥

∑
j≥2k−1

(−1)j−1 exp
(

− j2 + 2(1 + f)j
2σ2

)
≥ 1

2

( ∑
j≥2k−1

(−1)j−1 exp
(

− j2 + 2(1 + f)j
2σ2

)
+

∑
j≥2k

(−1)j exp
(

− j2 + 2(1 + f)j
2σ2

))
= 1

2 exp
(

− (2k − 1)2 + 2(1 + f)(2k − 1)
2σ2

)
≥ 1

2 exp
(

− (σ + 1 − f)2 + 2(1 + f)(σ + 1 − f)
2σ2

)
≥ 1

2 exp
(

− 4σ2 + 16σ + 15
8σ2

)
≥ 1

2 exp(−71/32) exp(1/σ2)

≥ 0.05 exp(1/σ2) ≥ exp(1/σ2)r1(0). ◀
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