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Abstract: Carbon Fiber-Reinforced Plastic (CFRP) and Titanium alloy (Ti6Al4V) stacks are used
extensively in the modern aerospace industry thanks to their outstanding mechanical properties and
resistance to thermal load applications. Machining the CFRP/Ti6Al4V stack is a challenge and is
complicated by the differences in each constituent materials’ machinability. The difficulty arises from
the matrix degradation of the CFRP material caused by the heat generated during the machining
process, which is a consequence of the low thermal conductivity of Ti6Al4V material. In most cases,
CFRP and Ti6Al4V materials are stacked and secured together using rivets or bolts. This results
in extra weight, while the drilling process required for such an assembly may damage the CFRP
material. To overcome these issues, some applications employ an assembly that is free of bolts or
rivets, and which uses adhesives or an adapted curing process to bond both materials together. The
present research analyzes a thermal distribution and its effect on quality during the edge trimming
process of a CFRP/Ti6Al4V stack assembly. Different types of tools and cutting parameters are
compared using thermocouples embedded within the material and others on the tool cutting edge.
In contrast to previous studies, the feed rate was the most significant factor affecting the cutting
temperature and quality of the workpiece, while the cutting speed had no significant impact. The
temperature in the workpiece increases as the feed per tooth decreases.

Keywords: multimaterial stack machining; fiber-reinforced plastic; titanium alloy; trimming; thermal
analysis; thermocouples

1. Introduction

Military and commercial industries are always seeking to decrease fuel consumption
by reducing aircraft structural components’ weight. Carbon Fiber-Reinforced Plastic (CFRP)
and Titanium grade 5 (Ti6Al4V) material stacks are commonly used in airframe component
assemblies thanks to their mechanical properties, such as a high strength-to-weight ratio
and an excellent resistance to corrosion and fatigue [1]. These properties are leveraged
as CFRP/Ti6Al4V material stacks are used to manufacture aircraft structures subjected to
high thermo-mechanical stresses. An example of this use can be seen in the wing-fuselage
connection of the new-generation Boeing 787 Dreamliner [1].

Generally, CFRP/Ti6Al4V material stacks are assembled using rivets or bolts, in which
case the CFRP and the Ti plaques are trimmed individually and then stacked up to enhance
the required tolerances. However, with specific requirements or applications, both plaques
need to be bonded with adhesives or the composite cured with titanium, after which
the plaques are trimmed together up to their final shape. This is because CFRP is very
sensitive to notch or delamination resulting from drilling, which may severely decrease the
component’s mechanical properties in service.
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Several publications focus on the trimming of CFRP and Ti6Al4V individually, while in
the case of CFRP/Ti6Al4V stacked together, most research works focus on the optimization
of the drilling process [1-4] and on cutting force analysis and modelling [5,6]. Regarding
the edge milling of such material stacks, the literature contains relatively little information
regarding thermal analysis or machining temperature studies. Since the machining temper-
ature during CFRP/Ti6Al4V trimming plays a crucial role in avoiding reaching the CFRP’s
glass transition temperature, this research investigates the temperature distribution during
the trimming of CFRP/Ti6Al4V stacks.

1.1. Temperature Measurement Methods

Although most of the works covering the trimming of CFRP and Ti6Al4V deal with
the optimization of cutting parameters, studies also focus on the effect of these cutting
parameters on the temperature at the tool-material interface during the cutting process.
Generally, infrared cameras are used to measure the temperature in static bodies, although
some studies have used them to measure the temperature at cutting high speed during
the end mill cutting processes, pointing out measurements at both cutting tool and work-
piece [7,8]. However, in the latter, thermography images were found to be inaccurate due
to heat saturation on the primary shear zone and some areas hidden by the cutter body.
More recently, Sheikh-Ahmad et al. [9] used the black body technique, which consists of
heating each body to the same temperature to know the emissivity of each one, resulting in
a detailed and contrasted thermography image. Nevertheless, in that study, the emissivity
was measured with both objects in a fixed state, causing the emissivity values to change
when the cutter rotated and moved forward. Another technique applied to metal cutting
is the tool-workpiece thermocouple method, which uses embedded thermocouples both
in the workpiece and at the tool edges. For the workpiece, thermocouples are embedded
between CFRP layers [7], in holes [9], or handicraft-type thermocouples [10-12]. On the
other hand, the temperature on the cutting tool can be measured by sticking thermocouples
on the cutter tip [3] or through voltage differences between the workpiece and the cutter [7].
Although the tool-workpiece thermocouple method performed well during the milling
process, parasite temperature estimation was reported due to the low stiffness of the setup
in the case of Ti6Al4V machining [13] or due to thermocouple displacement during the
CFRP lay-up [7]. Another application method consists in using a telemetry system that
transmits the signal from thermocouple through the tool holder to a Transducer Via Wire-
less (TVW) transmission [14-18]. A long and complex wiring connection from the cutter to
the acquisition system is then avoided, although the TVW induces a time delay resulting
in a sensitivity reduction [17].

1.2. Influence of the Machining Process of CFRP and Titanium on Cutting Temperature

Unlike the machining of metallic materials, for which the material removal mechanism
is done through plastic deformation and material shearing, the chip formation mechanism
during the machining of fiber-reinforced plastics (FRP) proceeds through brittle fracturing
of the composite fibers. However, in both cases the energy involved in the cutting process is
converted into heat. Therefore, the main source of heat is located in the primary shear zone
at the tool—chip interface. Machining both materials together is challenging since the epoxy
matrix of the CFRP component is damaged at cutting temperatures of about 185 °C (glass
temperature transition, Tg), while the titanium material may reach temperatures above
500 °C in dry cutting conditions [10]. Moreover, the thermal conductivity A of the Ti6A14V
can vary from 6 to 9 W/m.K [19,20], while the CFRP’s longitudinal thermal conductivity is
6 W/m.K and its transversal thermal conductivity is 0.5 W/m.K [21], which is very low
compared to titanium alloy.

It is well known that the machining temperature is influenced by the cutting pa-
rameters, the cutting tool technology used and the material properties of the workpiece.
Moreover, numerical simulations have been used to study the temperature of the tool-chip
interface during the Ti6Al4V milling process [19,22-24], although these do not describe the
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effects of the cutting parameters on the cutting temperature. Li et al. [13] studied the effects
of the cutting speed on the cutting edge and workpiece temperature of Ti6Al4V during
the milling process, and found that the heat generation increases with the cutting speed.
Wu et al. analyzed [25] the effects of up- and down-milling on the tooltip temperature
in the machining of Ti6Al4V alloy and found a higher temperature using down-milling.
Pan et al. [26] developed a predictive cutting temperature model to calculate the impact of
the cutting speed, the feed rate, and the axial depth of cut during the milling of Ti6Al4V
using PolyCrystalline Diamond tools (PCD). The results showed that all three parame-
ters used in the experiment affect the cutting temperature. Yujing et al. [10,27] studied
the effects of the cutting speed, the feed rate, and the radial and axial depths of cut on
the temperature at the Ti6Al4V-cutter interface by using a semi-artificial thermocouple.
The analysis found that both the cutter and workpiece temperatures rise with the cutting
speed, and to a lower extent with the feed rate as well. In the CFRP machining case,
Yashiro et al. [7] studied the milling cutting temperature for both the cutter and workpiece
using the tool-workpiece thermocouple method. From the analysis, a high cutting speed of
up to 300 m/min is recommended to reduce the workpiece temperature. Haijin et al. [11]
studied the effects of the cutting parameters on the forces and the temperature during the
CFRP trimming. The greater the cutting speed, the lower the cutting forces; however, for
the cutting temperature, the opposite is true. This is because the temperature increases at
a notably higher rate as the cutting speed increases; this is explained by the fact that the
cutting speed increase is the key factor affecting the temperature, while the feed rate affects
the cutting forces. Additionally, Wang et al. [12] studied the thermal effects on the fiber
orientation. They found that the temperature within the fiber increases with the cutting
speed. They equally found that the lowest temperature is always observed for a laminate
having a 45° fiber orientation with respect to the feed direction, while the highest tempera-
ture is observed for a laminate having a 135° fiber orientation, irrespective of the cutting
speed. This is in agreement with the results previously found for the surface roughness
of trimmed parts [28]. Kerrigan et al. [16] measured the cutter temperature by using the
TVW during CFRP edge trimming, and found that the feed rate is the most significant
factor affecting the cutter temperature. Even though there is a thermal camera to assess
the workpiece temperature, the analysis does not report its temperature. More recently,
Sheikh-Ahmad et al. [9] studied the heat flux surrounding the CFRP workpiece, chip, and
cutting tool during edge trimming. The study showed that the highest temperature was
located on the cutter, where it reached 220 to 250 °C, followed by the chip, where tempera-
tures reached 160 to 220 °C. The workpiece was the coldest, with a temperature reaching
about 60 °C. Neither the cutting speed nor the feed rate had a statistically significant effect
on the temperature of the cutter. However, the feed rate was found to have a statistically
significant impact on the workpiece temperature, with lower temperatures seen on the
workpiece at higher feed rates, due to the shorter interaction between the cutter and the
workpiece with increased feed rates.

This research aims to study the machining temperature distribution within both
components of the CFRP/Ti6Al4V stack, considering different cutting tool geometries and
cutting parameters. The interactions of these on the cutting forces, surface finish, and tool
wear were analyzed.

2. Experimental Methodology and Setup
2.1. Cutting Tools

Three different 12.7 mm-diameter tools were chosen to trim CFRP/Ti6Al4V coupons
to compare their tool wear and their impact on the cutting temperature, the cutting forces,
and the roughness parameters of the resulting machined surface (tool specifications shown
in Table 1). The Design of Experiment (DoE) was prepared and carried out after performing
screening tests to find a common cutting range for the different cutters (Table 2). The DoE was
a three-level full factorial, including a total of 45 experiments: there were 18 tests using tooll,
18 using tool2, and only 9 using tool3, since the latter could not sustain a 4 mm width of cut.
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Both materials were assembled with the prepreg curing cycle to bond the CFRP plies
to the TibAl4V plaque using the TAD2-52-1E oven (Despatch, Minneapolis, MN, USA). As
a result, the coupons were free of bolts or rivets (Figure 2a). Notwithstanding all the care
taken in installing the thermocouples to ensure they were all aligned at a distance of 1.5 mm
and 5 mm from the coupon edges, the ones embedded within the CFRP plies suffered
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2.4.3. Roughness Evaluation on the [0]g/Ti6Al4V Stack Material

The SJ400 Mitutoyo Surftest profilometer(Mitutoyo, Aurora, IL, USA) was used to
measure the surface on the [0]g/Ti6Al4V stack. The profilometer is equipped with a
2pm spherical diamond and is controlled by SURFPAK-SJ acquisition software. Each test
profile was performed following the ISO 4287-1997 standard, and Table 3 shows the input
parameters. The surface roughness parameter Ra was estimated once on the Ti6Al4V
plaque, and twice on the [0]s plaque.

Table 3. Input parameters.

Description Value
Sampling length 0.8 mm
Filtered Ls 2.5 um
Evaluation length As 16 mm
Cut-off Ac 0.8 mm

2.4.4. Tool Wear

Tool wear was measured on every single flute using a Keyence VHC-500F digital
microscope (Keyence, Osaka, Japan) equipped with an image processing system. The
microscope has a resolution of 2 million pixels (1600 x 1200). The end of the tool life was
set at 0.3 mm VB tool flank wear.

3. Results

All results were analyzed using Minitab and Matlab (Mathworks, Natick, MA, USA)
software to observe and quantify the effects of the different cutting parameters on the
measurement responses for the edge trimming of the [0]g/Ti6Al4V stack.

3.1. Workpiece and Cutting Tool Temperature
3.1.1. Ti6Al4V Plaque Temperature

The average cutting temperature on thermocouple T1-2-3-4 was analyzed in terms
of main effect plot. Figure 6 shows that the type of tool and the feed per tooth are the
most relevant factors on the Ti6Al4V plaque temperature. Tooll is the cutter that produced
the lowest workpiece temperature, while tool2 and tool3 showed similar temperature
behaviours at the surface of the Ti6Al4V. Temperature at the Ti6Al4V /CFRP interface is
about 15 °C higher for both the coated carbide and PCD tools vs the uncoated carbide.
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Figure 8. Cutting temperature profile for the Ti6Al4V plaque for an ft of 0.05 mm/tooth, v of 175 m/min and an ae of 1 mm:
(a) 3D surf mesh cutting temperature for tool2; (b) 3D surf mesh cutting temperature for tool3.
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3.1.2. Composite Plaque Temperature

In the case of the thermocouples embedded within the plies of the [0]s plaque,
Figure 10a shows the Pareto chart of standardized effects for thermocouples T5 to T10. As
for the Ti6Al4V plaque, the feed per tooth is the most significant factor affecting the cutting
temperature of the CFRP. Figure 10b shows a 3D bar plot in which a low feed per tooth
significantly impacts the CFRP plaque cutting temperature. This confirms other researches
examining the workpiece temperature in CFRP edge milling [9,16].

To illustrate the temperature transfer from the Ti6Al4V plaque to the [0]g plaque,
Figure 11 shows the interlayer temperature according to the width of the cut ge and
through the thickness. The X-axis is through the thickness of the stack, the Y-axis is the
width of cut (position of the thermocouples within the stack), and the Z-axis is temperature.
Figure 11a shows the temperature for tool2, and Figure 11b for tool3. Both figures show
that the temperature decreases within the [0]g layers at different rates. The temperature
decreases faster using tool2 than using tool3 in Figure 11. This might be because tool2’s
geometry has 4 flutes, and as such, it can dissipate more heat through the chip. In both
cases, the highest temperature originates in the Ti6Al4V plaque on the cutting edge surface
and decreases through the CFRP layers.
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Figure 14 shows the cutting temperature through the thickness for thermocouple T3-6-
10 within the [0]g/Ti6Al4V stack using the worst cutting conditions. The thermocouple is
composed of four profiles, similar to Figure 12, and its position is at the Y-axis in Figure 14.
The dissipation ratio decreases from 4.5 to 1.8 as the temperature cannot be dissipated
through the chip. Additionally, the temperature of T6 and T10 is below the Tg.
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might be because most of the heat is dissipated through the chip, changing the morphol-
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3.4. Tool Wear
3.4 Tg‘féWZZ shows that t0012 is the cutter with the lowest tool wear due to its

mgg %r
IRON g@%@amﬁaémgw&@éémm

sioaivtegdh ﬁ@@mb@ﬁﬂdﬁ@@kﬁﬂl@h&fl%@%ﬂn@]&ﬁaﬂ&m epeednd fi-
nally, the cuttmg speed

| E 400 Tool Type ae (mm) v (m/min) ft (mm/z)
=4
—300
1 | .
8 200
> 100
©
By
= Tooll Tool2 Tool3 1.0 4.3 50 175 300 0.05 0.15 0.25°

l_ v
Wﬁmﬁfo 12 &@%{M‘%@&r 4.3 50 175 300 0.05 015 0.25

Figure 22. Main effect plot for tool wear.



J. Compos. Sci. 2021, 5, x FOR PEER REVIEW

17 of 21

J. Compos. Sci. 2021, 5, 137

17 of 21

J. Compos, Sci. 2021, 5, x FOR PEER reviigure 23 shows the performance of each cutter using the different cyfting parame-

Figure 24. Tool w

for each cutter using the worst cutting fEB
0.25 mm/tooth; (b) 0012, ae of 4.3 mm, v of 300 m/min and f o

ters. Both tooll and tool?2 nprfnrm Qrmﬂar]v foral mm radial r‘]pnfh of cut. However, tool3

(P(:DE %%%%ﬂ&%m%wm%psﬁ% sBbiee B@Wﬁﬁh%@ﬁﬁﬂ{%@ﬁ&%&ﬁ@lﬁmﬁﬁ

OBhLippd tooid perform similagy fora ] Shthlawever,oold
gggl e LR O AN IVERL i,. —1; A flank
vv. i alow dehir aREHs Hb _"-' HOES1S B ST e G 4!:86{1]1%
n. Ry B0tk Ho Yot SRSy

ﬁ%rr‘iﬁe@%éié EH&% RESAHsRD IRk S
%ﬁmm @@%&5@@%@%&% Hdostaet
0 R A D)
%ﬂ{a ARIS ,fa' g basadgreniclery

Ca&% e too,
o i

=
£
o
S

e : & e case
‘él s% i‘g %@%ﬂ " 54 ngﬁgm E\‘;gh Q@&ﬁ%@?ﬁé"%‘%&
: 1 Ccture, even in
e oo ey f@dﬁoﬁﬁt“ﬁ% 5“* 18 SRS SRR G HOIS H excessive
Cutting speed [m/min]
50 175 300
Tool type
1500 - Tool1l
= T00I2
= Tool3
1000 -
=
s
500 5
3 _——— =
§ 0 4 9.\
E 2
S 1500 =
. 3
3
1000 >
w

500 /

0.05 0.15 0.25 0.05 0.15 0.25 0.05 0.15 0.25
Feed per tooth [mm/tooth]

B PO ey e SRR CHer Bdfie tHE SMFeH R S RIS ametery

itions: (a) tooll, ae of 4.3 mm, v of 300 in and ft of
5 mm/tooth; (c) tool3, ae of 1 mm, v of 300 m/min and ft

Figure ZdnTobbattear for each cutter using the worst cutting conditions: (a) tooll, e of 4.3 mm, © of 300 mn/minm and ft of
0.25 mm/teeiiy; () 1RI2, 4¢ of 4.3 mm, 9 of 300 m/mim and f of 0.25 mm /RN, (©) WeI3, 4¢ of 1 mm, ¥ of 300 m/mim and fi

of 0:35 mm/fasshh.



J. Compos. Sci. 2021, 5, 137

18 of 21

4. Discussion

The test analysis suggests that the feed per tooth and the tool type are the factors
that most influence the Ti6Al4V temperature plaque. This is contrary to the research of
Y. Sun et al. and Yujing et al. [10,27], where studies found that the most relevant factor is
the cutting speed, followed by the feed per tooth. This difference is due to the method
used to estimate the cutting tool’s temperature as well as within the workpiece in both
studies. In addition, their method fails to show whether the semi-artificial thermocouple
can measure the temperature in both the workpiece and the cutting tool. Therein, the
temperature measurement is not mentioned (location at the tool tip, or the workpiece or
both). Additionally, we found that tool3 dissipates more heat through its core than does
tool2. As a result, the Ti6Al4V plaque is cooler using tool3 than by machining with the
other cutters. It is worth noting that both our experiments and those of Yujing et al. [10]
were carried out under dry conditions and in a down-milling cutting mode.

In the case of the [0]g plaque, the feed per tooth has the most significant effect on the
temperature. Similar results were found by Kerrigan et al. and Sheikh-Ahmad et al. [9,16], but
the results diverge from those of Wang et al. [7,11,12]. This may be because Wang et al. followed
the same methodology as Yujing et al. [10], using a semi-artificial thermocouple. Consequently, it
is hard to know if their tool-workpiece thermocouple method was estimated within the cutting
tool or the workpiece since there is no physical thermocouple on the cutting edge surface.
Therefore, it is difficult to assess how their semi-artificial thermocouple method, similar to a
metal sheet, was able to measure the temperature of both the cutter and workpiece. In Yashiro
et al. [7], the feed per tooth was constant throughout the experiments, and its effect on the
temperature cutting process could not be evaluated. On the other hand, Kerrigan’s results [16]
showed that 60% of the energy within the workpiece is due to the feed rate. However, the
energy calculated was based on cutting force data and was not compared to the measurements
from their thermal camera. More recently, Sheikh-Ahamad et al. [9] studied the thermal aspects
of CFRP machining and the effects of the cutting tool type and cutting parameters. Sheikh-
Ahamad'’s results showed that the feed per tooth is the most significant factor. This is because
the cutter moves forward faster through the workpiece. As a result, the heat retention in the
workpiece is lower than in the context of a low feed per tooth, which is in agreement with our
results. Finally, both Sheikh-Ahmad [9] and the present study report that the cutting speed is
not a significant factor behind temperature variations within the workpiece.

Several studies have reported on the tool temperature measurement for the cutting tool
temperature using different techniques, although only a few of them have obtained relevant
results. In Yashiro et al. [7], thermal cameras could not assess the tool temperature since the
heat radiation saturates the thermography at the cutting point location. On the other hand,
Yujing et al. [10] estimated the cutter temperature using a semi-artificial thermocouple
within the workpiece. Their statistical analysis shows that the cutter temperature has the
same cutting speed trend as the workpiece, which is the most significant factor, followed
by the feed per tooth, and finally, the radial depth of cut. Yujing’s results [10] are different
from those of Kerrigan’s [16] in that the radial depth of cut is the most significant factor
in the former study. This difference is due to the different methods used to measure the
cutting edge temperature (semi-artificial thermocouple in Yujing et al. vs. a telemetry
system for cutting tool thermocouples for Kerrigan et al. [16] and in the present study).
Moreover, Sheikh-Ahmad et al. [9] reported that neither the cutting speed nor the feed
per tooth is a significant factor, which is contrary to the findings of Yujing [10]. Because
the radial depth of cut was always kept constant in Sheikh-Ahmad’s DoE [9], our results
can therefore not be directly compared with their results. Finally, Sheikh-Ahmad et al. [9]
also studied the effects of the cutter’s physical properties (geometry and material) on the
temperature of the cutter, the chip, and the workpiece. However, their results for both the
cutter and the workpiece showed a higher temperature than ours. This is because their
CFRP cutting length is 5 times longer than ours, even when we machined the plate under
dry conditions. It is worth mentioning that our study was limited to the measurement of
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the cutter and workpiece temperatures, as opposed to Sheikh-Ahmad et al.’s [9], which
also covered the chip temperature.

Concerning the cutting forces, the feed per tooth has the most influence on the feed,
normal and axial forces for the [0]g/Ti6Al4V stack. For the cutting forces on the Ti6Al4V
plaque, Jinyang et al. and Xu et al. [5,6] noted that the cutting force “Fy” is greater than the
thrust force “Fx” in the orthogonal cutting process of the [0]s/Ti6Al4V stack as reported in
this research. However, their machining proceeded from CFRP to Ti6Al4V or vice-versa and
did not involve both materials simultaneously. Moreover, their analysis was based on the
cutting speed, the fiber orientation and the depth of cut, with the feed per tooth excluded. On
the other hand, Yujing et al. [10] measured the cutting forces and observed a correlation with
the temperature recorded within the titanium workpiece. Their results show that the force
and temperature vary in parallel and complement each other. In addition, their study was
based on determining the most relevant factor impacting the temperature generated during
the machining while excluding the most significant factors in the cutting forces, which is why
our results cannot be compared with those relating to their titanium plaques.

Concerning the CFRP cutting forces, our results were similar to those of Haijin et al.
and Kerrigan et al. [11,16]. In Kerrigan et al. [16], their results consider the resultant force
composed of Fx, Fy, and Fz. On the other hand, Haijin’s cutting results [11] show the
resulting cutting force between the Fx and Fy. Both works show that the feed per tooth is
the most significant factor for the CFRP plaque. However, the results are not conclusive
because the plastic deformation force of the titanium plaque is greater than the brittle
fracture force of the CFRP plaque. Consequently, the plastic deformation of the titanium
material in the [0]g/Ti6Al4V plaque is the most influential factor affecting the cutting force.

For the roughness parameter Ra, the feed per tooth is the most significant factor, which
increases with an increase in the feed per tooth, and decreases slightly with an increase
in the cutting speed for both the CFRP and Ti6Al4V plaques. As a result, a low feed per
tooth, a high cutting speed and a low radial depth of cut are recommended to reduce the
average surface roughness. In the case of the CFRP material, the result is consistent with
that of Chatelain et al. [28], in which the feed per tooth has the most significant effect. On
the other hand, for the titanium, Yang et al. [30] suggest a low feed per tooth and a low
radial depth of cut and a high cutting speed, as is suggested in this study. A similar action
on parameters could be used to achieve a smoother surface finish during the machining of
the [0]g/Ti6Al4V stack.

5. Conclusions

Combinations of different cutting parameters (cutting speed, radial depth of cut,
and feed per tooth) and tool types were assessed using the tool-workpiece thermocouple
method to measure the cutting temperature both on the cutter and within the [0]g/Ti6Al4V
stack. In addition, the cutting forces, the roughness and the tool wear during the edge
milling cutting process were evaluated. We found that the feed factor is the most significant
factor affecting the cutting temperature for the CFRP and Ti plaques, instead of the cutting
speed. Therefore, the temperature of the workpiece increases when decreasing the feed
per tooth and decreases when increasing the cutting speed; however, the latter is not as
significant as the feed per tooth. For the radial depth of cut, this factor is not as significant
in the [0]g/Ti6Al4V stack temperature as it is in the cutter temperature. Therefore, in
order to increase the workpiece machining efficiency, this research recommends using tool2
(coated TiAIN+TiAl). This is because it showed the lowest wear of the three cutters tested,
the other two being tooll (uncoated tool) and tool3 (PCD tool), and because it did not fuse
with the Ti6Al4V alloys as did tooll, or chip like tool3.

In addition, the tool-workpiece thermocouple method showed that even a few tenths
of millimeters could change the temperature within the [0]g/Ti6Al4V stack. This is due to
the displacement of the thermocouples within the CFRP plaque during the curing process.
Moreover, due to the size of the [0]g/Ti6Al4V stack, the workpiece and cutter temperatures
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increase along the cutting length. Thus, future work is to set a numerical model in order to predict
the temperature for real size parts using the experimental data obtained from this research.

For the cutting forces, the highest force is in the normal direction, and it increases as the
feed per tooth is increased, contrary to the [0]g/Ti6Al4V stack temperature, which decreases
under the same circumstance (increased feed per tooth). Therefore, the temperature and
normal force have inversely proportional magnitudes. Additionally, in order to reduce the
surface roughness (Ra) resulting from the edge milling of the CFRP/Ti6Al4V stack, it is
recommended to use a low feed per tooth and radial depth of cut and a high cutting speed
in order to compensate for the temperature within the CFRP plaque.
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