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Abstract
There is a large and important collection of Ramsey-type combinatorial problems, closely related to
central problems in complexity theory, that can be formulated in terms of the asymptotic growth of
the size of the maximum independent sets in powers of a fixed small hypergraph, also called the
Shannon capacity. An important instance of this is the corner problem studied in the context of
multiparty communication complexity in the Number On the Forehead (NOF) model. Versions of
this problem and the NOF connection have seen much interest (and progress) in recent works of
Linial, Pitassi and Shraibman (ITCS 2019) and Linial and Shraibman (CCC 2021).

We introduce and study a general algebraic method for lower bounding the Shannon capacity of
directed hypergraphs via combinatorial degenerations, a combinatorial kind of “approximation” of
subgraphs that originates from the study of matrix multiplication in algebraic complexity theory
(and which play an important role there) but which we use in a novel way.

Using the combinatorial degeneration method, we make progress on the corner problem by
explicitly constructing a corner-free subset in Fn

2 × Fn
2 of size Ω(3.39n/poly(n)), which improves the

previous lower bound Ω(2.82n) of Linial, Pitassi and Shraibman (ITCS 2019) and which gets us
closer to the best upper bound 4n−o(n). Our new construction of corner-free sets implies an improved
NOF protocol for the Eval problem. In the Eval problem over a group G, three players need to
determine whether their inputs x1, x2, x3 ∈ G sum to zero. We find that the NOF communication
complexity of the Eval problem over Fn

2 is at most 0.24n + O(log n), which improves the previous
upper bound 0.5n + O(log n).
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48:2 Larger Corner-Free Sets from Combinatorial Degenerations

1 Introduction

This paper is about constructing special combinatorial objects, namely “corner-free sets”
in Fn

p × Fn
p , motivated (besides their inherent interest) by central problems in communic-

ation complexity, specifically in the study of the number on the forehead (NOF) model
of communication introduced by Chandra, Furst and Lipton [15]. There has been much
interest in (and progress on) the corner problem, variations of the problem, and connections
to NOF communication, in particular in the recent works of Shraibman [45], Linial, Pitassi
and Shraibman [34], Viola [50], Alon and Shraibman [5], and Linial and Shraibman [35, 36].
In the recent work of Linial and Shraibman [35] a construction of large corner-free sets in
[N ] × [N ] was obtained in an elegant manner by designing efficient NOF communication
protocols for a specific communication problem (much like the upcoming Eval problem). We
take a different, algebraic approach to the corner problem, and make progress on the corner
problem over Fn

p × Fn
p by introducing in this area a new algebraic method via combinatorial

degeneration.

NOF communication complexity
The NOF model is very rich in terms of connections to Ramsey theory and additive combinator-
ics [9, 45, 34, 35, 36], as well as applications to boolean models of compution such as branching
programs and boolean circuits [15, 10]. The goal in the NOF model is for k players to compute
a fixed given function F : X1 ×· · ·×Xk → {0, 1} on inputs (x1, . . . , xk) ∈ X1 ×· · ·×Xk where
player i has access to input xj for all j ̸= i but no access to input xi. For k = 2, this model
coincides with the standard two-party communication model of Yao [51], but when k ≥ 3, the
shared information between the players makes this model surprisingly powerful [29, 6, 1, 16],
and fundamental problems remain open. For instance, a sufficiently strong lower bound for an
explicit function F for k ≥ polylog(n) players with n = log |Xi| would imply a breakthrough
result in complexity theory, namely a lower bound on the complexity class ACC0.

NOF complexity of the Eval problem
A central open problem in the theory of NOF communication is to construct an explicit
function for which randomized protocols are significantly more efficient than deterministic
ones [8]. A well-studied candidate for this separation (for k = 3) is the function EvalFn

2
, which

is defined by EvalFn
2
(x1, x2, x3) = 1 if and only if x1 + x2 + x3 = 0, where the additions are all

in Fn
2 . Thus the Eval problem naturally generalizes the equality problem for k = 2. It is known

that in the randomized setting, the standard protocol for the two-party equality problem
that uses O(1) bits of communication works in the same way for three parties for the Eval
problem. However, in the deterministic setting, the communication complexity D3(EvalFn

2
)

remains wide open: the best known lower bound Ω(log log n) follows from the work of Lacey
and McClain [33] and, before this work, the best upper bound was 0.5n + O(log n) [1].

Corner problem in combinatorics, and connection to the Eval problem
Chandra, Furst and Lipton [15] found that the deterministic communication complexity of
many problems in the NOF model can be recast as Ramsey theory problems. In particular,
and this leads to the problem of interest in this paper, the (deterministic) communication
complexity of EvalFn

2
can be characterized in terms of corner-free subsets of Fn

2 ×Fn
2 , as follows.

We call any triple of elements (x, y), (x + λ, y), (x, λ + y) for x, y, λ ∈ Fn
2 a corner. A subset

S ⊆ Fn
2 ×Fn

2 is called corner-free if it does not contain any nontrivial corners (where nontrivial
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means that λ ̸= 0). Denoting by r∠(Fn
2 ) the size of the largest corner-free set in Fn

2 × Fn
2 ,

the communication complexity of EvalFn
2

equals log(4n/r∠(Fn
2 )) up to a O(log n) additive

term, which provides the close connection between the Eval problem in NOF communication
and the corner problem in combinatorics. In particular, large corner-free sets in Fn

2 × Fn
2

correspond to efficient protocols for EvalFn
2
.

General paradigm: Shannon capacity of hypergraphs
The point of view we will take (and the general setting in which the methods we introduce will
apply) is to regard the corner problem as a Shannon capacity problem of directed hypergraphs.
Namely, the size r∠(Fn

2 ) of the largest corner-free set in Fn
2 × Fn

2 can be characterized as the
independence number of a (naturally defined) directed 3-uniform hypergraph with 4n vertices.1
This hypergraph has a recursive form: it is obtained by taking the n-th power of a fixed
(directed) hypergraph Hcor,F2 on 4 vertices. (We discuss this in more detail in Section 2.) The
asymptotic growth of r∠(Fn

2 ) as n → ∞ is characterized by the Shannon capacity Θ(Hcor,F2)
of the corner hypergraph Hcor,F2 .2 That is, we have r∠(Fn

2 ) = Θ(Hcor,F2)n−o(1). In this way,
proving the strict upper bound Θ(Hcor,F2) < 4 is equivalent to proving a linear lower bound
on the communication complexity of EvalFn

2
. Many other Ramsey type problems can be

expressed as the Shannon capacity of some fixed hypergraph, such as the Cap Set problem
that saw a recent breakthrough by Ellenberg and Gijswijt [25] following Croot, Lev and
Pach [22], and the Uniquely Solvable Puzzle (USP) problems that were put forward in the
“group-theoretic approach” to the matrix multiplication problem [20, 4].

1.1 Is the complexity of the Eval problem maximal?
Let us discuss the open problem that motivates our work, and that is central in NOF
communication complexity and combinatorics (throught the aforementioned connections).
This problem asks whether or not the complexity of the Eval probem is “maximal”, or in
other words, whether or not there are corner-free sets in Fn

2 × Fn
2 that have “sub-maximal”

size:

▶ Problem 1. Are the following three statements (which we know are equivalent3) true?
D3(EvalFn

2
) = Ω(n)

r∠(Fn
2 ) ≤ O(cn) for some c < 4

Θ(Hcor,F2) < 4.

Here the best capacity lower bound before our work was Θ(Hcor,F2) ≥
√

8 by Linial, Pitassi
and Shraibman [34, Cor. 24 in the ITCS version], obtained by explicit construction of an
independent set in the second power of the relevant hypergraph, which in turn leads to the
bounds D3(EvalFn

2
) ≤ 0.5n + O(log n) and r∠(Fn

2 ) ≥
√

8n.
In the above we may naturally generalize Fn

2 to Fn
p or even to Gn, where G is an arbitrary

abelian group, so that Problem 1 is a special case of the more general problem:

1 As usual an independent set of a hypergraph is a subset S of vertices such that no hyperedge has all its
vertices in S.

2 In the setting of directed graphs, also the term Sperner capacity (typically applied to the complement
graph) [27, 26] is used for what we call Shannon capacity.

3 The equivalence among the three formulations is standard and follows from Lemma 17, Proposition 16
and Lemma 14 further on in the paper. We will mainly use the formulation in terms of Shannon capacity
(see Definition 12 for a precise definition).

ITCS 2022
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▶ Problem 2. Are the following three statements (which we know are equivalent) true?
D3(EvalGn) = Ω(n)
r∠(Gn) ≤ O(cn) for some c < |G|2

Θ(Hcor,G) < |G|2.
Our goal in this paper, motivated by the connections as remarked earlier, is to make progress
on above problems via new algebraic methods.

1.2 Lower bounds for the corner problem (and other problems) from
combinatorial degeneration

Our main result is progress on Problem 2 by proving new lower bounds for the corner problem
over the groups F2 and F3, which we arrive at via a new method to lower bound the Shannon
capacity of directed hypergraphs. Equivalently, in the language of communication complexity,
we obtain improved protocols for the Eval problem.

The lower bound of Linial, Pitassi and Shraibman [34] for the corner problem was obtained
by explicit construction of an independent set (i.e. a set that does not contain edges) in the
second power of a hypergraph, which is the natural approach for such lower bounds. We
improve on this bound by observing that it is actually sufficient to construct a set which
does not contain “cycles”. For graphs, the notion of cycle is clear but for hypergraphs there
are many possible definitions, and we initiate a careful study of this (and believe that this
will be a worthwile avenue for further study independently). Here, to get new bounds we use
the notion of combinatorial degeneration to model such a “cycle”. We will say more about
this in a moment.

Using the combinatorial degeneration method on the corner hypergraphs that characterize
the corner problem we find new bounds for Problem 2 for the groups Fn

2 and Fn
3 . These are

as follows (in the three equivalent forms):

▶ Theorem 3 (Thm. 26). For the corner and Eval problem over Fn
2 we have:

D3(EvalFn
2
) ≤ 0.24n + O(log n)

r∠(Fn
2 ) ≥

3√39n

poly(n)

Θ(Hcor,F2) ≥ 3
√

39

▶ Theorem 4 (Thm. 25). For the corner and Eval problem over Fn
3 we have:

D3(EvalFn
3
) ≤ 0.37n + O(log n)

r∠(Fn
3 ) ≥ 7n

poly(n)
Θ(Hcor,F3) ≥ 7.

Let us discuss on a high level the history and ideas behind the combinatorial degeneration
method. Combinatorial degeneration is an existing concept from algebraic complexity theory.
It was (in a slightly different form) introduced and studied by Strassen in [46, Section 6].4
(For the formal definition of combinatorial degeneration, see Definition 21.) Strassen’s original
application of combinatorial degeneration was to study matrix multiplication, namely to
prove the fundamental result that surprisingly many independent scalar multiplications can

4 Degeneration of tensors is a powerful approximation notion in the theory of tensors. Combinatorial
degeneration is the “combinatorial” or “torus” version of this kind of approximation. Combinatorial
degeneration was introduced by Bürgisser, Clausen and Shokrollahi [14, Definition 15.29] based on the
notion of M-degeneration for tensors defined and studied by Strassen in [46].
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be reduced (in an appropriate algebraic manner) to matrix multiplication [46, Theorem 6.6].5
Strassen then used this result to prove his Laser method [46, Section 7], vastly generalizating
the method that Coppersmith and Winograd had introduced in their construction of matrix
multiplication algorithms [21].6

Combinatorial degeneration was used more broadly to construct large induced matchings
in the setting of important combinatorial problems, namely the Sunflower problem by Alon,
Shpilka and Umans [4, Lemma 3.9] and the Cap Set problem by Kleinberg, Sawin and
Speyer [31]. These results are often referred to as the “multicolored” versions of the problem
at hand, as opposed to the “single color” version. These ideas were developed further in the
context of matrix multiplication barriers by Alman and Williams [2, Lemma 6] and in the
study of tensors by Christandl, Vrana and Zuiddam [18, Theorem 4.11].

Crucially, all of the above applications use combinatorial degeneration to construct induced
matchings in (k-uniform k-partite) hypergraphs. However, we use combinatorial degeneration
in a novel manner to construct independent sets in hypergraphs instead of induced matchings.
In this context an independent set should be thought of as a symmetric induced matching.
Constructing large independent sets is a much harder task than constructing large induced
matchings, as witnessed by the fact that the “multicolored” cap set problem is solved [31]
while its “single color” version is not. Similarly, for the corner problem, as we will discuss
in Section 1.4, the asymptotic growth of the largest induced matching can be shown to be
maximal, whereas the main question of study of this paper is whether the same holds for the
largest independent set. We expect our new way of using combinatorial degeneration to be
useful in the study of other problems besides the corner problem as well, and thus think it is
of independent interest.

On a more technical level, combinatorial degeneration is a notion that compares sets of
k-tuples by means of algebraic conditions. Our “universe” is I1 × · · · × Ik where I1, . . . , Ik

are finite sets. Then for sets Φ ⊆ Ψ ⊆ I1 × · · · × Ik we say that Φ is a combinatorial
degeneration of Ψ, and write Ψ ⊵ Φ, if there are maps ui : Ii → Z such that for every
x = (x1, . . . , xk) ∈ I1 × · · · × Ik, if x ∈ Ψ \ Φ, then

∑k
i=1 ui(xi) > 0, and if x ∈ Φ, then∑k

i=1 ui(xi) = 0. Thus the maps ui together are able to distinguish between the elements in
the set Φ (which may be thought of as our “goal” set, i.e. a set with good properties) and
the elements in the difference Ψ \ Φ. As a quick example of a combinatorial degeneration, let

Φ = {(0, 0, 0), (1, 1, 0), (1, 0, 1)},

Ψ = {(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)}.

Then we find a combinatorial degeneration Ψ ⊵ Φ by defining the maps ui : {0, 1} → Z
simply by setting u1(0) = u2(0) = u3(0) = 0, and u1(1) = −1, u2(1) = u3(1) = 1.

We apply the idea of combinatorial degeneration in the following fashion to get Shannon
capacity lower bounds:

▶ Theorem 5 (Combinatorial degeneration method, Theorem 23). Let H = (V, E) be a directed
k-uniform hypergraph. Let S ⊆ V be a subset of vertices. Define the sets

Ψ = E ∪ {(v, . . . , v) : v ∈ V }

5 Strassen’s result is asymptotically optimal. Strassen’s proof resembles Behrend’s construction of
arithmetic-progression-free sets. Also note that this is precisely the opposite of the problem of reducing
matrix multiplication to as few independent scalar multiplications as possible. The latter corresponds
precisely to the arithmetic complexity of matrix multiplication.

6 The book [14, Definition 15.29 and Lemma 15.31] gives a different proof of the Laser method which
relies even more strongly on combinatorial degeneration.

ITCS 2022



48:6 Larger Corner-Free Sets from Combinatorial Degenerations

and

Φ = {(v, . . . , v) : v ∈ S}.

Suppose that Ψ⊵Φ is a combinatorial degeneration. Then we get the Shannon capacity lower
bound Θ(H) ≥ |S|.

In other words, whereas S in the statement of Theorem 5 may not be an independent set,
we can via the algebraic conditions of combinatorial degeneration construct an independent
set in the nth power of the hypergraph of size approaching |S×n|. Namely, the algebraic
conditions allow us to select such an independent set using a natural type analysis of the
labels given by the maps ui. Thus we may think of a set S as above as an approximative
independent set, which asymptotically we can turn into an actual independent set by means
of Theorem 5.

We note that, whereas it is relatively simple to verify for a given set S that Ψ ⊵ Φ holds
(with the notation of Theorem 5) via linear programming, it is seems much harder to find a
large set S ⊆ V for which Ψ ⊵ Φ, given H. We obtain our best lower bounds via an integer
linear programming approach. The resulting combinatorial degenerations that we find are
explicit and checkable by hand.

We have yet to develop structural understanding of how the above combinatorial de-
generations that exhibit the new capacity lower bounds arise (and we feel that deeper
understanding of this may lead to more progress or even solve the corner problem), and
leave the investigation of further generalizations and improvements to future work. As a
partial remedy to our limited understanding, we introduce the acyclic method as a tool
to construct combinatorial degenerations. While the acyclic method does not recover the
bounds of Theorem 3 and Theorem 4, it has the merits of being transparent and simple to
apply. The acyclic method involves another notion of a set wihtout “cycles”, which implies a
combinatorial degeneration, but whose conditions are simpler to check.

1.3 Lower bounds for the corner problem from the probabilistic method
We employ the probabilistic method to find the following very general bound for the corner
problem over arbitrary abelian groups.

▶ Theorem 6 (Prop. 19). For the corner and Eval problem over an arbitrary abelian group G

we have
D3(EvalGn) ≤ log |G|

2 n + O(log n)
r∠(Gn) ≥ |G|3n/2

poly(n)
Θ(Hcor,G) ≥ |G|3/2.

This general bound applied to the special cases G = F2 and G = F3 does not quite match
the bounds in Theorem 3 and Theorem 4, respectively. However, applied to the special case
G = F2 we do recover the lower bound

√
8 of [34, Cor. 24 in the ITCS version].

Using the same techniques we gain insight about the high-dimensional version of the corner
problem and Eval problem and what happens when the number of players grows. For an
arbitrary abelian group G, a k-dimensional corner over G is naturally defined as a set of (k+1)
points in (G)×k of the form {(x1, x2, . . . , xk), (λ + x1, x2, . . . , xk), . . . , (x1, x2, . . . , λ + xk)}
where xi, λ ∈ Gn. A subset S ⊆ G×k is called corner-free if it does not contain any nontrivial
corners (where nontrivial again means λ ̸= 0). We denote by rk,∠(G) the size of the largest
(k-dimensional) corner-free set. Just like the k = 2 case corner-free sets correspond to
independent sets in a naturally defined (k + 1)-uniform directed hypergraph Hk,cor,G. With
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the probabilistic method (extending Theorem 6), we find that when the k goes to infinity,
the capacity of Hk,cor,G becomes essentially maximal. As a consequence if k grows with n

(e.g., k = log n) we find that the NOF complexity of the corresponding k-player Eval problem
becomes sub-linear.

▶ Theorem 7 (Rem. 20). Let G be a finite abelian group. Then

Θ(Hk,cor,G) ≥ |G|k− 1
k

Dk+1(EvalGn) ≤ n
k log |G| + O(log n) + k

Thus we learn that to prove a linear lower bound on Dk(EvalGn) for any given G (say
for G = Fp) it is important to keep k constant.

1.4 Limitations of tensor methods for proving upper bounds for the
corner problem

Our second result is a strong limitation of current tensor methods to effectively upper bound
the Shannon capacity of hypergraphs. This limitation is caused by induced matchings and
applies to various combinatorial problems including the corner problem. We use a method of
Strassen to show that these limitations are indeed very strong for the corner problem.

In order to elaborate on these results let us first give an overview of upper bound methods.
The general question of upper bounds on the Shannon capacity of hypergraphs is particularly
well-studied in the special setting of undirected graphs, from which the name “Shannon
capacity” comes: it in fact corresponds to the zero-error capacity of a channel [42]. Even for
undirected graphs, it is not clear how to compute the Shannon capacity in general, but some
methods were developed to give upper bounds. The difficulty is to find a good upper bound
on the largest independent set that behaves well under the product ⊠. For undirected graphs,
the best known methods are the Lovász theta function [37] and the Haemers bound which is
based on the matrix rank [30]. For hypergraphs, we only know of algebraic methods that are
based on various notions of tensor rank, and in particular the slice rank [49] (which was used
and studied extensively in combinatorics, in the context of cap sets [48, 31], sunflowers [41]
and right-corners [40]), and similar notions like the analytic rank [28, 38, 13], the geometric
rank [32], and the G-stable rank [23]. Even though the slice rank is not multiplicative under
⊠ it is possible to give good upper bounds on the asymptotic slice rank via an asymptotic
analysis [49], which is closely related to the Strassen support functionals [47] or the more
recent quantum functionals [18].

Most of the rank-based bounds actually give upper bounds on the size of induced matchings
and not only on the size of independent sets. It is simple and instructive to see this argument
in the setting of undirected graphs. For a given graph H = (V, E), let A be the adjacency
matrix in which we set all the diagonal coefficients to 1. Then for any independent set I ⊆ V ,
the submatrix (Ai,j)i,j∈I of A is the identity matrix and as a result |I| ≤ rank(A). As the
matrix rank is multiplicative under tensor product, we get Θ(H) ≤ rank(A). Observe that
this argument works equally well if we consider an induced matching instead of an independent
set. An induced matching of size s of the graph H = (V, E) can be defined by two lists of
vertices I1(1), . . . , I1(s) and I2(1), . . . , I2(s) of size s such that for any α, β ∈ {1, . . . , s} we
have ((I1(α), I2(β)) ∈ E or I1(α) = I2(β)) ⇐⇒ α = β. In other words, the submatrix
(Ai,j)i∈I1,j∈I2 is an identity matrix, which also implies that s ≤ rank(A). As such, the
matrix rank is an upper bound on the asymptotic maximum induced matching. Tensor rank
methods such as the subrank, slice rank, analytic rank, geometric rank and G-stable rank
also provide upper bounds on the asymptotic maximum induced matching.

ITCS 2022
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Table 1 Independence number and induced matching number for small powers of the cap set
hypergraph Hcap and corner hypergraph Hcor,F2 . Interestingly, the independence number and
induced matching number of powers of the cap set hypergraph are exactly equal for the powers
n = 1, 2, 3. For the corner hypergraph we see that they are different already for the second and third
power.

H⊠n
cap

n
independence

number
induced matching

number
1 2 2
2 4 4
3 9 9

H⊠n
cor,F2

n
independence

number
induced matching

number
1 2 2
2 8 9
3 24 32

Using a result of Strassen [47], we show that there is an induced matching of the n-th
power of Hcor,F2 of size 4n−o(1). This establishes a barrier on many existing tensor methods
(such as slice rank, subrank, analytic rank, etc.) to make progress on Problem 1. In fact,
this result holds more generally for any abelian group G:

▶ Theorem 8 (Cor. 37). For any abelian group G, the hypergraph H⊠n
cor,G has an induced

matching of size |G|2n−o(n). In other words, for any n ≥ 1, there exist lists I1, I2, I3 ⊆ Gn×Gn

of size s(n) = |G|2n−o(n) such that the following holds. For any α, β, γ ∈ {1, . . . , s(n)} we
have (I1(α), I2(β), I3(γ)) forms a corner ⇐⇒ α = β = γ.

We prove this result by establishing in Theorem 36 that the adjacency tensor of the hypergraph
Hcor,G is tight (see Definition 34). Strassen showed in [47] that for tight sets, the asymptotic
induced matching number is characterized by the support functionals. By computing the
support functionals for the relevant tensors, we establish the claimed result in Corollary 37.
Note that if we could ensure that I1 = I2 = I3, this would solve Problem 1. We computed
the maximum independent set and maximum induced matching for H⊠n

cor,F2
for small powers

n = 1, 2, 3 (see Table 1) and we found that the maximum independent set is strictly smaller
than the maximum induced matching for n = 2 and n = 3. This motivates the search
for methods that go beyond the maximum induced matching barrier. For comparison, we
also give the analogous numbers for the cap set hypergraph Hcap (which is an undirected
hypergraph), where, interestingly, the maximum independent set and the maximum induced
matching are equal.

2 Lower bounds from the combinatorial degeneration method

In this section we discuss three methods to prove lower bounds on the Shannon capacity of
directed 3-uniform hypergraphs: the probabilistic method, the combinatorial degeneration
method and the acyclic set method. We apply these methods to the corner problem – the
problem of constructing large corner-free sets – which as a consequence gives new NOF
communication protocols for the Eval problem. We begin by discussing the corner problem
and its relation to NOF communication complexity.
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2.1 Corner problem, cap set problem and number on the forehead
communication

Hypergraphs
We recall the definition of directed k-uniform hypergraphs and basic properties of Shannon
capacity on directed k-uniform hypergraphs.

▶ Definition 9. A directed k-uniform hypergraph H is a pair H = (V, E) where V is a finite
set of elements called vertices, and E is a set of k-tuples of elements of V which are called
hyperedges or edges. If the set of edges E is invariant under permuting the k coefficients of
its elements, then we may also think of H as an undirected k-uniform hypergraph.

Let H = (V, E) be a directed k-uniform hypergraph with n vertices. The adjacency
tensor A of H is defined as

Ai1,...,ik
=

{
1 if i1 = i2 = · · · = ik or (i1, . . . , ik) ∈ E,

0 otherwise.

▶ Definition 10. The strong product of a pair of directed k-uniform hypergraphs G =
(VG, EG) and H = (VH , EH) is denoted G ⊠ H and defined as follows. It is a directed
k-uniform hypergraph with vertex set VG × VH and the following edge set: Any k vertices
(g1, h1), . . . , (gk, hk) ∈ VG × VH form an edge ((g1, h1), . . . , (gk, hk)) if one of the following
three conditions holds:
1. g1 = · · · = gk and (h1, . . . , hk) ∈ EH

2. (g1, . . . , gk) ∈ EG and h1 = · · · = hk

3. (g1, . . . , gk) ∈ EG and (h1, . . . , hk) ∈ EH

▶ Definition 11. An independent set in a directed k-uniform hypergraph H = (V, E) is a
subset S of the vertices V that induces no edges, meaning for every (e1, . . . , ek) ∈ E there
is an i ∈ [k] such that ei ̸∈ S. The independence number of H, denoted by α(H), is the
maximal size of an independent set in H.

If S and T are independent sets in two directed k-uniform hypergraphs G and H,
respectively, then S × T is an independent set in the strong product G ⊠ H. Therefore, we
have the supermultiplicativity property α(G)α(H) ≤ α(G ⊠ H). For any directed k-uniform
hypergraph H, let H⊠n denote the n-fold product of H with itself.

▶ Definition 12. The Shannon capacity of a directed k-uniform hypergraph H is defined as

Θ(H) := lim
n→∞

(α(H⊠n))1/n.

By Fekete’s lemma we can write Θ(H) = supn(α(H⊠n))1/n. The following proposition can
be deduced directly from the definition of Shannon capacity.

▶ Proposition 13. Suppose H is a directed k-uniform hypergraph with m vertices and there
is an independent set of size s in H⊠n. Then s

1
n ≤ Θ(H) ≤ m.

Corner problem
Let (G, +) be a finite Abelian group. A corner in G × G is a three-element set of the form
{(x, y), (x + λ, y), (x, y + λ)} for some x, y, λ ∈ G and λ ̸= 0. The element (x, y) is called the
center of this corner. Let r∠(G) be the size of the largest subset S ⊆ G × G such that no
three elements in S form a corner. The corner problem asks to determine r∠(G) given G.
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Trivially, we have the upper bound r∠(G) ≤ |G|2. The best-known general upper bound
on r∠(G) comes from [43, 44], and reads

r∠(G) ≤ |G|2

(log log |G|)c
,

where 0 < c < 1
73 is an absolute constant. In the finite field setting, in [33] the following

better upper bound for r∠(G) with G = Fn
2 was obtained:

r∠(Fn
2 ) ≤ O

(
|G|2 log log log |G|

log log |G|

)
.

We may phrase the corner problem as a hypergraph independence problem. We define
Hcor,G = (V, E) to be the directed 3-uniform hypergraph with V = {(g1, g2) : g1, g2 ∈ G}
and E = {((g1, g2), (g1 + λ, g2), (g1, g2 + λ)) : g1, g2, λ ∈ G, λ ̸= 0}. Then by construction:

▶ Lemma 14. r∠(Gn) = α(H⊠n
cor,G).

As a consequence, r∠(Gn) = Θ(Hcor,G)n−o(n) .

▶ Example 15. Let G correspond to addition in F2. Then Hcor,G = (V, E) with

E = {((0, 0), (1, 0), (0, 1)), ((0, 1), (1, 1), (0, 0)), ((1, 0), (0, 0), (1, 1)), ((1, 1), (0, 1), (1, 0))}.

Under the labeling (0, 0) = 0, (0, 1) = 1, (1, 0) = 2 and (1, 1) = 3 we will think of Hcor,F2 as the
hypergraph Hcor,F2 = (V, E) with V = (0, 1, 2, 3) and E = {(0, 2, 1), (1, 3, 0), (2, 0, 3), (3, 1, 2)}.

Closely related to r∠(G) is the minimum number of colors needed to color G × G so that no
corner is monochromatic, which we denote by c∠(G). Then:

▶ Proposition 16 ([15, 34]). Let (G, +) be a finite Abelian group. There is a constant c,
such that for every n ∈ N,

|G|2n

r∠(Gn) ≤ c∠(Gn) ≤ c
n|G|2n log |G|

r∠(Gn) .

For G = F2, the current upper bound in the literature is c∠(Fn
2 ) ≤ O(n2n/2) [34], which we

will improve on.

Number on the forehead communication
The corner problem is closely related to the Number On the Forehead (NOF) communication
model [15]. In this model, k players wish to evaluate a function F : X1 ×· · ·×Xk → {0, 1} on a
given input x1, . . . , xk. The input is distributed among the players in a way that player i sees
every xj for j ̸= i. This scenario is visualized as xi being written on the forehead of Player i.
The computational power of everyone is unlimited, but the number of exchanged bits has
to be minimized. Let Dk(F ) be the minimum number of bits they need to communicate
to compute the function F in the NOF model with k players. Many questions that have
been thoroughly analyzed for the two-player case remain open in the general case of 3 or
more players, where lower bounds on communication complexity are much more difficult to
prove. The difficulty in proving lower bounds arises from the overlap in the inputs known to
different players.

One interesting function in this context is the family of Eval functions. The function
EvalGn : (Gn)3 → {0, 1} outputs 1 on inputs x1, x2, x3 ∈ Gn if and only if x1 + x2 + x3 = 0.
The trivial algorithm gives that D3(EvalGn) ≤ ⌈n log(|G|)⌉ + 1. For two players Yao [51]
proved that D2(EvalGn) = Ω(n) (for nontrivial G). But, for three players it is an open
problem whether D3(EvalGn) = Ω(n).
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▶ Lemma 17 ([9]). log(c∠(Gn)) ≤ D3(EvalGn) ≤ 2 + log(c∠(Gn)) .

From Lemma 17 and Proposition 16 it follows that Θ(Hcor,G) < |G|2 would imply that
D3(EvalGn) = Ω(n), and also that lower bounds on r∠(Gn) give upper bounds on D3(EvalGn).
For G = F2, the best-known upper bound on D3(EvalFn

2
) is 0.5n + O(log n) [1] which we

improve on.

Three-term arithmetic progressions and the cap set problem
A three-term arithmetic progression in G is a three-element set of the form {x, x + λ, x + 2λ}
for some x, λ ∈ G and λ ̸= 0. Let r3(G) be the size of the largest subset S ⊆ G such that no
three elements in S form a three-term arithmetic progression.

Following [52, Corollary 3.24] there is a simple relation between corner-free sets and
three-term-arithmetic-progression-free sets:

▶ Lemma 18. pn r3(Fn
p ) ≤ r∠(Fn

p )

A three-term-arithmetic-progression-free subset of Fn
3 is also called a cap set. The

notorious cap set problem is to determine how r3(Fn
3 ) grows when n goes to infinity. A

priori we have that 2n ≤ r3(Fn
3 ) ≤ 3n. Using Fourier methods and the density increment

argument of Roth, the upper bound r3(Fn
3 ) ≤ O(3n/n) was obtained by Meshulam [39],

and improved only as late as 2012 to O(3n/n1+ϵ) for some positive constant ϵ by Bateman
and Katz in [7]. Until recently it was not known whether r3(Fn

3 ) grows like 3n−o(n) or like
cn−o(n) for some c < 3. Gijswijt and Ellenberg solved this question in 2017, showing that
r3(Fn

3 ) ≤ 2.756n+o(n) [25]. The best lower bound is 2.2174n ≤ r3(Fn
3 ) by Edel [24]. In

particular, using Lemma 18, this implies the lower bound 3n · 2.2174n = 6.6522n ≤ r∠(Fn
3 )

for the corner problem. We will improve this lower bound in Theorem 25.
We may phrase the cap set problem as a hypergraph independence problem by defining

the undirected 3-uniform hypergraph Hcap consisting of three vertices {0, 1, 2} and a single
edge e = {0, 1, 2}. The independence number α(H⊠n

cap) equals r3(Fn
3 ), and thus the Shannon

capacity of Hcap determines the rate of growth of r3(Fn
3 ).

2.2 Probabilistic method
We start off with a simple and general method for obtaining lower bounds on the Shannon
capacity. For any element g ∈ G, the set {(g, g + λ) : λ ∈ G} is an independent set of Hcor,G,
and therefore we have Θ(Hcor,G) ≥ |G|, which we think of as the trivial lower bound. By
using a simple probabilistic argument (which does not use much of the structure of Hcor,G),
we show the following nontrivial lower bound for Θ(Hcor,G).

▶ Proposition 19. For any finite Abelian group G, we have Θ(Hcor,G) ≥ |G|3/2.

The idea in the proof of Proposition 19 to apply the probabilistic method to lower bound the
number of remaining elements afther a “pruning” procedure (in this case, pruning vertices that
induce edges) goes back to [21]. A similar probabilistic method construction is the driving
component in the recent new upper bound on the matrix multiplication exponent ω [3].

In terms of the corner problem, the lower bound on the Shannon capacity in Proposition 19
for G = F2 corresponds to the upper bound c∠(Fn

2 ) ≤ O(n2n/2) (via Proposition 16). This
upper bound is similar to the bound provided in [34, Corollary 26 in the ITCS version].
▶ Remark 20. The proof of Proposition 19 directly extends from 2-dimensional corners to
k-dimensional corners, which are sets of the form

{(x1, x2, . . . , xk), (x1 + λ, x2, . . . , xk), . . . , (x1, x2, . . . , xk + λ)}.
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Just like the Eval problem on 3 players is closely related to 2-dimensional corners in (Gn)×2,
the Eval function on k + 1 players is closely related to k-dimensional corners in (Gn)×k. By
a similar argument as the proof of Lemma 17 we have that the k + 1 player NOF complexity
is upper bounded by Dk+1(EvalGn) ≤ k + ck,∠(Gn), where ck,∠(Gn) is minimum number of
colors that we can use to color (Gn)×k such that no k-dimensional corner is monochromatic.
Letting rk,∠(Gn) denote the size of the largest k-dimensional corner free set in Gn×k, we
have similar to Proposition 16 the relation between rk,∠(Gn) and ck,∠(Gn) given by

|G|kn

rk,∠(Gn) ≤ ck,∠(Gn) ≤ nk|G|n log(|G|)
rk,∠(Gn) ,

which is proved in [34]. From a similar probabilistic method argument as in the proof
of Proposition 19, choosing each (x1, . . . , xk) ∈ (Gn)×k independently at random with
probability p = 1

[(k+1)(|G|n−1)]1/k , we get

rk,∠(Gn) ≥ k|G|kn

|G|n/k(k + 1) k+1
k

,

as a consequence one has Θ(Hk,cor,G) ≥ |G|k−1/k, where Hk,cor,G is directed (k + 1)-uniform
hypergraph that construct for the k-dimensional corner. Furthermore from the lower bound
of rk,∠(Gn), we have

Dk+1(EvalGn) ≤ n

k
log |G| + log n + log log |G| + (1 + 1

k
) log(1 + k) + k .

If we take k = log n (for instance), then Dk+1(EvalGn) ≤ n
log n log |G| + O(log n), that is, we

obtain a sublinear upper bound for Dlog n(EvalGn) in n.

2.3 Combinatorial degeneration method
We now introduce the combinatorial degeneration method for lower bounding Shannon
capacity. Combinatorial degeneration is an existing concept from algebraic complexity theory
introduced by Strassen in [46, Section 6, in particular Theorem 6.1]7. ‘’ In that original
setting it was used as part of the construction of fast matrix multiplication algorithms [14,
Definition 15.29 and Lemma 15.31], and, in a broader setting, combinatorial degeneration
was used to construct large induced matchings in [4, Lemma 3.9], [2, Lemma 5.1] and
[18, Theorem 4.11]. However, we will be using it in a novel manner in order to construct
independent sets instead of induced matchings. We will subsequently apply the combinatorial
degeneration method to get new bounds for the corner problem. We expect the method to
be useful in the study of other problems besides the corner problem as well. First we must
define combinatorial degeneration.

▶ Definition 21 (Combinatorial degeneration). Let I1, . . . , Ik be finite sets. Let Φ ⊆ Ψ ⊆
I1 × · · · × Ik. We say that Φ is a combinatorial degeneration of Ψ, and write Ψ ⊵ Φ, if
there are maps ui : Ii → Z (i ∈ [k]) such that for every x = (x1, . . . , xk) ∈ I1 × · · · × Ik,
if x ∈ Ψ \ Φ, then

∑k
i=1 ui(xi) > 0, and if x ∈ Φ, then

∑k
i=1 ui(xi) = 0.

7 The precise connection to [46] is as follows. Strassen defines the notion of M-degeneration on tensors.
In our terminology, a tensor is an M -degeneration of another tensor, if the support of the first is a
combinatorial degeneration of the support of the second. The terminology “combinatorial degeneration”,
which does not refer to tensors, but rather directly to their supports (hence the adjective “combinatorial”),
was introduced in [14, Definition 15.29].
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▶ Example 22. As a quick example of a combinatorial degeneration, let

Φ = {(0, 0, 0), (1, 1, 0), (1, 0, 1)},

Ψ = {(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)}.

Then we have a combinatorial degeneration Ψ ⊵ Φ by picking the maps u1(0) = u2(0) =
u3(0) = 0, and u1(1) = −1, u2(1) = u3(1) = 1.

We apply combinatorial degeneration in the following fashion to get Shannon capacity
lower bounds:

▶ Theorem 23 (Combinatorial degeneration method). Let H = (V, E) be a directed k-uniform
hypergraph. Let S ⊆ V . Let Ψ = E ∪ {(v, . . . , v) : v ∈ V } and let Φ = {(v, . . . , v) : v ∈ S}
and suppose that Ψ ⊵ Φ. Then Θ(H) ≥ |S|.

Motivated by Theorem 23 we have the following definition:

▶ Definition 24. For any directed k-uniform hypergraph H = (V, E), we define β(H) to
be the size of the largest subset S ⊆ V such that {(v, . . . , v) : v ∈ S} is a combinatorial
degeneration of E ∪ {(v, . . . , v) : v ∈ V }.

Clearly, Θ(H) ≥ β(H) by Theorem 23.
In order to construct combinatorial degenerations we employ integer programming. To

state the integer program, we let t be a variable that takes values in {0, 1}|V | and let u1, . . . , uk

be variables that take values in Z|V |. We choose M ∈ N large enough. The parameter β(H)
can be then computed by the following integer linear program:

max
∑

i∈V t(i)
subject to u1(i1) + · · · + uk(ik) ≥ 1 ∀(i1, . . . , ik) ∈ E,

1 − t(i) ≤ u1(i) + · · · + uk(i) ≤ M(1 − t(i)) ∀i ∈ V

(1)

Indeed, if (t, u1, . . . , uk) is a feasible solution of the program (1), then {(v, . . . , v) : v ∈ S}
is a combinatorial degeneration of E ∪ {(v, . . . , v) : v ∈ V } by choosing k integer maps
u1, . . . , uk, where S = {i ∈ V : t(i) = 1}. Therefore, one has β(H) ≥ A (A is a maximum
value of program (1)). On the other hand, for any S ⊆ V such that if there is a combinatorial
degeneration from E ∪ {(v, . . . , v) : v ∈ V } to {(v, . . . , v) : v ∈ S} with k integer maps
u1, . . . , uk, by defining t ∈ {0, 1}|V | so that t(i) = 1 iff i ∈ S, we have (t, u1, . . . , uk) is a
feasible solution of the program (1). Thus, β(H) ≤ A.

As a first application of the combinatorial degeneration method (Theorem 23), we prove
the following new bound for corners over Fn

3 by lower bounding β (Definition 24).

▶ Theorem 25. β(Hcor,F3) ≥ 7 and thus Θ(Hcor,F3) ≥ 7.

In other words, 7n/poly(n) ≤ r∠(Fn
3 ). This improves on the lower bound 6.6522n ≤ r∠(Fn

3 )
that can be obtained from Edel’s construction of cap sets [24] and Lemma 18. As a
consequence of the new lower bound, we find the bounds c∠(Fn

3 ) ≤ O(poly(n)( 9
7 )n) and

D3(EvalFn
3
) ≤ n log(9/7) + O(log n) ≤ 0.37n + O(log n). Previously, only the weaker bound

D3(EvalFn
3
) ≤ n + O(log n) was known [34].8

In the previous proof we only considered the first power of the relevant hypergraph. For
the next result we will be able to get good bounds by considering higher powers.

8 We note that, as far as we know, the NOF protocol for EvalFn
2

given in [1] does not generalize to EvalFn
3

in any direct way.
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▶ Theorem 26. β(H⊠2
cor,F2

) ≥ 11 and β(H⊠3
cor,F2

) ≥ 39, as a consequence Θ(Hcor,F2) ≥ 3
√

39 .

In other words, ( 3
√

39)n/poly(n) ≤ r∠(Fn
2 ). As a consequence, we have the upper bound

c∠(Fn
2 ) ≤ O(poly(n)( 4

3√39 )n) ≤ O(poly(n)1.18n) for the corner problem and the upper bound
D3(EvalFn

2
) ≤ log( 4

3√39 )n + O(log n) ≤ 0.24n + O(log n) for the eval problem.
We have yet to develop structural understanding of how the above combinatorial degen-

erations that exhibit the new capacity lower bounds arise, and leave the investigation of
further generalizations and improvements to future work. As a partial remedy to our limited
understanding, we introduce in the next section the acyclic method as a tool to construct
combinatorial degenerations. While the acyclic method does not recover the bounds of
Theorem 26 and Theorem 25, it has the merits of being transparent and simple to apply.
▶ Remark 27. The above proof of Theorem 23 gives in fact the precise lower bound

α(H⊠n) ≥ |S|n

(n + 1)|S| . (2)

This lower bound is optimal up to a poly(n) factor. A more careful analysis improves this
poly(n) factor, for which we refer to the full version [17].

2.4 Acyclic set method
The acyclic set method that we are about to introduce is modeled on the fact that the
Shannon capacity of a directed graph G is at least the size of any induced acyclic subgraph
of G [11]. We introduce the concept of an acyclic set in a directed k-uniform hypergraph as
an extension of the notion of an induced acyclic subgraph.

▶ Definition 28. Let H be a directed k-uniform hypergraph. We associate to H the directed
graph GH with vertices V (G) = V (H) and edges E(G) = {(a1, a2) : (a1, a2, . . . , ak) ∈
E for some a3, . . . , ak}. For any subset A ⊆ V let H[A] denote the subhypergraph of H

induced by A, that is, H[A] is the directed k-uniform hypergraph with vertices S and edges
E ∩A×k. We call a subset A ⊆ V an acyclic set of H if the directed graph GH[A] is a directed
acyclic graph.

Note that, if A is an independent set of H, then E(H[A]) = ∅ and thus E(GH[A]) = ∅,
and in particular A is an acyclic set of H. On the other hand, acyclic sets are not necessarily
independent sets. However, the existence of an acyclic set does imply strong lower bounds
on the Shannon capacity (via combinatorial degeneration, as we will see):

▶ Theorem 29. Let H be a directed k-uniform hypergraph. For any acyclic set A of H, we
have Θ(H) ≥ |A|.

Theorem 29 follows directly from the combinatorial degeneration method (Theorem 23)
and the following lemma:

▶ Lemma 30. Let H = (V, E) be a directed k-uniform hypergraph. Let A be an acyclic
set of H. Then there is a combinatorial degeneration from E ∪ {(v, . . . , v) : v ∈ V } to
Φ = {(v, . . . , v) : v ∈ A}.

As can be seen from the proof of Lemma 30, the combinatorial degenerations that result
from acyclic sets have a special form, and in particular the acyclic set method does not
recover the full power of the combinatorial degeneration method. However the acyclic set
method is much easier to apply than the combinatorial degeneration method. For example,
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we can use the acyclic set method to quickly see that Θ(Hcor,F2) ≥ 3. Namely, it is verified
directly that the set S = {0, 1, 2} of size three is an acyclic set in Hcor,F2 , which implies the
claim by Theorem 29.

Finally, we note that for directed graphs (k = 2) the combinatorial degeneration method
can be used to characterize whether the Shannon capacity is full or not.

▶ Theorem 31. Let G = (V, E) be a directed graph. Then Θ(G) = |V | if and only if there is
a combinatorial degeneration from E ∪ {(v, v) : v ∈ V } to {(v, v) : v ∈ V }.

3 Upper bounds from tensor methods, and their limitations

In this section we discuss methods to obtain upper bounds on the Shannon capacity of
directed k-uniform hypergraphs and we discuss limitations of these methods for hypergraphs
like Hcor,G. We will not be discussing all available methods, but rather some of the main
ones: subrank and slice rank. The main point is to introduce the induced matching barrier
and apply it to the corner problem.

We recall some standard tensor notation and definitions that we will use in the rest
of the section. For d ∈ N let [d] = {1, . . . , d}. Let P([d]) be the set of all probability
distributions on [d]. Let f ∈ Fd1 ⊗ · · · ⊗ Fdk be a k-tensor over a field F. Let {e1, . . . , edj

}
denote the standard basis of Fdj . We may then write f as f =

∑
fi1,...,ik

ei1 ⊗ . . . eik
,

where the sum goes over i ∈ [d1] × · · · × [dk]. In this way f corresponds to a k-way array
f ∈ Fd1×···×dk . For f ∈ Fd1 ⊗ · · · ⊗Fdk and f ′ ∈ Fd′

1 ⊗ · · · ⊗Fd′
k , we define the tensor product

as (f ⊗ f ′)(i1,j1),...,(ik,jk) = fi1,...,ik
· f ′

j1,...,j′
k
. We define the support of f as the set

supp(f) := {(i1, . . . , ik) : fi1,...,ik
̸= 0} ⊆ [d1] × · · · × [dk].

For r ∈ N, we call ⟨r⟩ :=
∑r

i=1 e⊗k
i the unit tensor of size r.

3.1 Tensor methods: subrank, slice rank (and more)
We focus on two tensor methods here: subrank and slice rank. We begin by defining
subrank, for which we need the notion of restriction of tensors [46]. We say that the tensor
f ∈ Fd1 ⊗ · · · ⊗ Fdk restricts to f ′ ∈ Fd′

1 ⊗ · · · ⊗ Fd′
k , and write f ′ ≤ f if there exist linear

maps A(i) : Fdi → Fd′
i such that f ′ = (A(1) ⊗ · · · ⊗ A(k)) · f . Written in the standard basis,

this corresponds to having for all i1 ∈ [d′
1], . . . , ik ∈ [d′

k] that

f ′
i1,...,ik

=
∑

j1∈[d1],...,jk∈[dk]

A
(1)
i1,j1

. . . A
(k)
ik,jk

fj1,...,jk
.

▶ Example 32. Here we see restriction in action in a small example. For the tensors

f = e0 ⊗ e0 ⊗ e0 + e1 ⊗ e1 ⊗ e1, f ′ = e0 ⊗ (e0 ⊗ e0 + e1 ⊗ e1),

we have f ′ ≤ f by letting A(1) : e0 7→ e0, e1 7→ e0 and letting A(2) and A(3) both be the
identity map.

Let ⟨n⟩ =
∑

i∈[n] ei ⊗ · · · ⊗ ei be the unit tensor of rank n. Strassen [46] defined the subrank
of f as Q(f) := max{r ∈ N : ⟨r⟩ ≤ f}. Similarly, one may define the “opposite” of the
subrank as R(f) := min{r ∈ N : f ≤ ⟨r⟩}, which is called the rank and which coincides
with the usual notion of tensor rank in terms of a rank-one decomposition. For k = 2, the
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subrank and rank of f are the usual matrix rank: Q(f) = R(f) = rank(f). When k ≥ 3,
however, there are f for which Q(f) < R(f). In fact, the tensor rank can be larger than the
dimensions d1, . . . , dk, whereas the subrank cannot exceed mini di.

Applications require us to understand the rate of growth of the subrank as we take
tensor product powers of a fixed tensor. Strassen [46] defined the asymptotic subrank of
f ∈ Fd1 ⊗ · · · ⊗Fdk as Q̃(f) := limn→∞ Q(f⊗n)1/n. Since the subrank is super-multiplicative,
we can, by Fekete’s lemma, replace the limit by a supremum.

The second tool we focus on is slice rank. Slice rank was introduced by Tao [48] and
developed further in [49] and [12] as a variation on tensor rank to study cap sets and
approaches to fast matrix multiplication algorithms. A tensor in Fd1 ⊗ · · · ⊗ Fdk has slice
rank one if it has the form u ⊗ v for u ∈ Fdi and v ∈

⊗
j ̸=i Fdj for some i ∈ [k]. The slice

rank of f , denoted by SR(f), is the smallest number r such that f can be written as sum of r

slice rank one tensors. Since slice rank is not sub-multiplicative and not super-multiplicative,
the limit limn→∞ SR(f⊗n)1/n might not exist [18]. We define

S̃R(f) = lim sup
n→∞

SR(f⊗n)1/n .

Since slice rank is monotone under the restriction order and normalized on ⟨n⟩ [48], it follows
that Q(f) ≤ SR(f) and Q̃(f) ≤ S̃R(f).

3.2 Induced matchings and tightness
Now we discuss the notion of induced matchings, and we will discuss Strassen’s theorem that
gives a construction of large induced matchings under a tightness condition.

Let H = (V, E) be a directed k-uniform hypergraph with adjacency tensor A. Let ΦH

be the support of A. A subset D ⊆ ΦH is called a matching if any two distinct elements
a, b ∈ D differ in all k coordinates, that is, ai ̸= bi for all i ∈ [k]. We call a matching D ⊆ ΦH

an induced matching if D = ΦH ∩ (D1 × · · · × Dk), where Di = {ai : a ∈ D} is the projection
of D onto the i-th coordinate. We denote by QIM(ΦH) the maximum size of an induced
matching D ⊆ ΦH .

For two directed k-uniform hypergraphs G = (VG, EG) and H = (VH , EH), let ΦG and
ΦH be the support of the adjacency tensors of G and H, respectively. We define the product
ΦG × ΦH ⊆ (VG × VH) × · · · × (VG × VH) by ΦG × ΦH := {((a1, b1), . . . , (ak, bk)) : a ∈
ΦG, b ∈ ΦH}. The asymptotic induced matching number of H is defined as Q̃IM(ΦH) :=
limn→∞ QIM(Φ×n

H )1/n = supn QIM(Φ×n
H )1/n.

The induced matching number should be thought of as the combinatorial version of the
subrank, as follows. Let ΦH be the support of the adjacency tensor AH of a directed k-uniform
hypergraph H. Then the induced matching number QIM(ΦH) is the largest number n such
that ⟨n⟩ can be obtained from AH using a restriction that consists of matrices that have at
most one nonzero entry in each row and in each column. Therefore, QIM(ΦH) ≤ Q(AH).

▶ Lemma 33. Let H be a directed k-uniform hypergraph and AH its adjacency tensor with
support ΦH = supp(AH). Then

Θ(H) ≤ Q̃IM(ΦH) ≤ Q̃(AH).

Next, we discuss tight sets, a notion introduced by Strassen [47].

▶ Definition 34 ([47], see also [18]). Let I1, . . . , Ik be finite sets. We call any subset
Φ ⊆ I1 × · · · × Ik tight if there are injective maps ui : Ii → Z for every i ∈ [k] such that:

u1(a1) + · · · + uk(ak) = 0 for every (a1, . . . , ak) ∈ Φ.
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When ΦH is tight, the asymptotic induced matching number is essentially known, and
can be described as a simple optimization. To explain the precise formula we recall some
definitions.

For any finite set X, let P(X) be the set of all distributions on X. For any probability dis-
tribution P ∈ P(X) the Shannon entropy of P is defined as H(P ) := −

∑
x∈X P (x) log2 P (x)

with 0 log2 0 = 0. Given finite sets I1, . . . , Ik and a probability distribution P ∈ P(I1×· · ·×Ik)
on the product set I1 × · · · × Ik we denote the marginal distribution of P on Ii by Pi, that is,
Pi(a) =

∑
x:xi=a P (x) for any a ∈ Ii.

▶ Theorem 35 ([47]). Let H be a directed 3-uniform hypergraph. If ΦH is tight, then

Q̃IM(ΦH) = max
P ∈P(ΦH )

min
i∈[3]

2H(Pi).

In particular, Theorem 35 implies that, for any directed 3-uniform hypergraph H = (V, E) if
there is a distribution P on ΦH such that every marginal distribution Pi is uniform on V ,
then ΦH has asymptotically maximal induced matchings.

Note that Theorem 35 only applies to directed k-uniform hypergraphs for k = 3. For the
higher-order case k > 3 an extension of the lower bound of Theorem 35 was proven in [19,
Theorem 1.2.4].

3.3 The corner hypergraph is tight
We will now apply Theorem 35 to the corner problem. First we see how the tightness property
is satisfied by the corner problem by a simple construction.

▶ Theorem 36. For any finite Abelian group (G, +), let ΦHcor,G
be the support of the

adjacency tensor of Hcor,G. Then the set ΦHcor,G
is tight.

As a consequence of Theorem 36 and Theorem 35, we find almost directly that the
asymptotic induced matching number of the corner hypergraph is maximal:

▶ Corollary 37. For any group G, Q̃IM(Hcor,G) = |G|2.

In particular, Corollary 37 implies that no better upper bound on Θ(Hcor,G) can be
obtained via methods that also upper bound the asymptotic induced matching number
Q̃IM(Hcor,G). Such methods include the slice rank, the analytic rank, the geometric rank
and the G-stable rank.
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