
On Polynomially Many Queries to NP or QMA
Oracles
Sevag Gharibian #Ñ

Department of Computer Science and Institute for Photonic Quantum Systems (PhoQS),
Paderborn University, Germany

Dorian Rudolph #Ñ

Department of Computer Science and Institute for Photonic Quantum Systems (PhoQS),
Paderborn University, Germany

Abstract
We study the complexity of problems solvable in deterministic polynomial time with access to an NP
or Quantum Merlin-Arthur (QMA)-oracle, such as PNP and PQMA, respectively. The former allows
one to classify problems more finely than the Polynomial-Time Hierarchy (PH), whereas the latter
characterizes physically motivated problems such as Approximate Simulation (APX-SIM) [Ambainis,
CCC 2014]. In this area, a central role has been played by the classes PNP[log] and PQMA[log], defined
identically to PNP and PQMA, except that only logarithmically many oracle queries are allowed.
Here, [Gottlob, FOCS 1993] showed that if the adaptive queries made by a PNP machine have a
“query graph” which is a tree, then this computation can be simulated in PNP[log].

In this work, we first show that for any verification class C ∈ {NP,MA,QCMA,QMA,QMA(2),
NEXP,QMAexp}, any PC machine with a query graph of “separator number” s can be simulated
using deterministic time exp(s logn) and s logn queries to a C-oracle. When s ∈ O(1) (which
includes the case of O(1)-treewidth, and thus also of trees), this gives an upper bound of PC[log], and
when s ∈ O(logk(n)), this yields bound QPC[logk+1] (QP meaning quasi-polynomial time). We next
show how to combine Gottlob’s “admissible-weighting function” framework with the “flag-qubit”
framework of [Watson, Bausch, Gharibian, 2020], obtaining a unified approach for embedding PC

computations directly into APX-SIM instances in a black-box fashion. Finally, we formalize a simple
no-go statement about polynomials (c.f. [Krentel, STOC 1986]): Given a multi-linear polynomial p
specified via an arithmetic circuit, if one can “weakly compress” p so that its optimal value requires
m bits to represent, then PNP can be decided with only m queries to an NP-oracle.

2012 ACM Subject Classification Theory of computation → Quantum complexity theory; Theory
of computation → Complexity classes

Keywords and phrases admissible weighting function, oracle complexity class, quantum complexity
theory, Quantum Merlin Arthur (QMA), simulation of local measurement

Digital Object Identifier 10.4230/LIPIcs.ITCS.2022.75

Related Version Full Version: arXiv:2111.02296 [19]

Funding Sevag Gharibian: DFG grants 432788384 and 450041824.
Dorian Rudolph: DFG grant 432788384.

Acknowledgements We thank Eric Allender, Johannes Bausch, Stephen Piddock, James Watson,
and Justin Yirka for helpful discussions.

1 Introduction

The celebrated Cook-Levin Theorem [13, 35] and Karp’s 21 NP-complete problems [29] laid
the groundwork for the theory of NP-completeness to become the de facto “standard” for
characterizing “hard” problems. Indeed, in the decades since, hundreds of decision problems

© Sevag Gharibian and Dorian Rudolph;
licensed under Creative Commons License CC-BY 4.0

13th Innovations in Theoretical Computer Science Conference (ITCS 2022).
Editor: Mark Braverman; Article No. 75; pp. 75:1–75:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sevag.gharibian@upb.de
http://groups.uni-paderborn.de/fg-qi/
https://orcid.org/0000-0002-9992-3379
mailto:dorian.rudolph@upb.de
https://dorianrudolph.com
https://orcid.org/0000-0002-2440-7388
https://doi.org/10.4230/LIPIcs.ITCS.2022.75
https://arxiv.org/abs/2111.02296
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

75:2 On Polynomially Many Queries to NP or QMA Oracles

have been identified as NP-complete (see, e.g., [16]). Yet, despite the success of this theory,
it soon became apparent that finer characterizations were needed to capture the complexity
of certain hard problems.

In this direction, Stockmeyer [42] defined the Polynomial Hierarchy (PH), of which
the second level will interest us here. Specifically, one may consider ΣP

2 = NPNP (i.e. an
NP-machine with access to an NP-oracle) or ∆P

2 = PNP (i.e. a P machine with access to an
NP-oracle). Here, our focus is on the latter, defined as the set of decision problems solvable
by a deterministic polynomial-time Turing machine making polynomially many queries to an
oracle for (say) SAT. Like NP, PNP has natural complete problems, such as that shown by
Krentel [34]: Given Boolean formula ϕ : {0, 1}n → {0, 1}, does the lexicographically largest
satisfying assignment x1 · · ·xn of ϕ have xn = 1?

Restricting the number of NP queries. In 1982, in pursuit of yet finer characterizations,
Papadimitriou and Zachos [38] asked: What happens if one considers problems “slightly
harder” than NP, i.e. solvable by a P machine making only logarithmically many queries
to an NP-oracle? This class, denoted PNP[log], contains both NP and co-NP (since the P
machine can postprocess the answer of the NP-oracle by negating said answer), and is thus
believed strictly harder than NP. The following decade saw a flurry of activity on this topic
(see Section 1.3); for example, Wagner [43, 44] showed that deciding if the optimal solution
to a MAX-k-SAT instance has even Hamming weight is PNP[log]-complete.

This led to the natural question: Is PNP[log] = PNP? If one restricts the PNP machine to
make all NP queries in parallel (i.e. non-adaptively), denoted P∥NP, then Hemachandra [27]
and Buss and Hay [10] have shown P∥NP = PNP[log]. Thus, adaptivity appears crucial; so,
Gottlob [22] next allowed dependence between queries as follows: One may view PNP as a
directed acyclic graph (DAG), whose nodes represent NP queries, and directed edge (u, v)
indicates that query v depends on the answer of query u. Denote this as the “query graph”
of the PNP computation (Definition 23). In 1995, Gottlob showed that any PNP computation
whose query graph is a tree can be simulated in PNP[log]. To the best of our knowledge, this
is the current state of the art regarding PNP versus PNP[log].

Developments on the quantum side. A few years later, the complexity theoretic study of
“quantum constraint satisfaction problems” began in 1999 with Kitaev “quantum Cook-Levin
theorem” [32], which states that the problem of estimating the “ground state energy” of
a local Hamiltonian (k-LH) is complete for Quantum Merlin Arthur (QMA, a quantum
generalization of NP). Particularly appealing is the fact that k-LH is physically motivated:
It encodes the problem of estimating the energy of a quantum system when cooled to its
lowest energy configuration.

More formally, k-LH generalizes the problem MAX-k-SAT, and is specified as follows.
As input, we are given a (succinct) description of a Hermitian matrix H =

∑
iHi ∈ C2n×2n ,

where each Hermitian Hi is a local “quantum clause” acting non-trivially on at most k
qubits (out of the full n-qubit system). The ground state (i.e. optimal assignment) is then
the eigenvector of H with the smallest eigenvalue, which we call the ground state energy
(i.e. optimal assignment’s value). Thus, understanding the low temperature properties
of a many-body system is “simply” an eigenvalue problem for some succinctly described
exponentially large matrix H. Since Kitaev’s work, a multitude of other physical problems
have been shown to be QMA-complete (see, e.g., surveys [36, 8, 17]).

The formalization of PQMA[log]. In 2014, Ambainis tied the study of QMA and PNP[log]

together by discovering the first PQMA[log]-complete problem (PQMA[log] is defined as PNP,
but with the NP-oracle replaced with a QMA-oracle): Approximate Simulation (APX-SIM).

S. Gharibian and D. Rudolph 75:3

To define APX SIM, suppose we wish to simulate the experiment of cooling down a quantum
many-body system, and then performing a local measurement so as to extract information
about the ground state’s properties. Formalized (roughly) as a decision problem, we must
decide, given Hamiltonian H describing the system, observable A describing a local measure-
ment, and inverse polynomially gapped thresholds α and β, whether there exists a ground
state |ψ⟩ of H with expected value ⟨ψ|A|ψ⟩ below α.

For context, APX-SIM can be viewed as a quantum variation of Wagner’s PNP[log]-
complete problem above [43, 44] (does the optimal solution to a MAX-SAT instance have
even Hamming weight?), since both problems ask about properties of optimal solutions
to quantum and classical constraint satisfaction problems, respectively. However, in the
quantum setting, APX-SIM has the additional perk of being strongly physically motivated.
This is because often in practice, one is not interested in the ground state energy, but in
properties of the ground state itself (e.g. does it exhibit certain quantum phenomena? When
does it undergo a phase transition?) [17]. APX-SIM models the “simplest” experiment for
computing such ground state properties, making no assumptions about additional information
the experimenter might a priori have. (For example, in APX-SIM, although the goal is to
probe the ground state of H, one is not given the corresponding ground state energy as
input. This is crucial, both complexity theoretically and physically, since in practice an
experimenter does not a priori know the ground state energy, as it is QMA-complete to
compute to begin with!)

PQMA[log] versus PQMA and this paper. This sets up the question inspiring the current
work – is PQMA[log] = PQMA? In 2020, Gharibian, Piddock, and Yirka [18] showed that
PQMA[log] = P∥QMA, for P∥QMA defined as P∥NP but with an NP-oracle. This gave a
quantum analogue of P∥NP = PNP[log] [27, 10], although it required completely different
proof techniques. In this paper, we thus set our sights on the next step: Gottlob’s work
on PNP computations with trees as query graphs [22]. What we are able to achieve is not
just a quantum analogue of [22], but a significant strengthening in multiple directions for
both NP and QMA: Our main result considers query graphs of bounded separator number
(which includes bounded treewidth, and hence trees), applies to a host of verification classes
including NP and QMA, and gives non-trivial (quasi-polynomial) upper bounds even beyond
the bounded separator number case. Along the way, we show how to combine the techniques
used with the existing work on APX-SIM and PQMA[log], yielding a unified framework for
mapping PQMA-type problems directly to APX-SIM instances.

1.1 Our results

To state our results, define QV := {NP,MA,QCMA,QMA,QMA(2),NEXP,QMAexp} and
QV+ := QV ∪ {StoqMA} (formal definitions in Section 2). This is the set of classical and
quantum verification classes for which our results will be stated. However, our framework
applies in principle to verification classes C beyond these sets; the main properties we require
are for C to allow promise gap amplification and classical preprocessing before verification.

Recall now that an NP query graph is a DAG encoding an arbitrary PNP computation,
where nodes correspond to NP queries; denote this an NP-DAG. Replacing NP with any
C ∈ QV+, we arrive at the notion of a C-DAG (Definition 23). As expected, deciding
whether a given C-DAG corresponds to an accepting PC computation is itself a PC-complete
problem (Lemma 26). To thus obtain new upper bounds on PC computations, in this work,
we parameterize a given C-DAG via its separator number, s.

ITCS 2022

75:4 On Polynomially Many Queries to NP or QMA Oracles

Briefly, a graph G = (V,E) on n vertices has a separator of size s(n) if there exists a
set of at most s(n) vertices whose removal splits the graph into at least two (non-empty)
connected components (Definition 18). G has separator number [23] s(n) if, (1) for all subsets
Q ⊆ V , the vertex-induced graph on Q has a separator of size at most s(n), and (2) s(n) is
the smallest number for which this holds. Denote by C-DAGs a C-DAG of separator number
s, where we write C-DAG1 for the case of s ∈ O(1). Note that treewidth upper bounds
separator number [23].

1. Deciding C-DAGs. Our main result is the following. For clarity, by “deciding” a C-DAG,
we mean deciding whether it encodes an accepting or rejecting PC computation.

▶ Theorem 1. Fix any C ∈ QV and efficiently computable function s : N → N. Then,
C-DAGs ∈ DTIME

(
2O(s(n) logn))C[s(n) logn], for n the number of nodes in G.

In words, any PC computation with a query graph of separator number s can be simulated by
a classical deterministic Turing machine running in time 2O(s(n) logn) and making s(n) logn
queries to a C-oracle. With Theorem 1 in hand, we obtain the following sequence of results.

First, we significantly strengthen Gottlob’s [22] TREES(NP) = PNP[log] result to the
constant separator number case (s = O(1)) and a broad range of verification classes C:

▶ Theorem 2. For any C ∈ QV, C-DAG1 is PC[log]-complete.

In words, any PC computation with a query graph of separator number O(1) is decidable in
PC[log]. Second, an advantage of Theorem 1 is that it scales with arbitrary s(n). Thus, to our
knowledge, we obtain the first upper bounds for PC involving quasi-polynomial resources:

▶ Corollary 3. For all integers k ≥ 1 and C ∈ QV, C-DAGlogk ∈ QPC[logk+1(n)], where QP
denotes quasi-polynomial time (Definition 12).

In words, any PC computation with a query graph of polylogarithmic separator number is
decidable in quasi-poly-time with polylog C-queries. In general, s(n) may scale as O(n), in
which case Theorem 1 does not yield a non-trivial bound. Whether this can be improved is
left as an open question (Section 1.4).

Third, an example of a verification class which is not known to satisfy promise gap
amplification is StoqMA (see, e.g., [3]). Here, we also obtain non-trivial bounds, albeit
weaker ones:

▶ Theorem 4. Fix C = StoqMA and any efficiently computable function s : N→ N. Then,
C-DAGs ∈ DTIME

(
2O(s(n) log2 n))C[s(n) log2 n].

Note the extra log factor in the exponents – this prevents Theorem 4 from recovering result
P∥StoqMA = PStoqMA[log] [18] (P∥StoqMA corresponds to a StoqMA-DAG with s(n) = 1).
Nevertheless, we do recover and improve on [18] when we instead consider the case of
bounded depth query graphs next.

Finally, Gottlob [22] also studied query graphs of bounded depth. The next theorem is
an extension of his result. We define C-DAGd as C-DAGs, except now we consider query
DAGs of depth1 at most d (as opposed to separator number s).

1 We define depth(G) as the maximum distance to any node u from the closest v with indeg(v) = 0.

S. Gharibian and D. Rudolph 75:5

▶ Theorem 5. Let d : N → N be an efficiently computable function. For C ∈ {NP,
NEXP,QMAexp}, C-DAGd ⊆ PC[d(n) log(n)], and for C ∈ QV+ it holds that, C-DAGd ⊆
DTIME

(
2O(d(n) log(n)))C[d(n) log(n)].

▶ Corollary 6. For C ∈ QV+ and d ∈ O(1), C-DAGd is PC[log]-complete.

Using this, we obtain that deciding a PC computation with a query graph of constant depth
is PC[log]-complete (Corollary 6). This modestly improves upon P∥StoqMA = PStoqMA[log] [18],
which is the case of d = 1 (versus our d ∈ O(1) in Theorem 5).

2. A unified framework for embedding PC problems into APX-SIM. To date, there are
two known approaches for embedding QMA-oracle queries (and thus PQMA[log] problems) into
APX-SIM: The “query gadget” construction of Ambainis [5], and the “flag-qubit” framework2

of Watson, Bausch, and Gharibian [46] . Each of these frameworks has complementary pros
and cons: The former handles adaptive oracle queries, but is difficult to use when strong
geometric constraints for APX-SIM are desired (e.g. the physically motivated settings of
1D and/or translationally invariant Hamiltonians), whereas the latter requires non-adaptive
queries, but is essentially agnostic to the circuit-to-Hamiltonian3 mapping used (and thus
easily handles geometric constraints).

Here, we utilize the construction behind our main result, Theorem 1, to unify these
approaches into a single framework for embedding arbitrary PC computations into APX-SIM.
The crux of the reduction is the following “generalized lifting lemma”, whose full technical
statement (Lemma 42) is beyond the scope of this introduction.

▶ Lemma 7 ((Informal) Generalized Lifting Lemma (c.f. Lifting Lemma of [46])). Fix C ∈ QV+

and any local circuit-to-Hamiltonian mapping Hw (Definition 41). Define Nd := 2O(d(n) logn),
and Ns := 2O(s(n) logn) if C ∈ QV or Ns := 2O(s(n) log2 n) if C = StoqMA. Define N :=
min(Ns, Nd), and let G be a C-DAG instance n vertices of separator number s(n) (as in
Theorem 1) and depth d(n) (as in Theorem 5). Then, there exists a poly(N)-time many-
one reduction from G to an instance (H,A) of APX-SIM, such that H has size poly(N)
and satisfies all geometric properties of Hw (e.g. locality of clauses, 1D nearest-neighbor
interactions, etc).

In words, one can embed any PC computation directly into an APX-SIM instance H in
poly(N) time, irrespective of the choice of C or Hw (i.e. the mapping is essentially black-
box). For clarity, a lifting lemma for APX-SIM was first given in [46], which our Lemma 7
generalizes as follows: (1) [46] requires parallel queries to C, whereas Lemma 7 allows
arbitrary PC computations (parameterized by separator number s), and (2) [46] requires
promise gap amplification for C, which is not known to hold for StoqMA, whereas Lemma 7
allows C = StoqMA.

Next, by applying our lifting lemma for C = QMA and s ∈ O(1), we obtain PQMA[log]-
hardness of APX-SIM (Theorem 46). This is not surprising, since Theorem 2 shows C-DAG ∈
PQMA[log], and APX-SIM is PQMA[log]-hard [5, 20]. What is interesting, however, is:
1. The map from PC to APX-SIM of Lemma 7 is “direct”, meaning we embed all the query

dependencies of the input C-DAG directly into the flag qubit construction.

2 This is a significantly generalized version of the “sifter” construction of Gharibian and Yirka [20].
3 Here, a “circuit-to-Hamiltonian mapping” is a quantum analogue of the Cook-Levin construction, i.e. a

map from quantum verification circuits to local Hamiltonians.

ITCS 2022

75:6 On Polynomially Many Queries to NP or QMA Oracles

2. A poly-time reduction from PQMA to APX-SIM for all 1 ≤ s ≤ n would imply PQMA =
PQMA[log] and is therefore unlikely, if one believes PQMA ̸= PQMA[log]. However, Lemma 42
shows PQMA can be embedded into APX-SIM, at the expense of blowing up the APX-SIM
instance’s size to N = 2O(s(n) logn).

3. Finally and most interestingly, the construction of [46] is somewhat mysterious, in that
it “compresses” multiple QMA query answers into a single flag qubit, which a priori
appears at odds with Holevo’s theorem. In the present paper, we reveal why this works –
our construction utilizes the “admissible weighting function” framework of [22], which
Gottlob used to reduce PNP computations to maximization of a real-valued function, f .
But as we discuss in Section 1.2, this is precisely what the flag qubit framework allows
one to simulate (in both [46] and here)!

In fact, we observe that [5] implicitly rediscovers4 a version of Gottlob’s weighting function
approach. Thus, underlying all three works of [22, 5, 46], as well as the current one, is a
central unifying theme worth stressing:

▶ Theme 8 (Unifying theme). The reduction of PC to maximizing a real-valued function.

Finally, for C = StoqMA and s ∈ O(1), application of our lifting lemma is still possible
(i.e. utilizing the Ns term), but the Hamiltonian obtained is now quasi-polynomial in size,
since N := 2O(s(n) log2 n) (Theorem 47). Luckily, we can instead utilize the Nd term (i.e.
bounded-depth setup) of the lifting lemma, which yields the desired poly(n)-size output
Hamiltonian when d ∈ O(1). This means we recover the PStoqMA[log]-hardness result of [18]
via the flag qubit framework (details in Section 5.2) resolving an open question of [46]. For
clarity, [18]’s proof of this result is via perturbation theory, which we do not require here.

3. No-go statement for “weak compression” of polynomials. To further drive home
the point of Theme 8, we close with a simple no-go statement purely about polynomials.
Roughly, given a real-valued polynomial f (specified via an arithmetic circuit), we define
weak compression as efficiently mapping f to an efficiently computable real-valued function
g, such that there exists an optimal point y∗ at which g is maximized, from which (1) we
may efficiently recover an optimal point x∗ maximizing f , and (2) g(y∗) requires fewer bits
than f(x∗) to represent (i.e. has been “compressed”).

▶ Lemma 9. Fix any function h : R+ → R+. Suppose that given any multi-linear polynomial
p (represented as an arithmetic circuit) requiring B bits for some optimal solution (in the
sense of Definition 48), p is weakly compressible to h(B) bits. Then PNP ⊆ PNP[h(B)].

Let us be clear that this statement is not at all surprising for the reader familiar with Krentel’s
work [33] on OptP (see Section 1.3). Nevertheless, we believe it is worth formalizing, as
it uses complexity theory to give a no-go statement about a purely mathematical concept
(non-compressibility of polynomials). From Lemma 9, one obtains:

▶ Corollary 10. If any multi-linear polynomial p (represented as an arithmetic circuit) can
be weakly compressed with h(B) = O(logB), then PNP ⊆ PNP[log].

▶ Corollary 11. If any multi-linear polynomial p requiring B ∈ O(1) bits for some optimal
solution can be weakly compressed with h(B) = 1, then the Polynomial-Time Hierarchy (PH)
collapses to its third level (more accurately, to PΣp

2).

4 Like [22], [5] uses an exponentially growing weighting function to ensure soundness when simulating
adaptive oracle queries, although the term “admissible weighting function” is not used in the latter.

S. Gharibian and D. Rudolph 75:7

u

v w

u

v w0 w1

t

Figure 1 Simple example of a graph transformation, where the outputs of u are decoupled by
creating copies w0, w1 with hardcoded inputs. t selects the copy of w depending on the output of u.

1.2 Techniques
1. Techniques for deciding C-DAGs. At a high-level, our approach follows Gottlob’s
strategy for PNP [22]: Given a C-DAG G, we (1) “compress” G to an equivalent query G′,
(2) define an “admissible weighting function” on G′, (3) define an appropriate verifier V , on
which binary search via C-oracle queries suffices to extract the original C-query answers in
G, and thus to decide G itself. The key steps at which we deviate significantly from [22] are
(1) and (3), as we now elaborate.

In more detail, in order to decide G, the goal is to compute a correct query string x for
G, i.e. a string of answers to the C-oracle queries asked by G. (Note x is not necessarily
unique when C is a promise class such as QMA.) For this, fix any topological order T on the
nodes of G. The clever insight of [22] (rediscovered in [5]), is that by “weighting” queries
early in T exponentially larger than queries later in T , one can force all queries, in order,
to be answered correctly. Roughly speaking, such an exponential weighting scheme ω is
called “admissible” (Definition 30). The core premise is then to map (G,ω) to a real-valued
function f , so the maximum value of f encodes the query string x. Hence, by conducting
binary search on f via the C-oracle, one can identify f ’s optimal value, thus recovering x.
The challenge is that for arbitrary G, the maximum value of f can scale exponentially in
n, the number of nodes in G. Thus, one requires poly(n) queries to extract x, obtaining no
improvement over the PC computation G we started with!

Compressing G. To overcome this in our setting of bounded separator number (and
beyond), we first recursively compute separators of G, obtaining a “separator tree” (Defini-
tion 20) structure overlaying G. With this separator tree in hand, we show our main technical
lemma, the Compression Lemma (Lemma 32). Roughly, the idea behind the Compression
Lemma is to “decouple” dependencies in G by creating multiple copies of a node. To illustrate,
an oversimplified example is given in Figure 1, where the output node w depends on u, which
depends on v. (Each node encodes, say, an NP query.) To remove the dependency of w on u,
we create two copies w0 and w1, where the input from u is hardcoded as 0 or 1, respectively.
Then an output node t is added to select the correct copy of w depending on the output of v.

For clarity, this basic decoupling principle is reminiscent of that employed in [22]. However,
whereas the latter maps G to G′ via iterative local transformations (similar to Figure 1, but
without the t node), here we are unable to make such an approach work. Indeed, due to
the much stronger coupling between nodes in our setting, we appear to acquire a carefully
orchestrated, global transformation of G to G′. Roughly, we must carefully exploit the
separator tree as a guide to recursively create node copies and reroute wires, at the end of
which we introduce a “conductor” node t to orchestrate the madness. For the reader interested
in a brief peek at details (Section 4.2), Figure 2 runs through an example graphically depicting
the global compression, and Algorithm 2 is used (e.g.) in t to recursively orchestrate and
compute the final output of the new C-DAG, G′. The upshot of this global transformation
is that, when s ∈ O(1), G′ is “compressed” in such a way that (roughly) we can define an
admissible weighting function of at most poly(n) weight on G′, as we do next.

ITCS 2022

75:8 On Polynomially Many Queries to NP or QMA Oracles

Designing the verifier V . The second main step (Section 4.3) is to use an admissible
weighting function onG′ to “reduce”G′ to maximization of a real-valued function, t (Theme 8);
we use (Equation (4))

t(x, ψ1, . . . , ψN) :=
N∑
i=1

f(vi)
(
xi Pr[Qi(zi(x), ψi) = 1] + (1− xi)γ

)
, (1)

where intuitively, f(vi) is the weight at node i, and Pr[Qi(zi(x), ψi) = 1] is the probability
that C-verifier Qi at node vi accepts, given incoming wires zi(x) from its parents and proof
|ψi⟩. Function t is carefully designed so that (1) any “approximately maximum” value of
t encodes a correct query string x (Lemma 39), and (2) we can design a C-verifier V with
acceptance probability precisely t(x, ψ1, . . . , ψN) (up to renormalization) (Lemma 38). Thus,
binary search via V allows us to extract x from t. Crucially, by the compression of the
previous step, when s ∈ O(1), the maximum value of t is at most poly(n), meaning O(logn)
C-queries suffice in the binary search. Moreover, our V is simple – it simulates a random
Qi (according to the distribution induced by weights f(vi)) on (x, |ψi⟩). We exploit this
by defining t over a cross product of proofs |ψi⟩ (rather than a tensor product, as is usual),
avoiding complications regarding entanglement across proofs from previous works (e.g. [46]).

2. Techniques for a unified APX-SIM framework. Roughly, [46] embeds a (say) PQMA[log]

computation Π into APX-SIM as follows: (1) Build a “superverifier” circuit V , which verifies
each of the queries of Π in parallel, and conditioned on the output of each subverifier, performs
a small rotation on a shared “flag qubit”, q. The superverifier V is then pushed through
an abstract circuit-to-Hamiltonian mapping Hw, and the encoding of q in the resulting
Hamiltonian Hw(V) is carefully penalized to force low energy states to correctly answer
all queries. The advantage of this setup is that it is oblivious to the choice of Hw; the
disadvantage is that it requires a somewhat involved exchange argument to ensure soundness
against entanglement across parallel proofs.

Recall now that our main construction rolls up an entire arbitrary C-DAG into a single
C-verifier, V (Lemma 38). What we next show is that our V can rather simply be substituted
for the superverifier V of [46] in the flag qubit construction. The key reason this works is
again Theme 8 – since, as mentioned above, the acceptance probability of our V literally
encodes the value of t, we can treat the output wire of our V as the “new flag qubit” q (thus
eliminating the multiple rounds of small rotations in [46]). As in [46], by then mapping V
to Hw(V), we can now penalize q on the Hamiltonian side to force all low energy states of
Hw(V) to implicitly maximize t! Finally, we remark that since our V is naturally robust
against entanglement across proofs, our proof of correctness is significantly simpler than [46].

3. Techniques for “weak compression” of polynomials. This result follows easily by
combining Section 4.3.2 with standard techniques, so we keep the discussion brief. Roughly,
given an NP-DAG, we (1) apply the Cook-Levin theorem to map each NP verifier to a SAT
formula, (2) arithmetize each of these SAT formula and combine them to simulate Equation (1)
on the Boolean hypercube, and (3) linearize the resulting multi-variate polynomial; denote
the output as p. Since p is multilinear, it is maximized on our domain of interest on a
vertex of the hypercube; thus, by design, from the maximum value of p, we can recover
the maximum value of t, from which we can extract the correct query string for the input
NP-DAG. The argument is concluded by observing that to identify the maximum p∗ of p, a
binary search via NP-oracle requires O(log(p∗)) queries. As an aside, the collapse of PH in
Corollary 11 leverages Hartmanis’ result that if PNP[2] = PNP[1], then PH = PΣp

2 [26].

S. Gharibian and D. Rudolph 75:9

1.3 Related Work

The classes PNP and PNP[log]. As mentioned above, NP ∪ coNP ⊆ PNP[log] ⊆ Σp
2, and

PNP[log] ⊆ PP [6]. It holds that PNP[log] = P∥NP [27, 10]. Gottlob [22] showed that PNP with
a tree for a query graph equals PNP[log] (this also follows from our Theorem 2). It is believed
that for any k ∈ O(1), the classes PNP[k], PNP[logk n], and PNP are distinct. For example,
PNP[1] = PNP[2] implies both PNP[1] = PNP[log] and a collapse of PH to ∆p

3 = PΣp
2 [26].

However, it is known that PNP[logk(n)] = P∥NP[logk+1(n)] for all k ≥ 1 [11]. Complete problems
for PNP[log] include determining a winner in Lewis Carroll’s 1876 voting system [28], and a
PNP[log2 n]-complete problem is model checking for certain branching-time temporal logics [41].

Closely related to one of the central themes of this work, Theme 8, is Krentel’s [33]
work on OptP. Roughly, OptP[z(n)] is the class of functions (i.e. not decision problems)
computable via maximization of a real-valued function, where the function is restricted
to z(n) bits of output precision. Krentel shows the classes OptP[z(n)] and FPNP[z(n)] are
equivalent (FP the set of functions computable in poly-time). Through this, [33] obtains
(e.g.) that determining whether the length of the shortest traveling salesperson tour in a
graph G is divisible by k is PNP-complete, but that determining if the size of the max clique
in G is divisible by k is only PNP[log]-complete. Before this, Papadimitriou had shown [37]
that deciding if G has a unique optimum traveling salesperson tour is PNP-complete.

QMA, PQMA[log] and related classes. Kitaev’s “quantum Cook-Levin/circuit-to-Hamil-
tonian” construction showing QMA-completeness for the local Hamiltonian problem has
since been greatly extended to many settings (e.g. [31, 30, 2, 21]). For QMA(2), Chailloux
and Sattath [12] showed the separable sparse Hamiltonian problem is QMA(2)-complete.
Fefferman and Lin [15] prove that the local Hamiltonian problem with exponentially small
promise gap is PSPACE-complete. See (e.g.) [36, 17] for surveys and further results.

Ambainis [5] initiated the study of PQMA[log], and showed APX-SIM is PQMA[log]-complete
and SPECTRAL GAP (deciding if the spectral gap of a local Hamiltonian is large or small)
is PUQMA[log]-hard. These results were obtained for log-local observables (APX-SIM) and
Hamiltonians (APX-SIM and SPECTRAL GAP). Gharibian and Yirka [20] improve both
results to O(1)-local, and show PQMA[log] ⊆ PP. In contrast to PNP[log], PQMA[log] is
not believed to be in PH, since even BQP is believed outside of PH [1, 39]. Gharibian,
Piddock, and Yirka [18] next obtain a complexity classification of PQMA[log] (along the
lines of Cubitt and Montanaro [14]) depending on the class of Hamiltonians employed; this
includes, for example, PStoqMA[log]-completeness for APX-SIM on stoquastic Hamiltonians.
They also introduce the “sifter” framework to show the first PQMA[log]-hardness result for 1D
Hamiltonians on the line. Watson, Bausch, and Gharibian [46] significantly extend the sifter
framework to develop the flag-qubit framework (also used in Section 5), showing (among
other results) that APX-SIM on 1D translation-invariant systems is PQMAexp -complete.

Most recently, Watson and Bausch [45] show a PQMAexp -completeness result for approxi-
mating a critical boundary in the phase diagram of a translationally-invariant Hamiltonian.
Aharonov and Irani [4] and Watson and Cubitt [47] simultaneously and independently study
variants of the problem of computing digits of the ground state energy of a translationally
invariant Hamiltonian in the thermodynamic limit. The former shows that the function
version of this problem lies between FPNEXP and FPQMAexp , while the latter shows that
a decision version of the energy density problem is between PNEEXP and EXPQMAexp (for
quantum Hamiltonians).

ITCS 2022

75:10 On Polynomially Many Queries to NP or QMA Oracles

1.4 Open questions
First, can our main result (Theorem 1) be extended to further classes of graphs, perhaps
by considering different parameterizations, such as graphs with logarithmic pathwidth?
Second, Theorem 1 gives non-trivial bounds when (say) s ∈ O(1) or s ∈ O(polylog(n)).
For s ∈ Θ(n), however, the DTIME base therein scales as 2n, thus yielding a trivial upper
bound on C-DAGs. Can our bound be improved from DTIME

(
2O(s(n) logn))C[s(n) logn] to

DTIME
(
2O(s(n)))C[s(n) logn] (i.e. shave off the extra log factor in the base)? If so, one

would immediately recover the P∥StoqMA ⊆ PStoqMA[log] result of [18] (currently, we rely on
Theorem 5 to recover this here), and more generally, our framework would not take a hit
when applied to classes C without promise gap amplification. However, what is unlikely is
to show a bound of DTIME

(
2O(s(n)))C[s(n)] – since P∥NP has s ∈ O(1), this would imply

P∥NP = PNP[log] ∈ PNP[k] for k ∈ O(1). Third, do our theorems also hold for complexity
classes such as UniqueQMA (UQMA) or QMA1 (QMA with perfect completeness)? Here,
the main difficulty seems to be invalid queries (queries violating the promise), as then the
verifier from Lemma 38 does not necessarily have a unique proof or perfect completeness.
One could also consider AM-like complexity classes instead of the MA-like classes we used.

2 Preliminaries

▶ Definition 12 (QP (quasi-polynomial time)). QP =
⋃
k DTIME(nlogk n) is the set of

problems accepted by a deterministic Turing machine in quasi-polynomial time.

Quantum Complexity Classes. Qubits are represented by the Hilbert space B := C2, where
“:=” denotes a definition.

▶ Definition 13 (QMA). Fix polynomials p(n) and q(n). A promise problem Π is in QMA
(Quantum Merlin Arthur) if there exists a polynomial-time uniform quantum circuit family
{Qn} such that the following holds:

For all n, Qn ∈ U
(
B⊗n
A ⊗ B⊗p(n)

B ⊗ B⊗q(n)
C

)
. The register A is used for the input, B

contains the proof, and C the ancillae initialized to |0⟩.
∀x ∈ Πyes ∃|ψ⟩ ∈ B⊗p(|x|) : Pr[Q|x| accepts |x⟩|ψ⟩] ≥ 2/3
∀x ∈ Πno ∀|ψ⟩ ∈ B⊗p(|x|) : Pr[Q|x| accepts |x⟩|ψ⟩] ≤ 1/3

Note that the thresholds c = 2/3 and and s = 1/3 may be replaced with c = 1− ε and s = ε

such that ε ≥ 2− poly(n) [32]. We refer to c as completeness, s as soundness, and c− s as the
promise gap.

We also consider special cases of QMA. In QCMA, the proof is classical, i.e. |ψ⟩ ∈
{0, 1}p(n). In QMA(k), the verifier receives k unentangled proofs, i.e. |ψ⟩ =

⊗k
j=1|ψj⟩). It

holds that QMA(2) = QMA(poly(n)) as shown by Harrow and Montanaro [25]. Therefore,
probability amplification is possible. In QMAexp, p(n) and q(n) are allowed to be exponential
(i.e. 2poly(n)) and {Qn} is an exponential-time uniform quantum circuit family. QMAexp
can be considered the quantum analogue of NEXP. StoqMA [9] is a restricted variant of
QMA with a classical verifier (details in the full version) and the property that probability
amplification is not known to be possible [3].

Next, we define the k-local Hamiltonian problem, which was shown to be QMA-complete
in a “quantum Cook-Levin theorem” by Kitaev [32].

S. Gharibian and D. Rudolph 75:11

▶ Definition 14 (k-local Hamiltonian). A Hermitian operator H ∈ Herm (B⊗n) acting on
n qubits is a k-local Hamiltonian if it can be written as H =

∑
S⊆[n],|S|≤kHS ⊗ I[n]\S.

Additionally, 0 ≼ HS ≼ I holds without loss of generality.
We refer to the minimum eigenvalue λmin (H) as the ground state energy of H and the

corresponding eigenvectors as ground states.

▶ Definition 15 (k-LH(H, k, a, b)). Given a k-local Hamiltonian H =
∑
iHi acting on N

qubits and real numbers a, b such that b− a ≥ N−c, for c > 0 constant, decide:
YES. If λmin(H) ≤ a (i.e. the ground state energy of H is at most a).
NO. If λmin(H) ≥ b.

▶ Definition 16 (PC). Let C be a complexity class with complete problem Π. PC = PΠ is
the class of (promise) problems that can be decided by a polynomial-time deterministic Turing
machine M with the ability to query an oracle for Π. If M asks an invalid query x ∈ Πinv,
the oracle may respond arbitrarily.

We say Γ ∈ PC if there exists an M as above such that M accepts/rejects for x ∈ Γyes/x ∈
Γno, regardless of how invalid queries are answered.
For a function f , we define PC[f] in the same way, but with the restriction that M may
ask at most O(f(n)) queries on input of length n.
For an integer k, we define PC[k], where M may ask at most k queries on each input.
P∥C denotes the class where M must ask all queries at the same time. We call these
queries non-adaptive opposed to the adaptive queries of the above classes, because the
queries do not depend on the results of other queries.

The PQMA[log]-complete problem is APX-SIM (approximate simulation). It essentially
asks whether a given Hamiltonian has a ground state with a certain property.

▶ Definition 17 (APX-SIM(H,A, k, l, a, b, δ) [5]). Given a k-local Hamiltonian H =
∑
iHi

acting on N qubits, an l-local observable A, and real numbers a, b, and δ such that b−a ≥ N−c

and δ ≥ N−c′ , for c, c′ > 0 constant, decide:
YES. If H has a ground state |ψ⟩ satisfying ⟨ψ|A|ψ⟩ ≤ a.
NO. If for all |ψ⟩ satisfying ⟨ψ|H|ψ⟩ ≤ λmin(H) + δ, it holds that ⟨ψ|A|ψ⟩ ≥ b.

Graph Theory. Let G = (V,E) be a directed graph. For a node v ∈ V , we define indeg(v)
and outdeg(v) as the number of incoming and outgoing edges, respectively. The sets
parents(v) := {w ∈ V | (w, v) ∈ E} and children(v) := {w ∈ V | (v, w) ∈ E} denote the
parents and children of v, respectively. The set of ancestors (descendants) of node v is the
set of all u ∈ V \ {v}, such that there is a directed path in G from u to v (v to u). If G
contains no directed cycles, we call it a DAG (directed acyclic graph).

▶ Definition 18 (Separator number [23]). Let G = (V,E) be an undirected graph. A set
S ⊆ V is a separator of G if G \ S (i.e. the graph induced by the nodes V \ S) has at least
two connected components or at most one node. S is balanced if every connected component
of G \ S has at most ⌈(|V | − |S|)/2⌉ nodes. The balanced separator number of G, denoted
s(G), is the smallest k such that for every Q ⊆ V , the induced subgraph G[Q] has a balanced
separator of size at most k.

▶ Lemma 19 (Theorem 9 of [23] (see also [40, 7])). s(G) ≤ tw(G) ≤ O(s(G) · logn), where
tw(G) denotes the treewidth (minimum width of tree decomposition) of G.

For directed G, s(G) and tw(G) are defined on the undirected version of G.

ITCS 2022

75:12 On Polynomially Many Queries to NP or QMA Oracles

Separator Trees. The separator number allows us to decompose graphs into separator trees,
which we use to evaluate query graphs more efficiently.

▶ Definition 20. A (balanced) separator tree of an undirected graph G = (V,E) is a
tree T = (VT , ET), with vertices in VT labelled by disjoint subsets {S1, . . . , Sm} satisfying⋃m
i=1 Si = V , and T being rooted in S1. S1 is a (balanced) separator of G, and the trees rooted

in the children of S1 are (balanced) separator trees of G \ S1. We refer to the vertices/edges
of T as supervertices/superedges. A path along superedges is called a superpath. The unique
superpath from S1 to any supervertex S is called a branch of the tree.

Unless noted otherwise, throughout this work we assume separators are balanced. A separator
tree can be computed by a straightforward brute force search (see full version for proof):

▶ Lemma 21. Given an n-vertex graph G = (V,E), a separator tree T of G with separator
number s := s(G) can be computed in time nO(s).

Without loss of generality, we assume the separator tree computed in Lemma 21 has only
separators of size s. Additionally, although a balanced separator tree has O(logn) depth, at
times we may wish to leverage a shorter depth tree if one should exist. For convenience, we
hence state the following lemma (proof analogous to Lemma 21).

▶ Lemma 22. Given an n-vertex graph G, depth D and separator size s, a separator tree of
G of depth D with separators of size s can be computed in time nO(Ds), if it exists.

3 Query graphs and C-DAG

The main object of study in this work is the concept of a query graph, which we now formally
define in the context of a decision problem, C-DAG.

▶ Definition 23 (C-DAG). Fix any complexity class C ∈ QV+. A C-DAG instance is
defined by an n-node DAG G = (V = {v1, . . . , vn}, E), with structure as follows:

Vertex vn ∈ V is the unique vertex with outdeg(vn) = 0, denoted the result node.
Each vi ∈ V is associated with a promise problem Πi ∈ C that determines the output of
vi. Formally, Πi is specified via a poly(n)-sized description5 of a verification circuit Qi
with designated input and proof registers Xi and Yi.6 The input register Xi consists of
precisely indeg(vi) bits/qubits, set to the string on vi’s incoming edges/wires. In order to
allow non-trivial Qi for bounded in-degree, we allow an implicit padding of Xi to poly(n)
bits. vi has a single output wire, denoted out-wire[vi], corresponding to the output of the
verifier Qi.

Finally, we say G ∈ C-DAGyes (respectively, G ∈ C-DAGno) if the evaluation procedure
EVALUATE (Algorithm 1) outputs 1 (respectively, 0) deterministically (i.e. regardless of
how any invalid queries are answered).

▶ Definition 24 (Correct query string). Any string x ∈ {0, 1}n that can be produced via Line 6
of Algorithm 1 is called a correct query string.

▶ Remark 25. Intuitively, in Definition 24 the bits of x encode a sequence of correct query
answers corresponding to the nodes of G. Note the correct query string need not be unique
if C is a promise class (i.e. invalid queries are allowed).

5 This description may be implicit to describe exponentially large circuits (e.g., for NEXP).
6 For example, if C = NP, then Πi

yes is the set of all strings x on Xi, for which there exists a proof y on
Yi, such that NP verifier Qi accepts (x, y).

S. Gharibian and D. Rudolph 75:13

Algorithm 1 Evaluation procedure for C-DAG.

1: function Evaluate(G = (V,E))
2: Sort the nodes of V topologically into v1, . . . , vn.
3: The variable xi ∈ {0, 1} will denote the result of vi’s query.
4: for i = 1, . . . , n do
5: zi ←⃝vj∈parents(vi) xj ▷ “⃝” denotes concatenation.

6: xi ←


1, if zi ∈ Πi

yes

0, if zi ∈ Πi
no

0 or 1 (nondeterministically), if zi ∈ Πi
inv

7: return xn ▷ Recall vn is the result node.

Just as Gottlob shows DAGS(NP) (more accurately, DAGS(SAT)) is PNP-complete [22],
here we have the more general statement (proof analogous to [22]):

▶ Lemma 26. For any C ∈ QV+, C-DAG is PC-complete.

Thus, Lemma 26 says that on general query graphs G, C-DAG captures all of PC . The
primary aim of this paper is hence to consider graphs G with bounded separator number
(which, by Lemma 19, includes the case of bounded treewidth). For this, we introduce the
following definition for convenience.

▶ Definition 27 (C-DAGs). Let s : N → N be an efficiently computable function. Then,
C-DAGs is defined as C-DAG, except that G has separator number s(G) ∈ O(s(n)), for n
the number of nodes used to specify the C-DAG instance. For brevity, we use C-DAG1 to
denote the case of s ∈ O(1).

Thus, the union of C-DAGs over all polynomials s : N→ N equals C-DAG.

4 Query Graphs with Bounded Separator Number

We first state the main technical theorem of this section, Theorem 28, followed by the results
we obtain from it as corollaries. The remainder of Section 4 then proves Theorem 28. For
clarity, throughout this work, we assume that the full specification of any C-DAG instance
G (i.e. the DAG itself, the verification circuits Qi, etc) scales polynomially with its number
of nodes, n. Throughout, any omitted proofs are in the full version.

▶ Theorem 28. Fix C ∈ QV. As input, we are given (1) a C-DAG instance G on n nodes,
and (2) a separator tree for G of depth D and separator size s. Then, G can be decided in
deterministic time 2O(sD+logn) with O(sD + logn) queries to a C-oracle.

▶ Remark 29. The class StoqMA is not included in Theorem 28; this is because the proof of
the theorem requires C with a constant promise gap, which StoqMA is not known to have.
Combining Theorem 28 with Lemma 21 gives:

▶ Theorem 1. Fix any C ∈ QV and efficiently computable function s : N → N. Then,
C-DAGs ∈ DTIME

(
2O(s(n) logn))C[s(n) logn], for n the number of nodes in G.

▶ Theorem 2. For any C ∈ QV, C-DAG1 is PC[log]-complete.

We obtain the following general scaling corollary for polylogarithmic separator number.

▶ Corollary 3. For all integers k ≥ 1 and C ∈ QV, C-DAGlogk ∈ QPC[logk+1(n)], where QP
denotes quasi-polynomial time (Definition 12).

ITCS 2022

75:14 On Polynomially Many Queries to NP or QMA Oracles

Notation. Γ(v) := {w | (v, w) ∈ E} is the neighbor set of vertex v. The descendents of
vertex v are denoted Desc(v), i.e. the set of nodes reachable from vertex v via a directed
path, excluding v itself. Analogously, the ancestors of vertex v are denoted Anc(v), i.e. the
set of nodes from which there is a directed path to v, excluding v itself.

4.1 Weighting Functions
We now introduce the concept of weighting functions, which assign a weight to each node
in a DAG G. Weighting functions were first used by Gottlob [22] to prove TREES(NP) =
PNP[log], and later implicitly by Ambainis [5] to show PQMA[log]-hardness of the Approximate
Simulation (APX-SIM) problem. We use a modified definition.

▶ Definition 30 (Weighting function). Let G = (V,E) be a DAG. An efficiently computable
function f : V → R is called a weighting function. We say f is c-admissible for constant
c ∈ R if for all v ∈ V , f(v) ≥ 1 + c

∑
w∈Γ(v) f(w), where Γ(v) := {w | (v, w) ∈ E} is the

(out-going) neighbor set of v. The total weight Wf (G) of G under weighting function f is
Wf (G) =

∑
v∈V f(v).

In the next lemma, we extend Gottlob’s [22] admissible weighting functions to our definition
of c-admissability (Definition 30). For c = 1, the definitions are the same.

▶ Lemma 31. For any DAG G = (V,E) and c ≥ 2, the weighting functions ρ(v) :=
(c|V |)depth(G)−level(v) and ω(v) := (c+ 1)|Desc(v)| are c-admissible.

In Sections 4.2 and 4.3, we assume C ∈ QV+, unless stated otherwise.

4.2 Graph transformation: The Compression Lemma
Ideally, our aim for a given C-DAG instance G is to define a c-admissible weighting function
f with Wf (G) as small as possible. This is because in Section 4.3, we show how to solve
arbitrary C-DAG-instances using O(logWf (G)) C-queries. Unfortunately, for an arbitrary
C-DAG-instance G there does not necessarily exist a c-admissible weighting function f such
that Wf (G) is “small”, e.g. subexponential. Thus, in this section, we show:

▶ Lemma 32. As input, we are given a C-DAG instance G, and a separator tree for G of
depth D and separator size s. Fix any constant c ≥ 2. Then, a query graph G∗ = (V ∗, E∗)
with |V ∗| ≤ 2O(sD)n, together with a c-admissible weighting function f∗ and Wf∗(G∗) ≤ (c+
1)O(sD)n, can be constructed in time 2O(sD+logn) such that Evaluate(G) = Evaluate(G∗).
As required by the definition of C-DAG (Definition 23), each node of G∗ corresponds to a
verification circuit of size poly(|V ∗|).

Combining this with Section 4.3, we will hence be able to decide G∗ with O(sD) queries. In
the following we describe the transformation from G to G∗ in multiple steps.

4.2.1 Basic Construction (G′ and G′′)
The graph transformation. Let T = (VT , ET) be a separator tree (Definition 20) of G of depth
D and separator size s. A running example is given in Figure 2a. Let S ∈ VT be an arbitrary
supervertex and S1, . . . , Sd be the unique path along superedges from the root supervertex S1
to Sd := S (define d := dS ≤ D as the distance from the root plus one). Recall S is labelled

S. Gharibian and D. Rudolph 75:15

u1 u2

v1 v2 w1 w2

x1 x2 y1 y2

(a) Query graph G with separator tree (dashed
overlay) of depth D = 3 and separator size
s = 2. Recalling Definition 20, dashed sets (e.g.
{u1, u2}) are supervertices, and dashed edges
(e.g. from {u1, u2} to {v1, v2}) are superedges.
Vertex y2 (underlined) is the output node.

uz1
1 uz1

2

vz1,z21 vz1,z22 wz1,z2
1 wz1,z2

2

xz1,z2,z3
1 xz1,z2,z3

2 yz1,z2,z31 yz1,z2,z32 ∀z1, z2, z3 ∈ {0, 1}2

∀z1, z2 ∈ {0, 1}2

∀z1 ∈ {0, 1}2

t

(b) G′ consists of all nodes and edges drawn via solid
lines. For clarity, each rectangle denotes a set of nodes VS

(Equation (2)) corresponding to some supervertex S. For
example, uz1

1 denotes a set of nodes {u00
1 , u01

1 , u10
1 , u11

1 },
whose neighbor sets are defined via Equation (3). To
move from G′ to G′′, we add node t and all dashed edges.

u∗∗1 u
z1,1∗
2

v∗∗,∗∗1 v
∗∗,z2,1∗
2 wz1,∗∗

1 w
z1,z2,1∗
2

x
∗∗,z2,1∗,∗∗
1 x

∗∗,z2,1∗,z3,1∗
2 y∗∗,∗∗,∗∗1 y

z1,z2,z3,1∗
2 ∀z1, z2, z3 ∈ {0, 1}2

∀z1, z2 ∈ {0, 1}2

∀z1 ∈ {0, 1}2

t

(c) Graph G∗ with merged nodes indicated by asterisks in the superscript.

Figure 2 Example of the query graph transformation.

by some subset of s vertices, S = (uS,1, . . . , uS,s), where we assume the sequence in which
the uS,i are listed is consistent with some fixed topological order on all of G. Define sets

VS :=
{
vz1,...,zd

S,i

∣∣∣ i ∈ [s], z1, . . . , zd ∈ {0, 1}s
}

(2)

and set V ′ =
⋃
S∈VT

VS . As depicted in Figure 2b, it will be helpful to continue to view VS
as a set, even though VS is not a supervertex (i.e. G′ itself will not be a separator tree).
Intuitively, vz1,...,zd

S,i in V ′ represents node uS,i in V , but conditioned on “outcome strings”
z1, . . . , zd ∈ {0, 1}s in the separators S1, . . . , Sd. To formalize this relationship, we define a
surjective function preimage : V ′ → V with preimage(vz1,...,zd

S,i) := uS,i for all S, i, z1, . . . , zd.
Finally, since T has at most n supernodes, we have |V ′| ≤ 2O(sD)n.

Next, define edges

ES =
{(
vz1,...,zd

S,i , v
z1,...,zj

Sj ,k

) ∣∣∣ i ∈ [s], j ∈ [d− 1], uSj ,k ∈ Desc(uS,i)
}
, (3)

where recall uSj ,k ∈ Desc(uS,i) is the set of all descendants of uS,i in the original graph
G. In words, each ES creates, for each copy of uS,i, edges to all copies of descendants uSj

which are on a strictly higher level in the separator tree (due to the j ∈ [d− 1] constraint).
In the context of Figure 2a, this means we “shortcut” paths to descendents, but only via
new edges pointing strictly “upwards” towards the root. Set E′ =

⋃
S∈VT

ES . Observe that
|Desc(v)| ≤ O(sD) for all v ∈ V ′.

Assigning queries to G′. We have given a graph theoretic mapping G→ G′, but not yet
specified how the queries made at nodes of G are mapped to queries made at nodes of G′.
Let us do so now. Consider any vz1,...,zd

S,i ∈ V ′. Roughly, the goal is for the query at vz1,...,zd

S,i

ITCS 2022

75:16 On Polynomially Many Queries to NP or QMA Oracles

Algorithm 2 Compute output of uS,i, conditioned on results z1, . . . , zm in separators above.

1: function ComputeOutput(uS,i | z1, . . . , zm) ▷ recall uS,i ∈ S
2: S1, . . . , Sd ← path from the root to S
3: if m ≥ d then ▷ base case of recursion; recursion has computed zd
4: return zd,i ▷ recall zd ∈ {0, 1}s; zd,i encodes answer to uS,i
5: zm+1 ← 0s ▷ initialize answer bits to all zeroes to start
6: for j = 1, . . . , s do ▷ in topological order, set answer bits at current level
7: zm+1,j ← out-wire

[
u
z1,...,zm+1
Sm+1,j

]
▷ use query answers on incoming edges

8: return ComputeOutput(uS,i | z1, . . . , zm+1)

to simulate the query at preimage(vz1,...,zd

S,i) = uS,i. However, vz1,...,zd

S,i is “conditioned” on
bit strings z1, . . . , zd, so the simulation is not straightforward. To make this formal, we use
Algorithm 2 as follows:

▶ Rule 33. For each edge (uT,j , uS,i) in G, the result of ComputeOutput(uT,j | z1, . . . , zd)
is used as the corresponding input to vz1,...,zd

S,i ∈ V ′.

Intuitively, we may view the conditioning string z1, . . . , zd as specifying a “parallel universe”,
where if (uT,j , uS,i) was an edge in E, then this parent-child relationship is simulated relative
to this parallel universe via ComputeOutput (abbreviated as CO() in the following).
▶ Remark 34. (1) By definition of a separator tree, all edges (uT,j , uS,i) of G must be in the
same branch as S (i.e. either above or below S in the same branch, but not in a parallel
branch of the tree). (2) This implies there are essentially two cases to consider: When uT,j is
closer to the root than uS,i, or vice versa. In the first case, Line 4 of Algorithm 2 immediately
returns the hardcoded bit of z1, . . . , zd corresponding to uT,j . In the second case, when uS,i
calls Algorithm 2, Lines 6-8 will recursively compute outputs of nodes below vz1,...,zd

S,i in the
same branch. For this, vz1,...,zd

S,i will need access to the out-wire functions (Definition 23) of
certain nodes below it; this is afforded to vz1,...,zd

S,i via the edge set ES (demonstrated via the
“upward” black edges in Figure 2b).
We have now specified the local input/output behavior of any node v ∈ V ′. Two problems
remain: First, we require a designated output node in G′, which implicitly orchestrates the
new logic in G′. Second, observe in Figure 2b that the original output node of G, y2, has
been mapped to a new set of nodes labelled yz1,z2,z3

2 , all of which are disconnected from the
rest of G′. Thus, we require a mechanism to stitch together these components of G′. For
that, we define G′′ by adding a new output node, t, such that: (1) t has incoming edges from
all nodes in V ′, and (2) the output of G′′ is computed by having t call CO(v | ε) and return
its answer, where ε denotes the empty string and v is the original output node of G. Both t
and these new edges are depicted in Figure 2b via dashed lines. We refer to the full version
for an extensive discussion of the intuition behind this construction.

4.2.2 Merging Nodes (G∗)
Next, we address the issue that G and G′′ are not necessarily equivalent for promise problems,
since copies of the same invalid query could have different outputs. For example, in Figure 2b,
if z1,1 = 1, then u00

1 and u
z1,10
2 depend on different copies of v2, which could lead to

inconsistencies if v2 encodes an invalid query. In addressing this, we will also remove
redundant copies of nodes (e.g. v1, which has in-degree 0 in Figure 2a, encodes the same
query in Figure 2b, regardless of how z1 and z2 are set).

S. Gharibian and D. Rudolph 75:17

To proceed, we construct graph G∗ by merging node copies which have the same hard-
coded inputs. Consider any u := uS,i ∈ V , where as in Algorithm 2, we let d denote the
depth of S on the unique superpath PS := (S1, . . . , Sd = S) from the root S1 to S in the
separator tree. Recalling that Anc(u) denotes the ancestors of u in G, i.e. the set of queries
u depends on, define Du := Anc(u) ∩

⋃d
j=1 Sj , in words, the ancestors of u in the superpath

Pu. For any v := vz1,...,zd

S,i ∈ V ′′, define hv : Du → {0, 1} with action hv(uSj ,k) := zj,k, i.e.
hv selects out the hard-coded bit zj,k corresponding to any uSj ,k ∈ Du (i.e. zj,k is the kth
bit of zj in the definition of v). Now, whenever two copies v1, v2 ∈ V ′′ of the same node
(i.e. preimage(v1) = preimage(v2)) satisfy hv1 = hv2 (i.e. hv1 and hv2 have the same truth
table; note Du is in the original graph G in definition hv : Du → {0, 1}), we will merge them.
Formally, the merge is accomplished by Algorithm 3, which simultaneously computes an
admissible weighting function. Henceforth, denote (G∗, f∗) := Merge(G′′).

Algorithm 3 Merge nodes in G′′ to compute G∗.

1: function Merge(G′′ = (V ′′, E′′))
2: G1 ← G′′, V1 ← V ′′, E1 ← E′′, f1 ← ω ▷ for weighting function ω from Lemma 31
3: i← 1
4: while ∃v1, v2 ∈ Vi such that preimage(v1) = preimage(v2) and hv1 = hv2 do
5: Choose such v1, v2 so that v := preimage(v1) is furthest from root in T .
6: Create copy v∗ of v with hv∗ := hv1 = hv2 .
7: Vi+1 ← Vi \ {v1, v2} ∪ {v∗}.
8: Replace out-wire[v1], out-wire[v2] in the logic of nodes in Vi+1 with out-wire[v∗].

9: Ei+1 ←
{

(r(x), r(y))
∣∣ (x, y) ∈ Ei

}
, where r(x) :=

{
v∗, if x ∈ {v1, v2}
x, else

.

10: Update fi+1 : Vi+1 → R such that fi+1(x) :=
{
fi(v1) + fi(v2), if x = v∗

fi(x), else
.

11: return (Gi, fi)

▶ Remark 35. When u ∈ V has in-degree 0, then Du = ∅. In this case, for any two copies
v1, v2 ∈ V ′′ of u, it is vacuously true that hv1 = hv2 . Thus, all copies of u in V ′′ are merged
by Algorithm 3. An example of this is depicted by v1 in Figure 2a being mapped to v∗∗,∗∗

1 in
Figure 2c. Intuitively, this captures the fact that since v1 is in-degree 0 in Figure 2a, the
query at all copies vz1,z2

1 of Figure 2b is identical, regardless of how z1, z2 are set.

▶ Lemma 36. For any constant c ≥ 2, the weighting function f∗ produced by Algorithm 3 is
c-admissible for G∗, and satisfies Wf∗(G∗) = Wω(G′′) (for ω from Lemma 31).

4.2.3 Correctness
We now prove correctness, in the process establishing the Compression Lemma (Lemma 32).
For this, we first require the following lemma, which shows how to map any correct query
string for G∗ to a correct query string for G. Below, CO() on G∗ takes into account merged
notes, i.e. it uses v∗ instead of v after merging v1 and v2 in Algorithm 3.

▶ Lemma 37. Let x∗ : V ∗ → {0, 1} be a correct query string for G∗. Define CO∗() to be
CO(), except with each call to out-wire on Line 7 replaced by looking up the corresponding
bit of x∗. Define string x : V → {0, 1} such that bit x(v) := CO∗(v | ε). Then, x is a correct
query string for G.

ITCS 2022

75:18 On Polynomially Many Queries to NP or QMA Oracles

Proof. Recall |V | = n, and that by Definition 24, a correct query string for C-DAG is defined
as any string producible by Line 6 of Algorithm 1. Throughout, the bits of x are ordered
according to the topological order (v1, . . . , vn) on V fixed by Algorithm 1. We prove the
claim inductively for t ∈ (1, . . . , n).

By the topological order, the base case v1 ∈ V has in-degree 0, i.e. takes no inputs. Thus,
by Remark 35, there is only a single node in G∗ corresponding to v1, which by construction
computes the same query as v1. Hence, the corresponding bit of x∗ trivially encodes the
correct answer for v1 in G and is then returned for v1 once Line 4 executes, as desired.

For the inductive case, let t ≥ 2 and assume x1, . . . , xt−1 satisfy the induction hypothesis,
i.e. they could be produced by the first t− 1 iterations of Evaluate. We now need to argue
that a correct execution of Evaluate could set xt = CO∗(vt | ε). By design, CO∗(vt | ε)
computes z1, . . . , zd and then returns7 x∗(vz1,...,zd

t).
Recall now that Dvt

denotes the ancestors of vt in G, which are also along the superpath
from the root of the separator tree down to the supervertex S containing vt. We claim
that z := z1, . . . , zd matches x1 · · ·xt−1 on Dvt

. (For clarity, the bits of z ∈ {0, 1}sd are
ordered according to the recursion of CO∗(,) and may also contain bits corresponding to
vertices not in Dvt

.) To see this, fix any u ∈ Dvt
= Anc(vt) ∩

⋃d
j=1 Sj , and let i be the

supervertex index such that u ∈ Si. For brevity, define notation x(u) and z(u) to mean
the bit of x and z corresponding to u, respectively8. Now, recall CO∗(vt | ε) recursively
traverses the path S1, . . . , Sd, where u ∈ Si and vt ∈ Sd for 1 ≤ i ≤ d. Thus, the operations
performed by CO∗(vt | ε) and CO∗(u | ε) are identical in the first i recursions. Once m = i

(i.e. conditioning strings z1, . . . , zi have been set), z(u) is returned by CO∗(u | ε) on Line 4,
whereas CO∗(vt | ε) returns z(vt) if i = d and continues recursively otherwise.

We thus conclude CO∗(vt | ε) returns x∗(vz1,...,zd
t) with z(u) = x(u) for all u ∈ Dvt . Recall

now by Rule 33 that, in order for vz1,...,zd
t ∈ V ∗ to simulate the query at vt ∈ V , it computes

the input on any wire u into vt via CO∗(u | z1, . . . , zd). Since the construction is based on a
separator tree, this incoming wire/edge (u, vt) lies along the same branch of the tree as vt.
Thus, we have only two cases to consider – u ∈ Anc(vt) is above or below vt in said branch.
(In Figure 2a, for example, if vt = w2, the ancestor u2 is above w2 in the tree, whereas
ancestor y1 is below w2.) So, if u ∈ Dvt

(i.e. u is above Dvt
), then by the argument in the

previous paragraph, z(u) = x(u) is used as input to vt. Moreover, since u ∈ Anc(vt), u comes
before vt in any topological order, and thus the induction hypothesis says x(u) is correct.
Otherwise, if u ̸∈ Dvt

(i.e. ancestor u is below Dvt
), then it again holds that CO∗(vt | ε)

and CO∗(u | ε) perform exactly the same operations in the first d recursions. Therefore,
both executions compute the same values z1, . . . , zd. Subsequently, CO∗(u | ε) = x(u) calls
CO∗(u | z1, . . . , zd) on Line 8 during the dth recursion and returns its value. In other words,
x(u) = CO∗(u | z1, . . . , zd). But by Rule 33, in order to simulate its input on the incoming
wire corresponding to u, vz1,...,zd

t uses CO∗(u | z1, . . . , zd) = x(u). Then, since u ∈ Anc(vt),

7 Technically, the algorithm actually returns x∗(vz1,...,zd−1,z′
d

t), where z′
d ∈ {0, 1}s is an “intermediate

string” defined as follows: If node vt was the kth node in the topological order for supervertex S, then
the first k − 1 bits of z′

d have been assigned by Line 7 of CO∗(), and the remaining s− k + 1 bits of
z′

d are still set to the dummy value of 0 from Line 5. However, this does not affect our analysis. In
particular, in G∗ we merged v

z1,...,z′
d

t and v
z1,...,zd−1,z′′

d
t for any such pair z′

d and z′′
d of “intermediate

strings”, since by definition of the topological order, bits k through s of any such z′
d cannot correspond

to any vertices in Dvt . Thus, these indices effectively disappear for all copies of vt in G∗.
8 Since x is defined on G, x(u) is clearly defined uniquely. On the other hand, z is defined on G∗, which

contains potentially multiple copies of u; thus, it is slightly more subtle that z(u) is uniquely defined.
Indeed, uniqueness holds since the recursive path followed by CO∗() through G∗ visits precisely one
copy of u; which copy is visited depends on the prefix of z fixed in the recursion before u is encountered.

S. Gharibian and D. Rudolph 75:19

u comes before vt in any topological order, and thus by the induction hypothesis, x(u) is
correct. We hence conclude all input wires to vz1,...,zd

t must be set correctly, and thus x(vt)
is also correct. ◀

We can finally prove the main lemma of this section.

Proof of Lemma 32. G∗ is constructed as in Section 4.2.1 and Section 4.2.2. We have
|V ∗| ≤ |V ′′| ≤ 2O(sD)n (recall n = |V |), as there are ≤ 2O(sD) choices for conditioning strings
z1 · · · zD. Since we assume the separator tree is given as input, the time to construct G∗ is
clearly polynomial in |V ′′|, i.e. 2O(sD+logn). For weighting function ω from Lemma 31, we
have Wf∗(G∗) = Wω(G′′) ≤ (c+ 1)O(sD)n, where the equality is from Lemma 36, and the
inequality because every node in G′′ has at most O(sD) descendants. Correctness follows
from Lemma 37 and the fact that the output of G∗, by definition of node t, is CO(v | ε).
Finally, each verification circuit corresponding to a node in V ∗ has size poly(V ∗); the largest
such verification circuit corresponds to node t, which takes in wires from all other vertices in
G∗, and calls CO(v | ε) (which takes time poly(|V ∗|)). ◀

4.3 Solving C-DAG via oracle queries

We now show how to decide an N -node C-DAG-instance G with a c-admissible weighting
function f using O(logWf (G)) oracle queries. (We intentionally use N to denote the size of
G, to avoid confusion with the parameter n from Section 4.2.) Recall that at a high level,
our aim is to convert the problem of deciding G into the problem of maximizing a carefully
chosen real-valued function t. A binary search via the oracle C is then conducted to compute
the optimal value to t, from which a correct query string from G can be extracted. This
high-level strategy was also used by Gottlob [22]; what is different here is how we define t
and how we implement the details of the binary search.

4.3.1 Step 1: Defining the total solution weight function t

Let G = (V = {v1, . . . , vN}, E) be a C-DAG-instance with c-admissible weighting function
f . Recall by Definition 23 that each circuit Qi has a proof register Yi. Without loss of
generality, we assume Qi receives a proof |ψi⟩ ∈ B⊗m and has completeness α and soundness
β. Then, define t : {0, 1}N × (B⊗m)×N → R such that

t(x, ψ1, . . . , ψN) :=
N∑
i=1

f(vi)
(
xi Pr[Qi(zi(x), ψi) = 1] + (1− xi)γ︸ ︷︷ ︸

g(xi, zi(x), ψi)

)
, (4)

where γ := (α + β)/2, and zi(x) is defined similar to Line 5 of Algorithm 1, i.e. zi(x) ←
⃝vj∈parents(vi) xj , for x the input string to t. Two comments are important here: First,
defining z(x) in this manner may break the logic of Algorithm 1 when a prover is dishonest, in
that the relationship between xi and zi of Line 6 may not hold. Nevertheless, in Section 4.3.3,
we prove that t is maximized only when a prover acts honestly. Second, we intentionally
define t as taking in a cross product over spaces B⊗m, as opposed to a tensor product. This
simplifies the proofs of this section. Finally, define

T := max
x∈{0,1}N ,|ψ1⟩,...,|ψN ⟩∈B⊗m

t(x, ψ1, . . . , ψN). (5)

ITCS 2022

75:20 On Polynomially Many Queries to NP or QMA Oracles

4.3.2 Step 2: Approximating T

In order to apply binary search to approximate T (see proof of Theorem 28), we now show
that the decision version of approximating T is in C. Namely, define promise problem
Πε = (Πyes,Πno) such that Πyes = {(t, s) | t : {0, 1}N × (B⊗m)×N → R and T ≥ s} and
Πno = {(t, s) | t : {0, 1}N × (B⊗m)×N → R and T ≤ s − ε}, for T as in Equation (5), and
ε : Z→ R≥0 a fixed function of N (i.e. by ε we mean ε(N)).

▶ Lemma 38. Let C ∈ QV+. Define W :=
∑N
i=1 f(vi) for weighting function f from

Equation (4), and assume W ≤ poly(N). Then, for any ε ≥ 1/ poly(N), Πε ∈ C.

Proof. In the case C ∈ {NP,NEXP}, Πε can easily be solved in C by just computing
t(x, ψ1, . . . , ψN) directly (note that t : {0, 1}N × ({0, 1}⊗m)×N → R in this case).

For the remaining C, we begin by defining probabilities pi := f(vi)/W and let

t′(x, ψ1, . . . , ψN) := 1
W
t(x, ψ1, . . . , ψN) =

N∑
i=1

pi · g(xi, zi, ψi), (6)

whose maximum over all inputs we denote as T ′. We prove the claim by constructing a
C-verifier V such that

max
proofs |ψ⟩

Pr[V outputs 1 | |ψ⟩] = T ′. (7)

Thus, when (t, s) ∈ Πyes (resp., (t, s) ∈ Πno), V accepts with probability at least s/W (resp.,
at most (s− ε)/W), where ε/W ≥ 1/ poly(N) since W ≤ poly(N) by assumption.

V has proof space X ⊗ Y1 ⊗ · · · ⊗ YN with X = B⊗N and Yi = B⊗m. A subtle point
here is that function t takes as part of its input a sequence (|ψ1⟩, . . . , |ψN ⟩), whereas in
Equation (7), V takes in a joint (potentially entangled) proof |ψ⟩ across proof registers
Y1⊗· · ·⊗YN . However, due to the construction of V below, we shall see that without loss of
generality, Equation (7) is attained for tensor product states |ψ⟩ = |ψ1⟩ ⊗ · · · ⊗ |ψN ⟩, which
is equivalent to sequence (|ψ1⟩, . . . , |ψN ⟩), as desired.

Given proof |ψ⟩ ∈ X ⊗ Y1 ⊗ · · · ⊗ YN , V acts as follows:
1: Measure X in standard basis to obtain string x.
2: Select random i according to distribution pi.
3: if xi = 1 then
4: Run Qi with input zi(x) and proof register Yi.
5: else
6: Output 1 with probability γ.

Since (the POVM corresponding to) V is block diagonal with respect to X , Pr[V outputs 1 |
|ψ⟩] is maximized by some |ψ⟩ = |x⟩X |ψ′⟩Y1,...,N

. Then, since we only measure a single local
verifier Qi (at random, Step 4), we have

Pr[V outputs 1 | |ψ⟩] = t′(x, σ1, . . . , σN) where σi := Tr⊗
j ̸=i

Yj
(|ψ′⟩⟨ψ′|). (8)

But for any fixed x, this is maximized by choosing pure states σi = |ψi⟩⟨ψi|. Thus, t′ is
optimized by a tensor product |ψ⟩ = |ψ1⟩ ⊗ · · · ⊗ |ψN ⟩, and so Equation (7) holds. This
completes the proof.9 ◀

9 See the full version for additional details on StoqMA and QMA(2).

S. Gharibian and D. Rudolph 75:21

4.3.3 Step 3: Correct Query String
We next show that only correct query strings x can attain T (even approximately).

▶ Lemma 39. Define η := (α−β)/2, and let f be η−1-admissible. If t(x, ψ1, . . . , ψN) > T−η,
then x is a correct query string.

Proof sketch. Assume there exists a vi ∈ V such that xi is incorrect. We show that there
exist x′, |ψ′

1⟩, . . . , |ψ′
N ⟩ ∈ B⊗N such that t(x′, ψ′

1, . . . , ψ
′
N) ≥ t(x, ψ1, . . . , ψN) +η, obtaining a

contradiction. Define x′,|ψ′
1⟩,. . . ,|ψ′

N ⟩ such that x′
i = xi (i.e. the complement of xi), x′

j = xj
and |ψ′

j⟩ = |ψj⟩ for j ̸= i, and |ψ′
i⟩ maximizing Pr[Qi(zi(x′), ψ′

i) = 1]. It is straightforward
to show that g(x′

i, zi(x), ψ′
i)− g(xi, zi(x), ψi) ≥ η. Then,

t(x′, ψ′
1, . . . , ψ

′
N)− t(x, ψ1, . . . , ψN) ≥ η

(
f(vi)− η−1

∑
(vi,vj)∈E

f(vj)
)
≥ η, (9)

since g(·) ∈ [0, 1], flipping xi only affects children of vi, and f is η−1-admissable. ◀

4.3.4 Step 4: Completing the Proof
We now combine everything to show the main technical result of Section 4, Theorem 28.

Proof of Theorem 28. First, apply the Compression Lemma (Lemma 32) to transform
G into an equivalent G∗ with |V ∗| ≤ 2O(sD)n and Wf∗(G∗) ≤ (c + 1)O(sD)n. This takes
2O(sD+logn) time. Second, define the total solution weight function t as in Equation (4), whose
maximum value we denoted T (Equation (5)). By Lemma 39, we know that any query string
x satisfying t(x, ψ1, . . . , ψn) > T −η (for η = (α−β)/2, α and β the completeness/soundness
parameters for each C-verifier Qi in the C-DAG, and for f = f∗ a η−1-admissible weighting
function) is a correct query string. So, assume without loss of generality (since C ∈
{NP,MA,QCMA,QMA,QMA(2)}, where for QMA(2) we use [25]) that α = 2/3 and β =
1/3, so that η−1 = 6. By Lemma 36, f∗ is c-admissible for any c ≥ 2, and hence η−1-
admissible. Third, use Lemma 38 in conjunction with binary search to approximate T for G∗.
Here, we must be slightly careful. Set N = |V ∗| ≤ 2O(sD)n. Since the precision parameter
η ∈ Θ(1), it suffices to use log(Wf∗(G∗)) ∈ O(log|V ∗|) ∈ O(sD + logn) C-queries to resolve
T within additive error η. Let T̃ denote this estimate of T . Fourth, make a final C-query via
Lemma 38 to decide whether there exists a correct query string x and proofs |ψ1⟩, . . . , |ψN ⟩,
such that t(x, ψ1, . . . , ψN) ≥ T̃ and for which xN = 1, and return its answer. (Recall that
xN , by definition, encodes the output of the C-DAG.) ◀

5 Hardness for APX-SIM via a unified framework

We now show how the construction of Section 4 can be embedded directly into the flag-qubit
Hamiltonian construction of [46], thus directly yielding hardness results for the APX-SIM
problem (Definition 17).

Definitions. The following definitions were introduced in [46] to allow one to abstractly
speak about large classes of circuit-to-Hamiltonian mappings. This allows the Lifting Lemma
of [46], as well as its generalized version shown in Section 5.1 (Lemma 42), to be used in a
black-box fashion (i.e. agnostic to the particular choice circuit-to-Hamiltonian construction
used). As a result, both Lifting Lemmas automatically preserve desirable properties of the
actual circuit-to-Hamiltonian mappings employed, such as being 1D or translation invariant.

ITCS 2022

75:22 On Polynomially Many Queries to NP or QMA Oracles

|x〉

V

xN

|ψ1〉 qflag

...
|ψN 〉

Figure 3 Depiction of the circuit V constructed in Lemma 38, with two minor modifications: (1)
The second wire denotes the output wire of V , and is relabeled qflag here. (2) We assume without
loss of generality that V outputs the Nth bit of x ∈ {0, 1}N on the first wire above, labelled xN .

▶ Definition 40 (Conformity [46]). Let H be a Hamiltonian with some well-defined structure
S (such as k-local interactions, all constraints drawn from a fixed finite family, with a fixed
geometry such as 1D, translational invariance, etc). We say a Hermitian operator P conforms
to H if H + P also has structure S.

▶ Definition 41 (Local Circuit-to-Hamiltonian Mapping [46]). Let X = (C2)⊗p and Y = (C2)⊗q.
A map Hw : U (X)→ Herm(Y) is a local circuit-to-Hamiltonian mapping if, for any L > 0
and any sequence of 2-qubit unitary gates U = ULUL−1 · · ·U1, the following hold:
1. (Overall structure) Hw(U) ⪰ 0 has a non-trivial null space, i.e. Null(Hw(U)) ̸= 0. This

null space is spanned by (some appropriate notion of) “correctly initialized computa-
tion history states”, i.e. with ancillae qubits set “correctly” and gates in U “applied”
sequentially.

2. (Local penalization and measurement) Let q1 and q2 be the first two output wires of U
(each a single qubit), respectively. Let Spre ⊆ X and Spost ⊆ Y denote the sets of input
states to U satisfying the structure enforced by Hw(U) (e.g. ancillae initialized to zeroes),
and null states of Hw(U), respectively. Then, there exist projectors M1 and PL, projector
M2 conforming to Hw(U), and a bijection f : Spre → Spost, such that for all i ∈ {1, 2}
and |ϕ⟩ ∈ Spre, the state |ψ⟩ = f(|ϕ⟩) satisfies

Tr
(
|0⟩⟨0|i(ULUL−1 . . . U1)|ϕ⟩⟨ϕ|(ULUL−1 . . . U1)†)

= Tr
(
|ψL⟩⟨ψL|Mi

)
, (10)

where |ψL⟩ = PL|ψ⟩/∥PL|ψ⟩∥2 is |ψ⟩ postselected on measurement outcome PL (we require
PL|ψ⟩ ≠ 0). Moreover, there exists a function g : N× N→ R such that

∥PL|ψ⟩∥2
2 = g(p, L) for all |ψ⟩ ∈ Null(Hw(U)), and Mi = PLMiPL. (11)

The map Hw, and all operators/functions above (M1,M2,PL,f ,g) are computable given U .

5.1 The Generalized Lifting Lemma
▶ Lemma 42 (Generalized Lifting Lemma for APX-SIM). Fix C ∈ QV+. As input, we are given
a C-DAG instance G∗ on N nodes, and c-admissible weighting function f∗. Let V , as depicted
in Figure 3, be the verification circuit constructed in Lemma 38, given (G∗, f∗). Define
shorthand ∆ for ∆(Hw(V)). Fix a local circuit-to-Hamiltonian mapping Hw, and assume the
notation in Definition 41. Fix any function α : N→ N such that α > max

(
4∥M2∥

∆ , ∆
3∥M2∥2 , 1

)
.

Then, the Hamiltonian H := αHw(V) +M2 satisfies:
If G is a YES instance, then for all |ψ⟩ with ⟨ψ|H|ψ⟩ ≤ λmin(H) + 1

α2 ,
⟨ψ|M1|ψ⟩ ≤ 1

α

[
W
η

(
1
α + 12∥M2∥2

∆

)
+ 12∥M2∥2

∆

]
.

If G is a NO instance, then for all |ψ⟩ with ⟨ψ|H|ψ⟩ ≤ λmin(H) + 1
α2 ,

⟨ψ|M1|ψ⟩ ≥ g(p, L)− 1
α

[
W
η

(
1
α + 12∥M2∥2

∆

)
− 12∥M2∥2

∆

]
,

for W and η defined in Lemma 38 and Lemma 39, respectively, and g(p, L) defined in
Definition 41.

S. Gharibian and D. Rudolph 75:23

Proof. The claim follows immediately from Lemmas 43–45 with δ := 1/α2. ◀

We next give the three lemmas required for the proof of Lemma 42, all of which assume the
notation for the latter.

▶ Lemma 43 ([46]). Fix any function α : N→ N such that α > max
(

4∥M2∥
∆ , ∆

3∥M2∥2 , 1
)

, and
any δ ≤ 1/α2. Then, for any |ψ⟩ such that ⟨ψ|H|ψ⟩ ≤ λmin(H) + δ, there exists a uniform
history state |ϕ⟩ ∈ Null(Hw(V)) such that ∥|ψ⟩⟨ψ| − |ϕ⟩⟨ϕ|∥tr ≤ 12∥M2∥

α∆ and where |ϕ⟩ has
energy ⟨ϕ|H|ϕ⟩ ≤ λmin(H) + δ + 12∥M2∥2

α∆ .

For the second lemma, Lemma 44, recall V has proof space X ⊗ Y1 ⊗ · · · ⊗ YN with
X = B⊗N and Yi = B⊗m. Henceforth, we denote an arbitrary (potentially entangled) proof
in this space as |wX Y⟩. We remark Lemma 44 is our version of Lemma 23 of [46]; however,
our proof is significantly simplified, despite our lifting lemma allowing arbitrary C-DAGs,
due to the specific design of our verifier V from Lemma 38.

▶ Lemma 44. Suppose history state |ϕ⟩ ∈ Null(Hw(V)) has preimage |ψin⟩ = f−1(|ϕ⟩) (for
bijection f from Definition 41), where |ψin⟩ has proof |wX Y⟩ with total amplitude pbad on
incorrect query strings in X . Then, ⟨ϕ|H|ϕ⟩ > λmin(H) + g(p, L)pbad·η

W .

Proof. Let |ψout⟩ = V |ψin⟩. Letting X+ and X− denote the sets of correct and incorrect
query strings, respectively, we may write

|wX Y⟩ =
∑
x∈X−

αx|x⟩X |ψx⟩Y +
∑
x∈X+

αx|x⟩X |ψx⟩Y , (12)

for
∑
x∈X+∪X−

|αx|2 = 1, arbitrary unit vectors {|ψx⟩}x, and pbad :=
∑
x∈X−

|αx|2. Recall
from Definition 41 that M2 simulates the projector |0⟩⟨0|qflag via

Tr
(
|0⟩⟨0|2(ULUT−1 . . . U1)|ψin⟩⟨ψin|(ULUT−1 . . . U1)†)

= Tr
(
|ϕL⟩⟨ϕL|M2

)
, (13)

(since we assumed in Figure 3 that the second output qubit of V is the flag qubit), where
|ϕL⟩ is the history state |ϕ⟩ projected down onto time step T . We thus have

⟨ϕ|H|ϕ⟩ = ⟨ϕ|M2|ϕ⟩ = g(p, L)⟨ϕL|M2|ϕL⟩ = g(p, L) Tr
(
|ψout⟩⟨ψout| · |0⟩⟨0|qflag

)
(14)

= g(p, L) Pr[V rejects | |wX Y⟩], (15)

where the second statement follows from Equation (11), and the third from Equation (13).
By Equation (5) and Equation (6), there exists a proof |w′

X Y⟩ = |x⟩|ψ1⟩ · · · |ψN ⟩ accepted by
V with probability precisely T/W . Let |ψ′

in⟩ be an input state containing this optimal proof
|w′

X Y⟩. Lemma 39 now yields10

⟨ϕ|H|ϕ⟩ > g(p, L)
(

Pr[V rejects | |w′
X Y⟩] +

∑
x∈X−

|αx|2
η

W

)
(16)

= ⟨ϕ′|M2|ϕ′⟩+ g(p, L)pbad · η
W

≥ λmin(H) + g(p, L)pbad · η
W

, (17)

where the first inequality (16) uses the fact that

Pr[V accepts | |wX Y⟩] ≤ pgood ·
T

W
+ pbad

(
T

W
− η

W

)
= T

W
− pbad · η

W
. (18)

The second statement uses Equation (11), with |ϕ′⟩ := f(|ψ′
in⟩), and the last statement (17)

uses |ϕ′⟩ ∈ Null(Hw(V)) by the definition of f in Definition 41. ◀

10 We are implicitly using the fact that, as observed in the proof of Lemma 38, for any fixed query string
x, the acceptance probability of V is maximized by choosing a product state proof |ψ1⟩ · · · |ψN ⟩ on Y.

ITCS 2022

75:24 On Polynomially Many Queries to NP or QMA Oracles

Finally, the third lemma, Lemma 45, is our analog of Lemma 25 of [46]. We follow the
same high-level approach as the latter, but again, our proof here is simplified. This is because
Lemma 39 can be directly leveraged to obtain that any history state close enough to the
ground space of H must simply output the correct answer to the input C-DAG on wire xN
in Figure 3. (In contrast, [46] needed the Commutative Quantum Union Bound to argue
that all proofs are simultaneously correct.)

▶ Lemma 45. Consider any |ψ⟩ satisfying ⟨ψ|H|ψ⟩ ≤ λmin(H) + δ for δ ≤ 1/α2.
If G∗ is a YES instance, then ⟨ψ|M1|ψ⟩ ≤ W

η

(
δ + 12∥M2∥2

α∆

)
+ 12∥M2∥2

α∆ .

If G∗ is a NO instance, then ⟨ψ|M1|ψ⟩ ≥ g(p, L)− W
η

(
δ + 12∥M2∥2

α∆

)
− 12∥M2∥2

α∆ .

Proof sketch. We use Lemma 43 to map |ψ⟩ to a history state |ϕ⟩ ∈ Null(Hw(V)) whose
preimage |ϕin⟩ = f−1(|ϕ⟩) contains proof |wX Y⟩ with amplitude at most pbad on incorrect
query strings in X . By Equations (10) and (11), we have ⟨ϕ|M1|ϕ⟩ = g(p, L)⟨ϕL|M1|ϕL⟩ =
g(p, L) Tr

(
|0⟩⟨0|1V |ϕin⟩⟨ϕin|V †)

(V in Figure 3 outputs xN on the first wire). Combining
this with the bounds from Lemmas 43 and 44 via Hölder’s inequality yields the claim. ◀

5.2 Applying the Lifting Lemma
We now give two examples of how to use Lemma 42 to obtain hardness results for APX-
SIM, for the cases of C = QMA and C = StoqMA. The theorem below sets N :=
min(2O(s(n) logn), 2O(d(n) logn)) – the two values in min(·, ·) correspond to the use of the
bounded separator framework (Theorem 1) or bounded depth framework (Theorem 5),
respectively, in conjunction with Lemma 42.

▶ Theorem 46 (Hardness of APX-SIM for C = QMA via Lemma 42). Fix C = QMA, and let G
be any C-DAG instance on n nodes with separator number and depth scaling as s(n) and d(n),
in the sense of C-DAGs and C-DAGd, respectively. Set N := min(2O(s(n) logn), 2O(d(n) logn)).
Then, there exists a poly(N)-time many-one reduction from G to an instance (H, a, b, δ) of
APX-SIM, which satisfies: (1) H has size poly(N) (i.e. acts on poly(N) qubits/qudits, and
has poly(N) local terms), (2) H is either 5-local acting on qubits or 2-local on a 1D chain of
8-dimensional qudits (depending on which circuit-to-Hamiltonian mapping is employed), (3)
b− a ≥ 1/poly(N) and δ ≥ 1/ poly(N).

Proof sketch. Combine Lemmas 21, 32, and 42 with Kitaev’s 5-local [32] or Hallgren, Nagaj,
and Narayanaswami’s 1D construction [24]. ◀

As noted in Section 1.1, combining Theorem 1 with Theorem 46, we have that C-DAG1 can
directly be embedded into an instance of APX-SIM.

▶ Theorem 47 (Hardness of APX-SIM for C = StoqMA via Lemma 42). Fix C = StoqMA and
any efficiently computable s : N→ N, and define N := min(2O(s(n) log2 n), 2O(d(n) logn)). Then,
there exists a poly(N)-time many-one reduction from any instance of C-DAG to an instance
(H, a, b, δ) of APX-SIM for stoquastic H, which satisfies: (1) H has size poly(N) (i.e. acts
on poly(N) qubits, and has poly(N) local terms), (2) H is 2-local, (3) b− a ≥ 1/ poly(N)
and δ ≥ 1/poly(N).

Thus, in the N = 2O(d(n) logn) case (i.e. bounded depth framework), we recover that APX-
SIM on stoquastic Hamiltonians is PStoqMA[log]-hard [18]. For clarity, this follows because
PStoqMA[log] = P∥StoqMA [18], and P∥StoqMA corresponds to a depth-1 StoqMA-DAG.

S. Gharibian and D. Rudolph 75:25

6 No-go statement for “weak compression” of polynomials

We observe that the weighting function approach applied to NP queries (introduced in [22]
and used here as well) can be turned upside-down to obtain a no-go statement about a purely
mathematical question: Can arbitrary multi-linear polynomials be “weakly compressed”?

▶ Definition 48 (Weak compression of polynomials). Let f : [0, 1]m → R+ be a multi-variate
polynomial with rational coefficients, specified via an arithmetic circuit of size M . Assume
there exists x∗ ∈ [0, 1]m maximizing f such that f(x) can be specified exactly11 via B bits,
for some (finite) B. We say f is weakly compressible to B′ bits if there exists an efficiently
computable mapping taking f to another function g : [0, 1]m′ → R+ such that:
1. For any y ∈ [0, 1]m′ , g(y) is computable in poly(m) time.
2. (Optimality preserved) For any optimal y∗ maximizing g(y∗) over [0, 1]m′ , there exists a

poly(m)-time map taking y∗ to an optimal x∗ ∈ [0, 1]m maximizing f(x∗).
3. (Compression) There exists an optimal y∗ requiring at most B′ bits to specify exactly.

Next, we state the main technical lemma needed to show Lemma 9. Its proof along with
those of Lemma 9 and Corollaries 10 and 11 are in the full version.

▶ Lemma 49. Let t be as in Equation (4), specified using n bits of precision (used to describe
weights wi and verifiers Vi). There exists a poly-time Turing machine which, given t, produces
an arithmetic circuit encoding multi-linear polynomial pout : [0, 1]poly(n) → R+ with rational
coefficients such that

max
x,y1,...,ym∈{0,1}poly(m)

t(x, y1, . . . , ym) = max
s∈[0,1]poly(m)

pout(s). (19)

(Both f and pout have range [0,
∑
i|wi|] over their respective domains.) Moreover, given an

optimal s∗ maximizing pout, one can efficiently compute a correct NP query string for the
NP-DAG underlying t.

References
1 Scott Aaronson. BQP and the polynomial hierarchy. In Proceedings of the Forty-Second ACM

Symposium on Theory of Computing, STOC ’10, pages 141–150, New York, NY, USA, 2010.
Association for Computing Machinery. doi:10.1145/1806689.1806711.

2 Dorit Aharonov, Daniel Gottesman, Sandy Irani, and Julia Kempe. The power of quantum
systems on a line. Communications in Mathematical Physics, 287(1):41–65, April 2009.
doi:10.1007/s00220-008-0710-3.

3 Dorit Aharonov, Alex B. Grilo, and Yupan Liu. StoqMA vs. MA: the power of error reduction,
2021. arXiv:2010.02835.

4 Dorit Aharonov and Sandy Irani. Hamiltonian complexity in the thermodynamic limit, 2021.
arXiv:2107.06201.

5 A. Ambainis. On physical problems that are slightly more difficult than QMA. In 2014 IEEE
29th Conference on Computational Complexity (CCC), pages 32–43, 2014.

6 Richard Beigel, L.A. Hemachandra, and G. Wechsung. On the power of probabilistic polynomial
time: PNP[log] ⊆ PP. In [1989] Proceedings. Structure in Complexity Theory Fourth Annual
Conference, pages 225–227, June 1989. doi:10.1109/SCT.1989.41828.

7 Hans L. Bodlaender, John R. Gilbert, Hjálmtýr Hafsteinsson, and Ton Kloks. Approximating
treewidth, pathwidth, frontsize, and shortest elimination tree. J. Algorithms, 18(2):238–255,
March 1995. doi:10.1006/jagm.1995.1009.

11 For clarity, we are assuming a naive binary expansion of f(x∗).

ITCS 2022

https://doi.org/10.1145/1806689.1806711
https://doi.org/10.1007/s00220-008-0710-3
http://arxiv.org/abs/2010.02835
http://arxiv.org/abs/2107.06201
https://doi.org/10.1109/SCT.1989.41828
https://doi.org/10.1006/jagm.1995.1009

75:26 On Polynomially Many Queries to NP or QMA Oracles

8 Adam D. Bookatz. QMA-complete problems. Quantum Information & Computation,
14(5&6):361–383, April 2014.

9 Sergey Bravyi, Arvid J. Bessen, and Barbara M. Terhal. Merlin-Arthur Games and Stoquastic
Complexity, December 2006. arXiv:quant-ph/0611021.

10 Samuel R. Buss and Louise Hay. On truth-table reducibility to SAT. Information and
Computation, 91(1):86–102, 1991. doi:10.1016/0890-5401(91)90075-D.

11 Jorge Castro and Carlos Seara. Characterizations of some complexity classes between ωp
2 and

δp
2 . In Alain Finkel and Matthias Jantzen, editors, STACS 92, Lecture Notes in Computer

Science, pages 303–317, Berlin, Heidelberg, 1992. Springer. doi:10.1007/3-540-55210-3_192.
12 André Chailloux and Or Sattath. The Complexity of the Separable Hamiltonian Problem. In

2012 IEEE 27th Conference on Computational Complexity, pages 32–41, June 2012. ISSN:
1093-0159. doi:10.1109/CCC.2012.42.

13 Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the third
annual ACM symposium on Theory of computing, STOC ’71, pages 151–158, Shaker Heights,
Ohio, USA, May 1971. Association for Computing Machinery. doi:10.1145/800157.805047.

14 Toby Cubitt and Ashley Montanaro. Complexity classification of local hamiltonian problems.
SIAM Journal on Computing, 45(2):268–316, 2016. doi:10.1137/140998287.

15 Bill Fefferman and Cedric Lin. Quantum Merlin Arthur with Exponentially Small Gap,
January 2016. arXiv:1601.01975.

16 Michael R. Garey and David. S. Johnson. COMPUTERS and INTRACTABILITY: A Guide
to the Theory of NP-Completeness. W. H. Freeman and Company, 1979.

17 Sevag Gharibian, Yichen Huang, Zeph Landau, and Seung Woo Shin. Quantum Hamiltonian
Complexity. Foundations and Trends® in Theoretical Computer Science, 10(3):159–282,
October 2015. doi:10.1561/0400000066.

18 Sevag Gharibian, Stephen Piddock, and Justin Yirka. Oracle Complexity Classes and Local
Measurements on Physical Hamiltonians. In Christophe Paul and Markus Bläser, editors,
37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020),
volume 154 of Leibniz International Proceedings in Informatics (LIPIcs), pages 20:1–20:37,
Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/
LIPIcs.STACS.2020.20.

19 Sevag Gharibian and Dorian Rudolph. On polynomially many queries to NP or QMA oracles,
2021. arXiv:2111.02296.

20 Sevag Gharibian and Justin Yirka. The complexity of simulating local measurements on
quantum systems. Quantum, 3:189, September 2019. doi:10.22331/q-2019-09-30-189.

21 Daniel Gottesman and Sandy Irani. The quantum and classical complexity of translationally
invariant tiling and hamiltonian problems. 2009 50th Annual IEEE Symposium on Foundations
of Computer Science, pages 95–104, 2009.

22 Georg Gottlob. NP trees and Carnap’s modal logic. Journal of the ACM, 42(2):421–457,
March 1995. doi:10.1145/201019.201031.

23 Hermann Gruber. On balanced separators, treewidth, and cycle rank. Journal of Combinatorics,
3(4):669–681, 2012. doi:10.4310/JOC.2012.v3.n4.a5.

24 Sean Hallgren, Daniel Nagaj, and Sandeep Narayanaswami. The local hamiltonian problem
on a line with eight states is QMA-complete. Quantum Info. Comput., 13(9–10):721–750,
September 2013.

25 Aram W. Harrow and Ashley Montanaro. Testing product states, quantum Merlin-Arthur
games and tensor optimisation. Journal of the ACM, 60(1):1–43, February 2013. doi:
10.1145/2432622.2432625.

26 Juris Hartmanis. Sparse complete sets for NP and the optimal collapse of the polynomial
hierarchy. In Current Trends in Theoretical Computer Science, pages 403–411. WORLD
SCIENTIFIC, June 1993. doi:10.1142/9789812794499_0029.

27 Lane A. Hemachandra. The strong exponential hierarchy collapses. Journal of Computer and
System Sciences, 39(3):299–322, December 1989. doi:10.1016/0022-0000(89)90025-1.

http://arxiv.org/abs/quant-ph/0611021
https://doi.org/10.1016/0890-5401(91)90075-D
https://doi.org/10.1007/3-540-55210-3_192
https://doi.org/10.1109/CCC.2012.42
https://doi.org/10.1145/800157.805047
https://doi.org/10.1137/140998287
http://arxiv.org/abs/1601.01975
https://doi.org/10.1561/0400000066
https://doi.org/10.4230/LIPIcs.STACS.2020.20
https://doi.org/10.4230/LIPIcs.STACS.2020.20
http://arxiv.org/abs/2111.02296
https://doi.org/10.22331/q-2019-09-30-189
https://doi.org/10.1145/201019.201031
https://doi.org/10.4310/JOC.2012.v3.n4.a5
https://doi.org/10.1145/2432622.2432625
https://doi.org/10.1145/2432622.2432625
https://doi.org/10.1142/9789812794499_0029
https://doi.org/10.1016/0022-0000(89)90025-1

S. Gharibian and D. Rudolph 75:27

28 Edith Hemaspaandra, Lane A. Hemaspaandra, and Jörg Rothe. Exact analysis of Dodgson
elections: Lewis Carroll’s 1876 voting system is complete for parallel access to NP. In Pierpaolo
Degano, Roberto Gorrieri, and Alberto Marchetti-Spaccamela, editors, Automata, Languages
and Programming, Lecture Notes in Computer Science, pages 214–224, Berlin, Heidelberg,
1997. Springer. doi:10.1007/3-540-63165-8_179.

29 Richard M. Karp. Reducibility among Combinatorial Problems. In Raymond E. Miller,
James W. Thatcher, and Jean D. Bohlinger, editors, Complexity of Computer Computations,
The IBM Research Symposia Series, pages 85–103. Springer US, Boston, MA, 1972. doi:
10.1007/978-1-4684-2001-2_9.

30 Julia Kempe, Alexei Kitaev, and Oded Regev. The complexity of the local hamiltonian
problem. SIAM Journal on Computing, 35(5):1070–1097, January 2006. doi:10.1137/
s0097539704445226.

31 Julia Kempe and Oded Regev. 3-local Hamitonian is QMA-complete. Quantum Information
& Computation, 3(3):258–264, May 2003.

32 A. Yu. Kitaev, A. H. Shen, and M. N. Vyalyi. Classical and Quantum Computation. American
Mathematical Society, USA, 2002.

33 Mark W. Krentel. The complexity of optimization problems. Journal of Computer and System
Sciences, 36(3):490–509, 1988. doi:10.1016/0022-0000(88)90039-6.

34 Mark W. Krentel. Generalizations of Opt P to the polynomial hierarchy. Theoretical Computer
Science, 97(2):183–198, April 1992. doi:10.1016/0304-3975(92)90073-O.

35 L. A. Levin. Universal sequential search problems. Problems of Information Transmission,
9(3):265–266, 1973.

36 Tobias J. Osborne. Hamiltonian complexity. Reports on Progress in Physics, 75(2):022001,
January 2012. doi:10.1088/0034-4885/75/2/022001.

37 Christos H. Papadimitriou. On the complexity of unique solutions. In 23rd Annual Symposium
on Foundations of Computer Science (SFCS 1982), pages 14–20, 1982. doi:10.1109/SFCS.
1982.28.

38 Christos H. Papadimitriou and Stathis K. Zachos. Two remarks on the power of counting. In
Armin B. Cremers and Hans-Peter Kriegel, editors, Theoretical Computer Science, Lecture
Notes in Computer Science, pages 269–275, Berlin, Heidelberg, 1982. Springer. doi:10.1007/
BFb0036487.

39 Ran Raz and Avishay Tal. Oracle separation of bqp and ph. In Proceedings of the 51st Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2019, pages 13–23, New York,
NY, USA, 2019. Association for Computing Machinery. doi:10.1145/3313276.3316315.

40 Neil Robertson and P.D Seymour. Graph minors. ii. algorithmic aspects of tree-width. Journal
of Algorithms, 7(3):309–322, 1986. doi:10.1016/0196-6774(86)90023-4.

41 Philippe Schnoebelen. Oracle circuits for branching-time model checking. In Jos C. M. Baeten,
Jan Karel Lenstra, Joachim Parrow, and Gerhard J. Woeginger, editors, Automata, Languages
and Programming: 30th International Colloquium, ICALP 2003 Eindhoven, The Netherlands,
June 30 – July 4, 2003 Proceedings, pages 790–801, Berlin, Heidelberg, 2003. Springer Berlin
Heidelberg. doi:10.1007/3-540-45061-0_62.

42 Larry J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3(1):1–22,
October 1976. doi:10.1016/0304-3975(76)90061-X.

43 Klaus W. Wagner. More complicated questions about maxima and minima, and some closures of
NP. Theoretical Computer Science, 51(1):53–80, January 1987. doi:10.1016/0304-3975(87)
90049-1.

44 Klaus W. Wagner. Bounded query computations. [1988] Proceedings. Structure in Complexity
Theory Third Annual Conference, pages 260–277, 1988 . doi:10.1109/SCT.1988.5286.

45 James D. Watson and Johannes Bausch. The complexity of approximating critical points of
quantum phase transitions, 2021. arXiv:2105.13350.

46 James D. Watson, Johannes Bausch, and Sevag Gharibian. The complexity of translationally
invariant problems beyond ground state energies, 2020. arXiv:2012.12717.

47 James D. Watson and Toby S. Cubitt. Computational complexity of the ground state energy
density problem, 2021. arXiv:2107.05060.

ITCS 2022

https://doi.org/10.1007/3-540-63165-8_179
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1137/s0097539704445226
https://doi.org/10.1137/s0097539704445226
https://doi.org/10.1016/0022-0000(88)90039-6
https://doi.org/10.1016/0304-3975(92)90073-O
https://doi.org/10.1088/0034-4885/75/2/022001
https://doi.org/10.1109/SFCS.1982.28
https://doi.org/10.1109/SFCS.1982.28
https://doi.org/10.1007/BFb0036487
https://doi.org/10.1007/BFb0036487
https://doi.org/10.1145/3313276.3316315
https://doi.org/10.1016/0196-6774(86)90023-4
https://doi.org/10.1007/3-540-45061-0_62
https://doi.org/10.1016/0304-3975(76)90061-X
https://doi.org/10.1016/0304-3975(87)90049-1
https://doi.org/10.1016/0304-3975(87)90049-1
https://doi.org/10.1109/SCT.1988.5286
http://arxiv.org/abs/2105.13350
http://arxiv.org/abs/2012.12717
http://arxiv.org/abs/2107.05060

	1 Introduction
	1.1 Our results
	1.2 Techniques
	1.3 Related Work
	1.4 Open questions

	2 Preliminaries
	3 Query graphs and C-DAG
	4 Query Graphs with Bounded Separator Number
	4.1 Weighting Functions
	4.2 Graph transformation: The Compression Lemma
	4.2.1 Basic Construction (G' and G'')
	4.2.2 Merging Nodes (G*)
	4.2.3 Correctness

	4.3 Solving C-DAG via oracle queries
	4.3.1 Step 1: Defining the total solution weight function t
	4.3.2 Step 2: Approximating T
	4.3.3 Step 3: Correct Query String
	4.3.4 Step 4: Completing the Proof

	5 Hardness for APX-SIM via a unified framework
	5.1 The Generalized Lifting Lemma
	5.2 Applying the Lifting Lemma

	6 No-go statement for ``weak compression'' of polynomials

