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Abstract
We study the chore division problem in the classic Arrow-Debreu exchange setting, where a set
of agents want to divide their divisible chores (bads) to minimize their disutilities (costs). We
assume that agents have linear disutility functions. Like the setting with goods, a division based on
competitive equilibrium is regarded as one of the best mechanisms for bads. Equilibrium existence
for goods has been extensively studied, resulting in a simple, polynomial-time verifiable, necessary
and sufficient condition. However, dividing bads has not received a similar extensive study even
though it is as relevant as dividing goods in day-to-day life.

In this paper, we show that the problem of checking whether an equilibrium exists in chore
division is NP-complete, which is in sharp contrast to the case of goods. Further, we derive a simple,
polynomial-time verifiable, sufficient condition for existence. Our fixed-point formulation to show
existence makes novel use of both Kakutani and Brouwer fixed-point theorems, the latter nested
inside the former, to avoid the undefined demand issue specific to bads.
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1 Introduction

Fair division has developed into a fundamental branch in mathematical economics, computa-
tional social choice theory and computer science over the last several decades. In a classical
fair division problem, the goal is to divide a set of items among agents in a fair and efficient
manner. Such problems have been extensively studied when the items to be divided are all
goods. The problem of dividing chores (items creating disutility) has not received a similar
extensive investigation even though it is as relevant as dividing goods in day-to-day life;
for instance division of daily household chores among tenants, teaching load among faculty,
job shifts among workers, and so on. A division based on competitive equilibrium (CE) has
emerged as one of the best mechanisms for this problem due to its remarkable fairness and
efficiency guarantees [27, 3].
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41:2 On the Existence of Competitive Equilibrium with Chores

In this paper, we consider the problem of computing a CE with divisible chores in the
fundamental Arrow-Debreu exchange model. The exchange model is like a barter system,
where each agent brings a set of chores that needs to be completed and exchanges them with
others to optimize their (dis)utility. For example, a set of university students teaching each
other in a group study, to optimize the time and effort required. At a larger scale, timebanks1

are such reciprocal service exchange platforms which have around 30,000 to 40,000 users
from the United States. In a timebank, individuals from a certain community give services
to one another and earn time credit. Thereafter, each individual uses their time credit to
receive services. CE provides a systematic way to do the exchange: it constitutes of prices
(payment)2 for chores and an allocation such that all chores are completely assigned and each
agent gets her most preferred bundle (optimal bundle) subject to her budget constraint3.

We assume that agents have linear disutility (cost) functions, i.e., the disutility of an
agent is

∑
j dijXij , where dij is the disutility agent i gets from doing a unit amount of chore

j, and Xij indicates the amount of chore j that agent i does. Clearly, an agent can do a
chore within a reasonable amount of time only if she has the skill set required for it. For
example, a professor trained in computer science (CS) can teach a CS course in the upcoming
semester, but may not have skill set to teach a course in music. This essentially boils down
to not allocating certain chores to certain agents. In the case of goods, this is achieved by
specifying zero utility values to some items, and its analogue for chores is specifying infinite
disutility.

The existence of CE is well understood for goods. In particular, when agents have
(quasi-)concave utility functions, Arrow and Debreu [1], and Mckenzie [18, 19] had shown
the existence of CE under some mild conditions. Both the theorems make use of Kakutani’s
fixed point formulations. When the utility functions are further restricted to be linear,
there are well known convex programs that capture the competitive equilibrium in the
exchange model [23, 15, 11]. Such convex programs have been instrumental in designing
polynomial time algorithms for finding a competitive equilibrium when agents have linear
utility functions [15, 29].

Interestingly, CE with chores behaves significantly differently than CE with goods.
Bogomolnaia et al. [3] considered the CEEI (CE with equal income) model, a special case of
the exchange where every agent owns one unit of every chore, with finite and homogeneous
disutilities. They gave an involved characterization of CE, and through this showed that
with chores, the set of CE is non-convex and disconnected even when disutility functions
are restricted to linear. While, in the case of linear CEEI model with goods, there are even
simpler convex programs [12, 10] that capture CE.

In this paper, we analyze existence of CE with chores in the exchange model where agents
may have infinite disutility for certain chores. Although infinite disutilities seem natural,
they create more challenges. For example, we observe that CE in the CEEI model may
not exist in contrast to guaranteed existence with finite disutilities [3]. Furthermore, it is
NP-hard to determine the existence in both exchange and CEEI. This is in sharp contrast to
the goods case, where there is a polynomial time verifiable necessary and sufficient condition
for existence of CE in the exchange setting [13, 11]. Our NP-hardness result rules out
the possibility of obtaining such conditions for chores case unless P=NP! Furthermore, we
strengthen our NP-hardness result to hold for 11/12-approximate CE.

1 https://timebanks.org/
2 Equivalent of time credit in time banks.
3 Here the budget constraint of an agent is that she has to earn enough to pay for her initial set of chores.
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The next best hope is to obtain weakest possible sufficient conditions that also capture
interesting instances, leading to our main question: Are there polynomial-time verifiable,
natural, sufficient conditions that guarantee the existence of a CE with chores?

Our result address the above question. First, we show the existence of a CE under
two conditions. The first condition, known as strong connectivity of the exchange graph,
is an artifact of the exchange model, and is required in the case of goods as well [17, 28].
Intuitively, it ensures that no set of agents can consume only a strict subset of the chores
they cumulatively own, as otherwise no prices can ensure demand equals supply. Our second
condition depends on the disutility values. While this condition is specific to only bads, it is
simple, polynomial-time verifiable, and unavoidable (see Example 6).

The proof of existence of a CE under these two conditions makes use of Kakutani’s as well
as Brouwer’s fixed-point theorems, with the latter nested inside the former. The fixed point
formulations for the goods case define a correspondence (or equivalently a set valued function)
on the simplex domain of prices [1, 25, 17]. The correspondence maps each price vector to a
set of price vectors in the simplex obtained by adjusting the price of each good depending
on its excess demand.4 Thereafter, by Kakutani’s fixed point theorem the correspondence
admits a fixed point, which is mapped to a CE by showing no excess demand at a fixed-point.

With chores, the simplex domain of prices pose the issue of undefined optimal bundles of
the agents: If an agent owns chores that have positive prices but all the chores she can do
(has finite disutility towards) have zero prices, then there is no way she can earn the money
needed for her endowment, thereby making her optimal bundle undefined. We fix this issue
by adding a set of linear constraints to our price domain, which ensures that if the total prices
of the chores an agent is interested in is zero, then her total endowment money is also zero,
implying that she does not need to earn anything and the doing-no-chores is an admissible
optimal bundle. However, such a fix makes it harder to define an appropriate correspondence:
be mindful that given a price vector, we need our correspondence to adjust prices depending
on excess demand as before, but now map it back to a more involved domain (earlier it was
a simplex). Additionally, it should satisfy the continuity-like property. It is unclear whether
a correspondence with all the desired properties exist. This is where we use Brouwer’s fixed
point theorem to show the existence of such a correspondence. An overview of this technique
can be found in Section 1.2.1.

1.1 Model and Notations

A chore division problem consists of a set of m divisible chores (bads), namely B =
{b1, . . . , bm}, and a set of n agents A = {a1, . . . , an}. Each agent ai has d(ai, bj) ∈ (0, ∞]
disutility (pain) for doing unit amount of chore bj .5 Here, infinite disutility implies that the
agent does not have required skill set to do the chore in a reasonable amount of time. If
agent ai is assigned bundle Xi = ⟨Xi1, . . . , Xim⟩ ∈ Rm

≥0 where Xij is the amount of chore bj

she gets, then her total disutility is di(Xi) =
∑

j∈[m] d(ai, bj) · Xij . We study the problem
under exchange model, where agent ai brings w(ai, bj) amount of chore bj to be done (by
herself or other agents).

4 At any given price, an agent can be content with several allocations, i.e., there are multiple optimal
bundles at a given price. As different optimal bundles can lead to different excess demands for the
goods, such a correspondence maps a price vector to several price vectors in the simplex.

5 If d(ai, bj) is zero, then chore bj can be safely assigned to agent ai and can be removed from the instance.
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41:4 On the Existence of Competitive Equilibrium with Chores

Given prices p = ⟨p(b1), p(b2), . . . , p(bm)⟩ ∈ Rm
≥0 for chores, where p(bj) denotes the

payment for doing unit amount of chore bj , agent ai needs to earn
∑

j∈[m] w(ai, bj) · p(bj) in
order to pay to get her own chores done. Let Fi(p) be the feasible set of bundles, i.e., the
bundles with which an agent can earn her required money:

Fi(p) =

Xi ∈ Rm
≥0 |

∑
j∈[m]

Xij · p(bj) ≥
∑

j∈[m]

w(ai, bj) · p(bj)

 .

Clearly ai would like to choose the feasible bundle that minimizes her disutility – this defines
her optimal bundle (or optimal chore set).

OBi(p) = arg min
Xi∈Fi(p)

di(Xi). (1)

It is easy to see that in her optimal bundle agent ai gets assigned only those chores that
minimizes her disutility per dollar earned and agent i earns money exactly equal to the total
price of her endowments. Formally, if Xi ∈ OBi(p), then,

∀j ∈ [m], Xij > 0 ⇒ d(ai,bj)
p(bj) ≤ d(ai,bj′ )

p(bj′ ) ∀j′ ∈ [m],

and ∑
j∈[m]

Xij · p(bj) =
∑

j∈[m]

w(ai, bj) · p(bj).

In the above ratios, to deal with zero prices and infinite disutilities we assume ∞/a > b/0
for any a, b ∈ [0, ∞). Clearly, an optimal bundle of an agent contains only those chores for
which she has finite disutility.

Price vector p is said to be at a Competitive Equilibrium (CE) if all chores are completely
assigned when every agent gets one of her optimal bundles, i.e., Xi ∈ OBi(p) and

∑
i∈[n] Xij =∑

i∈[n] w(ai, bj), ∀j ∈ [m]. It is without loss of generality to assume that each chore is
available in one unit total, i.e. for each bj ∈ B,

∑
i∈[n] w(ai, bj) = 1 (through appropriate

scaling of the disutility values). We now formally describe our problem.

▶ Definition 1 (Chore Division in the Exchange Model). Given a set of agents A =
{a1, a2, . . . , an}, chores B = {b1, b2, . . . , bm}, disutilities d(·, ·) and endowments w(·, ·),
our goal is to find a price vector p = ⟨p(b1), p(b2), . . . , p(bm)⟩ ∈ Rm

≥0 and allocation
X = ⟨X1, X2, . . . , Xn⟩, such that

Every agent gets their optimal bundle: Xi ∈ OBi(p).
All chores are completely allocated:

∑
i∈[n] Xij =

∑
i∈[n] w(ai, bj) = 1, for all bj ∈ B.

Observe that the equilibrium prices are scale invariant: if p is an equilibrium price vector
then so is α · p for any positive scalar α. Furthermore, at equilibrium p(bj) > 0 for each chore
j, otherwise no agent would be willing to do it. A CE ⟨p, X⟩ has many desirable properties
like envy-freeness and Pareto optimality in the chore division with equal income [3]. Similarly,
CE for the exchange model too satisfies Pareto optimality and weighted envy-freeness6.

6 Weight of an agent at given prices is the total monetary cost of the chores she brings. Naturally, higher
the cost of her chores (more money she has to earn), larger is her share of disutility.
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Fisher Model and CEEI. The Fisher model is a special case of exchange model, where in-
stead of the endowment of chores, each agent ai has a requirement of earning a fixed
amount of money e(ai) ≥ 0, i.e., the only change is in the definition of the feasible
set of chores that can be allocated to an agent at a given price vector p, Fi(p) ={

Xi ∈ Rm
≥0 |

∑
j∈[m] Xij · p(bj) ≥ e(ai)

}
. If e(ai) = 1 for all ai ∈ A then resulting equi-

librium is called Competitive Equilibrium with Equal Income (CEEI). Clearly, CEEI is a
special case of Fisher. Observe that determining CE in the Fisher model, can be modeled
as determining CE in the exchange model, by setting w(ai, bj) = e(ai) for each ai ∈ A and
bj ∈ B, while keeping the disutility values as is.

1.2 Overview of Our Results and Techniques
In this section we discuss the high-level ideas and techniques used to prove our main results.
We first note that in general, a chore division instance may not admit a CE as demonstrated
by the following example.

▶ Example 2. There are two agents a1 and a2, and two chores b1 and b2. We have w(ai, bj) = 1
for all i, j ∈ [2], and d(a1, b1) = d(a2, b1) = 1, and d(a1, b2) = ∞ and d(a2, b2) = 2. Let p(b1)
and p(b2) be the prices of the chores at a CE.

Observe that since d(a1, b2) = ∞, a1 earns her entire money of w(a1, b1) ·p(b1)+w(a1, b2) ·
p(b2) from b1. Therefore, at a CE, the total price of the chore b1 is at least the total money
earned by a1: (w(a1, b1) + w(a2, b1)) · p(b1) ≥ (w(a1, b1) · p(b1) + w(a1, b2) · p(b2)). This
implies that 2 · p(b1) ≥ p(b1) + p(b2), further implying that p(b1) ≥ p(b2). In that case
observe that the disutility to price ratio of b2 is strictly greater than that of b1 for a2:
d(a2, b1)/p(b1) = 1/p(b1) < 2/p(b1) ≤ 2/p(b2) = d(a2, b2)/p(b2). Thus, none of the agents
are willing to do chore b2, and therefore it remains unassigned, a contradiction.

It is well known that the a CE may not exist while dividing goods as well under the
exchange model. And, there are polynomial time checkable necessary and sufficient conditions
for the existence of CE. The next natural question is to obtain similar conditions for the
chore division as well. However, in this paper, we prove the following theorem.

▶ Theorem 3. Determining whether an instance of chore division in the Fisher model admits
a CE is strongly NP-hard, even for the case of equal incomes (CEEI). This also holds for the
constant-approximate CE.

The above theorem rules out obtaining polynomial time checkable necessary and sufficient
conditions for existence of a CE unless P=NP. The next best hope is to design weakest
possible conditions that ensures a CE and captures an interesting class of instances. Towards
this we derive two conditions.

The first condition is an artifact of the exchange setting, and is required for dividing
goods as well [17]: if a set of agents are interested to consume only a strict subset of the
endowment that they cumulatively own, then no prices can ensure demand equals supply
(we elaborate this shortly in Example 9). We now define a condition that helps us resolve
this issue.7 To define the condition, we first define the economy graph of a given instance of
chore division.

7 In fact, Condition 1 is the analogue of the necessary and sufficient condition required for a CE to exist
in exchange markets with goods.

ITCS 2022



41:6 On the Existence of Competitive Equilibrium with Chores

▶ Definition 4 (Economy Graph [17]). Given an instance I = ⟨A, B, d(·, ·), w(·, ·)⟩, an
Economy Graph G = (A, E) is a graph, with vertices corresponding to the agents and there
exists an edge from ai to aj if and only if there exist a chore c ∈ B, such that w(ai, c) > 0
and d(aj , c) ̸= ∞.

Now we define the first condition.

▶ Definition 5 (Condition 1 [17]). The economy graph of the instance is strongly connected.

Observe that our instance in Example 2 does satisfy Condition 1, yet does not admit a CE.
The primary reason for non-existence of CE in Example 2 is that sets {b ∈ B | d(a1, b) ̸= ∞}
and {b ∈ B | d(a2, b) ̸= ∞} are neither same nor disjoint. Next by generalizing this example
we demonstrate that unless finite disutility chore sets of any two agents are either same or
disjoint, the equilibrium may not exist. In particular, given any integer n > 1 and m > 1, we
create a chore division instance with n agents and m chores that satisfies Condition 1, has
exactly one agent-chore pair with infinite disutility, and does not admit a CE.

▶ Example 6. There are n agents a1, a2, . . . , an, and m chores b1, b2, . . . , bm. We set
w(ai, bj) = 1 for all i ∈ [n] and j ∈ [m]. So there is a total of n units of each chore bj , for all
j ∈ [m]. Now, we set d(ai, bj) = 1 for all i ∈ [n] and j ∈ [m − 1]. We set d(ai, bm) = nm for
all i ∈ [n − 1] and d(an, bm) = ∞.

Since w(ai, bj) = 1, for all i ∈ [n] and j ∈ [m], the instance in Example 6 does satisfy
Condition 1 (the economy graph of the instance is a clique). Observe that since all the agents
have the same disutility for the chores ∪j∈[m−1]bj , the prices of all these chores will be the same
at a CE (otherwise some of the chores will remain unassigned). Therefore, let p be the price
of a chore bj for j ∈ [m − 1], and p′ be the price of the chore bm at a CE. Since an has infinite
disutility for bm, she will earn her entire money of

∑
j∈[m] w(an, bj) · p(bj) = (m − 1) · p + p′

from the chores in ∪j∈[m−1]bj . Therefore, at a CE, the total price of the chores in ∪j∈[m−1]bj

is at least the total money earned by an, i.e., total prices of the chores owned by agent an,
implying that

∑
j∈[m−1]

∑
i∈[n] w(ai, bj) · p(bj) ≥

∑
j∈[m] w(an, bj) · p(bj). This implies that

(m−1)·n·p ≥ (m−1)·p+p′, further implying that (m−1)·(n−1)·p ≥ p′. In that case observe
that the disutility to price ratio of bm is strictly less than that of b1 for any agent ai, for
i ∈ [n − 1]: d(ai, b1)/p(b1) = 1/p ≤ ((n − 1) · (m − 1))/p′ < nm/p′ = d(ai, bm)/p(bm). Thus,
none of the agents are willing to do chore bm, and it remains unassigned, a contradiction.

Our next condition is to circumvent the primary issue in Example 6 that renders CE to
not exist. To this end, we define the disutility graph D = (A ∪ B, ED) as the bipartite graph
with the set of agents A and the set of chores B forming the vertex sets on two sides and
there is an edge from an a ∈ A to a b ∈ B when d(a, b) ̸= ∞. Examples 2 and 6 demonstrate
that whenever there is a connected component D′ of D which is not a biclique, there exists
disutility values for which the instance will not admit a CE. This brings us to our second
condition.

▶ Definition 7 (Condition 2). The disutility graph is a disjoint union of bicliques.

The second main result of our paper shows that Conditions 1 and 2 guarantee the existence
of a CE.

▶ Theorem 8. A chore division instance satisfying Conditions 1 and 2 admits a CE.

We now quickly show that even if one of the two conditions is not satisfied, the instance
may not admit a CE. Examples 2 and 6 already outline instances that satisfy Condition 1,
but do not satisfy Condition 2 and as a result do not admit a CE. We next give an example
that satisfies Condition 2, but not Condition 1, and does not admit a CE.
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▶ Example 9. There are three agents a1, a2, a3 and three chores b1, b2, b3. Agents a1 and a2
own 1/2 units of chores b1 and b2 each, i.e., w(ai, bj) = 1/2 for all i, j ∈ [2]. Agent a3 owns one
unit of b3, i.e., w(a3, b3) = 1. We set d(a1, b1) = d(a2, b1) = 1, and d(a3, b2) = d(a3, b3) = 1.
The disutility value of all other agent chore pair is infinity.

Observe that the disutility graph is a disjoint union of bicliques – one biclique comprising
of agents a1, a2 and the chore b1, and the second biclique comprising of the agent a3 and
chores b2 and b3. Therefore the instance satisfies Condition 2. We now show that the
instance does not admit a CE. Let p(b1), p(b2) and p(b3) denote the prices of chores b1,
b2 and b3 at a CE. Since agents a1 and a2 earn their entire endowment money from the
chore a1, we have that

∑
i∈[2]

∑
j∈[3] w(ai, bj) · p(bj) =

∑
i∈[3] w(ai, b1) · p(b1), implying that

p(b1) + p(b2) = p(b1), further implying that p(b2) = 0. Therefore, at any CE b2 will remain
unassigned as it will not be a part of the optimal bundle set of the agent a3 when p(b2) = 0,
which is contradiction.

In the subsections that follow, we briefly elaborate our techniques and novel ideas used
to prove Theorems 3 and 8.

1.2.1 Existence of a CE under the Sufficient Condition
In this section, we sketch the approach and main ideas to show existence of a CE assuming
the instance satisfies two sufficient conditions, that is proof of Theorem 8. Most equilibrium
existence results [22, 1] are based on either Brouwer’s or Kakutani’s fixed-point theorems.
The Brouwer’s (Kakutani’s) fixed-point theorem says that given a function (correspondence)
ϕ from D to itself, there exists an x ∈ D such that f(x) = x (x ∈ f(x)), if f is continuous
(has closed graph) and D is convex and compact [8, 16]. Our proof invokes both Brouwer’s
and Kakutani’s fixed-point theorems, the former nested inside the latter. This approach may
be of independent interest to prove existence in other settings.

We first briefly discuss why existence proofs for determining a CE with goods do not
easily extend to chores, and this will eventually lead us to the new approach. Most existence
proofs for a CE with goods define a fixed-point formulation on the domain of prices that
forms a simplex [1, 17], i.e., if there are m goods, then the domain is the simplex ∆m =
{p ∈ Rm

≥0 |
∑m

j=1 pj = 1}. Given the prices, it computes the optimal bundles of agents and
adjusts prices based on excess demand. At a fixed-point, no change in prices will imply no
excess demand, leading to a CE.

This approach immediately fails for the chore division problem due to the issue of infeasible
optimal bundle: Given a price vector from the simplex domain, if agent ai’s chore endowment
has positive total monetary cost, while the chores she is able to do have zero prices, then
there is no way she can earn enough money to pay for her chores, in turn making the set
Fi(p) in (1) empty. The reason why this issue does not arise in case of goods is that, there,
agents are allowed to spend at most the total price of their endowments (for bads it is at
least), thereby reversing the inequality in the definition of the set Fi(p), which ensures that
the all zero vector in Rm

≥0 is always a feasible vector.
To circumvent the above issue, first we need to work with a more involved price domain

that ensures that total monetary cost of the chores and endowments is the same inside every
component of the disutility graph. Recall the bipartite disutility graph D = (A ∪ B, ED)
where there is an edge (a, b) ∈ ED if and only if d(a, b) ̸= ∞. Let D1 = (A1 ∪ B1, ED1), D2 =
(A2 ∪ B2, ED2), . . . , Dd = (Ad ∪ Bd, EDd

) be the connected components of D. Then, our new
price domain is,

P =

p ∈ Rm
≥0 |

∑
j∈[m]

p(bj) = 1 and
∑

b∈Bk

p(b) =
∑

a∈Ak

∑
j∈[m]

w(a, bj)p(bj) ∀k ∈ [d]

 (2)
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41:8 On the Existence of Competitive Equilibrium with Chores

Now observe that if for any agent a ∈ Ak, for some k ∈ [d], the chores she is interested in
(the set Bk), have zero prices, then the total price of her endowment is also zero as p ∈ P.
In this case, agent a need not earn anything. As a result, she does not need to do any chore
and the all zero vector in Rm

≥0 is a feasible optimal chore set for agent a. Therefore, for any
price vector p ∈ P, for any agent i, we have that the set Fi(p) is not empty and neither is
the optimal bundle set in (1). However, there is still an issue with zero prices, a different
one: It can be the case that for some component (Ak ∪ Bk, Ek), the prices of all the chores
in Bk are zero, and prices of all the chores that agents in Ak bring are also zero. In that
case, the optimal bundle of any agent a ∈ Ak consists of only the all zero vector because
none of them have to earn anything! However, this will make the optimal bundle set change
non-continuously with respect to prices, which is a major roadblock in proving continuity like
property (the closed graph property) for the fixed-point formulation: for instance consider a
simple scenario where there is a component Dk in the disutility graph comprising of just one
agent a and one chore b. Agent a has some positive endowment of only one chore b′ ̸= b, say
w(a, b′) = 1 and w(a, j) = 0 for all other j ∈ B. Now, consider a sequence of price-vectors
(pn)n∈N in P, such that pn(b′) = pn(b) = 1/n. Observe that for every n ∈ N, the optimal
bundle of agent a is Xab = 1 and Xat = 0 for all other t ∈ B, as the only chore a is interested
in is b, and she has to do one unit of b, to earn her money of w(a, b) · p(b′) = 1 · (1/n) = 1/n.
However, at the limit of the sequence (pn)n∈N, say p∗, we have p∗(b) = p∗(b′) = 0 and the
only unique optimal bundle for agent a is the all zero vector in Rm

≥0. Thus, the optimal
bundle may not change continuously with the price-vectors in P.

To fix the above issue, we define the extended optimal bundle set, which is same as the
optimal bundle set of an agent ai ∈ Ak, if the total price of the chores in Bk is strictly
positive, otherwise it is the set of all feasible allocations of chores in Bk. This will help us
ensure continuity of the final correspondence. However, we will have to make sure that at
the fixed-point, the extended optimal bundle is the optimal bundle for every agent (one way
to do this is to ensure that there are no zero prices at the fixed point). For the allocations,
we will work with the following domain: for some sufficiently large constant C, we define

X = {X ∈ Rmn
≥0 | 0 ≤ Xij ≤ C, ∀ai ∈ A, ∀bj ∈ B} (3)

Then the set of extended optimal bundles of an agent ai ∈ Ak is:

EOBi(p) =
{

{Xi ∈ X | Xij > 0 only if d(ai, bj) ̸= ∞} if
∑

b∈Bk
p(b) = 0,

OBi(p) otherwise.
(4)

Fixed-point formulation. The domain of our fixed point formulation is S = P × X. Next, we
define a correspondence ϕ : S → 2S that is product of two correspondences ϕ1 : S → 2P and
ϕ2 : S → 2X. For a given (p, X) ∈ S, ϕ(p, X) = ϕ1(p, X) × ϕ2(p, X). Out of these, ϕ2(p, X)
is the set of extended optimal bundles at prices p. Formally,

ϕ2(p, X) = {X ∈ X | Xi ∈ EOBi(p), ∀ai ∈ A}

The exact formulation of ϕ1 is involved and requires to invoke Brouwer’s fixed-point
theorem. Therefore, let us first state the properties of ϕ1 that we need to ensure, and discuss
how they help us map fixed-points of ϕ to the competitive equilibria of the chore division
instance. For a given (p, X) ∈ S, if p′ ∈ ϕ1(p, X), then it must be that

p′ ∈ P and for all components Dk = (Ak ∪ Bk, Ek) of the disutility graph, and chores bj

and bj′ in Bk, where p(bj′) > 0, we have

p′(bj)
p′(bj′) =

p(bj) + max(
∑

i∈[n] w(ai, bj) −
∑

i∈[n] Xij , 0)
p(bj′) + max(

∑
i∈[n] w(ai, bj′) −

∑
i∈[n] Xij′ , 0) . (5)
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Fixed-points to CE. Let (p, X) be a fixed-point of ϕ, i.e., (p, X) ∈ ϕ(p, X). We first show
that at any fixed-point, the prices of all the chores are strictly positive. To the contrary,
suppose p(bj) = 0 for some bj ∈ B, and let bj belong to component Dk = (Ak ∪ Bk, EDk

) of
the disutility graph D. Then, some component of D has chores with both zero and positive
prices. Either it is Dk itself, or if all the chores in Dk have zero prices, then using the fact
that p ∈ P, we have

∑
ai∈Ak

∑
j∈[m] w(ai, bj) · p(bj) =

∑
bj∈Bk

p(bj) = 0. This implies that
the prices of all the chores owned by agents in Dk are zero, and some of them must belong
to other components due to the strong connectivity of the economy graph (Condition 1).
Recursing this argument, and also using the fact that sum of all the prices is 1, there must be
a component with a zero priced chore, but the sum of prices of the chores in the component
is positive, say component Dℓ = (Aℓ ∪ Bℓ, EDℓ

).
Let b0 and b+ be the chores in Dℓ with p(b0) = 0 and p(b+) > 0. For every agent

in ai ∈ Aℓ, their EOBi(p) = OBi(p), since total price of the chores in Bℓ is positive (by
(4)). Since every ai ∈ Dℓ has finite disutility for both b0 and b+ (due to Condition 2), her
disutility-per-buck for b0 is strictly more than that for b1. Due to (1), if Xi ∈ OBi(p) then
Xib0 = 0 for all i ∈ Aℓ. Furthermore, every agent a /∈ Aℓ has infinite disutility for b0, we
have that Xib0 = 0 for all i ∈ [n]. Now given that our correspondence ϕ satisfies (5), and
p(b0) = 0 and p(b+) > 0, we have,

0 = p(b0)
p(b+) =

p(b0) + max(
∑

i∈[n] w(ai, b0) −
∑

i∈[n] Xib0 , 0)
p(b+) + max(

∑
i∈[n] w(ai, b+) −

∑
i∈[n] Xib+ , 0)

=
0 +

∑
i∈[n] w(ai, b0)

p(b+) + max(
∑

i∈[n] w(ai, b+) −
∑

i∈[n] Xib+ , 0)

> 0, a contradiction.

Therefore, at a fixed point, there is no chore with a zero price. Now, we briefly describe why
fixed-point (p, X) correspond to the prices and allocation at a CE. Let rj(X) denote the
amount of the chore bj left undone under X, i.e.,

rj(X) = max(
∑
i∈[n]

w(ai, bj) −
∑
i∈[n]

Xij , 0).

Since all chores have positive price at p, extended optimal bundle set of every agent is her
optimal bundle set (by (4)) and thereby X ∈ ϕ2(p, X) ensures that Xi ∈ OBi(p) for every
agent ai ∈ A. Now we only need to ensure demand meets supply for every chore. If not,
then some chore bj in component Dk, which is not completed, i.e., rj(X) > 0. Since p ∈ P,
we have that the cumulative price of the endowments of the agents in a component of the
disutility graph equals the total price of the chores in the same component. Since every agent
spends on their optimal bundle, the cumulative price of the endowments of the agents equals
the total earning of that agents in Ak from Bk. Therefore, if one chore bj is underdone, i.e.,
rj(X) > 0, then there exists some other chore bj′ , which is overdone, i.e., rj′(X) = 0. Again
using (5), we have p(bj)

p(bj′ ) = p(bj)+rj(X)
p(bj′ )+rj′ (X) >

p(bj)
p(bj′ )+rj′ (X) = p(bj)

p(bj′ ) , a contradiction.

Mapping to P and Ensuring Condition (5). Our next task is to define the correspondence ϕ1,
so that for any given (p, X) ∈ S, (5) holds for every p′ ∈ ϕ1(p, X), and p′ ∈ P. This in fact
is the trickiest part of our proof and constitutes the main bulk of our efforts.

To get p′ ∈ P, we need to make sure that the p′ ∈ ∆m, and for every component Dk of
the disutility graph D, total prices of the chores in Dk equals total cost of endowments of
agents in Dk. To this end, for every chore bj in component Dk, let q(bj) = p(bj) + rj(X),
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where rj(X) is the non-negative excess supply as defined above, and βj = q(bj)∑
b∈Dk

q(b)
. Note

that for (5), we want that for any bj , bj′ ∈ Dk with p(bj′) > 0, p′(bj)
p′(bj′ ) = q(bj)

q(bj′ ) = βj

βj′
. Thus, if

p̃k =
∑

b∈Dk
p′(b) then p′(bj) must be βj p̃k. This reduces to one unknown per component of

D, namely p̃k for each k ∈ [d].
Next, we write a system of linear equations to compute p̃k’s such that all the constraints

of domain P are satisfied. The simplex constraints for the prices in P can be encoded by
ensuring p̃ ∈ ∆d. Next, for each component Dk, the following constraint imposes total
endowment costs of agents in Dk equals total prices of chores in Dk.∑

ai∈Ak

∑
k′∈[d]

∑
bj′ ∈Bk′

w(ai, bj′) · (βj′ p̃k′) =
∑

bj∈Bk

(βj p̃k)

Let M(β) ∈ Rd×d denote the matrix of this linear system. Then, our goal becomes to find
a vector v ∈ ∆d, in the null space of M(β). It is not obvious why such a vector should exist.
Our high-level approach to show the same is as follows: We can equivalently express the
linear system of equations M(β) · v = 0 as M ′(β) · v = v, where M ′(β) = M(β) + I, where I

is the identity matrix. We show that if we define a function f : Rd → Rd as f(v) = M ′(β) · v,
then f maps the d-dimensional simplex ∆d to itself (this is non-trivial). Restricting f to
only the simplex, we get a continuous map f : ∆d → ∆d and therefore it has a fixed-point by
the Brouwer’s fixed-point theorem. At every fixed-point v we have M ′(β) · v = v implying
M(β) · v = 0. Since v ∈ ∆d we get the vector we needed.

The above scheme will work if the βjs are well defined. However, for a component Dk

if
∑

b∈Dk
q(b) turns out to be zero, then βjs are ill-defined and cause issues with proving

continuity like properties of ϕ. To handle this, we define a set of permissible βs, namely,

B =

β ∈ Rm
≥0 | ∀k ∈ [d],

∑
bj∈Dk

βj = 1 if
∑

b∈Dk
q(b) = 0

∀bj ∈ Dk, βj = q(bj)∑
b∈Dk

q(b)
otherwise

 .

And for each β ∈ B, the above process will compute a p′ ∈ ϕ1(p, X). By construction,
each of these p′’s will satisfy, p′ ∈ P and equation (5), as needed. However, it is not immediate
why such a set of p′’s will form a convex set, as required to apply the Kakutani’s fixed point
theorem.

In fact, to apply the Kakutani’s fixed-point theorem, we need to show that the above
complex process creates a ϕ, that has closed graph (continuity-like property), and ϕ(p, X) is
convex for each (p, X) ∈ S. This again requires involved argument and the detailed proof
can be found in the full version of this paper. Then, ϕ is sure to have a fixed-point which
maps to CE as discussed above.

Our proof technique extends to show existence of a CE for chore division with general
monotone convex disutility functions where an agent can do only a subset of chores and with
arbitrary endowments, under a similar sufficient condition. Thus, our overall approach may
be of independent interest to handle more general problems involving chores.

1.2.2 NP-Hardness of Determining a CE in Arbitrary Instances
We sketch the main reason why determining whether an arbitrary instance of chore division
admits a CE is strongly NP-hard. This primarily arises due to the existence of several
disconnected equilibria. We sketch a very simple scenario that could arise in chore division



B. R. Chaudhury, J. Garg, P. McGlaughlin, and R. Mehta 41:11

in the Fisher model: Consider an instance with two agents a1 and a2 with a fixed earning of
one unit each. The disutility values are given below where a1 has a disutility of 1 for b1 and
3 for b2, while a2 has a disutility of ∞ for b1 and 1 for b2.

b1 b2

a1 1 3
a2 ∞ 1

Let p = ⟨p(b1), p(b2)⟩ be an equilibrium price vector. Also, throughout this section we use
the notation MPBa to denote the minimum pain per buck bundle for agent a at the prices
p: a chore b ∈ MPBa if and only if d(a,b)

p(b) ≤ d(a,b′)
p(b′) for all other chores b′ in the instance.

Observe that this small instance exhibits exactly two competitive equilibria:
The first CE is when both p(b1) and p(b2) are set to 1. Note that only MPBa1 = {b1}
and MPBa2 = {b2}. Thus a1 earns her entire one unit of money from g1 and a2 earns
her entire one unit of money from g2.
The second CE is when a1 earns from both b1 and b2. For this we set p(b1) to 1/2 and
p(b2) to 3/2. Note that MPBa1 = {b1, b2} and MPBa2 = {b2}. Under these prices, a2
earns her entire money by doing 2/3 of b2, and a1 earns her money by doing all of b1 and
1/3 of b2.

Also, observe that there exists no CE at any other set of prices. This is a striking
difference to the scenario with only goods to divide, where all CE exists at a unique price
vector. Now, let us introduce another agent a3 and another chore b3 in the instance. Let
us say that a3 has a fixed earning of one unit, and both agents a1 and a2 have a disutility
of ∞ towards b3. We now discuss two scenarios that may arise depending on a3’s disutility
towards the chores
1. a3 has a disutility of 1 towards b3 and b2, and ∞ towards b1.
2. a3 has a disutility of 1 towards b3, 1

2 towards b1 and ∞ towards b2.

We will now show that, at a CE, in scenario 1, b2 /∈ MPBa1 and in scenario 2, b2 ∈ MPBa1 ,
suggesting that depending on the valuation of a3, only one local equilibrium among the
agents a1, a2 and chores b1 and b2 is admissible at a CE. Let p(b1), p(b2) and p(b3) denote
the prices of chores at an equilibrium. Note that since both a1 and a2 have a disutility of
∞ for b3, they only earn money from b1 and b2. Thus p(b1) + p(b2) ≥ 2. Note that in both
scenarios b3 should be in MPBa3 as a3 is the only agent with finite disutility towards it.
Now,

In scenario 1: Since b3 ∈ MPBa3 , we have d(a3,b3)
p(b3) ≤ d(a3,b2)

p(b2) or equivalently 1
p(b3) ≤ 1

p(b2) ,
implying that p(b3) ≥ p(b2). This in turn implies that

p(b2) + 2 ≤ p(b2) + (p(b1) + p(b2)) (as p(b1) + p(b2) ≥ 2)
≤ p(b1) + p(b2) + p(b3) (as p(b2) ≤ p(b3))
= 3.

Thus we have p(b2) ≤ 1, implying that p(b1) ≥ 1. Therefore, we can conclude that
b2 /∈ MPBa1 as the disutility to price ratio of b1 is strictly less than that of b2 for agent a1.
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In scenario 2: Since b3 ∈ MPBa3 , we have d(a3,b3)
p(b3) ≤ d(a3,b1)

p(b1) , we have 1
p(b3) ≤ 1

2p(b1) ,
implying that p(b3) ≥ 2p(b1). This in turn implies that

2p(b1) + 2 ≤ 2p(b1) + (p(b1) + p(b2)) (as p(b1) + p(b2) ≥ 2)
≤ p(b1) + p(b2) + p(b3) (as 2p(b1) ≤ p(b3))
= 3.

Thus we have p(b1) ≤ 1
2 , implying that p(b2) ≥ 3

2 . Therefore, the disutility to price ratio
of b2 is at most that of b1 for agent a1 and thus we conclude that b2 ∈ MPBa1 .

Thus, as mentioned earlier, the valuations of the agents outside the local sub-instance,
impose a specific local equilibrium (among the two disjoint local equilibria) among the agents
a1, a2 and chores b1 and b2. The hardness arises from the intractability of finding the correct
local equilibria when there are n such local sub-instances (resulting in 2n disjoint equilibria).
We refer the reader to the full version of the paper for the detailed proof.

1.3 Further Related Work
The fair division literature is too vast to survey here, so we refer to the excellent books [6,
24, 20] and a recent survey article [21], and restrict attention to previous work that appears
most relevant.

Most of the work in fair division is focused on allocating goods with a few exceptions
of chores [26, 2, 6, 24]. The papers [3, 4] consider the case of mixed manna that contains
both goods and bads in the Fisher model and assume all (dis)utility values to be finite. For
the goods case, competitive equilibrium maximizes the Nash welfare, i.e., geometric mean of
agents’ utilities. In case of chores (or mixed manna), [3] shows that critical points of the
geometric mean of agents’ disutilities on the (Pareto) efficiency frontier are the competitive
equilibrium profiles. By building on this characterization, [5] recently obtained an efficient
algorithm to find an approximate competitive equilibrium (FPTAS). For the special case of
constantly many agents (or chores), polynomial-time algorithms are known for computing a
competitive equilibrium in the Fisher model [7, 14]. In a recent work, [9] give a simplex-like
algorithm for computing a competitive equilibrium in the exchange model.
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