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Abstract
For a graph G on n vertices, naively sampling the position of a random walk of at time t requires
work Ω(t). We desire local access algorithms supporting positionG(t) queries, which return the
position of a random walk from some fixed start vertex s at time t, where the joint distribution of
returned positions is 1/ poly(n) close to those of a uniformly random walk in ℓ1 distance.

We first give an algorithm for local access to random walks on a given undirected d-regular
graph with Õ( 1

1−λ

√
n) runtime per query, where λ is the second-largest eigenvalue of the random

walk matrix of the graph in absolute value. Since random d-regular graphs G(n, d) are expanders
with high probability, this gives an Õ(

√
n) algorithm for a graph drawn from G(n, d) whp, which

improves on the naive method for small numbers of queries.
We then prove that no algorithm with subconstant error given probe access to an input d-regular

graph can have runtime better than Ω(
√

n/ log(n)) per query in expectation when the input graph is
drawn from G(n, d), obtaining a nearly matching lower bound. We further show an Ω(n1/4) runtime
per query lower bound even with an oblivious adversary (i.e. when the query sequence is fixed in
advance).

We then show that for families of graphs with additional group theoretic structure, dramatically
better results can be achieved. We give local access to walks on small-degree abelian Cayley graphs,
including cycles and hypercubes, with runtime polylog(n) per query. This also allows for efficient
local access to walks on polylog degree expanders. We show that our techniques apply to graphs
with high degree by extending or results to graphs constructed using the tensor product (giving fast
local access to walks on degree nϵ graphs for any ϵ ∈ (0, 1]) and Cartesian product.
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1 Introduction

Given some huge random object that an algorithm would like to query, is it always necessary
to generate the entire object up front? For sublinear time algorithms, generating such a large
object would dominate the runtime. Recent works [4, 12, 18, 7] demonstrate that this is not
always necessary, giving incremental query access to random objects such as random graphs,
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24:2 Local Access to Random Walks

Dyck paths and graph colorings. These local access algorithms answer queries in a manner
consistent with an instance of the random object sampled from the true distribution (or close
to it). A major challenge in developing local access algorithms is to maintain consistency of
the joint distribution between query answers.

In this work, we explore the question of implementing local access to random walks.
Random walks are a critical primitive in many algorithms [16, 14, 9], including sublinear
ones [13, 21, 3]. Given a graph G on n vertices, naively generating a random walk of length
t requires time Ω(t). As the size of real-world graphs, and the length of the walks taken on
them, have increased tremendously, breaking this Ω(t) barrier has become crucial. Thus,
algorithms for generating random walks have been considered in both distributed and parallel
models: specifically, the works of [22] and [15] have developed algorithms for generating
random walks in the CONGEST distributed and Massive Parallel Computation models
respectively.

In this work we explore the question of implementing local access to random walks. Since
t can be large, one may want to generate only the segments of the walk that are needed at
the present time, while ensuring the joint distribution of the returned segments is close to
the true distribution of random walks.1

As is common in the setting of sublinear and local algorithms, we assume the local access
algorithm is given access to a graph G on n vertices through probe oracles. This allows us to
work with graphs that are too large to fit in main memory, and also results in running times
that are not dominated by the size of the input. Our goal is to provide implementations of
the queries needed by the user – in particular, we focus on positionG queries, which return
the position of a random walk starting from a fixed vertex s at time t, such that, given any
sequence of user queries, the joint distribution of returned positions is 1/ poly(n)-close to the
true uniform distribution of those positions over random walks (in ℓ1 distance). We desire
per query runtime that is sublinear in n and t, and preferably polylogarithmic in both. In
the latter case, locally generating all vertices in a walk of length t (in an arbitrary order)
has total work within a polylog factor of the naive sequential runtime.

Our algorithms can be used even when the algorithm wipes its memory after each answer
and must answer subsequent queries only retaining access to a (public) random string. This
fits within the framework of the LCA models in [20, 2]. This feature allows independent
copies of the algorithm that share a random string but do not communicate, yet still give
consistent responses. We assume the random string is of polynomial size, which is necessary,
as a family of objects with description size t requires Ω(t) random bits to approximate in ℓ1
distance. Due to the lack of persistent memory between queries, this is a stronger model
than used in [12, 18, 7, 4]2 for locally accessing huge random objects.

Obtaining local access for walks on arbitrary graphs without knowing the entire structure
seems to be a very difficult problem, and therefore in this paper we restrict our attention
to regular graphs. However, regular graphs include widely studied families such as random
regular and Cayley graphs, both of which we analyze.

1 We note that one can use fast distributed algorithms in the LOCAL distributed model in order to
construct fast sequential algorithms via the known Parnas-Ron reduction, but the aforementioned
distributed algorithms are not fast enough to be useful. We will elaborate more on this in Section 1.2.

2 Note that the result in [4] for generating random colorings in degree bounded graphs also works within
the model used here.
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1.1 Our Results and Techniques

We begin by presenting a Õ( 1
1−λ

√
n) algorithm that provides local access to undirected

d-regular graphs with spectral expansion λ. We assume that the algorithm is given access
to a tape of random bits R. For a graph G, the local access algorithm divides the random
walk into epochs of length tmix, where tmix is on the order of the mixing time of G. At
the beginning of each epoch (times that are multiples of tmix), the local access algorithm
uses appropriate bits from the random tape to determine the location of the walk, which
are distributed according to the uniform distribution. When given a query to time t, the
algorithm first finds the locations u, v of the walk at the beginning of epochs t and t + 1. It
then samples Õ(

√
n) random walks from both endpoints u, v, each of length tmix/2, until we

find a forward walk from u and a backward walk from v that terminate at the same vertex.
Since walks of this length are well mixed, a collision occurs with high probability. When
a collision is found, we can stitch together the forward and the backward walk and thus
interpolate between both endpoints. Since we use the same section of random tape for any
query in this epoch, we consistently find the same collision, and thus answer consistently
despite no persistent memory.

Moving forwards, we demonstrate that such a runtime is optimal in general, even for
local access algorithms that are allowed to remember their prior answers and graph probes.
Specifically, our lower bound holds for the case of random d-regular graphs, which provides
some evidence that obtaining fast query algorithms for “large” classes is challenging.3 Our
lower bounds present adaptively chosen query sequences, and demonstrate that for the vast
majority of these random graphs, any algorithm making Õ(

√
n/ log n) neighbor probes to

the underlying graph G will fail to answer the queries in a consistent manner. The main
structural result used here is Lemma 4.8, which states that as long as the algorithm makes
fewer than Θ(

√
n) probes, the revealed edges and vertices of the graph will form a forest,

and additionally, no trees will ever be merged, with probability at least 0.995. This allows
us to define a distance metric d(·, ·) where d(u, v) is the distance between vertices u and v

using only the edges known to the algorithm, and is defined to be ∞ if no such path has been
revealed. The high level strategy in the lower bound is to first query the positions v0, ve of the
walk at time t = 0 and t =

√
n respectively, and then adaptively query O(log n) intermediate

positions (where the query times may depend on the internal state of the algorithm), until an
inconsistency is found. The hypothesis at this point is that the algorithm does not actually
know of a path of the correct length between the two returned vertices. Specifically, we show
that either the revealed edges fail to connect the vertices in the limited number of available
probes, or the known path between them is shorter than

√
n/20.

In the first case, we can perform binary search for a location such that we end up with two
reported positions which are adjacent in time, but do not have an edge between them whp,
thus yielding the inconsistency. The latter case is more complicated, and requires some case
analysis, but we are able to query adaptively and always find two positions vi and vj (revealed
at times ti and tj), such that one of the following two outcomes hold: either the distance
is too large d(vi, vj) > |ti − tj | or the distance is too small d(vi, vj) < |ti − tj |/8. In the
first outcome, if the distance is greater, we can again perform binary search to find adjacent
positions in the walk that are not connected by an edge. For the second outcome, we again
perform binary search to find a short segment with unusually short distance in the subgraph

3 There are simple constructions of artificial classes, such as cycles on a random subset of n/2 vertices,
where Ω(n) probes are required to answer a single query.
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induced by the edges known to the algorithm, and then query all intermediate locations
to find a segment of the walk σ1, σ2, · · · , σl of length Θ(log n), such that d(σ1, σl) < l/8.
Note that we are then able to query all the locations in this segment because its length was
reduced to O(log n). Intuitively, such a segment is unlikely to occur in a truly random walk
because the edges known to the algorithm define a tree, and any walk of length > 8l between
vertices of distance l (with respect to the tree metric) in a tree must involve a significant
amount of backtracking. We demonstrate that the probability of significant backtracking
over a truly random walk on a random regular graph is o(1).

We also prove an oblivious lower bound of Ω(n1/4), for the case when the queries do not
depend on the internal state of our algorithm. In this case, we present the sequence of query
times (n1/4, 2, 3, · · · , n1/4 − 1). If the algorithm makes O(n1/4) graph probes, then the total
number of probes is bounded above by Θ(

√
n), and therefore we use the same structural

Lemma 4.8 mentioned above in order to derive a contradiction.
Finally, motivated by our lower bounds against local access to walks on general classes

of graphs, we turn to algorithms for local access on families of graphs with additional
algebraic structure. We give fast local access (i.e. runtime polylog(n) per query) to walks on
small-degree abelian Cayley graphs (for instance, cycles and hypercubes). This also allows
for fast local access to walks on a class of polylog degree expanders. We extend our results
to graphs constructed using the tensor product, giving fast local access to walks on degree
nϵ graphs for any ϵ ∈ (0, 1].

1.2 Related Work
The problem of providing local access to huge random objects was first proposed in [12, 11].
Subsequent work in [18] presented algorithms that provide access to sparse Erdos-Renyi
G(n, p) graphs through All-Neighbors queries, as long as the number of queries is small
and p = O(poly(log n)). Many of the results in these earlier works only guarantee that the
generated random objects appear to look random, as long as the number of queries are
bounded, usually by O(poly(log n)/n). More recently, in [7], an implementation of random
recursive trees and BA preferential attachment graphs are presented. Further, local access is
given for the Next-Neighbor query that returns the neighbors of a vertex in lexicographic
order, which is useful for accessing graphs where the degree is not bounded. Subsequently, [4]
presented implementations for random G(n, p) graphs for any value of n, while supporting
Next-Neighbor as well as the newly introduced Random-Neighbor queries. In [4],
algorithms are provided for accessing random walks on the line, random Dyck paths, and
random colorings of a graph. Implementing access to random walks on the line graph was
motivated by the implementation of interval summable functions in [12, 10].

Related to generation of random walks, [22] give an algorithm that approximately samples
from random walks in Õ(

√
tD) rounds in the CONGEST model, where t is the length of the

walk and D is the diameter of the graph. The standard reduction from distributed algorithms
to LCAs from [19] would result in an algorithm with query complexity that is exponential in
O(
√

tD), whereas we obtain bounds of the order O(
√

t). Later, [15] gave an algorithm for
generating walks in O(log t) rounds in the Massively Parallel Computation (MPC) model.
However, their techniques do not seem to be amenable to constructing fast LCAs.

1.3 Organization
In Section 2 we introduce notation and basic sampling tools. In Section 3 give a memoryless
local access oracle for undirected regular graphs with runtime in terms of expansion. In
Section 4, we first apply the previous oracle to random regular graphs. We then prove
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a nearly matching lower bound even for local access algorithms with persistent storage,
with respect to an adaptive adversary (one who has access to the persistent storage of the
algorithm), and a weaker bound with respect to an oblivious adversary. In Section 5 we give
memoryless local access oracles for small degree abelian Cayley graphs, such as hypercubes
and cycles. In Appendix B, we prove claims in Section 5 and give memoryless local access
oracles for the tensor product.

2 Preliminaries

We first define terminology and introduce basic tools for sampling. We characterize the
closeness of query responses to true random walks via ℓ1 distance, and use ℓ2 distance for
spectral arguments.

▶ Notation 2.1.
Given distributions A, B over a set [S], the ℓ1 distance between A and B is defined as
||A−B||1 =

∑S
i=1 |Ai−Bi|. The ℓ2 distance is defined as ||A−B||2 =

√∑S
i=1(Ai −Bi)2.

For some set S, let US denote the uniform distribution over S. Let s← US be an element
drawn from this distribution.

Next, we define notation for the distribution of random walks on fixed graphs.

▶ Notation 2.2. Given a regular graph G = (V, E) where V = [n], v1, v2 ∈ V and t ∈ N:
Let λ(G) = maxx∈Rn:x⊥1̄ ||xW ||2/||x||2 = max(|λ2(G)|, |λn(G)|) where W is the random
walk matrix of G.
Let DC(G, v1, v2, t) be the distribution over random walks of length t from v1 that end at
v2. As G is regular, this is the uniform distribution over all satisfying walks.
Let UL

G be the uniform distribution of random walks from vertex 1 of length L.
For any finite set of times S ∈ Nk, let the walk projection PS(UG) be the joint
distribution over V |S| of the positions at times S of random walks from vertex 1. We
will measure the accuracy of a local access oracle given time queries S by bounding the ℓ1
distance of (the distribution of) its responses to PS(UG). For notational convenience, let
Pi = P{i}.

Note that PT (UG) captures the joint distribution of the location of a walk at times T . That
is, the position of a walk at time t is correlated with that at time t′.

We then define the generalization of Local Computation Algorithms with which we give
our upper bounds. The model is similar to the LCA model in [20, 2], which notably means
there is no persistent storage between queries. Thus, for queries to the memoryless local
access oracle the user can expect to see the same results whether making queries to the same
copy or to independent copies of the oracle sharing the same random string.

▶ Definition 2.3. Given a graph G and a maximum query time L, a mem-
oryless local access oracle implementation of a family of query functions
⟨positionG(1), . . . , positionG(L)⟩, provides an oracle A with the following properties. A
has probe access to the input description G, a tape of public random bits R, and the maximum
possible query time L. Upon being queried with G, L and t, the oracle uses sub-linear resources
to return the value A(G, R, positionG(t)), which must equal the position of the walk X at
time t for a specific X ∈ UL

G where the choice of X depends only on R, and the distribution of
X (over R) is 1/nc-close to UL

G in ℓ1 distance, for any given constant c. Between consecutive
queries, A’s memory (but not the public random tape or input) is erased. Thus, different
instances of A with the same graph G and the same random bits R, must agree on the choice
of X that is consistent with all answered queries regardless of the order and content of queries
that were actually asked.

ITCS 2022



24:6 Local Access to Random Walks

We prove our lower bounds against a stronger model, where the algorithm is allowed
to remember its prior answers and graph probes. Local computation algorithms with
persistent memory have been investigated before [6, 12, 18, 7, 4], and can be thought of as
a single algorithm answering queries in series, rather than a swarm of algorithms working
independently.

▶ Definition 2.4. Given a graph G and a maximum query time L, a (per-
sistent) local access oracle implementation of a family of query functions
⟨positionG(1), . . . , positionG(L)⟩, provides an oracle A with the following properties. A
has probe access to the input description G, a tape of public random bits R, and the maximum
possible query time L. Upon being queried with G, L and t, the oracle uses sub-linear resources
to return the value A(G, R, positionG(t)), which must equal the position of the walk X at
time t for a specific X ∈ UL

G where the choice of X depends only on R, and the distribution of
X (over R) is 1/nc-close to UL

G in ℓ1 distance, for any given constant c. Between consecutive
queries, A’s memory is not erased, and it is allowed arbitrary persistent local storage.

We next define our probe model, which we use for our upper and lower bounds.

▶ Definition 2.5. Given an undirected d-regular graph G = (V, E) on n vertices,
neighbor(G, v, i) returns the ith neighbor of vertex v for every (v, i) ∈ [n] × [d], where
the outgoing edges are assigned a random permutation of [d] for every v.

Here we place a random labeling on the out-edges of each vertex since we are dealing with
unlabeled graphs. The random labeling is fixed as part of G and does not change for
subsequent probes or instantiations of the algorithm.

Finally, we state a basic result on partial sampling.

▶ Proposition 2.6. Let G be a graph and T an ordered list of determined times in a walk
on G. Let VT be the associated set of determined positions. Suppose VT has been sampled
to within ϵ of the true distribution in ℓ1 distance. For any new query t, let t− < t < t+ be
the closest low and high previously determined times. These are denoted the bracketing
queries. Then:
1. The distribution of vt conditioned on vt− , vt+ is equal to the distribution conditioned on

all previously determined vertices.
2. If vt is sampled from a distribution D where ||D − Pt−t−(DC(vt− , vt+ , t+ − t−))||1 ≤ δ,

then (VT , vt) is ϵ + δ close to the true distribution. Furthermore, if the true distribution
of vt is some deterministic function of k distributions, an equivalent result holds for
sampling each distribution to within δ/k and returning the deterministic function applied
to these samples.

In effect, this gives us the ability to only focus on the distribution of walks conditioned
on the nearest determined positions when analyzing the distance of a local access oracle to
uniform.

3 Local Access Via Spectral Expansion

We first present an an oracle for undirected regular graphs that uses Õ
(

1
1−λ

√
n

)
work per

query. This is sublinear for small numbers of queries on graphs with good expansion, but is
far from polylog work per query.
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▶ Theorem 3.1. Given neighbor probe access to an undirected d-regular graph G

on n vertices with λ(G) ≤ λ, there is a memoryless local access oracle which uses
O(
√

n 1
1−λ polylog(nL)) time and working space per query, where L is the maximum query

time.

We first give a procedure for sampling walks conditioned on their start or endpoint.

▶ Lemma 3.2. Given a section of random tape Rs and neighbor probe access to an
undirected d-regular graph G on n vertices, there are subroutines rand_path(G, v, l) and
rand_rev_path(G, v, l) that run in time O(l log n), and return a uniformly random walk
of length l starting and ending at v respectively.

Proof. For rand_path(G, v, l), let v1 = v and for l iterations let vi+1 =
neighbor(G, v, U[d]), where we use the segment of tape Rs to generate the random bits.
Then return (v1, . . . , vl). Correctness is direct from the definition of a random walk. For
rand_rev_path(G, v, l), let (v1, . . . , vl)← rand_path(G, v, l) be a random walk of length
l from v, and return (vl, vl−1, . . . , v1). The runtime of this procedure is direct.

To see that rand_rev_path samples from the correct distribution, note that as G is
undirected and regular, the probability of taking any fixed walk v = v1, v2, . . . , vl is equal
when taking the walk in either direction. ◀

We can then prove the theorem.

Proof of Theorem 3.1. Recall that we are given probe access to G, a random tape R, and
a maximum query time L. Let c > 0 be an arbitrary constant, where we achieve n−c

approximation. WLOG assume we assign each time t′ a disjoint set of random bits Rt′ . Let
k = O( 1

1−λ c log(nL)) be the smallest integer such that λ(Gk) ≤ 1/n3+cL.
Now suppose we are given a query at time t:

1. If t mod 2k = 0, use Rt to generate a uniformly random vertex v ∈ V and return v.
2. Otherwise, let t− and t+ be the bracketing multiples of 2k. Use Case (1) to determine

the positions of the walk at these times, which we denote vt− and vt+ . Furthermore, use
the random bits of Rt− for the following procedure: Let SL, SR be empty sets of walks of
length k from vt− and vt+ respectively. Let COL be the event a path from SL and SR

share an endpoint.
a. Let SL ← SL ∪ rand_path(G, vt− , k).
b. Let SR ← SR ∪ rand_rev_path(G, vt+ , k).
c. If COL, go to Phase II.
d. After O(

√
n log(nL)) iterations, declare fail (or return an arbitrary path), and otherwise

repeat.
In Phase II we have paths pl, pr sharing an endpoint. If there are multiple colliding paths,
choose the first to occur. Let the determined path from [t−, t+] be plpr and return vt,
the element of this path corresponding to time t.

From our description of the algorithm we have that, fixing the contents of the random tape
R, the returned vertex is deterministic and so consistent between independent copies, and
moreover the position of the walk at multiples of 2k and the colliding walks are consistent
between different queried times.

To show the distribution of generated walks (over R) is 1/nc close to UL
G in ℓ1 distance,

we show that A determining the position of the walk at every time in {1, . . . , L} produces a
walk with the desired properties. Without loss of generality let A determine the positions
at multiples of 2k first, sequentially from time 2k. For a single such position at time t, the

ITCS 2022



24:8 Local Access to Random Walks

position determined by A is uniform over [n]. Let W be the random walk matrix of G.
We have from our choice of k that ∥W k − J∥2 ≤ 1/n3+cL, and so the distribution of the
position at time l + 2k of a random walk conditioned on the position vl at time l satisfies
∥W 2k

vl,· − U[n]∥1 ≤ 1/n2+cL, so the distribution of As answer over R is 1/n2+cL close in ℓ1
distance by Proposition 2.6. Determining all multiples of 2k in this way thus results in a set
of determined positions that are 1/n2+c close to uniform.

Now fix the positions determined byA at time l and l+2k and consider DC(G, vl, vl+2k, 2k),
the uniform distribution over random walks of length 2k that start at vl and end at vl+2k.
We have that the distribution of the midpoint of these walks Pk(DC(G, vl, vl+2k, 2k)) satisfies
∥Pk(DC(G, vl, vl+2k, 2k))−U[n]∥1 ≤ 1/n1+cL by essentially the prior argument. Furthermore,
A determines the position vl+k as the first collision between distributions that are 1/n3+cL

close to uniform in ℓ1 distance, so the distribution of positions returned by the oracle is
1/2n1+cL close to the true distribution. Determining all midpoints Tm in this way thus
results in a distribution 1/n1+c close to PTm

(UL
G). Finally, A exactly samples from the

uniform distribution on walks from vl to vl+k and vl+k to vl+2k, since the returned paths
were sampled via unconstrained random walks, so A loses nothing in ℓ1 distance determining
the remaining positions and are done. ◀

4 Random Regular Graphs

Next, we study the question of implementing access to random regular degree graphs, which
have the property that for all d ≥ 3, the probability a random d-regular graph is an expander
tends to 1. This implies that Theorem 3.1 composed with the set of random regular graphs
achieves runtime Õ(

√
n) per query. In fact, this is nearly the best possible runtime, as we

prove no local access oracle (i.e. one that is allowed to remember previous answers) given
probe access to random regular graphs making o(

√
n/ log(n)) probes per query achieves

achieves subconstant error on adaptive query sequences. Furthermore, no local access oracle
making o(n1/4) probes per query achieves subconstant error on non-adaptive (in fact fixed in
advance) query sequences.

▶ Definition 4.1. Let G(n, d) be the uniform distribution over d-regular graphs on n vertices.
For d odd, we implicitly restrict to even n when taking limits.
For a set of edges S = {(v1, w1), . . . , (vk, wk)}, let G(n, d)∩S be the uniform distribution
over d-regular graphs on n vertices containing all edges in S. Note that for certain S (for
instance, any containing a self-loop), this set is empty.

For the remainder of the section we treat d as a constant while n trends to infinity, so O

notation sometimes hides factors dependent on d. Furthermore we assume d ≥ 3, since the
other two cases are degenerate. We now state informal versions of the main results. First,
we note that composing the oracle of Theorem 3.1 with the set of random regular graphs
produces an algorithm with vanishing error.

▶ Corollary 4.2. Given neighbor probe access to a d-regular graph, there exists an oracle
A with time per query O(

√
n polylog(nL)), such that over a 1 − on(1) fraction of graphs

G← G(n, d) then A is a memoryless local access oracle for G.

Next, a nearly matching Ω̃(
√

n) lower bound against local access algorithms.

▶ Theorem 4.3 (Informal Statement of Theorem 4.16). There is a constant n0 and an
(adaptively chosen) query sequence Q such that any local access oracle A given neighbor
probe access to random d-regular graphs for n ≥ n0 with L = O(

√
n) makes Ω(

√
n/ log(n))

graph probes per time query of Q in expectation.
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Finally, an Ω(n1/4) for a query sequence fixed in advance.

▶ Theorem 4.4 (Informal Statement of Theorem 4.20). There is a constant n0 and a fixed
query sequence Q such that any local access oracle oracle A given neighbor probe access to
random d-regular graphs for n ≥ n0 with L = O(

√
n) makes Ω(n1/4) graph probes per time

query of Q in expectation.

It is impossible to prove lower bounds for all subfamilies in G(n, d) (in fact we give very
fast local access algorithms for some later), but any possible algorithm being Ω(1) from
uniform on at least 99% of random regular graphs effectively rules out a unified approach.

We begin by proving the Õ(
√

n) upper bound using the algorithm from Section 3. To do
so, we recall the famous result that almost all random regular graphs are good expanders.

▶ Lemma 4.5 ([8]). For all d ≥ 3, Pr(λ(G(n, d)) ≤ .95) = 1− on(1).

Proof of Corollary 4.2. We compose the algorithm of Theorem 3.1 with G← G(n, d), where
we promise to A that λ ≤ .95. In the case of poorly expanding graphs this will result in
walks that are arbitrarily far from truly random (or the algorithm declaring fail an arbitrarily
high fraction of the time), but the runtime per query will still be as claimed. Then for G

such that λ(G) ≤ .95 we have that A is an memoryless local access oracle given neighbor
access to G, and this occurs with probability 1− on(1) by Lemma 4.5 so we are done. ◀

4.1 Structure of Random Regular Graphs
To prove the lower bounds, we first give three structural results which establish any algorithm
must succeed even when the first Ω(

√
n) graph probes define disjoint forests, and give tests

for closeness of walks to the uniform distribution supported on only a few queries.
Our first goal is to show no algorithm making neighbor probes to G ← G(n, d) can

efficiently find cycles. This is essential, as the entire lower bound rests on the probes made
by the algorithm defining a tree with Ω(1) probability. To do so, we first show conditioning
on a small number of edges (e.g. those already known by the algorithm) does not increase
the conditional probabilities of non-revealed edges by more than a constant factor.

▶ Lemma 4.6. For all d ∈ N there is a constant cd depending only on d such that for an
arbitrary set of edges S with |S| ≤

√
n and v, w ∈ V arbitrary vertices where (v, w) /∈ S, we

have PrG←G(n,d)∩S [(v, w) ∈ G] ≤ cd/n.

We defer the proof to Appendix A. We use the configuration model of Bollobas [5] and a
strengthening to handle degree sequences with small amounts of variation by [17].

Furthermore, probe access to G(n, d) is equivalent to successively generating edges
uniformly at random over the set of regular graphs satisfying the existing constraint - in
effect, we can only determine edges when required, and this is the perspective we will use for
the proof.

▶ Lemma 4.7. Let A be an algorithm having made k arbitrary neighbor probes to G(n, d)
and let the returned edges be E. Then the conditional distribution over graphs given the probe
responses is uniform over G(n, d) ∩ E.

Proof. Let v1, . . . , vk be the origin vertices of the neighbor probes, r1, . . . , rk the probe
indices and w1, . . . , wk the returned vertices. Fixing the set {ri1 , . . . , ril

} of (WLOG distinct)
probes from v1, for any H ∈ G(n, d) ∩ E we have

Pr[∀j neighbor(H, v, rij ) = wij ] =
l∏

i=1

1
d− i
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and for H /∈ G(n, d) ∩ E the equivalent probability is zero. Then considering all distinct
origin vertices, we obtain that the probability of the given probe responses is equal for any
element of G(n, d) ∩ E. ◀

Given these lemmas, we can now show the first Ω(
√

n) probes made by any local access
oracle will fail to find cycles or merge forests with constant probability.

▶ Lemma 4.8. Let A be an algorithm, where at each step A makes a neighbor probe to
G(n, d) or marks any vertex. Each vertex touched by a probe is marked. Then there is
a constant kd depending only on d such that for any A with at most

√
n/kd steps, with

probability at least .995,
the neighbor probes will define a forest,
no neighbor probe will ever merge two marked trees.

Proof. Let V<i be the set of vertices that are marked after probe i− 1, and E<i the known
edges. Let vi be the vertex queried at probe i and ri the edge index (WLOG assume A makes
neighbor queries at every timestep). We have |V<i| ≤ 2|E<i| ≤ 2i. Define kd = 20√cd

where cd is as in Lemma 4.6 and let q =
√

n/kd. We obtain

Pr(fail) ≤
q∑

i=1
Pr

G(n,d)∩E<i

(neighbor(vi, ri) ∈ V<i) (Lemma 4.7)

≤
q∑

i=1
|V<i|

cd

n
(Lemma 4.6)

= 2cd

n

q(q + 1)
2

≤ 1/200. ◀

▶ Corollary 4.9. For any ℓ ≤
√

n/ log(n), we have that
PrG←G(n,d) Prσ←Uℓ

G
(σ defines a tree) ≥ 1−O(1/ log2(n)).

Proof. This directly follows from setting q =
√

n/ log(n) in the above proof, as a random
walk is simply a sequence where at each step we probe neighbor(v, U[d]) at the current
head. ◀

We now show random walks of length
√

n/ log(n) over random regular graphs exhibit a
distinguishing feature that can be checked on small segments. Intuitively, with high probability
there will be no segment of length r = Ω(log(n)) where the simple path over the edges
traversed in the walk between the endpoints of the segment is shorter than r/8. Since the
edges traversed by the walk will define a tree with high probability, an unusually short
induced simple path implies the biased random walk corresponding to the tree metric in that
segment is much shorter than its expectation, which is vanishingly unlikely. To show this, we
formally define the path length of the induced simple path.

▶ Definition 4.10. For a partially determined vertex sequence s = (s1, . . . , sℓ) ∈ ([n], ∗)ℓ, let
path length PL(s) be the distance between s1 and sℓ in the induced (undirected, unweighted)
graph G′ = ([n], E′), where (u, v) ∈ E′ if and only if there exists i such that si = u, si+1 = v.

We obtain that an unusually short simple path is vanishingly unlikely in any segment of
a random walk.
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▶ Lemma 4.11. Let σ ∈ [n]ℓ be a walk of length ℓ ≤
√

n/ log(n). Let F (σ) be the event any
segment s = (σi, . . . , σj) of length |s| ≥ 40 log(n) has PL(s) < |s|/8. Then

Pr
G←G(n,d)

Pr
σ←Uℓ

G

[F (σ)] = on(1).

Proof. Let Ψ(σ) be the event σ defines a tree. Then PrG←G(n,d) Prσ←Uℓ
G

(Ψ(σ)) ≥ 1 −
O(1/ log2(n)) by Corollary 4.9.

We now fix G and sequentially generate a random walk σ. For each vertex in the random
walk, there is some edge that was the first traversed by σ (where we pick some edge for the
first vertex arbitrarily). For each step of σ, at the current vertex v, label this first traversed
edge a − edge and all others + edges. Then in a random walk in any d-regular graph the
probability of step i being a + step is exactly (d− 1)/d and these events are independent
for all i. Furthermore, for all σ that define a tree the + and − labels exactly correspond
to the distance metric on the tree induced by the random walk, with − corresponding to
backtracking towards the initial vertex.

Now let s be any segment of length at least 40 log(n). Let F (s) be the event F (σ) holds
in this segment. Let h(s) be the sum over + and − steps in s. Then by the definition of
simple path and the correspondence between step labels and the tree metric:

{h(s) ≥ s/2} ∩Ψ(σ) =⇒ F (s).

But then we can apply a basic Chernoff bound4 to obtain Pr[h(s) < (1−δ)µ] ≤ exp(−δ2µ/2).
Choosing δ = 1/2 and using that µ = E[h(s)] ≥ s/3 we obtain Pr[h(s) < s/8] ≤
exp(−(s/3)/8) ≤ n−1.2. Then taking a union bound over the at most ℓ2 such segments:

Pr(F (σ)) ≤ Pr(Ψ(σ)) +
∑

s⊆σ:|s|≥40 log(n)

Pr({h(s) < s/8})

≤ O(1/ log2(n)) + ℓ2 · n−1.2

= on(1). ◀

4.2 Proof of Adaptive Lower Bound
We are now prepared to prove the lower bound. For the remainder of the section let A be a
local access oracle with neighbor probe access to G(n, d).

We give a sequence of at most c log(n) time queries. By Lemma 4.8, any algorithm that
makes fewer than

√
n/kdc log(n) probes per query sees non-merging trees with probability

.995 for the duration of the query sequence. Given this occurs, we force the algorithm to
return a walk segment that appears with probability o(1) over the true distribution of random
walks on G.

We now begin to work with fixed instantiations of A. We use the perspective of A
successively determining the graph by making new neighbor probes.

▶ Definition 4.12. For a fixed instantiation of A on G(n, d), let T (Q) = (VQ, S) be the
transcript of the history of A after a sequence of queries Q. VQ holds the vertices returned
at the times in Q, and S holds the set of edges revealed by neighbor probes. Note the
distribution over possible graphs at this time is G(n, d) ∩ S.

4 Let X1, . . . , Xn be independent random variables taking values in {0, 1}. Let X =
∑n

i=1 Xi and
µ = E[X]. Then for any δ ∈ [0, 1], Pr[X ≤ (1 − δ)µ] ≤ exp(−δ2µ/2).
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An adaptive query sequence is simply a function f : T (Q)→ N, where the next query is a (in
our case deterministic) function of the existing transcript. A non-adaptive query sequence is
a function g : VQ → N, where the next query can only depend on the vertices returned by A
(the non-adaptive sequence used in our lower bound does not even depend on this), but not
on the internal state of the algorithm.

▶ Notation 4.13.
Given a queried time t, denote by vt ∈ VQ the vertex returned by A for this time.
Given a transcript T (Q) = (VQ, S), for vertices v, w ∈ V , let d(v, w) be the length of
the simple path between the vertices v, w in the graph induced by the edges in S, where
d(v, w) =∞ if no path exists. Denote the simple path itself (if one exists) as SP(v, w).

In the case where probes define non-merging trees, for all v, w ∈ V once d(v, w) <∞ it
is fixed for the duration of the query sequence, and there are never multiple simple paths
between vertices. This is a central component of the proof, as it implies A cannot “extend”
paths without guessing.

We first give a family of distinguishing functions that we will use to lower bound ℓ1
distance, and show that truly random walks satisfy them with vanishing probability. The
function FG checks two conditions - if the “walk” traversed edges that do not actually exist,
and if the path length of a sufficiently large segment of the walk is too short.

▶ Definition 4.14. For an arbitrary graph G = (V, E) let FG : {V, ∗}e → {0, 1} be defined as

FG(w0, . . . , we) = I

{
∃i st. wi ̸= ∗, wi+1 ̸= ∗ and (wi, wi+1) /∈ E OR
∃i < j − 40 log(n) st. PL(wi, . . . , wj) < (j − i)/8.

Furthermore PL is nonincreasing (and thus F is nondecreasing) with respect to revealing new
vertices.

Interestingly, the only reason we require knowing G to define FG is to rule out edges that
are not actually in the graph.
▶ Remark 4.15. For ℓ ≤

√
n/ log(n) we have EG←G(n,d)FG(U ℓ

G) = on(1) as a simple
consequence of Lemma 4.11. Furthermore, as FG is nondecreasing with regard to addi-
tional queries, for any set of timesteps W ⊆ [ℓ] and associated projection PW we obtain
EG←G(n,d)FG(PW (U ℓ

G)) = on(1)
For our first lower bound, as we chose the next query time based on the transcript of A

after the previous query, we obtain that, for all local access oracles, there exists a sequence
of bad queries. Note that every memoryless local access oracle must succeed asymptotically
almost surely even on such adaptive sequences.

▶ Theorem 4.16. There exist constants qd, n0 depending only on d, a family of distinguishing
functions {FG : G ∈ G(n, d)}, and an (adaptively determined) query sequence Q of at most
O(log(n)) queries such that any local access oracle A, given neighbor probe access to G(n, d)
that makes fewer than

√
n/qd log(n) probes per query satisfies for all n ≥ n0:

EG←G(n,d)|FG(PQ(UG))− FG(DG,A,Q)| ≥ .99

where DG,A,Q is the distribution of A’s responses given probe access to G over sequence Q.

Proof. Let qd = kd · 1000 where kd is from Lemma 4.8. Our procedure generates a sequence
of at most 1000 log(n) queries, so by assumption A makes at most

√
n/kd probes. Thus by

the lemma there is n1 such that for n > n1 with probability .995 the algorithm never finds
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cycles or merges trees. Note that we treat returned vertices as marked. Denote this event by
Ξ, and for the remainder of the proof we assume it holds (and otherwise we can terminate
the sequence).

Our first query is at time e =
√

n/ log(n) (and there is an implicit query at time 0). We
claim either d(v0, ve) =∞ or d(v0, ve) < e/20. Otherwise we would have

∞ > d(v0, ve) ≥ e/20 =
√

n/20 log(n),

so the algorithm made at least
√

n/20 log(n) probes at the first query, violating our assumption
on probe complexity.

If d(v0, ve) < e/20, we apply Lemma 4.18. Thus we can extend the query sequence
Q ← (Q, Q′) by at most 321 log(n) queries such that any returned transcript T (Q) either
satisfies FG(VQ) = 1 for all G (in which case we are done) or contains vt, vt′ ∈ VQ such that
d(vt, vt′) > |t′ − t|.

Now we have vt, vt′ ∈ VQ such that d(vt, vt′) > |t′ − t|, so we apply Lemma 4.17. Thus
we can extend the query sequence Q ← (Q, Q′) by at most log(n) queries such that any
returned transcript T (Q) contains vt, vt+1 ∈ VQ such that d(vt, vt+1) > 1. Then let S be the
edges in the transcript at the termination of the query sequence. We have |S| ≤

√
n and so

by Lemma 4.6, and the definition of FG,

Pr
G←G(n,d)∩S

[FG(VQ) = 1] ≥ Pr
G←G(n,d)∩S

[(vt, vt+1) /∈ G] = 1− on(1).

Then taking n2 such that this term is at least .999, for n > max(n1, n2) we obtain
EG←G(n,d)FG(DG,A,Q) ≥ .994. Then by Remark 4.15 there exists n3 such that for any
projection PQ, for all n > n3

EG←G(n,d)FG(PQ(U ℓ
G)) ≤ EG←G(n,d)FG(U ℓ

G) < .004,

and by taking n0 = max(n1, n2, n3) the result follows. ◀

To complete the proof, we must give short query sequences that when Ξ holds drive
almost all distinguishing functions to 1. We first show an algorithm that does not know of a
short enough path between returned vertices can be forced to return consecutive vertices in
the walk that it does not know a connecting edge between.

▶ Lemma 4.17 (No Viable Path Known). Assuming Ξ holds, given a transcript T (Q) suppose
there are prior queries vx, vy ∈ VQ such that d(vx, vy) > |y−x|. Then there exists an adaptive
extension of the sequence Q′ ← (Q, q) of at most log(n) queries such that for any returned
transcript T (Q′) there are vt, vt+1 ∈ VQ′ such that d(vt, vt+1) > 1.

Proof. We show this by binary searching on the “gap”. WLOG assume x < y. At each step:
1. Query at time m = ⌊(x + y)/2⌋.
2. We have d(vx, vm) + d(vm, vy) ≥ d(vx, vy) so by non-negativity either d(vx, vm) > m− x

or d(vm, vy) > y −m.
3. If the first holds, let y ← m and recurse. Otherwise let x← m and recurse.
Since y − x <

√
n at the start of the recursion after log(n) queries we drive |x− y| to 1, and

so obtain vt, vt+1 ∈ VQ such that d(vt, vt+1) > 1 as desired. ◀

We next show algorithms cannot “fake” the existence of longer paths. The key idea is that
modifying SP(v0, ve) (or finding a second simple path) after returning ve is impossible when
the algorithm fails to find cycles. We force A to return vertices that either trigger Lemma 4.17
or feature excessive backtracking, which drives the distinguishing function to 1.
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▶ Lemma 4.18 (Known Path Too Short). Assuming Ξ holds, given a transcript T (Q) with
ve ∈ VQ suppose d(v0, ve) < e/20. Then there exists an adaptive extension of the sequence
Q′ ← (Q, q) of at most 321 log(n) queries such that any returned transcript T (Q′) either
contains vt, vt′ ∈ VQ′ where d(vt, vt′) > |t− t′| or satisfies FG(VQ′) = 1 for all G.

Proof. For the remainder of the analysis we implicitly assume that for all queries t, t′,
d(vt, vt′) ≤ |t− t′| since otherwise the transcript satisfies the first condition and we are done.
We give a recursive construction of q that “pushes down” the short path. Let x← 0, y ← e.

At each step we maintain the invariants that d(vx, vy) < (y − x)/10 + 20 log(n) + 2 and
320 log(n) ≤ y − x, which are initially satisfied by the lemma statement.
1. Query A at time m = ⌊(x + y)/2⌋.
2. Let rm = minv∈V {d(vm, v) : v ∈ SP(vx, vy)} be the length of the simple path from vm to

the simple path from vx to vy.
3. If rm ≥ 20 log(n), we apply Lemma 4.19 with (x, y, m) which uses at most 3 log(n)

additional queries and achieves the condition.
4. If rm < 20 log(n), we can bound the path length from some endpoint to vm. Either

d(vx, vm) ≤ d(vx, vy)/2 + rm or d(vm, vy) ≤ d(vx, vy)/2 + rm. In the first case,

d(vx, vm) ≤ d(vx, vy)/2 + rm

< ((y − x)/10 + 20 log(n) + 2)/2 + 20 log(n)
≤ (m− x)/10 + 20 log(n) + 2

so letting y ← m the requirements of the recursion are satisfied. In the other case we set
x← m and achieve the same.

5. Then if y − x < 320 log(n), we have d(vx, vy) < (y − x)/20 + 20 log(n) + 2 < (y − x)/8.
In this case, we query A at times {x + 1, x + 2, . . . , y− 2, y− 1}. Then any set of vertices
{vx, . . . , vy} ⊂ VQ′ where d(vt, vt+1) ≤ 1 for all t lies entirely inside S, and thus must
contain SP(vx, . . . , vy). Therefore we have a walk segment of length at least 40 log(n)
where PL(vx, . . . , vy) = d(vx, vy) < (y − x)/8 and thus FG(VQ′) = 1 for all G by the
definition of FG as desired.

Then the total number of queries is bounded above by (1 + 320) log(n) by inspection and
Lemma 4.19, so we conclude. ◀

▶ Lemma 4.19. Assuming Ξ holds, given a transcript T (Q) suppose there are vx, vm, vy ∈ VQ

where minv∈V {d(vm, v) : v ∈ SP(vx, vy)} ≥ 20 log(n). Then there exists an adaptive extension
of the sequence Q′ ← (Q, q) of at most 2 log(n) queries such that any returned transcript
T (Q′) either contains vt, vt′ ∈ VQ′ where d(vt, vt′) > |t− t′| or satisfies FG(VQ′) = 1 for all
G.

Proof. As before, we assume that for all queries t, t′, the returned vertices vt, vt′ satisfy
d(vt, vt′) ≤ |t− t′| since otherwise the transcript satisfies the first condition and we are done.

We have x, m, y with a tree structure where the distance from vm to the simple path from
vx to vy is at least rt ≥ 20 log(n). Let

w = arg min
v∈V

{d(vm, v) : v ∈ SP(vx, vy)}

be the vertex (which has not necessarily been returned) at the point where the simple path
to vm branches from SP(vx, vy). With at most log(n) queries, we force A to output that the
random walk visits w at times t1 ≤ m− 20 log(n) and t2 ≥ m + 20 log(n).
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To do so, we apply the following recursion. Let a ≤ b be times and u a vertex where
u ∈ SP(va, vb).

Query A at time t = ⌊(a + b)/2⌋. If vt = u, halt.
We have d(va, vt) ≤ t− a and d(vt, vb) ≤ b− t by assumption.
Either u ∈ SP(va, vt) or u ∈ SP(vt, vb). If the first let b← t and otherwise a← t.

After log(n) queries we drive b−a to 1. By assumption d(va, vb) ≤ b−a = 1 and u ∈ SP(va, vb),
so A must have returned u at some timestep.

We use this subrecursion twice, with (a, b, u) = (x, m, w) for the first call and (a, b, u) =
(m, y, w) for the second. Let t1, t2 be the times obtained from these applications where
vt1 = vt2 = w. We claim t1 ≤ m− 20 log(n) and t2 ≥ m + 20 log(n). If t1 < m− 20 log(n),
we have d(vt1 , vm) = d(w, vm) ≥ 20 log(n) and thus |t1 − m| < d(vt1 , vm), violating our
first assumption (and the other case is identical). But then if this does not occur, we
have a segment {vt1 , . . . , vt2} ⊂ VQ′ of length at least 40 log(n) where vt1 = vt2 = w, so
PL(vt1 , . . . , vt2) = 0 < 40 log(n)/8 which implies FG(VQ′) = 1 for all G as desired. ◀

This concludes the proof of our adaptive lower bound.

4.3 Proof of Non-Adaptive Lower Bound

The proof of Theorem 4.16 relies on looking at the edges known to A to choose the next
query to the oracle. While any local access oracle is required to succeed for every query
sequence, so this construction is still valid, we furthermore wish to rule out oracles that
succeed only non-adaptive sequences. We give a weaker Ω(n1/4) lower bound that uses a
global query sequence (not even depending on the returned vertices) that still suffices to rule
out fast local access by an exponential margin.

▶ Theorem 4.20. There exist constants kd, n0 depending only on d, a family of distinguishing
functions {FG : G ∈ G(n, d)}, and a fixed query sequence Q of n1/4 queries such that any
local access oracle A given neighbor probe access that makes fewer than n1/4/kd probes per
query satisfies for all n ≥ n0:

EG←G(n,d)|FG(PQ(UG))− FG(DG,A,Q)| ≥ .99

where DG,A,Q is the distribution of A’s responses given probe access to G over sequence Q.

Proof. Take kd as in Lemma 4.8, and define the query sequence as Q = (n1/4, 2, 3, . . . , n1/4−
1). For convenience, define e = n1/4. The distinguishing function is identical to before, so by
Remark 4.15 there is n1 such that for n ≥ n1 we have EG←G(n,d)FG(PQ(UG)) < .004.

As |Q| = n1/4, the number of probes made by A is bounded by
√

n/kd, and so by
Lemma 4.8 there is n2 such that for all n > n2, with probability .995 the algorithm never
finds cycles or merges trees. Note that we treat returned vertices as marked. Denote this
event by Ξ.

Given Ξ holds, we claim that at the completion of the query sequence either d(v0, ve) =∞
or d(v0, ve) < n1/4/2. If this was not the case, since A cannot alter d(v0, ve) after the first
query without finding cycles, A made at least n1/4/2 > n1/4/kd probes after the first query
which violates our assumption on probe complexity.

Then let the transcript at the end of the sequence be T (Q) = (VQ, S), recalling S is the
edges revealed via probes.
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1. If there exist vt, vt+1 ∈ VQ such that d(vt, vt+1) > 1, we have |S| ≤
√

n and so by
Lemma 4.6 and the definition of FG,

Pr
G←G(n,d)∩S

(FG(VQ) = 1) ≥ Pr
G←G(n,d)∩S

[(vt, vt+1) /∈ G] = 1− on(1).

2. If this never occurred, the segment {v0, . . . , ve} ⊆ VQ traverses only edges in S, so it
must contain all edges in SP(v0, ve). Therefore PL(v0, . . . , ve) = d(v0, ve) < n1/4/8 and
FG(VQ) = 1 for all G.

Then taking n0 = max(n1, n2, n3) where n3 is chosen such that the 1− on(1) term is above
.999, the result follows. ◀

5 Efficient Local Access for Abelian Cayley Graphs

We now turn to classes of graphs with algebraic structure. We achieve fast (i.e. runtime
polylogarithmic in n) memoryless local access oracles for random walks on the hypercube,
n-cycle, and classes of spectral expanders. In Appendix B, we achieve fast memoryless
local access oracles for arbitrarily dense graphs via the tensor product. In both cases, we
assume a priori knowledge of the structure of the graph, rather than accessing it through a
neighborhood oracle. This is comparable to the work of [4, 12], which (among many other
results) give local access oracles (with persistent storage) for random walks with fixed start
and end vertices on the line segment graph.

▶ Definition 5.1. For a group Γ of order n and S ⊆ Γ, the (directed) Cayley graph
G = Cay(Γ, S) is the degree |S| graph on n vertices where for all g ∈ Γ, e ∈ S we add the edge
(g, ge) with label e. We call S the generators of G. We say the Cayley graph is abelian if
the subgroup generated by S is.

More concretely, a Cayley graph is abelian if for all ei, ej ∈ S we have eiej = ejei. We do
not require S to be closed under inverses, and so must handle directed graphs.

▶ Theorem 5.2. Let G = Cay(Γ, S) be an abelian Cayley graph on n elements with d = |S|,
where for all g ∈ G, g2 is computable in polylog(n) time. There is a memoryless local access
oracle for random walks on G which uses O(d · polylog(nL)) time and working space per
query, where L is the maximum query time.

We defer the proof to Appendix B. In the parallel model, [23] gives an algorithm for
efficient generation of random walks on all Cayley graphs. For a walk of length t, they sample
σ ∈ St and compute the t prefixes {si}i∈[t] = {

∏i
j=1 σj}i∈[t] in parallel. Unfortunately,

even computing a single prefix of a product of generators in sequential sublinear time is not
obviously possible without further restrictions.

Although abelianness represents a strong algebraic assumption, Theorem 5.2 immediately
provides memoryless local access oracles for several graph families of interest in computer
science.

▶ Corollary 5.3. There is a memoryless local access oracle with per query runtime
O(polylog(nL)) for random walks on the following classes of graphs:
1. By considering Γ = (Z/2Z)d and taking S = (e1, . . . , ed) as the generating set, there is a

memoryless local access oracle for random walks on the dimension d hypercube for all d.
2. By considering Γ = Z/nZ and taking S = (1,−1) as the generating set, there is a

memoryless local access oracle for random walks on the n-cycle for all n.



A. S. Biswas, E. Pyne, and R. Rubinfeld 24:17

3. By Proposition 5 of [1], for all m ∈ N there is an explicitly constructible set Sm where
|Sm| = O(m) such that Cay(Zm

2 , Sm) has spectral gap 1/3. Thus there is a memoryless
local access oracle for random walks on a class of polylog degree expanders of size 2m for
all m.
We remark that despite all constant-degree abelian Cayley graphs being poor expanders,

efficient local access is easy to provide, while for well-expanding random-regular graphs we
obtain a polynomial lower bound. This indicates fast mixing time is not a determinative
property for efficient local access.
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A Proof of Lemma 4.6

We apply the configuration model of [5], extended to sequences of degrees. In the configuration
model, given a degree sequence d = (di)i∈[n], we place di half-edges at vertex i and connect
all half-edges with a random matching. In the case where di = d for all i, if the graph
induced by a random matching is simple, we produce a random draw from G(n, d). In our
case, we “remove” half edges that are already occupied by S, place a random matching on
the remaining half edges, and show that if the induced graph is simple and does not duplicate
edges in S, we obtain a random draw from G(n, d) ∩ S. We can use then use this sampling
procedure to analyze conditional edge probabilities.

We first recall a lower bound on the probability that such a random matching induces a
simple graph. For a degree sequence d, define D = D(d) =

∑n
i=1 di, D2 =

∑n
i=1 di(di − 1)

and D3 =
∑n

i=1 di(di − 1)(di − 2). Let P (d) be the probability that a random matching on
d has no loops or multiple edges. The forthcoming lemma assumes maxi d3

i = o(D) which
clearly holds in our application.
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▶ Lemma A.1 ([17] Lemma 5.1).

P (d) ≥ exp
(
−D2

2D
− D2

2
4D2 −

D2
2D3

2D4

)
.

We can then apply this lemma to prove the main claim. We remark that the bound
|S| ≤

√
n be be improved to |S| = o(n), with cd depending on when |S|/n falls below some

constant threshold.

▶ Lemma 4.6. For all d ∈ N there is a constant cd depending only on d such that for an
arbitrary set of edges S with |S| ≤

√
n and v, w ∈ V arbitrary vertices where (v, w) /∈ S, we

have PrG←G(n,d)∩S [(v, w) ∈ G] ≤ cd/n.

Proof. Let d = (di)i∈[n] be the sequence where di is the remaining degree of vertex i given
S. We place a random matching on this degree sequence. Given such a matching M , we
contract it to a (multi) graph GM by treating each bucket as a single vertex.

▷ Claim A.2. Given a randomly drawn matching M where GM is simple and GM ∩ S = ∅,
GM ∪ S is a uniform draw from G(n, d) ∩ S.

Proof. All possible simple graphs GM are induced by exactly
∏

i(di!) matchings, so the
conditional distribution over such graphs is uniform. Then multiplying by the indicator
variable I[GM ∩ S = ∅], which corresponds to there being no duplicated edges between GM

and S, produces the uniform distribution over the desired subset of graphs. ◁

We next show GM satisfies the conditions of Claim A.2 with probability depending only
on d. First, we show the matching is simple not considering the edges of S with constant
probability.

▷ Claim A.3. We have Pr(I[GM simple]) = P (d) ≥ exp(−d(d + 2)).

Proof. We use the (crude) bounds D ≥ dn/2, D2 ≤ d2n and and D3 ≤ d3n. Then applying
Lemma A.1,

P (d) ≥ exp(−d2n/dn− d4n2/d2n2 − d4n2d3n/8d4n4) = exp(−d(d + 1 + d2/8n))

and choosing n ≥ d2 gives the claimed bound. ◁

We then show GM duplicates edges in S with vanishing probability, which suffices to
establish a constant lower bound on the probability of a “good” draw.

▷ Claim A.4. Pr({GM simple} ∩ {GM ∩ S = ∅}) = ρd > 0

Proof.
1. Taking n large enough Pr(GM simple) ≥ exp(−d(d + 2)) by the previous claim.
2. The probability of an edge between any two vertices in GM is at most 2d2/dn by a union

bound. There are at most
√

n pairs of vertices with edges in S, so by a further union
bound all such pairs are missing with probability at least 1− 2d/

√
n.

Then taking n large enough that the second term is at least 1− exp(−d(d + 2))/2, we have
Pr(I[GM simple] ∩ I[GM ∩ S = ∅]) ≥ exp(−d(d + 2)/2)/2 = ρd as desired. ◁
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Now we are almost done. We have Pr[(v, w) ∈ GM ] ≤ 2d/n and thus

Pr
G←G(n,d)∩S

[(v, w) ∈ G] = Pr[(v, w) ∈ GM |{GM simple} ∩ {GM ∩ S = ∅}]

≤ Pr[(v, w) ∈ GM ]/ Pr[{GM simple} ∩ {GM ∩ S = ∅}]

≤ 2d/ρd

n
.

So taking cd = 2d/ρd (and increasing as needed to handle the small n cases by making the
bound greater than 1) we conclude. ◀

B Local Access With Algebraic Structure

We now detail the approach for memoryless local access oracles for random walks on abelian
Cayley graphs and graph products. The methods we use are simple and similar to those
of [23], who construct algorithms for efficient parallel generation of random walks on a
variety of structured graphs. In each case, there is some element of algebraic structure that
enables sampling the relevant feature of a walk (its position at a new timestep) via sampling
lower-dimensional distributions.

We first recall the Multinomial (MNom) and Multivariate Hypergeometric (MHGeom)
distributions, which we can sample from efficiently.

▶ Proposition B.1 ([10],[4] Theorem 21). Given ϵ > 0, we can sample from the following
distributions within ϵ in ℓ1 distance:
1. given t ∈ N, (p1, . . . , pd) ∈ Qd, we can generate S ← MNom(t, (p1, . . . , pd)) in time

O(d · polylog(t, 1/ϵ)),
2. given m ∈ N, (c1, . . . , cd) ∈ Nd, we can generate S ← MHGeom(m, (c1, . . . , cd)) in time

O(d · polylog(m,
∑

i ci, 1/ϵ)).
Note that sample time is linear in the dimension of the distribution but (poly)logarithmic in
the number of elements.

B.1 Low-Degree Abelian Cayley Graphs
For all Cayley graphs, sampling a walk of length ℓ is equivalent to sampling a random product
of elements in S of length ℓ. But in the abelian case, the value of a random product (and
thus endpoint of a random walk) only depends on the counts of elements in the product.
Thus we can sample the distribution of edge labels, and thus endpoints, in time linear in d

but logarithmic in ℓ.
To do this, we first recall the distribution of edge labels in a random product.

▶ Proposition B.2. Let G = Cay(Γ, (e1, . . . , ed)) be an abelian Cayley graph where |Γ| = n.
1. The counts of edge labels in a random walk of length ℓ from any vertex are distributed

MNom(ℓ, (1/d, . . . , 1/d)).
2. Let DC(c1, . . . , cd) be the set of random walks from any vertex of length ℓ =

∑d
i=1 ci that

traverse ci edges with label i. Then the counts of edge labels along the first t ≤ ℓ steps of
walks in DC(c1, . . . , cd) are distributed MHGeom(t, (c1, . . . , cd)).

We can then provide a memoryless local access oracle for abelian Cayley graphs. In
the random regular graph case, the difficulty came from sampling conditional “products”,
but here we take advantage of that fact that permuting the order of elements in a product
preserves endpoints in order to sample counts of edge labels unconditionally.
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▶ Theorem 5.2. Let G = Cay(Γ, S) be an abelian Cayley graph on n elements with d = |S|,
where for all g ∈ G, g2 is computable in polylog(n) time. There is a memoryless local access
oracle for random walks on G which uses O(d · polylog(nL)) time and working space per
query, where L is the maximum query time.

Proof. Suppose we receive a query at time t. Note that in all cases when we sample from a
distribution to determine the labels starting at time t′, we use the random bits Rt′ associated
with the time t′. This guarantees consistently between independent instantiations of the
oracle sharing the same random tape.

We perform binary search on the distribution of edge label counts. We first sample
S = [s1, . . . , sd] ← MNom(L, (1/d, . . . , 1/d), 1/ncL), where si holds the number of steps
along edges with label i from time 0 to time L. We then maintain endpoints t− = 0, t+ = L

with the invariant that t− ≤ t ≤ t+ and the position of the walk at time t− has been
determined (which is initially satisfied by the start vertex).

At each step, suppose the midpoint m = (t+ + t−)/2 satisfies m ≤ t. Then let S′ =
MHGeom(m, S, 1/ncL) be the counts of edge labels traversed in the interval (t−, m]. Since
the endpoint of a walk is a function purely of the counts of edge labels, given vt− and S′

we can compute the position of the walk at time m, denoted vm, in time d polylog(nL).
Furthermore, let S ← S − S′ be the counts of edge labels in the interval (m, t+]. We then
recurse on this interval with t− = m and t+ = t+. A nearly identical procedure holds when
t < m. Then after log L levels we will have determined the position vt of the sampled walk
at time t, which we can return.

The runtime is immediate from Proposition B.1 and the assumption that group products
are computable in time polylog(n). Furthermore, the vertex reached by a random walk on
an abelian Cayley graph is a deterministic function of the counts of the preceding edge labels.
Therefore ensuring the counts in each new dictionary are sampled to within 1/ncL of the
true distribution is sufficient to establish the approximation by Proposition 2.6. Since in both
cases we approximate the true distribution to within 1/ncL in ℓ1 distance by Proposition B.2,
the result follows. ◀

B.2 Tensor Products
We can utilize the structure of common graph product operations to provide memoryless
local access oracles , given oracles for their components. To do so, we give arguably the
simplest possible memoryless local access oracle, one that is only efficient when the time
queries are far larger than the size of the graph, to use as the basis for product constructions.

▶ Lemma B.3. Given a graph G = (V, E) on n vertices, there is a memoryless local access
oracle with O(nω polylog(nL)) runtime and working space per query.

Proof. Suppose we receive a query at time t. We again perform binary search on which
times to determine. We first determine vL, then determine log L positions bracketing t. For
each position to be determined, let W be the transition matrix of G and suppose the closest
previously determined times are vt− and vt+ . Then for v ∈ V ,

Pr(Pm(DC(G, vt− , vt+ , l)) = v) = W m
vt− ,vW l−m

v,vt+
/

∑
u∈V

W m
vt− ,uW l−m

u,vt+
.

We can then use log(L) repeated squares of the random walk matrix of the graph to
compute the PDF, and then sample to the desired accuracy. The runtime is direct from the
description. ◀
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To make this algorithm concrete, for a graph G on n vertices, we obtain a runtime of Õ(nω),
while we desire runtime polylogarithmic in n.

We recall the tensor product of graphs.

▶ Definition B.4. Given graphs G1 = (V1, E1), G2 = (V2, E2) the tensor product of G1
and G2, denoted G1 ×G2, is the graph with vertex set V1 × V2 where (v1, v2), (w1, w2) are
adjacent if and only if (v1, w1) ∈ E1 and (v2, w2) ∈ E2.

The projections of a random walk on the tensor product onto its component graphs induce
independent random walks over each graph. Then we can easily decompose sampling
conditional products to sampling on the components.

▶ Lemma B.5. Given memoryless local access oracles A1,A2 for graphs G1, G2 with runtime
T (A1, c, L) and T (A2, c, L), there is a memoryless local access oracle AT for G1 ×G2 with
runtime T (AT ) = T (A1, c, L) + T (A2, c, L) + O(log(|G1| · |G2|)).

Proof. The algorithm initializes both sub-oracles A1,A2 with maximum walk length L.
Suppose we receive a query at time t. Then AT itself queries A1,A2 with time t, where AT

allocates disjoint sections of the random tape R1, R2 to both. Let the obtained vertices be
v′, w′ respectively. Then A returns (v′, w′). Since the vertex in a walk on a tensor product is
a deterministic function of the two (independent) component distributions, by Proposition 2.6
we obtain a 2/nc approximation for any constant c. The runtime is composed of the required
calls to the sub-oracles, plus the time to write the inputs to each and output the returned
vertex. ◀

We then obtain efficient local access to walks on arbitrarily dense graphs.

▶ Corollary B.6. Let G be an arbitrary graph. For all k ≥ 1 there is a local access algorithm
for G×k with runtime O(k polylog(kL)), where we hide factors polynomial in |G|.

For G a regular graph with degree d, since |G×k| = |G|k and deg(G×k) = dk, we obtain
fast memoryless local access oracles for walks on infinite families of degree (|G|k)δ graphs
for any δ = log|G|(d) ∈ (0, 1]. This indicates that high degree does not prevent constructing
efficient memoryless local access oracles. We remark that a similar approach gives fast
memoryless local access oracles for the Cartesian product.
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