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Abstract
Recently, there has been exciting progress in understanding the complexity of distributions. Here,
the goal is to quantify the resources required to generate (or sample) a distribution. Proving lower
bounds in this new setting is more challenging than in the classical setting, and has yielded interesting
new techniques and surprising applications. In this work, we initiate a study of the complexity
of sampling with limited memory, and obtain the first nontrivial sampling lower bounds against
oblivious read-once branching programs (ROBPs).

In our first main result, we show that any distribution sampled by an ROBP of width 2Ω(n)

has statistical distance 1 − 2−Ω(n) from any distribution that is uniform over a good code. More
generally, we obtain sampling lower bounds for any list decodable code, which are nearly tight.
Previously, such a result was only known for sampling in AC0 (Lovett and Viola, CCC’11; Beck,
Impagliazzo and Lovett, FOCS’12). As an application of our result, a known connection implies new
data structure lower bounds for storing codewords.

In our second main result, we prove a direct product theorem for sampling with ROBPs.
Previously, no direct product theorems were known for the task of sampling, for any computational
model. A key ingredient in our proof is a simple new lemma about amplifying statistical distance
between sequences of somewhat-dependent random variables. Using this lemma, we also obtain a
simple new proof of a known lower bound for sampling disjoint sets using two-party communication
protocols (Göös and Watson, RANDOM’19).
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1 Introduction

A central goal in complexity theory is to quantify the resources required to perform certain
tasks. Traditionally, complexity theory has focused on the task of computing: here, one fixes
a function f : {0, 1}m → {0, 1}n and computational model C (e.g., low-depth circuits), and
asks for lower bounds on the size of any F ∈ C that computes f .

© Eshan Chattopadhyay, Jesse Goodman, and David Zuckerman;
licensed under Creative Commons License CC-BY 4.0

13th Innovations in Theoretical Computer Science Conference (ITCS 2022).
Editor: Mark Braverman; Article No. 40; pp. 40:1–40:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:eshanc@cornell.edu
https://www.cs.cornell.edu/~eshan/
mailto:jpmgoodman@cs.cornell.edu
https://www.cs.cornell.edu/~jpmgoodman/
mailto:diz@cs.utexas.edu
https://www.cs.utexas.edu/~diz/index.html
https://doi.org/10.4230/LIPIcs.ITCS.2022.40
https://eccc.weizmann.ac.il/report/2021/106/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


40:2 The Space Complexity of Sampling

Recently, a growing body of work has sought to understand the power of these same
computational models for the task of sampling. Here, instead of fixing a function f , one
picks a target distribution Q ∼ {0, 1}n. Then, one asks for lower bounds on the size of any
F ∈ C that generates (samples) Q, when supplied with uniformly random bits.

Following the earlier works of Ambainis, Schulman, Ta-Shma, Vazirani and Wigderson
[2] and Goldreich, Goldwasser, and Nussboim [13], Viola was the first to launch a systematic
study on the complexity of sampling distributions [22]. Since then, this new area of complexity
theory has seen an exciting wave of interest [23, 21, 5, 24, 12, 17, 1, 27, 6, 28, 25, 29, 26, 14].
Despite this significant progress, results are still only known for a few computational models
like AC0 and communication protocols. In particular, little is known about the complexity of
sampling with limited memory, while this remains a fundamental model in other areas of
complexity.

In this work, we aim to fill this gap, and initiate a study of the space complexity of
sampling. Our model will correspond to the streaming model of computation, an active
area of research. Our work makes progress on the research program initiated by Viola, who
has advocated for the pursuit of sampling lower bounds against every model for which we
already have classical lower bounds (including branching programs, Turing machines, and
polynomials) [24].

1.1 Key questions
Before we formally introduce our model and present our results, we briefly survey sampling
in AC0, and motivate some key questions about sampling with limited memory.

Sampling can be easier than computing. A motivating paradigm in the complexity of
sampling is the (perhaps surprising) fact that a fixed computational model C may be more
powerful at sampling than computing. In particular, consider fixing a function f : {0, 1}n →
{0, 1}m and comparing the tasks of computing f on every input x, with sampling f(Un) [13].
Intuitively, the latter task should seem easier: any F ∈ C that computes f must also have
F (Un) = f(Un). Furthermore, setting f−1 to be a one-way permutation makes f(x) very
hard to compute, but f(Un) very easy to sample [22].

Amazingly, we also have examples of extremely simple explicit functions that demonstrate
this separation. The canonical example is the function f(x) = (x, parity(x)): the celebrated
result of Håstad [15] shows that f cannot be computed in AC0, yet Babai [3], Boppana
and Lagarias [7] give an extremely simple AC0 circuit that samples (Un, parity(Un)). Thus,
obtaining sampling lower bounds is strictly more challenging (at least in AC0), and their
pursuit may unveil exciting new techniques and applications [22].

A natural first question, then, is to ask whether this motivation still holds in the limited
memory setting:

▶ Question 1. Does there exist an explicit boolean function b : {0, 1}n → {0, 1} that is hard
to compute with limited memory, but such that (Un, b(Un)) is easy to sample with limited
memory?

Sampling lower bounds for input-output pairs. Above, we saw that for the parity function
b : {0, 1}n → {0, 1}, it holds that (x, b(x)) is hard to compute in AC0, yet (Un, b(Un)) is
easy to sample in AC0. Given this observation, Viola raised the challenge [22] of finding
a distribution of the form (Un, b(Un)) that is hard to sample in AC0. In a recent paper
[26], Viola provided a strong solution to this challenge, by giving an explicit function
b : {0, 1}n → {0, 1} such that for any AC0 circuit F : {0, 1}ℓ → {0, 1}n+1, it holds that
|F (Uℓ) − (Un, b(Un))| ≥ 1

2 − 2−nΩ(1) , where | · | denotes statistical distance.
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Assuming Question 1 can be answered positively, it is natural to ask whether a similar
result holds for sampling in the limited memory setting:

▶ Question 2. Does there exist an explicit boolean function b : {0, 1}n → {0, 1} such that
(Un, b(Un)) is hard to sample with limited memory?

Sampling lower bounds for codes. It is easy to see sampling lower bounds for distributions
of the form (Un, b(Un)) cannot exceed 1/2 (since (Un, 0) or (Un, 1) will yield an upper
bound of 1/2, and both of these are trivial to sample). A complementary question, suggested
by Viola [22], is to find other natural distributions Q ∼ {0, 1}n with much stronger sampling
lower bounds - perhaps even approaching 1.

In 2012, Viola and Lovett demonstrated a distribution of exactly this type [21], setting
Q ∼ {0, 1}n to be uniform over an asymptotically good error-correcting code, i.e., one having
constant relative distance and rate. They showed that for such a distribution Q, any AC0

circuit F : {0, 1}ℓ → {0, 1}n has |F (Uℓ) − Q| ≥ 1 − ε for ε = n−Ω(1). In a subsequent work
[5], Beck, Impagliazzo, and Lovett improved the statistical distance to 1 − ε for ε = 2−nΩ(1) .
Using an observation of Viola [22], both works also obtain data structure lower bounds for
storing codewords. Given these results, we would like to know:

▶ Question 3. Are good codes hard to sample with limited memory?

Direct product theorems. Thus far, our questions have asked for small-space analogs of
key results known for the complexity of sampling in AC0. For our final question, we ask for a
type of result that has yet to be studied in the complexity of sampling, but which has been
well-explored within classical complexity. In particular, we ask for a direct product theorem.

In classical complexity, direct product theorems (e.g., Yao’s XOR Lemma [30]) are used
for hardness amplification: such a result roughly says that if a function f is somewhat hard
to compute for a given computational model, then t independent copies of f are very hard to
compute for that same model. Direct product theorems offer a concrete way to (i) construct
simple functions with strong (average-case) lower bounds, and thus (ii) establish strong
(average-case) complexity separations between complexity classes.

It is natural to ask whether such direct product theorems can also be established for the
task of sampling. In the context of sampling, a direct product theorem can be defined as
a result which asserts the following: if a distribution Q ∼ {0, 1}n has statistical distance δ

from any distribution sampled by some computational model, then t independent copies of
Q (concatenated together) has statistical distance ≫ δ from any distribution sampled by
that same model. Our final question is as follows.

▶ Question 4. Can a direct product theorem be established for distributions sampled in
limited memory?

In this paper, we make progress on these four questions. Before presenting our results, we
must discuss our model for sampling distributions with limited memory.

1.2 Sampling in small space using oblivious ROBPs
To model sampling with limited memory, we will use the classic model of oblivious read-
once branching programs (ROBPs). This model corresponds to the streaming model of
computation, and thus a better understanding of the power of ROBPs for sampling tasks
may also help provide new insights and tools for streaming algorithms.

ITCS 2022
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A first attempt to model sampling in limited memory uses the classic definition of an
ROBP (Definition 9), and replaces its input with uniform bits. However, such an ROBP
computes a function f : {0, 1}ℓ → {0, 1}, and so the distribution f(Uℓ) it samples will be
over {0, 1}. To sample general distributions Q ∼ {0, 1}n, we need an ROBP that can output
multiple bits.

Perhaps the most natural way to extend an ROBP to output multiple bits is to simply
allow it to output a sequence of bits upon reading any input bit. More formally, we can
assign each edge in the ROBP an additional label consisting of a string of output bits. Then,
given an input x ∈ {0, 1}ℓ, the ROBP traverses a path in the usual way, but now outputs
all the output labels seen along the way. Indeed, this is exactly a “read-once” version of
multi-output branching programs considered in previous works [9, 8, 4].

It will also be convenient to make one simplifying assumption: just as the inputs in an
ROBP are “layered”, we will assume that the outputs are also layered. That is, we require
that any two edges traversing between the same two layers are labeled with the same number
of output bits. This is a natural way to guarantee that the ROBP will compute a function of
the form F : {0, 1}ℓ → {0, 1}n, since all paths are guaranteed to output the same number
of bits. This completes our definition of multi-output ROBP (see Definition 10 for a more
formal definition).

Just as a standard ROBP models an algorithm that reads from an input stream, multi-
output ROBPs also allow the algorithm to write to an output stream (since it may write an
arbitrary number of bits at each time step, without storing any of them in its memory). As
it turns out, we will also prove that sampling using this model is equivalent (up to a small
loss in parameters) to sampling using a different natural model from the field of randomness
extractors [18]. Furthermore, note that for functions with one bit of output, our definition is
equivalent to the classic single-bit-output ROBP definition. Thus, we will henceforth refer to
multi-output ROBPs simply as ROBPs.

1.3 Summary of our main results
With our questions in mind and our model formally defined, we are ready to state our results.
Qualitatively, we provide positive answers to all four questions from Section 1.1.

Question 1 and Question 2 are straightforward to answer by applying known (or easy-to-
prove) lower bounds from communication complexity. We discuss these results in Section 4.
On the other hand, Question 3 and Question 4 are more challenging to resolve, and our two
main contributions are positive answers to these questions. We go into more detail below.

1.3.1 Sampling lower bounds against codes
In our first main theorem, we show that it is hard to sample good codes using ROBPs. More
generally, we obtain the following sampling lower bounds against any (n, k, d) code, which
are nearly tight.

▶ Theorem 1 (Sampling lower bounds against codes). Let Q ∼ {0, 1}n be uniform over an
(n, k, d) code. Then for any ROBP F : {0, 1}ℓ → {0, 1}n of width w,

|F (Uℓ) − Q| ≥ 1 − 12w · 2− kd
4n .

▶ Remark 2. We show that Theorem 1 is nearly tight, in the sense that for almost all “valid”
parameters n, k, d, there exists an (n, k, d) code that can be sampled by an ROBP of width
2Õ( kd

n ). For a more formal statement of this result, we refer the reader to Section 5.
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As a corollary, we immediately get that any distribution sampled by an ROBP of exponential
width has statistical distance exponentially close to 1 from a good code, answering Question 3:

▶ Corollary 3. For any good code Q ∼ {0, 1}n, there is a constant c > 0 such that for any
ROBP F : {0, 1}ℓ → {0, 1}n of width at most 2cn,

|F (Uℓ) − Q| ≥ 1 − 12 · 2−cn.

Note that this is tight up to the constants c and 12, since statistical distance ≤ 1 − 2−n is
easily achieved by a width 1 ROBP that is constant over a single codeword. Finally, we
note that we actually obtain a more general version of Theorem 1, which works for any
list-decodable code: we refer the reader to Section 5 for more details.

We remark that these sampling lower bounds against codes for ROBPs are stronger
than the best known sampling lower bounds against codes for AC0. In particular, the best
sampling lower bounds against good codes for AC0 are of the form 1 − 2−nΩ(1) [5], and the
authors leave as an open problem whether similar lower bounds for AC0 can be obtained
against (n, k, d) codes with kd ≥ n1+Ω(1). On the other hand, our sampling lower bounds
against good codes are of the form 1 − 2−Ω(n) for ROBPs of width 2Ω(n) (Corollary 3), and
we obtain lower bounds of the form 1 − 2−nΩ(1) against (n, k, d) codes with kd ≥ n1+Ω(1), for
ROBPs of width 2nΩ(1) (Theorem 1).

Applications to data structure lower bounds. By applying a known connection between
sampling lower bounds and data structure lower bounds [22], we immediately get tight data
structure lower bounds for storing codewords succinctly and retrieving them using ROBPs.

▶ Corollary 4. For any good code Q ⊆ {0, 1}n of dimension k, there is a constant c > 0 such
that the following holds. If we can store codewords of Q using k + r bits so that a codeword
can be computed by an ROBP F : {0, 1}k+r → {0, 1}n of width at most 2cn, then we must
have redundancy r ≥ ⌊cn⌋.

The above corollary shows that if one wishes to store codewords that are retrievable by a
width 2Ω(n) ROBP, they must use Ω(n) extra bits of redundancy. This is tight up to constant
factors: (1) It is easy to store codewords that are retrievable by a width 2n ROBP using
0 extra bits of redundancy; and (2) It is easy to store codewords that are retrievable by a
width 1 ROBP using n − k extra bits of redundancy.

We remark that these data structure lower bounds for storing codes and retrieving them
using ROBPs are stronger than the best known data structure lower bounds for storing codes
and retrieving them using AC0 circuits. In particular, for ROBPs of exponential width 2Ω(n),
we show that r ≥ Ω(n) bits of redundancy are necessary, whereas the best known result for
AC0 requires r ≥ nΩ(1) bits of redundancy.

1.3.2 A direct product theorem
Our second main theorem is a direct product theorem. This gives a generic way to construct
distributions with strong sampling lower bounds against ROBPs. Informally, this theorem
shows that if a distribution Q is even a little hard to sample for ROBPs, then the distribution
Q⊗t (defined as a sequence of t independent copies of Q) is extremely hard to sample for
ROBPs. More formally, we prove the following.

▶ Theorem 5 (Direct product theorem). Let Q ∼ {0, 1}n be a distribution such that for any
ROBP F : {0, 1}ℓ → {0, 1}n of width w, it holds that |F (Uℓ) − Q| ≥ δ. Then for any t ∈ N
and ROBP F ∗ : {0, 1}ℓ∗ → {0, 1}nt of width w, it holds that

|F ∗(Uℓ∗) − Q⊗t| ≥ 1 − e−tδ2/8.

ITCS 2022



40:6 The Space Complexity of Sampling

In particular, our direct product theorem gives a way to boost statistical distance lower
bounds of the form δ > 0 (some tiny constant) to lower bounds of the form 1 − 2−Ω(t).

More generally, we actually obtain a direct product theorem that works for sampling
with any computational model that has a certain “closure” property. We show that ROBPs
exhibit such a property, and it is an interesting future direction to determine whether this is
also true for other natural computational models. If such a closure property can be shown
for AC0, for example, then our general theorem would immediately imply a direct product
theorem for sampling in AC0. We refer the reader to Section 6 for more details.

A simple new lemma on amplifying statistical distance. A key ingredient in the proof of
our direct product theorem is a simple new lemma on amplifying statistical distance between
sequences of somewhat-dependent random variables. To the best of our knowledge, no such
lemma was previously known, and we believe it may be of independent interest:

▶ Lemma 6. Let X ∼ V n and Y ∼ V n each be a sequence of random variables over V ,
where elements in the sequence need not be independent. Suppose that for every i ∈ [n] and
v ∈ V i−1,

|(Xi | X<i = v) − (Yi | Y<i = v)| ≥ δ.

Then

|X − Y| ≥ 1 − e−nδ2/2.

The proof of Lemma 6 is not difficult: we simply prove an analogous result over a more
amenable notion of distance, known as the Bhattacharyya coefficient, and use estimates on
statistical distance (in terms of the Bhattacharyya coefficient) to obtain the desired result.
Despite its simple proof, we believe that it could be a useful tool for proving lower bounds.
We discuss one such application, below.

Applications to sampling with two-party communication protocols. As an application of
the above lemma, we obtain a simple new proof of a known result on sampling lower bounds
for two-party communication protocols [14]. In particular, in Section 2.2, we provide a short,
self-contained proof that for any distribution X ∼ {0, 1}n × {0, 1}n sampled by two-party
communication protocols with Ω(n) bits of communication, it holds that X has statistical
distance 1 − 2−Ω(n) from the distribution Q ∼ {0, 1}n × {0, 1}n that is uniform over pairs of
disjoint strings.

Organization. The rest of this paper will be structured as follows. We start by giving an
overview of our techniques in Section 2. In Section 3, we provide some basic preliminaries
and facts that will be used throughout the paper. Next, in Section 4 we show how known (or
easy-to-prove) communication lower bounds can be used to answer Question 1 and Question 2.
Then, in Section 5, we obtain our sampling lower bounds against codes, proving our first
main result (Theorem 1) and answering Question 3. In Section 6, we prove our direct product
theorem for sampling with ROBPs (Theorem 5) and answer Question 4. We wrap up with
some future directions in Section 7. We refer the reader to [11] for the full version of this
paper, which contains all omitted proofs and several additional results.
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2 Overview of our techniques

In this section, we give a detailed overview of the techniques that go into proving our two
main theorems: namely, our sampling lower bounds against codes (Theorem 1), and our
direct product theorem (Theorem 5). Before we dive into these proofs, we briefly discuss
an important tool that we use throughout the paper, which helps streamline our arguments
about sampling with ROBPs.

An equivalence between two small-space samplers. When all is said and done, our goal
is to obtain theorems about sampling with ROBPs: that is, we wish to gain a deeper
understanding of distributions of the form F (Uℓ), where F : {0, 1}ℓ → {0, 1}n is a function
computed by an ROBP. However, given the generality of ROBPs, this model of sampling
can be a little cumbersome to work with formally.

In order to circumvent the need to work with this model directly, we will actually prove
many of our results using a different model for sampling with limited memory, known as
a small-space source. This model is much easier to work with formally, as its definition is
simpler. Surprisingly, it also turns out that sampling with this model is roughly equivalent
to sampling with ROBPs. This means that we can largely focus on proving results about the
simpler model. We go into more detail below.

Small-space sources were introduced by Kamp, Rao, Vadhan and Zuckerman [18]. We
henceforth refer to this model as the KRVZ sampler, and it is defined as a certain type of
branching program that receives no input. More formally, a KRVZ sampler of width w and
length n is a directed acyclic graph G = (V, E) with layers V = V0 ∪ V1 ∪ · · · ∪ Vn, each
holding w vertices. For every i ∈ [n], each v ∈ Vi−1 can have an arbitrary number of edges
into the next layer. The vertex v assigns a probability distribution pv over its outgoing
edges, and each of them also receive a label of 0 or 1. There is a distinguished start vertex
vstart ∈ V0, and the KRVZ sampler generates a distribution X ∼ {0, 1}n by taking a random
walk from vstart according to the edge probabilities {pv}, outputting all bits seen along the
way.

Given this definition, we prove an equivalence theorem which says that a distribution
Q ∼ {0, 1}n is samplable by a KRVZ sampler of width w if and only if it is samplable by
an ROBP of width w (ignoring a small loss in parameters: see Theorem 13). The more
challenging direction of this proof is that KRVZ samplers =⇒ ROBP samplers. Here, the
difficulty is with simulating the multiple outgoing edges from each vertex, and the arbitrary
probabilities it may assign over them. However, we show that such a simulation is possible by
combining a lemma of [18] (to make the edge probabilities of the KRVZ sampler “granular”)
with a construction of a certain type of ROBP that sorts boolean strings into buckets of
various sizes. In other words, the ROBP computes a type of “multi-thresholding” function.

Given this equivalence theorem, (1) Lower bounds against KRVZ samplers imply lower
bounds against sampling with ROBPs; and (2) The existence of KRVZ samplers for a
distribution implies that such a distribution can be sampled with ROBPs. As we will see
now, both directions of this equivalence theorem will be useful in proving our main results.

2.1 Sampling lower bounds against codes
With our equivalence theorem in hand, we are ready to sketch the proof of our first main
theorem (Theorem 1) and the proof of its tightness (Remark 2). Recall that Theorem 1
roughly says that for any distribution Q ∼ {0, 1}n that is uniform over an (n, k, d) code
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40:8 The Space Complexity of Sampling

with good parameters (i.e., k, d, large), it holds that any distribution sampled by an ROBP
(whose width is not too large) will have statistical distance close to 1 from Q. Using our
equivalence theorem, it suffices to prove this theorem for KRVZ samplers, instead.

In order to prove this theorem, we actually prove a more general version that works
for list-decodable codes. Recall that a (ρ, L) list-decodable code of dimension k is a subset
Q ⊆ {0, 1}n of size 2k such that any Hamming ball of radius ≤ ρn contains at most L points
from Q. Note that any (n, k, d) code Q is a (ρ, 1) list-decodable code of dimension k, for any
ρ < d

2n . Thus it suffices to show that for any distribution Q uniform over a list-decodable
code with good parameters (i.e., k, ρ large, L small), it holds that any distribution sampled
by a KRVZ sampler (whose width is not too large) will have statistical distance close to 1
from Q.

The proof uses two main ingredients. First, it uses a known lemma [18] which says that
any (distribution generated by a) KRVZ sampler X ∼ {0, 1}n can be written as a convex
combination of a few product distributions. More formally: if the sampler has width w, then
for any r, ℓ with rℓ = n, it can be written as a convex combination of wr distributions of the
form Y = (Y1, . . . , Yr) ∼ ({0, 1}ℓ)r, where each Yi is independent.

The second ingredient, which we will prove, is that product distributions, i.e., those of
the form Y = (Y1, . . . , Yr) ∼ ({0, 1}ℓ)r with each Yi independent, are statistically far from
(distributions that are uniform over) good list decodable codes.

At this point, it would be nice to conclude that the original KRVZ sampler X must also
be far from a good list decodable code Q. In particular, we would like to argue that X is a
convex combination of product distributions {Y(j)}, and each of these product distributions
is far from Q, so X must be far from Q. Unfortunately, the bounds we are trying to lift are
in the wrong direction: it is true that if each Y(j) is close to Q, then X is close to Q, but
it is not necessarily true that if each Y(j) is far from Q, then X is far from Q. Indeed, it
could be the case that each Y(j) is constant over a (different) codeword, which would make
each Y(j) extremely far from Q, but still allow the overall convex combination over {Y(j)}
to exactly sample Q.

Given the above counterexample, a new idea might be to try to argue that as long as
there aren’t too many distributions Y(j) participating in the convex combination, then if
each Y(j) is far from Q, then X is relatively far from Q. It turns out this is true, but the
corresponding lower bounds on |X − Q| that it yields are still not as strong as we would like.
To get the strongest possible bounds, we need a slightly more nuanced way to combine our
two key ingredients.

Below, we sketch a proof for our second ingredient, and show to combine it with the first
ingredient to yield our desired lower bound on |X − Q|.

Anti-concentration of product distributions in Hamming balls. We now argue that product
distributions are far from sampling good list decodable codes. Let Q ∼ {0, 1}n be a (ρ, L) list
decodable code, and let Y = (Y1, . . . , Yr) ∼ ({0, 1}ℓ)r be such that each Yi is independent
and rℓ = n. Furthermore, we will need the product distribution to have a reasonable number
of components r, or else it could clearly sample the code perfectly (if r = 1). Towards this
end, we enforce the mild requirement r ≥ 1/ρ, and thus ℓ ≤ ρn. For a good list decodable
code, we can think of ρ = Ω(1), and thus we just require r ≥ O(1).

Now, the key intuition about product distributions is that for any point x in the space
{0, 1}n to which Y does not assign too much probability, the following must hold: if
we draw a Hamming ball B(x) around x whose radius is not too small, then the vast
majority of probability weight assigned to B(x) by Y does not land on x. In symbols,
Pr[Y ∈ B(x)] ≫ Pr[Y = x].
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Let us formalize this intuition a little more. Fix any x ∈ {0, 1}n, and let p := Pr[Y = x].
Consider now the ball Bℓ(x) around x of radius ℓ. Now, parse x as x = (x1, . . . , xr) ∈
({0, 1}ℓ)r. Since Y is a product distribution consisting of r components, there must be at
least some i ∈ [r] such that Pr[Yi = xi] ≤ p1/r. Consider now the set T of all strings of the
form (x1, . . . , xi−1, z, xi+1, . . . , xr) ∈ ({0, 1}ℓ)r, where each xj is fixed as before, but z can be
taken as any element in {0, 1}ℓ. Then Y assigns probability at least Pr[Y = x]/p1/r to the
set T , and of course T is in the ball Bℓ(x). Thus, we get that Pr[Y ∈ B(x)] ≥ Pr[Y = x]/p1/r,
and therefore Pr[Y ∈ B(x)] ≫ Pr[Y = x], as long as p is not too big.

Now, how can we use this to show |Y − Q| is large? Well, by definition of statistical
distance, it suffices to pick a set S ⊆ {0, 1}n and show that Pr[Q ∈ S] − Pr[Y ∈ S] is large.
Our choice for S will be all codewords from Q, with some “bad” codewords Bad removed.
Then to lower bound Pr[Q ∈ S], we just need to show that Q lands in Bad with not too high
probability: in particular, we can just require that Bad is not too big. And to upper bound
Pr[Y ∈ S], we just need to show that the probability that Y lands on a “not-bad” codeword
is small.

So what should we choose as the set Bad? You guessed it: a small set of codewords
assigned the highest probability by Y (say, all codewords assigned probability ≥ p for some
threshold probability p). As long as this set isn’t too big (i.e., p isn’t too small), we will have
Pr[Q ∈ S] be very close to 1. And as long as we removed the codewords assigned very high
probability by Y, we will have that Pr[Y ∈ S] is very close to 0. We argue the latter, below.

To upper bound the probability that Y lands in S, we consider the sum
∑

q∈S Pr[Y = q].
By our anti-concentration observation above, this sum is at most p1/r ·

∑
q∈S Pr[Y ∈ Bℓ(q)].

Intuitively, we will now want to make sure that (i) r is not too big, because otherwise p1/r

will be too big; and (ii) ℓ is not too big, because otherwise many of the balls {Bℓ(q)} in the
sum will have big overlaps, causing probabilities to be multi-counted and the overall sum to
be large.

It turns out that the best tradeoff occurs at setting r = 1/ρ and ℓ = ρn. This is because
a good list decodable code will have ρ = Ω(1), which yields p1/r = pΩ(1), which will be quite
small as long as we originally set our threshold probability p to be low enough. Similarly, by
definition of list decodability, we will have that any point x in the space {0, 1}n will appear
in at most L balls {Bℓ(q)}q∈S . This implies

∑
q∈S Pr[Y ∈ Bℓ(q)] ≤ L, since the probability

Y assigns to any point x ∈ {0, 1}n is counted at most L times. For a good list decodable
code, L is quite small, and we finally have that Pr[Y ∈ S] ≤ p1/r · L will be very close to 0.

Thus, as long as our original product distribution Y ∼ ({0, 1}ℓ)r had r ≈ 1/ρ and ℓ ≈ ρn,
we have a set S ⊆ {0, 1}n that makes Pr[Q ∈ S] − Pr[Y ∈ S] very close to 1, implying the
statistical distance |Y − Q| is very close to 1.

From KRVZ samplers to product distributions. Now, the question is: how do we use
the fact that product distributions are far from good list decodable codes in order to argue
that KRVZ samplers are far from list decodable codes? Well, let X ∼ {0, 1}n be the KRVZ
sampler, and Q ∼ {0, 1}n be the list decodable code. We need to show that |X − Q| is large.
So we write X as a convex combination of at most wr product distributions {Y(j)}j , each of
the form Y(j) = (Y(j)

1 , . . . , Y(j)
r ) ∼ ({0, 1}ℓ)r.

For any tester S ⊆ {0, 1}n, the statistical distance |X − Q| is lower bounded by Pr[Q ∈
S] − Pr[X ∈ S]. Furthermore, it is easy to verify that this, in turn, is lower bounded by the
worst Pr[Q ∈ S] − Pr[Y(j) ∈ S] (meaning the one that gives the smallest value). So what S

should we pick?
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From above, we know that as long as we set r = 1/ρ and ℓ = ρn, then each Y(j) has
a test S(j) which makes Pr[Y(j) ∈ S(j)] very close to 0. Furthermore S(j) is of the form
Q − Bad(j), where Q is the support of the code and Bad(j) is some small bad set. Thus, since
we want a single test S ⊆ {0, 1}n guaranteed to make Pr[Q ∈ S] − Pr[Y(j) ∈ S] small for
every j, we can simply take the test to be S = Q − ∪jBad(j). Indeed, this guarantees that
each Pr[Y(j) ∈ S] will be very close to 0, and as long as there are not too many elements in
the convex combination, our total collection of bad elements won’t be too big, and Pr[Q ∈ S]
will stay very close to 1. Thus we get that |X − Q| is close to 1, as desired.

On the tightness of our result. Above, we sketched the proof that any KRVZ sampler of
not-too-large width generates a distribution that is very far from a good (n, k, d) code. More
precisely, our result (Theorem 1) says that any KRVZ sampler of width 2Ω( kd

n ) has statistical
distance 1 − 2−Ω( kd

n ) from any (n, k, d) code. In a complementary result, we show that this
is nearly tight.

In more detail, we show that for almost all “valid” n, k, d, there is an (n, k, d) code that
can be sampled by a KRVZ sampler (and thus an ROBP sampler) of width 2O( kd

n ·log n). More
formally, we show this tightness result for all n, k, d for which there exists a linear (n, k, d)
code.

Our proof of tightness is split into two cases. In the first case, we consider k ≤ 0.9n.
Here, the general idea is to define some n′, k′, d′ such that there exists an (n′, k′, d′) code
Q′, and then simply consider the repetition code Q := Q′ × Q′ × · · · × Q′, where n/n′ copies
of Q′ participate in the Cartesian product. It is straightforward to verify that Q will be
an (n, k′n/n′, d′) code. Furthermore, it is not hard to see that a KRVZ sampler of width w

can sample any distribution with support size w, and that the product distribution of two
distributions, each samplable by a KRVZ sampler of width w, is also samplable by a KRVZ
sampler of width w. Thus, Q will be samplable by a KRVZ sampler of width 2k′ . Thus, if
we can find a constant C and an (n′, k′, d′) code with n′ = Cd, k′ = Ckd/n, d′ = d, we are
done with this case. Since k ≤ 0.9n, the Gilbert-Varshamov bound guarantees this is always
possible.

In the second case, we consider k > 0.9n. Here, the general idea is that n − k will now
be small. We consider two subcases: k ≥ n − 4d log n and k < n − 4d log n. We focus on
the first subcase in this overview, as it is not too hard to extend the argument to work for
the second subcase. In the first subcase, note that n − k ≤ 4d log n. Now, the main idea is
that ROBPs can check membership of a k dimensional subspace Q ⊆ Fn

2 using width 2n−k,
simply by keeping track of the n − k parity checks that define Q. Furthermore, it is not too
hard to show that for any ROBP of width w, the uniform distribution over its accepting
strings can be generated by a KRVZ sampler of width w. Thus in this case, we can simply
take any linear (n, k, d) code and uniformly sample from it using a KRVZ sampler of width
2n−k ≤ 24d log n ≤ 2 5kd

n ·log n, where the last inequality follows from the current case k > 0.9n.

2.2 A direct product theorem
We now begin our sketch of our second main theorem, Theorem 5. Recall that it roughly
says that if a distribution Q ∼ {0, 1}n has statistical distance ≥ δ from distributions sampled
by ROBPs of width w, then Q⊗t ∼ {0, 1}nt has statistical distance ≥ 1 − 2−Ω(tδ2) from
distributions sampled by ROBPs of width w. Here, recall that Q⊗t refers to a sequence of t

independent copies of Q.
In order to prove the above direct product theorem, we start by proving an analogous

result for KRVZ samplers. Then, we use our equivalence theorem to obtain a direct product
theorem for sampling with ROBPs. However, since our equivalence theorem (Theorem 13)
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has some loss in parameters (width), this will only yield a weak direct product theorem: in
such a result, the statistical distance still blows up from δ to 1 − 2−Ω(tδ2), but only if we also
require the width to decrease from w to w/14.

We would really like a strong direct product theorem, in the sense that the statistical
distance blows up even if the ROBP is allowed to keep all of its width w. At the end of this
subsection, we show how to build some extra machinery to make this happen.

A direct product theorem for KRVZ samplers. We now proceed to sketch the proof of our
direct product theorem for KRVZ samplers.

Let X ∼ {0, 1}nt be a distribution generated by a KRVZ sampler of width w, and parse
it as X = (X1, . . . , Xt), where each Xi ∼ {0, 1}n need not be independent. Recall that
Q⊗t ∼ {0, 1}nt is of the form Q⊗t = (Q1, . . . , Qt), where each Qi ∼ {0, 1}n is an independent
copy of Q. We would like to argue

|(X1, . . . , Xt) − (Q1, . . . , Qt)| ≥ 1 − 2−Ω(tδ2), (1)

given that for any KRVZ sampler X′ ∼ {0, 1}n of width w it holds that |X′ − Q| ≥ δ.
The first observation is that any of the Xi ∼ {0, 1}n can be generated by a KRVZ sampler

of width w. Indeed, even though it represents a sequence of bits generated in the middle of
the KRVZ sampler X, it is easy to create a new KRVZ sampler B of the same width that
only generates Xi, simply by: (1) copying the KRVZ sampler that creates X; (2) throwing
out all layers that do not produce bits corresponding to Xi; (3) adding a new start vertex
vstart; (4) connecting that start vertex the first layer remaining in B, using the appropriate
probabilities; and (5) merging the first two layers of B, to deal with the fact that the edges
leaving vstart currently have no output labels.

Thus, we are guaranteed that for each Xi ∼ {0, 1}n and Qi ∼ {0, 1}n, it holds that
|Xi − Qi| ≥ δ by the theorem hypothesis (that every KRVZ sampler of width w is far from
Q). The question now is: is this enough to guarantee that the statistical distance blows up
in Equation (1)?

Well, if each Xi were independent, it is not too hard to show that the answer is yes.
However, this is of course not guaranteed to be the case, since the Xi’s are consecutive slices
of the same KRVZ sampler X. Indeed, without further examination, it could potentially be
the case that for any x ∈ {0, 1}n and i ∈ [n], the distributions (X−i | Xi = x) and (Q⊗t

−i) are
identical.1 In this case, we cannot hope to lower bound Equation (1) by anything more than
δ. In some sense, the above adversarial example represents a situation where each Xi is not
contributing its “fair share” to the statistical distance in Equation (1). In order to force each
Xi to be a contributing member, we would like a different guarantee than just |Xi − Qi| ≥ δ.
One natural way to encode the idea that each Xi is contributing its fair share is to require
that for every i ∈ [t] and x ∈ ({0, 1}n)i−1,

|(Xi | X1, . . . , Xi−1 = x) − (Qi | Q1, . . . , Qi−1 = x)| ≥ δ. (2)

This leaves us with two questions: (i) Given a guarantee like Equation (2), can we actually
prove Equation (1)? (ii) Is the guarantee given in Equation (2) even true? If we can answer
both questions in the affirmative, then we are done with our direct product theorem for
KRVZ samplers.

1 For a random variable X = (X1, . . . , Xt), the notation X−i denotes X with Xi removed.
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It turns out that (i) is true, but it is a little cumbersome to do so using statistical distance.
To avoid this, we use simple and well known facts to convert the statement into one about
squared Hellinger distance, which can further be phrased in terms of the Bhattacharyya
coefficient. Phrasing (i) in this way allows for a simple inductive proof, which we can then
convert back to a result about statistical distance.

It also turns out that (ii) is true. To see why, note that (Qi | Q1, . . . , Qi−1 = x) is just the
same distribution as Q ∼ {0, 1}n, since each Qi is an independent copy of Q. Furthermore,
it is straightforward to show that the distribution (Xi | X1, . . . , Xi−1 = x) can be generated
by a width w KRVZ sampler, using a similar idea to the one we presented for why Xi has
this property. Thus the hypothesis of the direct product theorem implies Equation (2), and
our direct product theorem for KRVZ samplers is complete.

A direct product theorem for sampling with ROBPs. It is now easy to obtain a direct
product theorem for ROBP samplers, in a black-box manner, by combining the above direct
product theorem with our equivalence theorem between KRVZ samplers and ROBP samplers
(Theorem 13). However, as discussed at the beginning of this section, this will only yield a
weak direct product theorem, since our equivalence theorem suffers a slight loss in parameters
(i.e., width). If we want to obtain a strong direct product theorem for ROBP samplers, we
must dig into the black box.

Looking back at the previous discussion, it is not too difficult to see that if one wants a
strong direct product theorem for ROBP samplers (that suffers no loss in width), then it
suffices to show the following: for any distribution X = (X1, . . . , Xt) ∼ ({0, 1}n)t sampled by
an ROBP of width w, and any i ∈ [t], x ∈ ({0, 1}n)i−1, the distribution (Xi | X1, . . . , Xi−1 =
x) can be sampled by an ROBP of width w.

In order to show the above, our key ingredient is the following: for any w and probability
distribution p : [w] → R≥0, we construct an ROBP of width w such that a random walk over
it hits the ith vertex in the last layer with probability p(i) + γ, where γ > 0 can be arbitrarily
small. A first attempt at constructing such an ROBP might use the “multi-thresholding”
discussed at the beginning of Section 2, which was used in our equivalence theorem. However,
our construction of such a function required width 2w (instead of the desired w), and we
show that this is tight up to additive constants.

To get the width down to w, we start by showing that for any biased coin A ∼ {0, 1},
there is an ROBP of width 2 that samples a distribution arbitrarily close to it. At a high
level, this argument works as follows: for any binary string b ∈ {0, 1}ℓ, we show how to
use its bits as “instructions” to construct a certain ROBP of length ℓ and width 2 in a
layer-by-layer fashion. The constructed ROBP then guarantees that it accepts a random
string with probability b, where b is interpreted as the binary representation of a number in
[0, 1]. Finally, it is not too hard to bootstrap such an object to create our desired ROBP of
width w that hits the vertices in its last layer with probabilities close to {p(i)}i∈[w]. As a
result, we get our strong direct product theorem for sampling with ROBPs.

A key ingredient of our direct product theorem, and a simple new proof of [14]. A
key ingredient of the above proofs is a simple new lemma on amplifying statistical distance
between sequences of somewhat-dependent random variables. In particular, we show that for
any random variables X = (X1, . . . , Xn) and Q = (Q1, . . . , Qn) over the same domain, if
|(Xi | X<i = x) − (Qi | Q<i = x)| ≥ δ for each i, x, then |X − Q| ≥ 1 − 2−Ω(nδ2). The proof
is not difficult, and we believe it could be a useful new tool for proving lower bounds.
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As an application, we give a simple new proof of a result by Göös and Watson [14] that
any distribution (X, Y) ∼ {0, 1}n × {0, 1}n sampled by two-party communication protocols
(with communication b = Ω(n)) is far from the distribution (A, B) ∼ {0, 1}n × {0, 1}n that
is uniform over pairs of disjoint strings. We present it below:
1. First, use the standard observation (made in, e.g., [2]) that (X, Y) is a convex combination

of 2b product distributions (X′, Y′).
2. Use a standard data processing inequality to observe that

|(X′, Y′) − (A, B)| ≥ |(X′
1, Y′

1, . . . , X′
n, Y′

n) − (A1, B1, . . . , An, Bn)|.

3. Using a straightforward calculation, observe that |(X′
i, Y′

i) − (Ai, Bi)| ≥ Ω(1) for each i,
since X′

i, Y′
i are independent and (Ai, Bi) is uniform over {(0, 0), (0, 1), (1, 0)}. Observe

that this still holds even if you condition on any fixing of the random variables earlier on
in the sequence, since this doesn’t break the independence of X′

i, Y′
i, nor does it change

the distribution of (Ai, Bi).
4. Use our new lemma on amplifying statistical distance to conclude |(X′, Y′) − (A, B)| ≥

1 − 2−Ω(n).
5. Using the fact that the convex combination of a few far distributions is still far (Lemma 8),

conclude that |(X, Y) − (A, B)| ≥ 1 − 2b−Ω(n), which is 1 − 2−Ω(n) for some b = Ω(n), as
desired.

3 Preliminaries

Before we start our formal proofs, we introduce some basic notation, definitions, and facts.

General notation. For any natural number n ∈ N, we let [n] denote the set {1, 2, . . . , n}.
Given a string x ∈ {0, 1}n and index i ∈ [n], we let xi denote the ith coordinate of x.
Furthermore, for any 1 ≤ i ≤ j ≤ n, we let xi→j := (xi, . . . , xj) ∈ {0, 1}j−i+1, we let
x≤i := x1→i, and we let x<i := x1→i−1.

Basic probability definitions and notation. We let Un denote the uniform random variable
over {0, 1}n. When Un appears in the same expression twice, it denotes the same random
variable - that is, they are not independent. Throughout, we slightly abuse notation and let
X ∼ {0, 1}n denote both a random variable and its underlying distribution. As is standard,
we measure the distance between two distributions using statistical distance:

▶ Definition 7. The statistical distance between two discrete random variables X, Y ∼ V is

|X − Y| := max
S⊆V

| Pr[X ∈ S] − Pr[Y ∈ S]| = 1
2

∑
x∈V

| Pr[X = x] − Pr[Y = x]|.

We say that X, Y are ε-close if the statistical distance between them is at most ε, and we say
they are ε-far otherwise. A useful tool for bounding statistical distance is the data processing
inequality, which says that for any discrete X, Y ∼ V and any function f : V → W , it holds
that |f(X) − f(Y)| ≤ |X − Y|.

Next, we say that X is a convex combination of distributions Y1, . . . , Yk if X =
∑

i piYi,
for some probabilities {pi} that sum to 1. That is, X samples from Yi with probability
pi. Finally, in the full version of the paper we prove the following lemma, which slightly
generalizes a result of Viola [26].
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▶ Lemma 8. Let X, Q be any two random variables over the same discrete space V . Suppose
that X is a convex combination of t distributions X =

∑
i∈[t] piYi, where for each Yi we

have |Yi − Q| ≥ 1 − δ. Then

|X − Q| ≥ 1 − tδ.

Basic coding theory definitions and facts. Given two points x, y ∈ {0, 1}n, the Hamming
distance ∆(x, y) between x, y is the number of coordinates where they differ. Next, given a
point x ∈ {0, 1}n, the Hamming ball Br(x) centered at x with radius r is the collection of
points in {0, 1}n that are Hamming distance at most r from x. An (n, k, d) code Q ⊆ {0, 1}n

is a collection of 2k points such that the minimum Hamming distance between any two points
is d. We call k its dimension and d its distance, and we say that Q is a linear [n, k, d] code if
it is also a subspace of Fn

2 .
A subset Q ⊆ {0, 1}n is a (ρ, L) list decodable code if every Hamming ball in {0, 1}n of

radius at most ρn contains at most L points from Q. Notice that list decodable codes relax
the distance requirement of (n, k, d) codes. Furthermore, it is straightforward to use the
triangle inequality to show the following.

▶ Fact 1. If Q ⊆ {0, 1}n is an (n, k, d) code, then Q is (ρ, 1) list decodable for any ρ < d
2n .

3.1 Models for computing in small space
Read-once branching programs (ROBPs) are a popular model for computation in small space.
We provide their standard definition, below.

▶ Definition 9 (ROBP). An ROBP B of width w and length n is a directed acyclic graph
G = (V, E) consisting of n + 1 disjoint layers V = V0 ∪ V1 ∪ · · · ∪ Vn, each holding w vertices.
For every i ∈ [n], each vertex v ∈ Vi−1 has exactly two outgoing edges into Vi, one of which
is labeled 0, and the other labeled 1. There is a designated start vertex vstart ∈ V0, and a
designated accept vertex vaccept ∈ Vn.

The branching program B computes a function fB : {0, 1}n → {0, 1} as follows: on input
x ∈ {0, 1}n, the program starts at vstart and traverses the unique path P (x) whose edges are
labeled with input bits x1, x2, . . . , xn. The program outputs 1 if P (x) terminates on vaccept,
and 0 otherwise.

As motivated in Section 1.2, we use the following definition for multi-output ROBPs.

▶ Definition 10 (Multi-output ROBP). A multi-output ROBP B of width w and (input) length
n is a directed acyclic graph G = (V, E) consisting of n+1 disjoint layers V = V0∪V1∪· · ·∪Vn,
each holding w vertices. For every i ∈ [n], each vertex v ∈ Vi−1 has exactly two outgoing
edges into Vi, one of which is labeled with the input bit 0, and the other labeled with the input
bit 1. Each edge e is also labeled with output bits Γ(e) ∈ {0, 1}∗, and we assume that all
edges e between the same two layers Vi−1, Vi have the same output length |Γ(e)| = γi ≥ 0.
The output length of B is m =

∑
i γi. Finally, there is a designated start vertex vstart ∈ V0.

The branching program B computes a function fB : {0, 1}n → {0, 1}m as follows: on
input x ∈ {0, 1}n, the program starts at vstart and traverses the unique path P (x) whose edges
are labeled with input bits x1, x2, . . . , xn. The program outputs the concatenation of all output
bits seen along this path, so that fB(x) = (Γ(e))e∈P (x).

It is straightforward to verify that Definition 10 is a strict generalization of Definition 9.
Because of this, we will omit the qualifier “multi-output” when referring to ROBPs.
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3.2 Models for sampling in small space
We now introduce our models for sampling in small space. We start with main motivating
model of simply feeding uniform bits into an ROBP:

▶ Definition 11 (ROBP sampler). An ROBP sampler B of width w and input length ℓ and
output length n is just an ROBP with the same parameters. The distribution X ∼ {0, 1}n

sampled by the ROBP B is X = fB(Uℓ), where fB is the function computed by B.

The next type of sampler was defined by by Kamp, Rao, Vadhan, and Zuckerman under
the name of small space sources [18]; we will henceforth call it a KRVZ sampler.

▶ Definition 12 (KRVZ sampler). A KRVZ sampler B of width w and output length n is a
directed acyclic graph G = (V, E) consisting of n + 1 disjoint layers V = V0 ∪ V1 ∪ · · · ∪ Vn,
each holding w vertices. For every i ∈ [n], each vertex v ∈ Vi−1 has an arbitrary number
of outgoing edges into Vi, some of which are labeled 0, and the rest labeled 1. There is a
designated start vertex vstart ∈ V0, and each vertex v ∈ V has a probability distribution pv

over its outgoing edges. The distribution X ∼ {0, 1}n sampled by B is the one generated
by taking a random walk over B, which starts at vstart, transitions according to {pv}, and
outputs the edge labels seen along the way.

It turns out that ROBP samplers and KRVZ samplers are roughly equivalent. We prove
the following equivalence theorem in the full version of the paper.

▶ Theorem 13 (Equivalence theorem). For any distribution X ∼ {0, 1}n:
If there is an ROBP of width w and input length ℓ that samples X, then there exists a
KRVZ sampler of width 2w that samples X.
If there exists a KRVZ sampler of width w that samples X, then for any ε > 0, there exists
an ROBP of width 7w and input length ℓ = 8nw log(nw/ε) that samples a distribution
that is ε-close to X.

We say that a KRVZ sampler is α-granular if each edge probability is an integer multiple
of α, and for such samplers we strengthen the second bullet of Theorem 13 as follows.

▶ Lemma 14. For any distribution X ∼ {0, 1}n, if there exists a (2−t)-granular KRVZ
sampler of width w that samples X, then there exists an ROBP of width 7w and input length
ℓ = 4nwt that samples X.

We also prove a different version of this lemma, which focuses on minimizing the random-
ness used by the ROBP sampler, at the expense of introducing slightly more width.

▶ Lemma 15. For any distribution X ∼ {0, 1}n, if there exists a (2−t)-granular KRVZ
sampler of width w that samples X, then there exists an ROBP of width 4w2 and input length
ℓ = nt that samples X.

In the full version of the paper, we give two more equivalence theorems that relate
sampling in small space to computing in small space. These theorems can be used to obtain
correlation bounds from sampling lower bounds, in addition to other applications.

4 Results that are easy to obtain using communication complexity

As it turns out, many natural questions about sampling with ROBPs can be answered using
known (or easy-to-prove) results from communication complexity. We briefly overview these
results here, and refer the reader to the full version for more details and proofs.

The first result is that sampling is easier than computing for ROBPs, answering Question 1.
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▶ Theorem 16 (Sampling is easier than computing). There exists an explicit function b :
{0, 1}n → {0, 1} such that for any ε > 0, the following holds. For every ROBP F : {0, 1}n →
{0, 1} of width at most 2 nε2

9 −log(1/ε) it holds that

Pr
x

[F (x) = b(x)] <
1
2 + ε,

but there exists an ROBP G : {0, 1}ℓ → {0, 1}n+1 of width 2n (and length ℓ ≤ n + log n + 2)
such that

G(Uℓ) = (Un, b(Un)).

To prove this result, we take b : {0, 1}n → {0, 1} to be the function address : {0, 1}k × [k] →
{0, 1}, defined as address(x, i) := xi, where n = k + log k. The theorem then follows almost
immediately from known communication lower bounds against the address function. We
thank an anonymous reviewer for a concise proof of these communication lower bounds,
which are included in the full version.

The second result is sampling lower bounds against input-output pairs, thereby answering
Question 2.

▶ Theorem 17 (Sampling lower bounds against input-output pairs). There exists a universal
constant c > 0 and an explicit function b : {0, 1}n → {0, 1} such that for any ℓ = ℓ(n) and
ROBP F : {0, 1}ℓ → {0, 1}n+1 of width at most 2cn,

|F (Uℓ) − (Un, b(Un))| ≥ 1
2 − 2−cn.

To prove this result, we take b : {0, 1}n → {0, 1} to be a sufficiently good two-source extractor.
It is then not too hard to show that communication protocols have a very hard time sampling
(Un, b(Un)), from which Theorem 17 follows immediately (since communication protocols
can simulate ROBPs). As a bonus, we get a separation between sampling with ROBPs and
AC0 circuits for input-output pairs. In particular, we see that for the inner product function
IP : {0, 1}n/2 × {0, 1}n/2 → {0, 1}, the input-output distribution (Un, IP(Un)) cannot be
sampled by exponential width ROBPs even on average, since IP is a good two-source extractor,
but (Un, IP(Un)) can be sampled in AC0, by a result of Impagliazzo and Naor [16].

The third result is a very simple distribution that is very hard to sample for ROBPs.

▶ Theorem 18 (Simple distributions that are hard to sample). For any ℓ ∈ N and ROBP
F : {0, 1}ℓ → {0, 1}2n of width at most 2n/6,

|F (Uℓ) − (Un, Un)| ≥ 1 − 16 · 2−n/6.

To prove this result, we simply recall that communication protocols can only sample convex
combinations of product distributions, each of which is far from (Un, Un). We then use
Lemma 8 to show that communication protocols have a hard time sampling (Un, Un), from
which Theorem 18 follows immediately (since communication protocols can simulate ROBPs).
As a bonus, we get an even stronger separation between sampling with ROBPs and AC0

circuits, since AC0 can clearly sample the distribution (Un, Un).

5 Sampling lower bounds against codes

In this section, we prove our first main theorem (Theorem 1) on sampling lower bounds
against codes. We start by proving a more general result (for KRVZ samplers).
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▶ Theorem 19. Let Q ∼ {0, 1}n be uniform over a (ρ, L) list decodable code of dimension k.
Then for any KRVZ sampler X ∼ {0, 1}n of width w,

|X − Q| ≥ 1 − 4wL · 2− ρ
1+2ρ k.

Proof. We start by writing our KRVZ sampler as a convex combination of distributions
with nice structure. Let W = (W1, . . . , Wn) be the vertices hit on the random walk
that generates X. Let r, ℓ be positive integers that will be set later to ensure rℓ = n.
Define W∗ = (Wℓ, W2ℓ, . . . , Wrℓ), and recall the following observation [19, 20, 18]: for
any W ∈ support(W∗), the random variable (X | W∗ = W ) is of the form X(W ) :=
(X(W )

1 , X(W )
2 , . . . , X(W )

r ), where each X(W )
i ∼ {0, 1}ℓ is independent. Thus the KRVZ

sampler X is a convex combination of the form

X =
∑

W ∈support(W∗)

pW · X(W ),

where each pW := Pr[W∗ = W ].
The goal now is to use the above decomposition to help us get a good lower bound on

|X − Q| = maxS | Pr[X ∈ S] − Pr[Q ∈ S]|. Towards this end, we note that for any S,

|X − Q| ≥ Pr[Q ∈ S] − Pr[X ∈ S] ≥ Pr[Q ∈ S] − max
W

Pr[X(W ) ∈ S].

Next, let t > 0 be a parameter to be set later, and we define S = Q − Bad where Bad :=⋃
W Bad(W ) and Bad(W ) := {q ∈ Q : Pr[X(W ) = q] > 2−t}. Plugging in this definition of S,

|X − Q| ≥ 1 − Pr[Q ∈ Bad] − max
W

Pr[X(W ) ∈ Q − Bad(W )].

We would like to upper bound both quantities that are subtracted. To upper bound the
first quantity, simply note that

Pr[Q ∈ Bad] = 2−k · |Bad| ≤ 2−k
∑

W ∈support(W∗)

|Bad(W )| < 2−k+t+r log(w)

via the trivial upper bounds |support(W∗)| ≤ wr and |Bad(W )| < 2t for each W .
To upper bound the second quantity maxW Pr[X(W ) ∈ Q − Bad(W )], we start by making

notation more convenient: let W ∗ be the maximizer of the above quantity, and define
Y := X(W ∗) and Bad∗ := Bad(W ∗). Of course we have maxW Pr[X(W ) ∈ Q − Bad(W )] =
Pr[Y ∈ Q − Bad∗], and we focus on upper bounding the latter.

Recall that Y is of the form Y = (Y1, . . . , Yr) where each Yi ∼ {0, 1}ℓ is independent,
and Bad∗ := {q ∈ Q : Pr[Y = q] > 2−t} contains all codewords hit by Y with large
probability. Thus each q ∈ Q − Bad∗ must have Pr[Y = q] ≤ 2−t. So, if we parse each q as
(q1, q2, . . . , qr) ∈ ({0, 1}ℓ)r, we have that Pr[Y = q] = Pr[Y1 = q1] · Pr[Y2 = q2] · · · Pr[Yr =
qr] by the independence of these random variables, and so there must be some π(q) ∈ [r]
such that Pr[Yπ(q) = qπ(q)] ≤ 2−t/r.
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Now, for any x = (x1, x2, . . . , xr) ∈ ({0, 1}ℓ)r, we let x−i := (x1, . . . , xi−1, xi+1, . . . , xr)
denote x with its ith chunk removed, and proceed as follows:

Pr[Y ∈ Q − Bad∗] =
∑

q∈Q−Bad∗

Pr[Y = q]

=
∑

q∈Q−Bad∗

Pr[Yπ(q) = qπ(q)] · Pr[Y−π(q) = q−π(q)]

≤ 2−t/r
∑

q∈Q−Bad∗

Pr[Y−π(q) = q−π(q)]

≤ 2−t/r
∑

q∈Q−Bad∗

Pr[Y ∈ Ball(q, ℓ)]

≤ 2−t/r
∑

v∈{0,1}n

Pr[Y = v] · |Ball(v, ℓ) ∩ Q|

≤ 2−t/r · max
v

|Ball(v, ℓ) ∩ Q|

≤ 2−t/r · L if ℓ ≤ ρn,

where the last line follows since Q is a (ρ, L)-list decodable code (see Section 3). Thus,
provided that we have selected r, ℓ ∈ N such that rℓ = n and ℓ ≤ ρn, we obtain

|X − Q| ≥ 1 − Pr[Q ∈ Bad] − max
W

Pr[X(W ) ∈ Q − Bad(W )]

> 1 − 2−k+t+r log w − 2−t/r+log L.

Before picking r, ℓ, we set t = r
r+1 · (k − r log w + log L) as the value that equalizes the

two exponents to − 1
r+1 · (k − r log w + log L) + log L ≤ − k

r+1 + log(wL) to obtain

|X − Q| > 1 − 2−t/r+log L+1 ≥ 1 − 2− k
r+1 +log(wL)+1. (3)

Thus all that remains is to pick r, ℓ ∈ N such that rℓ = n. If 1/ρ and ρn are integers, we
simply set r = 1/ρ and ℓ = ρn and lower bound Equation (3) by 1 − 2wL · 2− ρ

1+ρ k, as desired.
If 1/ρ and ρn are not integers, it is easy to slightly modify the proof at the expense of a
minor loss in parameters, as seen in the theorem statement: we refer the reader to the full
version for more details. ◀

By combining Theorem 19 with the list decodability of (n, k, d) codes (Fact 1), we
immediately obtain the following sampling lower bounds against (n, k, d) codes.

▶ Theorem 20. Let Q ∼ {0, 1}n be uniform over an (n, k, d) code. Then for any KRVZ
sampler X ∼ {0, 1}n of width w,

|X − Q| ≥ 1 − 8w · 2− kd
4n .

In the full version of the paper, we show that Theorem 20 is almost tight:

▶ Theorem 21. There is a universal constant C > 0 such that the following holds. For all
n, k, d ∈ N such that there exists a linear [n, k, d] code, there exists a distribution Q ∼ {0, 1}n

uniform over a linear [n, k, d] code that can be exactly generated by a (2−n)-granular KRVZ
sampler X ∼ {0, 1}n of width w ≤ C · 2C· kd

n ·log n.

Finally, by combining Theorem 20 with the first bullet of the Equivalence Theorem 13,
we immediately get our sampling lower bounds against codes for ROBPs (Theorem 1).
Furthermore, by combining Theorem 21 with Lemma 15, we immediately get Remark 2.
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Applications. Our sampling lower bounds against codes yield new data structure lower
bounds against storing codewords succinctly and retrieving them using ROBPs (Corollary 4).
This result follows immediately from a known connection, by Viola [22], between sampling
lower bounds and data structure lower bounds. For a proof (and exposition of Viola’s
connection), we refer the reader to the full version of this paper. There, we also record
generalizations of Corollary 4 to (n, k, d) codes and list decodable codes.

As a second application, we show in the full version of the paper that ROBPs of exponential
width cannot test membership of a good code. In fact, we obtain a stronger result which
shows that ROBPs of exponential width have exponentially small covariance with indicator
functions of good codes.

6 A direct product theorem

In this section, we prove our direct product theorems. We start by showing a general direct
product theorem for distributions, which we then specialize to get direct product theorems
for KRVZ and ROBP samplers. To the best of our knowledge, these are the first direct
product theorems for the task of sampling, and we hope that our general theorem will serve
as a useful tool for extending these results to other computational models in future work.

A general direct product theorem. We now begin with our general direct product theorem
for distributions. Intuitively, it says that if some computational class C has a hard time
sampling a specific distribution Q, and furthermore the distributions generated by that class
are (almost) closed under a certain “slice property,” then that same computational class has
an extremely hard time sampling t independent copies of Q.

▶ Theorem 22. Let X be a family of distributions of the form X ∼ {0, 1}n, and let
Q ∼ {0, 1}n be a distribution such that |X − Q| ≥ δ for every X in X . Now, let X ∗ be
a family of distributions of the form X∗ = (X∗

1, . . . , X∗
t ) ∼ ({0, 1}n)t, and suppose that

X , X ∗ have the (δ/2)-slice property, meaning that for any X∗ = (X∗
1, . . . , X∗

t ) in X ∗ and
i ∈ [t], x ∈ ({0, 1}n)i−1, it holds that (X∗

i | X∗
<i = x) is (δ/2)-close to some distribution in

X . Then for every X∗ ∈ X ∗, we have

|X∗ − Q⊗t| ≥ 1 − e−tδ2/8.

Consider now a computational class C, and let X be the family of n-bit distributions that
can be generated by C, and let X ∗ be the family of nt-bit distributions that can be generated
by C. Notice that if X , X ∗ have the slice property, then Theorem 22 implies a direct product
theorem for sampling with C. In what follows, we will prove Theorem 22, and show that
KRVZ samplers and ROBP samplers have the slice property, thereby proving our direct
product theorems for sampling in small space. In future work, it would be interesting to see
if AC0 circuits have the slice property, as this would immediately imply a direct product
theorem for AC0 via Theorem 22.

A simple new lemma on amplifying statistical distance. In order to prove Theorem 22,
the key ingredient is the following simple new lemma, which may be of independent interest.

▶ Lemma 23. Let X ∼ V n and Y ∼ V n each be a sequence of n random variables over V ,
where elements in the sequence need not be independent. Suppose that for all i ∈ [n], v ∈ V i−1,
we have |(Xi | X<i = v) − (Yi | Y<i = v)| ≥ δ. Then it holds that |X − Y| ≥ 1 − e−nδ2/2.

ITCS 2022



40:20 The Space Complexity of Sampling

It turns out that this lemma will be a little cumbersome to prove using statistical distance.
Thus, we will convert the statement into one about a more amenable notion of distance,
known as the Bhattacharyya coefficient. Given two random variables X, Y over some discrete
space V , the Bhattacharyya coefficient between X and Y is denoted BC(X, Y) and defined
as BC(X, Y) :=

∑
v∈V

√
Pr[X = v] · Pr[Y = v]. It is well-known and straightforward to

show (using Cauchy-Schwarz) the following estimates on statistical distance in terms of the
Bhattacharyya coefficient.

▶ Fact 2. For any discrete random variables X, Y ∼ V ,

1 − BC(X, Y) ≤ |X − Y| ≤
√

2
√

1 − BC(X, Y).

We now prove a version of Lemma 23 that uses the Bhattacharyya coefficient, and then use
the estimates from Fact 2 to obtain Lemma 23.

▶ Lemma 24. Let X ∼ V n and Y ∼ V n each be a sequence of n random variables over V ,
where elements in the sequence need not be independent. Suppose that for all i ∈ [n], v ∈ V i−1,
we have BC((Xi | X<i = v), (Yi | Y<i = v)) ≤ δ. Then it holds that BC(X, Y) ≤ δn.

Proof. It is not too difficult to show, by induction, the slightly stronger statement that for
any i ∈ [n] it holds that BC(X≤i, Y≤i) ≤ δi. We refer the reader to the full version for a
complete proof. ◀

It is now straightforward to combine the above lemma with our estimates from Fact 2 to
obtain Lemma 23. Given this simple new lemma on amplifying statistical distance, we return
to proving Theorem 22.

Proof of Theorem 22. By the (δ/2)-slice property and the triangle inequality, we know that
each |(X∗

i | X∗
<i = x) − Q| ≥ δ/2. The result now follows immediately from Lemma 23. ◀

A direct product theorem for KRVZ samplers. Given our general direct product theorem,
it is now easy to prove the following direct product theorem for KRVZ samplers.

▶ Theorem 25. Let Q ∼ {0, 1}n be a distribution such that for any KRVZ sampler X ∼
{0, 1}n of width w, it holds that |X − Q| ≥ δ. Then for any KRVZ sampler X∗ ∼ {0, 1}nt of
width w,

|X∗ − Q⊗t| ≥ 1 − e−tδ2/8.

In order to prove this result, we start with the following fact, which can be easily verified
using the definition of KRVZ samplers.

▶ Fact 3. Let X ∼ {0, 1}n be a KRVZ sampler of width w. Then for any 1 ≤ i ≤ j ≤ n and
any x ∈ {0, 1}i−1, the distribution (Xi→j | X<i = x) is also a KRVZ sampler of width w.

Notice that if X ∗ is the family of distributions X∗ ∼ ({0, 1}n)t generated by KRVZ
samplers of width w, and X is the family of distributions X ∼ {0, 1}n of distributions
generated by KRVZ samplers of width w, then Fact 3 asserts that X , X ∗ have the 0-slice
property. Thus by combining Theorem 22 with Fact 3, we immediately get Theorem 25.
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A direct product theorem for sampling with ROBPs. At last, we are ready to prove the
second main result of the paper, Theorem 5.

▶ Theorem 26 (Theorem 5, restated). Let Q ∼ {0, 1}n be a distribution such that for any
ℓ ∈ N and any ROBP F : {0, 1}ℓ → {0, 1}n of width w, it holds that |F (Uℓ) − Q| ≥ δ. Then
for any t, ℓ∗ ∈ N and any ROBP F ∗ : {0, 1}ℓ∗ → {0, 1}nt of width w, it holds that

|F ∗(Uℓ∗) − Q⊗t| ≥ 1 − e−tδ2/8.

In order to prove this result, we would like to simply combine our Equivalence Theorem 13
with Theorem 25. However, since each direction of our equivalence theorem increases the
width by a constant factor, this technique would only yield a weak direct product theorem:
that is, the stronger statistical distance lower bounds of 1 − e−tδ2/8 would only hold for
ROBPs of slightly smaller width (roughly w/14). We would like to avoid this, and keep the
direct product theorem strong, in the sense that the width need not decrease at all.

Towards this end, the goal will be to prove a version of Fact 3 for sampling using ROBPs.
That is, we would like to show that distributions generated by ROBPs have the slice property,
as this can be combined with Theorem 22 to immediately obtain Theorem 26. In the following
lemma, we prove that this is, indeed, the case.

▶ Lemma 27. Let F ∗ : {0, 1}ℓ∗ → {0, 1}n be an ROBP of width w, and define X := F ∗(Uℓ∗).
For any 1 ≤ i ≤ j ≤ n and x ∈ {0, 1}i−1 and ε > 0, there exists an ROBP F : {0, 1}ℓ →
{0, 1}j−i+1 of width w and length ℓ = ℓ∗ + 3w log(w/ε) such that

|F (Uℓ) − (Xi→j | X<i = x)| ≤ ε.

The proof of Lemma 27 is significantly more challenging than the proof of Fact 3, and it
is the crux of the proof to our second main theorem, Theorem 26. The key ingredient is a
width 2 ROBP that can (approximately) simulate a coin with arbitrary bias, which we use to
build a width w ROBP that can (approximately) generate an arbitrary distribution over [w].
Given such an object, it takes just a little more work to construct the ROBP from Lemma 27.
For more details, we refer the reader to Section 2.2 and the full version of the paper.

At last, notice that if we set X ∗, X to be the set of all distributions of length nt and n

(respectively) generated by ROBPs of width w, and set ε := δ/2, then Lemma 27 implies
that X , X ∗ have the (δ/2)-slice property. Thus by combining Theorem 22 with Lemma 27,
we immediately get Theorem 26.

7 Future directions

The study of the complexity of sampling is still a very new area, and many open questions
remain. For sampling with limited memory, it is natural to ask whether our results can be
extended to more general models, such as read-k branching programs, or branching programs
whose output bits need not be layered (as in Definition 10).2 It would also be interesting
to establish a separation between sampling with ROBPs and AC0 circuits, in the direction
not shown in Section 4. Namely, can one find a distribution that cannot be sampled in AC0

but can be sampled by ROBPs? This is possible if one can construct an extractor (or even
disperser) for AC0 sources (distributions generated in AC0), which can be computed by small
width ROBPs. Since all known extractors for AC0 sources [24] also work for distributions
that can be generated in small space [10], new extractors are needed.

2 For the latter model to be interesting, one can show that the number ℓ of random bits must be bounded,
or else these objects can come arbitrarily close to sampling any distribution using just width 3.
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