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Abstract
We show that the ratio of the number of near perfect matchings to the number of perfect matchings
in 𝑑-regular strong expander (non-bipartite) graphs, with 2𝑛 vertices, is a polynomial in 𝑛, thus
the Jerrum and Sinclair Markov chain [14] mixes in polynomial time and generates an (almost)
uniformly random perfect matching. Furthermore, we prove that such graphs have at least Ω(𝑑)𝑛
many perfect matchings, thus proving the Lovasz-Plummer conjecture [18] for this family of graphs.
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1 Introduction

Given a (general) graph 𝐺 = (𝑉, 𝐸) with 2𝑛 = |𝑉 | vertices, the problem of counting the
number of perfect matchings in 𝐺 is one of the most fundamental open problems in the
field of counting. Jerrum and Sinclair in their landmark result [14] designed a Monte Carlo
Markov Chain (MCMC) algorithm for this task and proved that such an algorithm runs
in polynomial time if the ratio of the number of near perfect matchings to the number of
perfect matchings is bound by a polynomial (in 𝑛). As a consequence one would be able to
count perfect matchings if 𝐺 is very dense, i.e., it has min-degree at least 𝑛. Not much is
known beyond this case, despite several exciting results when the given graph 𝐺 is bipartite
[16, 17, 3, 15, 4].

This problem is also extensively studied in combinatorics. Around 40 years ago, Falikman
and Egorychev [8, 10] proved the van-der-Waerden conjecture, thus showing that if 𝐺 is a
𝑑-regular bipartite graph, then it has at least (𝑑/𝑒)𝑛 perfect matchings. This bound was
further improved by Schrijver [21] and simpler and more general proofs were found [13, 1].
But it remains a mystery whether van-der-Waerden conjecture extends to non-bipartite
graphs. Lovasz, Plummer most famously made the following conjecture:

▶ Conjecture 1 ([18, Conjecture 8.1.8]). For 𝑑 ≥ 3, there exist constants 𝑐1(𝑑), 𝑐2(𝑑) > 1 such
that any 𝑑-regular 𝑘 − 1-edge connected graph 𝐺 with 2𝑛 vertices contains at least 𝑐1(𝑑)𝑐2(𝑑)𝑛
perfect matchings and 𝑐2(𝑑) → ∞ as 𝑑 → ∞.

To this date the above conjecture is only proved for 𝑑 = 3 [9], although the same proof shows
that the conjecture holds for all 𝑑 ≥ 3 as long as 𝑐2(𝑑) is allowed to be a fixed constant.
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61:2 Counting & Sampling Perfect Matchings in Regular Expanding Non-Bipartite Graphs

At a high-level, the study of perfect matchings in general graphs faces the following
barriers:

Unlike bipartite graphs, the perfect matching polytope of a general graph has exponentially
many constraints, and it is believed that there does not exist any poly-size convex
program to test whether a given graph has perfect matchings. This fact significantly
limits exploiting Gurvits’ like techniques [13] in lower-bounding the number of perfect
matchings.
In a bipartite graph, any odd alternating walk (that starts and ends at un-saturated
vertices) can be used to extend a near perfect matching to a perfect matching. However,
in a general graph, an odd alternating walk may contain odd cycles. Therefore, typical
augmenting path arguments which bound the ratio of near perfect to perfect matchings
fail in a non-bipartite graph (see e.g., [16]).

In this paper we study perfect matchings in regular strong expander graphs: We show that
for these graphs the classical algorithm of [14] runs in polynomial time and can generate an
approximately uniform random perfect matching. On the combinatorial side, we prove a
significantly stronger version of Conjecture 1 for this family of graphs.

1.1 Main Contributions
Given a graph 𝐺 = (𝑉, 𝐸), let 𝐴𝐺 ∈ R2𝑛×2𝑛 be its adjacency matrix, and let 𝐷 ∈ R2𝑛×2𝑛

be the diagonal matrix of vertex degree. The normalized adjacency matrix of 𝐺 is defined
as 𝐴̃𝐺 = 𝐷−1/2𝐴𝐷−1/2; when 𝐺 is clear in the context we may drop the subscript. Let
𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆2𝑛 be the eigenvalues of 𝐴̃. We write

𝜎2(𝐴̃) = max{𝜆2 , |𝜆2𝑛 |},

to denote the largest eigenvalue of 𝐴̃ in absolute value (excluding 𝜆1).

▶ Definition 2. For 0 < 𝜖 < 1, we write 𝐺 is an 𝜖-spectral expander if 𝜎2(𝐴̃) ≤ 𝜖.

For two probability distributions 𝜇, 𝜈 defined in {1, . . . , 𝑛}, the total variation distance
of 𝜇, 𝜈 is 1

2
∑𝑛

𝑖=1 |𝜇𝑖 − 𝜈𝑖 |.

▶ Theorem 3 (Algorithm). There is a randomized algorithm that for 𝜖 ≤ 1/11, 𝛿 > 0, given
a 𝑑-regular 𝜖-spectral expander 𝐺 on 2𝑛 vertices outputs a perfect matching of 𝐺 from a
distribution 𝜇 of total variation distance 𝛿 of the uniform distribution (of perfect matchings)
in time poly(𝑛log1/𝜖 𝑑 , log(1/𝛿)). Furthermore, there is a randomized algorithm that for any
𝛿 > 0 approximates the number of perfect matchings of 𝐺 up to 1 ± 𝛿 multiplicative factor in
time poly(𝑛log1/𝜖 𝑑 , 1/𝛿).

In particular, observe that the running time of the above algorithms is polynomial in 𝑛 if 𝑑
is a constant or 1/𝜖 is a polynomial in 𝑑 and it is quasi-polynomial in 𝑛 otherwise.

▶ Theorem 4 (Lower Bound). For any 𝜖 ≤ 1/11, every 𝑑-regular 𝜖-spectral expander on 2𝑛
vertices has at least (𝑑/𝑒)𝑛

(
𝜖

2𝑒3𝑑6

) 𝜖𝑛
many perfect matchings.

Putting the above theorem together with [9] proves Conjecture 1 for (strong) spectral graphs.
Recall that by a work of Friedman, a random 𝑑-regular graph is a 𝜖 =

2
√
𝑑−1+𝑜(1)

𝑑
-spectral

expander with probability 1 − 1/poly(𝑛)[11, 6]. So, for a sufficiently large value of 𝑑, we can
count the number perfect matchings in random 𝑑-regular graphs up to 1±𝛿-multiplicatively in
time polynomial in 𝑛, 1/𝛿. Furthermore, the above theorem implies that the Lovasz-Plummer
Conjecture 1 holds for almost all graphs.
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We remark our proof technique can naturally be extended to non-regular expanders
where the ratio of maximum to minimum degree is bounded. However, in the following
statement we show that if this ratio is unbounded the graph may not even have a single
perfect matching.

▶ Theorem 5. For 𝑑 ≥ 3, there exists 𝑛0 > 0 such that for any 𝑛 ≥ 𝑛0, there is a
𝑂(1/

√
𝑑)-spectral expander 𝐺 on 2𝑛 vertices that does not have any perfect matchings.

1.2 Related Works
Bollabás and McKay [5] showed that when 𝑑 = Ω(log1/3 𝑛), as 𝑑 → ∞, a random 𝑑-regular
graph contains Ω(𝑑)𝑛 many perfect matchings with probability at least 1 − 1/𝑑2. Similar
bounds are also implicitly given in the work of Robinson and Wormald [19], but to the best
of our knowledge no explicit bound on the number of perfect matchings was known which
holds almost surely as 𝑛 → ∞. Note that Theorem 4 implies that this statement is true with
probability 1 − 1/poly(𝑛) even if 𝑑 is as small as a constant.

Chudnovsky and Seymour [7] proved that any planar cubic graph with no cut edge has
at least 2𝑛/655978752 many perfect matchings. Building on [7], Esperet, Kardos, King, Král,
and Norine [9] showed that any 𝑑-regular 𝑑 − 1 edge connected graph has at least 2(1−3/𝑑) 𝑛

3656

perfect matchings. Barvinok [2] showed that any 3-regular graph in which any set 𝑆 with
2 ≤ |𝑆 | ≤ |𝑉 | − 2 satisfies |𝐸(𝑆, 𝑆)| ≥ 4 has at least 𝑐𝑛 many perfect matchings for some
universal constant 𝑐 > 1.

Jerrum and Sinclair [14] showed the ratio of perfect to near perfect matchings in bipartite
Erdös-Réyni graphs is polynomial in 𝑛. Thus, one can efficiently sample a perfect matching in
such graphs. However, to the best of our knowledge, no such result is known for (non-bipartite)
random graphs.

Barvinok [3] designed a randomized 𝑐𝑛 approximation algorithm to the number of perfect
matchings of any (general) graph, for some universal constant 𝑐 > 1. Rudelson, Samarodnitsky,
Zeitouni [20] showed that for a family of strong expander graphs Barvinok’s estimator [3] has
a sub-exponential variance, thus obtaining a randomized polynomial time sub-exponential
approximation algorithm for the number of perfect matchings of any such graphs.

Gamarnik and Katz [12] designed a deterministic (1 + 𝜖)𝑛 approximation algorithm to
the number of perfect matching in expanding bipartite graphs.

1.3 Overview of Approach
At high-level our proof builds on works of [16, 12]. We show that given a non-perfect
matching 𝑀 in a (strong) expander graph 𝐺, one can find many augmenting paths of length
𝑂(log 𝑛

𝑛−|𝑀 | ).

▶ Lemma 6. Let 𝐺 be a 𝑑-regular 𝜖-spectral expander graph on 2𝑛 vertices for 𝜖 ≤ 1/11, and
let 𝑀 be any (not perfect) matching in 𝐺. Then there exist at least ⌈(𝑛 − |𝑀 |)/2⌉ augmenting
paths in 𝐺 of length at most 𝜌 = 𝑂

(
max

(
log1/𝜖( 2𝜖𝑛

𝑛−|𝑀 | ), 1
))

for 𝜌 defined in Lemma 16.

As alluded to in the introduction, the main difficulty in proving the above theorem is
that since 𝐺 is not necessarily bipartite, an augmenting walk cannot necessarily be turned
into an augmenting path since it may have odd cycles. To avoid this issue, first we construct
a random bi-partitioning of the vertices of 𝐺 by placing the endpoints of each edge of 𝑀 on
opposite sides. We exploit the expansion property of 𝐺 to argue that, under this random
bi-partition, every set expands with high probability. So, one can start from two unsaturated
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vertices and follow “alternating BFS trees” from each until getting to a common middle point.
The expansion property allows us to show that, with high probability, after log1/𝜖 𝑛 steps
we can construct an augmenting path. This method essentially tries to mimic the approach
of [16] while exploiting the random partitioning. As an immediate corollary of the above
lemma, we can upper bound the ratio of 𝑘 to 𝑘 + 1 matchings in expanders.

▶ Lemma 7. Let 𝐺 be a 𝑑-regular 𝜖-spectral expander graph on 2𝑛 vertices, and let 𝑘 ∈ [𝑛].
Let 𝑚(𝑗) denote the number of matchings of size 𝑗 in 𝐺. Then we have

𝑚(𝑘)
𝑚(𝑘 + 1) ≤ 2(𝑘 + 1)

𝑛 − 𝑘
𝑑(𝜌−1)/2

for 𝜌 defined in Lemma 16.

Building on [14], this lemma is already enough to prove Theorem 3.
To prove Theorem 4, we first show that for some constant 𝜖 > 0, 𝐺 has at least Ω(𝑑)𝑛

many 𝑛(1 − 𝜖)-matchings. This part uses a greedy algorithm to find so many distinct
matchings in an expander graph. Then, we exploit the above lemma to argue that the ratio
of the number of 𝑛(1 − 𝜖) matchings of 𝐺 to the number of its perfect matchings is at most
𝑑𝑂(𝜖)𝑛 .

2 Preliminaries

Given a graph 𝐺 = (𝑉, 𝐸) with |𝑉 | = 2𝑛 and 𝑘 ∈ [𝑛], a 𝑘-matching 𝑀 ⊆ 𝐸 is any subset
with |𝑀 | = 𝑘 and 𝑒 ∩ 𝑒′ = ∅ for all 𝑒 ≠ 𝑒′ ∈ 𝑀. For a set 𝑆 ⊆ 𝑉 , we write 𝐺[𝑆] to denote the
induced subgraph on the set 𝑆. For a vertex 𝑣 ∈ 𝑉 , we write deg𝐺(𝑣) to denote the degree of
𝑣 in 𝐺.

Given a set of vertices 𝑆 ⊆ 𝑉, define

𝑀(𝑆) := {𝑣 : ∃𝑢 ∈ 𝑆, (𝑢, 𝑣) ∈ 𝑀}.

We also define 𝑚𝐺(𝑘) to denote the number of 𝑘-matchings in 𝐺.
Given a matching 𝑀, a walk 𝑣0 , 𝑣1 , . . . , 𝑣𝑘 is an alternating walk for 𝑀 if for any

1 ≤ 𝑖 ≤ 𝑘 − 1 exactly one of (𝑣𝑖−1 , 𝑣𝑖) and (𝑣𝑖 , 𝑣𝑖+1) is in 𝑀. An augmenting path for 𝑀 is
any alternating path that starts and ends with an unmatched vertex.

For a graph 𝐺 = (𝑉, 𝐸) and 𝑆, 𝑇 ⊆ 𝑉,

𝐸𝐺(𝑆, 𝑇) := {(𝑢, 𝑣) ∈ 𝑆 × 𝑇 : (𝑢, 𝑣) ∈ 𝐸}.

For a set 𝑆 ⊆ 𝑉, we write

𝑁𝐺(𝑆) := {𝑢 ∉ 𝑆 : ∃𝑢 ∈ 𝑆, (𝑢, 𝑣) ∈ 𝐸}

to denote the set of all vertices outside 𝑆 that has an edge to 𝑆. When the graph 𝐺 is
unambiguous from the context, we may drop the subscripts.

2.1 Spectral Graph Theory
The following facts are the main properties of spectral expanders that we will need.

▶ Fact 8 (Expander Mixing Lemma). Let 𝐺 be a 𝑑-regular graph on 2𝑛 vertices. Then for
any two sets 𝑆, 𝑇 ⊆ 𝑉, we have���|𝐸(𝑆, 𝑇)| − 𝑑 |𝑆 | · |𝑇 |

2𝑛

��� ≤ 𝑑𝜎2(𝐴̃)
√
|𝑆 | · |𝑇 |
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▶ Lemma 9. Let 𝐺 = (𝑉, 𝐸) be a 2𝑛-vertex 𝑑-regular 𝜖-expander, and let 𝑆 ⊆ 𝑉. The
following holds: Then, there exists 𝑣 ∈ 𝑆 such that deg𝐺[𝑆](𝑣) ≥ ⌈𝑑(|𝑆 |/2𝑛 − 𝜖)⌉.

Proof. By the Expander Mixing Lemma (Fact 8), we have |𝐸(𝑆, 𝑆)| ≥ 𝑑 |𝑆 |2
2𝑛 − 𝑑𝜖 |𝑆 |. Hence

the average degree of the vertices in 𝐺[𝑆] is at least 𝑑(|𝑆 |/2𝑛 − 𝜖), and in particular there
exists 𝑣 ∈ 𝑆 whose degree in 𝐺[𝑆] is at least that much. ◀

▶ Lemma 10 ([22]). Let 𝐺 be a 𝑑-regular 𝜖-expander on 2𝑛 vertices. Then for any 𝑆 ⊆ 𝑉

we have

|𝑁(𝑆)| ≥ |𝑆 |
𝜖2 + (1 − 𝜖2)|𝑆 |/2𝑛

When |𝑆 | ≤ 2𝜖𝑛, we immediately get the following corollary.

▶ Corollary 11. Let 𝐺 be a 𝑑-regular 𝜖-expander on 2𝑛 vertices. Then for any 𝑆 ⊆ 𝑉 with
|𝑆 | ≤ 2𝜖𝑛 we have

|𝑁(𝑆)| ≥ |𝑆 |
𝜖2 + 𝜖 − 𝜖3 ≥ |𝑆 |

𝜖2 + 𝜖
.

2.2 Inequalities
▶ Theorem 12 (Hoeffding’s Inequality). Let 𝑋1 , . . . , 𝑋𝑘 be independent random variables in
the range [0, 1]. Then,

P
[∑

𝑋𝑖 < E
∑

𝑋𝑖 − 𝜖
]
≤ exp(−2𝜖2/𝑘).

▶ Theorem 13 (Stirling’s Formula). For 𝑛 ≥ 1 we have

𝑛! ≥
(𝑛
𝑒

)𝑛
.

▶ Theorem 14 (Weierstrass’s Inequality). Let 0 < 𝑥𝑖 < 1 for 1 ≤ 𝑖 ≤ 𝑛. Then,

𝑛∏
𝑖=1

(1 − 𝑥𝑖) ≥ 1 −
𝑛∑
𝑖=1

𝑥𝑖 .

▶ Theorem 15 (Hoffman-Wielandt’s Inequality). Let 𝐴, 𝐵 ∈ R𝑛×𝑛 be symmetric matrices with
eigenvalues 𝜆1 ≥ · · · ≥ 𝜆𝑛 and 𝜆′

1 ≥ · · · ≥ 𝜆′
𝑛, respectively. We have

𝑛∑
𝑖=1

(𝜆𝑖 − 𝜆′
𝑖)

2 ≤ ∥𝐴 − 𝐵∥2
𝐹 ,

where ∥ · ∥𝐹 denotes the Frobenius norm.

3 Proof of the Main Lemma

The following lemma is the main result of this section.

▶ Lemma 16. Let 𝐺 = (𝑉, 𝐸) be a 𝑑-regular 𝜖-spectral expander graph on 2𝑛 vertices with
𝜖 ≤ 1/11, 𝑀 be any (not perfect) matching in 𝐺, and 𝑈 the set of unsaturated vertices (in
𝑀). For any partitioning of 𝑈 = 𝑈𝐿 ∪𝑈𝑅 with |𝑈𝐿 | = |𝑈𝑅 | there is an augmenting path from
𝑈𝐿 to 𝑈𝑅 of length at most 𝜌 = 4 max

(
⌈log𝐶1(𝜖)(2𝜖𝑛+1

𝑛−|𝑀 | )⌉ , 0
)
+ 1, where 𝐶1(𝜖) = 1

𝜖+𝜖2 .

ITCS 2022
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Before proving this lemma we use it to prove Lemma 6.

Proof of Lemma 6. Let 𝑈 be the set of unmatched vertices of 𝑀 and let 𝑈′ be vertices of
𝑈 that are not an endpoint to any augmenting path of length at most 𝜌. Observe that if
|𝑈′ | ≤ 𝑛 − |𝑀 |, then there are at least ⌈(𝑛 − |𝑀 |)/2⌉ augmenting paths for 𝑀 and we are
done.

For the sake of contradiction suppose |𝑈′ | > 𝑛 − |𝑀 |. Now arbitrarily partition 𝑈 into
two equal-sized sets 𝑈𝐿 ∪𝑈𝑅 (each of size exactly 𝑛 − |𝑀 |) with the constraint that 𝑈𝐿 ⊆ 𝑈′.
So, by construction, no vertex in 𝑈𝐿 is an endpoint of augmenting path of length at most 𝜌.
But, by Lemma 16 there is an augmenting path from 𝑈𝐿 to 𝑈𝑅 of length at most 𝜌 which is
a contradiction. ◀

Proof of Lemma 7. Given a 𝑘-matching 𝑀, by Lemma 6 there are at least (𝑛 − 𝑘)/2
augmenting paths for 𝑀 (in 𝐺) of length at most 𝜌 for 𝜌 defined in Lemma 16. Note that
for any vertex 𝑣 of 𝐺 the number of paths of length at most 𝜌 starting at 𝑣 is at most 𝑑𝜌.
Therefore, for any 𝑘 + 1-matching 𝑀′, there are at most 2(𝑘 + 1)𝑑(𝜌−1)/2 𝑘-matchings that
can be mapped to 𝑀′. This is because any such matching can be obtained by “undoing” an
alternating path that starts and ends at the saturated vertices of 𝑀′. Together, these imply
𝑚(𝑘)

𝑚(𝑘+1) ≤
2(𝑘+1)𝑑(𝜌−1)/2

𝑛−𝑘 . ◀

▶ Definition 17 (Bipartition of 𝐺). Given a matching 𝑀 and 𝜔 : 𝑀 → {0, 1}, we define the
bipartite graph 𝐺𝑀(𝜔) = (𝐿𝑀(𝜔), 𝑅𝑀(𝜔), 𝐸𝑀(𝜔)) as follows. We drop the subscript 𝑀 and
𝜔 if they are clear in the context.

All vertices of 𝑈𝐿 are in 𝐿, all vertices of 𝑈𝑅 are in 𝑅. For any edge 𝑒 = (𝑢, 𝑣) ∈ 𝑀, we
add 𝑢 to 𝐿 and 𝑣 to 𝑅 if 𝜔(𝑒) = 0 and we add 𝑢 to 𝑅 and 𝑣 to 𝐿 otherwise. We simply let
𝐸𝑀(𝜔) be all edges of 𝐸 connecting 𝐿 to 𝑅. We use 𝜇𝑀 to denote the uniform distribution
over functions 𝑀 → {0, 1}.

▶ Lemma 18. Let 𝐺 = (𝑉, 𝐸) be a graph with 2𝑛 vertices such that for every set 𝑆 ⊆ 𝑉

with |𝑆 | ≤ 2𝜖𝑛, |𝑁(𝑆)| ≥ 𝛼 |𝑆 | for 𝛼 ≥ 10 and 0 < 𝜖 < 1. Given a non-perfect match-
ing 𝑀 and a partition of non-saturated vertices into equal sized sets 𝑈𝐿 , 𝑈𝑅, if for 𝑡 =

max(⌈log𝛼/4
2𝜖𝑛+1
|𝑈𝐿 | ⌉ , 0) there is no augmenting path of length at most 4𝑡 + 1 from 𝑈𝐿 to 𝑈𝑅,

then with probability > 1/2 (for 𝜔 ∼ 𝜇𝑀) there exists a set 𝑆 ⊆ 𝐿 such that |𝑆 | > 2𝜖𝑛, and
for every 𝑣 ∈ 𝑆 there is an alternating path of length at most 2𝑡 from 𝑈𝐿 to 𝑣 in 𝐺𝑀(𝜔).

Proof of Lemma 16. First, by Corollary 11, since 𝐺 is an 𝜖-spectral expander and 𝜖 < 1/11,
we can let 𝛼 = 1/(𝜖 + 𝜖2) ≥ 10. We prove the claim by contradiction. Suppose 𝐺 has no
augmenting path of length 𝜌 := 4𝑡 + 1 from 𝑈𝐿 to 𝑈𝑅, for 𝑡 defined in Lemma 18. By
Lemma 18, for 𝜔 ∼ 𝜇, with probability > 1/2 there is a set 𝑆 ⊆ 𝐿 with |𝑆 | > 2𝜖𝑛, such that
for any 𝑣 ∈ 𝑆 there is an alternating path in 𝐺𝑀(𝜔) of length (at most) 2𝑡 from 𝑈𝐿 to 𝑣.
By renaming 𝑈𝐿 , 𝑈𝑅, with probability > 1/2 there also exists another set 𝑆′ ⊆ 𝑅 such that
|𝑆′ | > 2𝜖𝑛 such that for every 𝑣 ∈ 𝑆′, there is an alternating path of length at most 2𝑡 from
𝑈𝑅 to 𝑣 in 𝐺𝑀(𝜔). By union bound, with positive probability both of these sets exist. Now,
by Fact 8 we have

|𝐸(𝑆, 𝑆′)| ≥ 𝑑 |𝑆 | · |𝑆′ |
2𝑛 − 𝜖𝑑

√
|𝑆 | · |𝑆′ | > 𝑑

√
|𝑆 | · |𝑆′ |(𝜖 − 𝜖) = 0.

So there is an edge (𝑣, 𝑣′) ∈ 𝐸(𝑆, 𝑆′). Now, the path formed by concatenating an alternating
path from 𝑈𝐿 to 𝑣 of length 2𝑡, the edge (𝑣, 𝑣′), and an alternating path from 𝑣′ to 𝑈𝑅 of
length 2𝑡 we find alternating walk of length (at most) 𝜌 = 2𝑡 + 2𝑡 + 1 from 𝑈𝐿 to 𝑈𝑅 in
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𝐺𝑀(𝜔). But since 𝐺𝑀(𝜔) is a bipartite graph this walk can only have even length cycles; by
removing these cycles we obtain an alternating path of length at most 𝜌 from 𝑈𝐿 to 𝑈𝑅 (in
𝐺𝑀(𝜔)). ◀

In the rest of this section, we prove Lemma 18. First note that as 𝛼/4 > 1, we have
log𝛼/4

2𝜖𝑛+1
|𝑈𝐿 | ≤ 0 if and only if |𝑈𝐿 | > 2𝜖𝑛, and the claim is trivial in this case as we can

set 𝑆 = 𝑈𝐿. Now suppose |𝑈𝐿 | ≤ 2𝜖𝑛. Let us fix an arbitrary ordering on the vertices of
𝐺. Given a bipartition 𝐺𝑀(𝜔), we define a sequence of sets 𝑈𝐿 = 𝐿0 ⊆ 𝐿1 ⊆ . . . 𝐿𝑇 ⊆ 𝐿,
and ∅ = 𝑋0 ⊆ 𝑋1 ⊆ . . . 𝑋𝑇 ⊆ 𝑉, where 𝑇 is a stopping time which is the minimum of 𝑡 and
the first time that |𝐿𝑇 | > 𝜖𝑛. Given 𝐿𝑖−1 , 𝑋𝑖−1 for 𝑖 ≥ 1, we construct 𝐿𝑖 , 𝑋𝑖 as follows: If
|𝐿𝑖−1 | > 2𝜖𝑛 then we stop and we let 𝑇 = 𝑖 − 1. Otherwise, |𝐿𝑖−1 | ≤ 2𝜖𝑛 so by assumption of
the lemma, 𝑁(𝐿𝑖−1) ≥ 𝛼 |𝐿𝑖−1 |. Let 𝐴𝑖 be the lexicographically first 𝛼 |𝐿𝑖−1 | − |𝑋𝑖−1 | neighbors
of 𝐿𝑖−1 which are not in 𝑋𝑖−1. In other words, we sort all neighbors of 𝐿𝑖−1 which are not in
𝑋𝑖−1 lexicographically and we let the first 𝛼 |𝐿𝑖−1 | − |𝑋𝑖−1 | of them to be 𝐴𝑖 . Note that as
𝐿𝑖−1 has at least 𝛼 |𝐿𝑖−1 | neighbors, there are at least 𝛼 |𝐿𝑖−1 | − |𝑋𝑖−1 | “new” neighbors and so
the set 𝐴𝑖 is well-defined. We let 𝑋𝑖 = 𝑋𝑖−1 ∪𝐴𝑖 . Observe that by definition, we always have

|𝑋𝑖 | = 𝛼 |𝐿𝑖−1 |. (1)

Finally, we let

𝐿𝑖 = 𝐿𝑖−1 ∪ 𝑀(𝐴𝑖 ∩ 𝑅) = 𝐿𝑖−1 ∪ 𝑀(𝑋𝑖 ∩ 𝑅).

The following fact follows inductively from the above construction

▶ Fact 19. For every 1 ≤ 𝑖 ≤ 𝑇 and every 𝑣 ∈ 𝐿𝑖, there is an alternating path of length at
most 2𝑖 from 𝑈𝐿 = 𝐿0 to 𝑣 in 𝐺𝑀(𝜔).

▶ Fact 20. For any 1 ≤ 𝑖 ≤ 𝑇, 𝐿𝑖−1 ∩ 𝑀(𝐴𝑖 ∩ 𝑅) = ∅. Therefore,

|𝐿𝑖 | = |𝐿𝑖−1 | + |𝐴𝑖 ∩ 𝑅 |.

Proof. For the sake of contradiction let 𝑣 ∈ 𝑀(𝐴𝑖 ∩ 𝑅) such that 𝑣 ∈ 𝐿𝑖−1 as well. Then,
since 𝑣 has a match, 𝑣 ∉ 𝑈𝐿; so we must have 𝑖 ≥ 2. Let 1 ≤ 𝑗 ≤ 𝑖 − 1 be the smallest
index such that 𝑣 ∈ 𝐿 𝑗 . That means that, by construction, 𝑀(𝑣) ∈ 𝐴 𝑗 ∩ 𝑅. Therefore,
𝑀(𝑣) ∈ 𝑋𝑗 ⊆ 𝑋𝑖−1. So, 𝑣 ∉ 𝑀(𝐴𝑖). ◀

Since in the above construction we only “look at” the first 𝛼 |𝐿𝑖−1 | − |𝑋𝑖−1 | new neighbors
of 𝐿𝑖−1 to construct 𝐿𝑖 , it follows that all edges which have no endpoints in these sets are
conditionally independent. More precisely, we obtain the following Fact.

▶ Fact 21. Let 𝜔 be chosen uniformly at random. For any 1 ≤ 𝑖 < 𝑡, conditioned on
𝐿0 , . . . , 𝐿𝑖−1, the law of 𝜔 on all edges that have no endpoints in 𝐿𝑖−1 , 𝑋𝑖−1 remain invariant,
i.e., it is i.i.d., with expectation 1/2 on each edge.

▷ Claim 22. For 1 ≤ 𝑖 ≤ 𝑇,

P𝜔∼𝜇 [|𝐴𝑖 ∩ 𝑅 | ≤ |𝐴𝑖 |/4 | 𝐿0 , . . . , 𝐿𝑖−1] < exp(−|𝐴𝑖 |/8).

Proof. Note that given 𝐿0 , . . . , 𝐿𝑖−1, 𝑋1 , . . . , 𝑋𝑖 and 𝐴1 , . . . , 𝐴𝑖 are uniquely determined. Let
𝑣 ∈ 𝐴𝑖 . Consider the following cases:

𝑣 ∈ 𝑈𝑅. This case cannot happen because we get an augmenting path of length 2𝑖 + 1 to
𝑈𝐿 which is a contradiction.
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𝑣 ∈ 𝐿𝑖−1. This cannot happen because 𝑣 ∈ 𝑁(𝐿𝑖−1). This in particular shows 𝑣 ∉ 𝑈𝐿. So,
𝑣 has a match in 𝑀.
𝑀(𝑣) ∈ 𝐴𝑖 . Then, by Definition 17 exactly one of 𝑣, 𝑀(𝑣) is in 𝑅.
𝑀(𝑣) ∈ 𝑋𝑖−1. If 𝑀(𝑣) ∈ 𝑅 then we must have 𝑣 ∈ 𝐿𝑖−1 which cannot happen as we said
in case (2). Otherwise, 𝑀(𝑣) ∈ 𝐿, so 𝑣 ∈ 𝑅.
𝑀(𝑣) ∈ 𝐿𝑖−1. Then, 𝑣 ∈ 𝑅.
𝑣 ∉ 𝐿𝑖−1 , 𝑀(𝑣) ∉ 𝑋𝑖 , 𝐿𝑖−1. In this case since 𝑣 ∈ 𝐴𝑖 , by Fact 21, 𝑣 ∈ 𝑅 with probability
1/2 independent of all other vertices of 𝐴𝑖 .

Let 𝐴′
𝑖

be the set of vertices 𝑣 that fall into the last case. Say we have a Bernoulli 𝐵𝑣

with success probability 1/2 for every 𝑣 ∈ 𝐴′
𝑖
. Then, by above discussion, conditioned on

𝐿0 , . . . , 𝐿𝑖−1, with probability 1,

|𝐴𝑖 ∩ 𝑅 | ≥ |𝐴𝑖 \ 𝐴′
𝑖 |/2 +

∑
𝑣∈𝐴′

𝑖

𝐵𝑣 .

Therefore, by the Hoeffding bound (Theorem 12)

P [|𝐴𝑖 ∩ 𝑅 | ≤ |𝐴𝑖/4| | 𝐿0 , . . . , 𝐿𝑖−1] ≤ P

∑
𝑣∈𝐴′

𝑖

𝐵𝑣 ≤ |𝐴′
𝑖 |/2 − |𝐴𝑖 |/4

��� 𝐿0 , . . . , 𝐿𝑖−1


≤ exp(−|𝐴𝑖 |2/8|𝐴′

𝑖 |) ≤ exp(−|𝐴𝑖 |/8)

as desired. ◁

Since |𝐿1 | ≥ |𝐴1 ∩ 𝑅 | and |𝐴1 | = 𝛼 |𝐿0 |,

P𝜇 [|𝐿1 | ≥ (𝛼/4)|𝐿0 |] ≥ P𝜇 [|𝐴1 ∩ 𝑅 | ≥ (𝛼/4)|𝐿0 |]
= P𝜇 [|𝐴1 ∩ 𝑅 | ≥ |𝐴1 |/4] ≥ 1 − exp(−|𝐴1 |/8) = 1 − exp(−𝛼 |𝐿0 |/8)

(2)

where the last inequality follows form Claim 22.

▷ Claim 23. Let 𝜔 be chosen uniformly at random. For every 2 ≤ 𝑖 ≤ 𝑇, we have

P𝜇
[
|𝐿𝑖 | ≥ (𝛼/4)|𝐿𝑖−1 |

�� |𝐿𝑖−1 | ≥ (𝛼/4)|𝐿𝑖−2 |, 𝐿0 , . . . , 𝐿𝑖−1
]
≥ 1 − exp(−(𝛼 − 4)|𝐿𝑖−1 |/8).

Proof. Suppose |𝐿𝑖−1 | ≥ (𝛼/4)|𝐿𝑖−1 |. Recall that by Equation (1) we have |𝑋𝑖 | = 𝛼 |𝐿𝑖−1 |. So
we can write

|𝐴𝑖 | = |𝑋𝑖 \ 𝑋𝑖−1 | = 𝛼(|𝐿𝑖−1 | − |𝐿𝑖−2 |)
≥ 𝛼(1 − 4/𝛼)|𝐿𝑖−1 |
= (𝛼 − 4)|𝐿𝑖−1 |. (3)

Let 𝜇′ be 𝜇 conditioned on |𝐿𝑖−1 | ≥ (𝛼/4)|𝐿𝑖−2 | and 𝐿0 , . . . , 𝐿𝑖−1. Then,

P𝜇′ [|𝐿𝑖 | ≤ (𝛼/4)|𝐿𝑖−1 |] = P𝜇′ [|𝐿𝑖 | − |𝐿𝑖−1 | ≤ (𝛼/4 − 1)|𝐿𝑖−1 |]
= P𝜇′ [|𝐴𝑖 ∩ 𝑅 | ≤ (𝛼/4 − 1)|𝐿𝑖−1 |] (Fact 20)
≤ P𝜇′ [|𝐴𝑖 ∩ 𝑅 | ≤ |𝐴𝑖 |/4] (Equation (3))
≤ exp(−|𝐴𝑖 |/8) (Claim 22)
≤ exp(−(𝛼 − 4)|𝐿𝑖−1 |/8), (Equation (3))

completing the proof. ◁
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▷ Claim 24. If 𝛼 ≥ 10, for any 𝑖 ≥ 1 we have

P𝜇
[
𝑇 < 𝑖 ∨ (𝑇 ≥ 𝑖 ∧ |𝐿𝑖 | ≥ (𝛼/4)𝑖 |𝐿0 |)

]
> 1/2.

Proof. For 1 ≤ 𝑗 ≤ 𝑖, let 𝐸 𝑗 denote the event that 𝑇 < 𝑗 ∨ (𝑇 ≥ 𝑗 ∧ |𝐿 𝑗 | ≥ (𝛼/4)|𝐿 𝑗−1 |). Then,

P [𝐸𝑖] ≥ P [𝐸1 ∧ · · · ∧ 𝐸𝑖]

= P [𝐸1]
𝑖∏

𝑗=2
P
[
𝐸 𝑗 |𝐸1 , . . . , 𝐸 𝑗−1

]
≥ (1 − exp(−𝛼 |𝐿0 |/8))

𝑖∏
𝑗=2

(
P
[
𝑇 < 𝑗 |𝐸1 , . . . , 𝐸 𝑗−1

]
+ P

[
𝑇 ≥ 𝑗 |𝐸1 , . . . , 𝐸 𝑗−1

]
E

[
1 − exp

(−(𝛼 − 4)|𝐿 𝑗−1 |
8

) ��� 𝐸1 , . . . , 𝐸 𝑗−1 , 𝑇 ≥ 𝑗

] )
(Claim 23)

≥ (1 − exp(−𝛼 |𝐿0 |/8))
𝑖∏

𝑗=2

(
1 − exp

(
−(𝛼 − 4)

8 (𝛼/4)𝑗−1 |𝐿0 |
))

≥ 1 − exp(−𝛼/8) −
𝑖∑

𝑗=2
exp(−𝛼 − 4

8 (𝛼/4)𝑗−1) (Theorem 14)

≥ 1 − 𝑒−𝛼/8 −
∞∑
𝑗=0

𝑒−𝛽(𝛼/4)𝑗 (for 𝛽 =
𝛼(𝛼−4)

32 )

≥ 1 − 𝑒−𝛼/8 − 𝑒−𝛽

1 − 𝑒−𝛽(𝛼/4−1) > 1/2. (𝛼 ≥ 10)

Note that in the third inequality we crucially use that if 𝐸1 , . . . , 𝐸 𝑗−1 occur then either 𝑇 < 𝑗,
or 𝑇 ≥ 𝑗 and |𝐿 𝑗 | ≥ (𝛼/4)𝑗−1. ◁

Setting 𝑡 = ⌈log𝛼/4
2𝜖𝑛+1
|𝑈𝐿 | ⌉ by the above statement we get P [𝑇 < 𝑡 ∨ (𝑇 = 𝑡 ∧ |𝐿𝑡 | > 2𝜖𝑛)] >

1/2. This completes the proof of Lemma 18.

4 Completing the Proofs of Theorems 3 and 4

4.1 The Lower-Bound
▶ Lemma 25. Let 𝐺 = (𝑉, 𝐸) be an 2𝑛-vertex 𝑑-regular 𝜖-expander. If 𝜖 < 1/2, then we
have,

𝑚((1 − 𝜖)𝑛) ≥
(
𝑑

𝑒

)𝑛(1−𝜖)
· 𝑒−2𝜖𝑛 .

Proof. Let 𝑘 = 𝑛(1 − 𝜖). We call a sequence of integers ⟨𝑎1 , . . . , 𝑎𝑘⟩ valid if 1 ≤ 𝑎𝑖 ≤
⌈𝑑((𝑛 − 𝑖 + 1)/𝑛 − 𝜖)⌉ for all 1 ≤ 𝑖 ≤ 𝑘.

Now, for valid sequence 𝑎 = ⟨𝑎1 , . . . , 𝑎𝑘⟩, we construct a 𝑘-matching ℳ(𝑎) as follows: We
are going to construct a sequence of matchings 𝑀0 ⊆ 𝑀1 ⊆ · · · ⊆ 𝑀𝑘 , with the property
that for 1 ≤ 𝑖 ≤ 𝑘, 𝑀𝑖 is going to be a matching of size 𝑖 in 𝐺. We then set ℳ(𝑎) := 𝑀𝑘 .
We start with 𝑀0 = ∅. For 𝑖 ≥ 1, given 𝑀𝑖−1, let 𝑆𝑖 be the set of unmatched vertices of
𝐺 with respect to 𝑀𝑖−1. Note that by construction 𝑀𝑖−1 is a matching of size 𝑖 − 1, so we
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have |𝑆𝑖 | = 2𝑛 − 2(𝑖 − 1). Further let Δ𝑖 = max𝑢∈𝑆 deg𝐺[𝑆𝑖 ](𝑢), and and let 𝑢𝑖 denote the
lexicographically first vertex with degree Δ𝑖 in 𝑆𝑖 . Note that by Lemma 9, it should be that
Δ𝑖 ≥ ⌈𝑑((𝑛 − 𝑖 + 1)/𝑛 − 𝜖)⌉, and furthermore, by validity of 𝑎 we obtain 𝑎𝑖 ≤ Δ𝑖 . Now let
let 𝑣𝑖 be the 𝑎𝑖-th neighbor of 𝑢𝑖 in 𝐺[𝑆𝑖] with respect to the lexicographical order. We set
𝑀𝑖 = 𝑀𝑖−1 ∪ {(𝑢𝑖 , 𝑣𝑖)}. In the next claim we show that any distinct pair of valid sequences
give distinct 𝑘-matchings. Therefore, the number of 𝑘-matchings of 𝐺 is at least,

𝑘∏
𝑖=1

(𝑑 𝑛 − 𝑖 + 1
𝑛

− 𝑑𝜖) ≥ 𝑑𝑘
𝑘∏

𝑖=1

𝑛 − 𝑖 + 1 − 𝜖𝑛
𝑛

≥ 𝑑𝑘
𝑘!
𝑛𝑘

≥ (𝑑/𝑒)𝑘 · (𝑘/𝑛)𝑘 ,

where the last inequality uses Theorem 13. By plugging in 𝑘 = (1 − 𝜖)𝑛 we obtain

𝑚((1 − 𝜖)𝑛) ≥ (𝑑/𝑒)(1−𝜖)𝑛 · (1 − 𝜖)(1−𝜖)𝑛 ≥ (𝑑/𝑒)(1−𝜖)𝑛 · 𝑒−𝜖𝑛 ,

where in the last inequality we used that (1 − 𝜖)1−𝜖 ≥ 𝑒−𝜖 for 𝜖 ≤ 1/2. ◀

▷ Claim 26. For any distinct valid sequences 𝑎 = ⟨𝑎1 , . . . , 𝑎𝑘⟩ and 𝑏 = ⟨𝑏1 , . . . , 𝑏𝑘⟩ we have
ℳ(𝑎) ≠ ℳ(𝑏).

Proof. Since 𝑎 ≠ 𝑏 there is an index 1 ≤ 𝑖 ≤ 𝑘 such that 𝑎𝑖 ≠ 𝑏𝑖 ; let 1 ≤ 𝑖 ≤ 𝑘 be the first
such index. Since 𝑎 𝑗 = 𝑏 𝑗 for 1 ≤ 𝑗 ≤ 𝑖 − 1, by the above construction we have 𝑆𝑖(𝑎) = 𝑆𝑖(𝑏).
So, we would choose a unique vertex 𝑢𝑖 in both constructions but we match it to different
vertices, since 𝑎𝑖 ≠ 𝑏𝑖 . Therefore ℳ(𝑎) ≠ ℳ(𝑏). ◁

▶ Lemma 27. Let 𝐺 be a 2𝑛 vertex 𝑑-regular, 𝜖-spectral expander for 𝜖 ≤ 1/11. We have,

𝑚((1 − 𝜖)𝑛)
𝑚(𝑛) ≤ (2𝑒/𝜖)𝜖𝑛𝑑2𝜖𝑛+(4𝜖𝑛+2)/ln𝐶1(𝜖).

where 𝐶1(𝜖) is defined in Lemma 16.

Proof. For 𝑘 = 𝜖𝑛, we can write

𝑚(𝑛(1 − 𝜖))
𝑚(𝑛) =

𝑛−1∏
𝑖=𝑛−𝑘

𝑚(𝑖)
𝑚(𝑖 + 1) ≤

𝑛−1∏
𝑖=𝑛−𝑘

2(𝑖 + 1)
𝑛 − 𝑖

𝑑2 log𝐶1(𝜖)
2𝜖𝑛+1
𝑛−𝑖 +2 (Lemma 7)

≤ 2𝑘𝑛𝑘𝑑2𝑘

𝑘! 𝑑2
∑𝜖𝑛

𝑖=1 log𝐶1(𝜖)
2𝜖𝑛+1

𝑖

≤ (2𝑒𝑑2𝑛/𝑘)𝑘𝑑2 log𝐶1(𝜖)
(2𝑘+1)𝑘

𝑘! ≤ (2𝑒𝑑2𝑛/𝑘)𝑘𝑑(4𝑘+2)/ln𝐶1(𝜖) ,

where in the second to last inequality we used Theorem 13 and in the last inequality we
used (2𝑘+1)𝑘

𝑘! = 𝑘𝑘

𝑘! (2 + 1/𝑘)𝑘 ≤ 𝑒2𝑘+1. Plugging 𝑘 = 𝜖𝑛 into the above inequality proves the
claim. ◀

Proof of Theorem 4. Using Lemmas 25 and 27 and using for 𝜖 ≤ 1/11, ln(𝐶1(𝜖)) ≥ 2, we
can write

𝑚(𝑛) ≥ 𝑒−𝜖𝑛(𝑑/𝑒)𝑛(1−𝜖)
(2𝑒/𝜖)𝜖𝑛𝑑2𝜖𝑛+(4𝜖𝑛+2)/ln𝐶1(𝜖)

≥
(
𝑑

𝑒

)𝑛 ( 𝜖

2𝑒3𝑑6

) 𝜖𝑛
as desired. ◀
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4.2 Sampling / Counting Perfect Matchings
As an immediate corollary of Lemma 7 we prove Theorem 3. In particular,

𝑚(𝑛 − 1)
𝑚(𝑛) ≤ 2𝑛𝑑2 log𝐶1(𝜖)(2𝜖𝑛+1)+2 (4)

So, it follows from the following theorem of [14] that for any 𝛿 > 0 we can sample a perfect
matching of 𝐺 from a distribution 𝜇 of total variation distance 𝛿 of the uniform distribution

in time poly(𝑛
log 𝑑

log 𝜖−1 , log(1/𝛿)).

▶ Theorem 28 (Jerrum and Sinclair [14, Thm 3.6]). Let 𝐺 be a graph with 2𝑛 vertices. There
is a Markov chain with a uniform stationary distribution on the space 𝑛 and 𝑛 − 1 matchings
of 𝐺 such that that mixes in time poly(𝑛, 𝑚(𝑛−1)

𝑚(𝑛) ).

Furthermore, Jerrum and Sinclair [14, Thm 5.3] showed how to estimate the number of
perfect matchings up to 1±𝛿 multiplicative factor in time poly(𝑛, 1/𝛿, 𝑚(𝑛−1)

𝑚(𝑛) ). So, plugging in
Equation (4) into their theorem also allows us to approximate the number of perfect matchings
(up to 1 ± 𝛿 multiplicatively) in 𝜖-expander regular graphs in time poly(𝑛

log 𝑑

log 𝜖−1 , 1/𝛿).

5 A Non-regular Counter-example

In this section we construct an infinite family of non-regular strong spectral expanders that
do not have any perfect matchings. This shows that the regularity assumption in Theorem 4
is necessary.

▶ Lemma 29. Given a 𝑑-regular graph 𝐺 = (𝑉, 𝐸) with 2𝑛 vertices, there exists a graph
𝐻 = (𝑉′, 𝐸′) with 2𝑛 + 2 vertices such that

𝐻 does not have any perfect matchings.
𝜎2(𝐴̃𝐻) ≤ 𝜎2(𝐴̃𝐺) +

√
5/𝑑.

𝐻 has 2𝑛 − 1 vertices of degree 𝑑, one vertex of degree 𝑑 + 2, and two vertices of degree 1.

Proof. Say 𝑉 = {𝑣1 , . . . , 𝑣2𝑛}. To construct 𝐻, we add two new vertices 𝑣2𝑛+1 , 𝑣2𝑛+2 and
we connect both of them to 𝑣2𝑛 . Clearly 𝐻 has no perfect matchings. We abuse notation
and extend the normalize adjacency matrix of 𝐺, 𝐴̃𝐺 by adding two all-zeros rows and two
all-zeros columns. Clearly, only introduces two new zero eigenvalues, and the 𝜎2(𝐴̃𝐺) remains
invariant. It follows by a simple calculation that

∥𝐴̃𝐺 − 𝐴̃𝐻 ∥2
𝐹 = 2(𝑑 − 1) ·

(
1

𝑑(𝑑 + 1)

)2
+ 4

(
1√
𝑑 + 1

)2
≤ 2

𝑑3 + 4
𝑑
≤ 5

𝑑
.

Therefore, by Theorem 15, for any 1 ≤ 𝑖 ≤ 2𝑛 + 2 we have

|𝜆𝑖(𝐴̃𝐺) − 𝜆𝑖(𝐴̃𝐻)|2 ≤
2𝑛+2∑
𝑗=1

|𝜆 𝑗(𝐴̃𝐺) − 𝜆 𝑗(𝐴̃𝐻)|2 ≤ ∥𝐴̃𝐺 − 𝐴̃𝐻 ∥2
𝐹 ≤ 5/𝑑.

Therefore we obtain 𝜎2(𝐴̃𝐻) ≤ 𝜎2(𝐴̂𝐺) +
√

5/𝑑. ◀

Recall by the work Friedman [11, 6] for 𝑑 ≥ 3 and sufficiently large 𝑛, there exists a 𝑑-regular(
2
√
𝑑−1
𝑑

+ 𝑜(1)
)
-expander 𝐺2𝑛,𝑑 on 2𝑛 vertices. Theorem 5 is immediate.
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