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Abstract: The aim of this work was to provide a formulation of a non-linear diffusion model with
forced convection in the form of a reaction–absorption system. The model was studied with analytical
and numerical approaches in the frame of the parabolic operators theory. In addition, the solutions
are applied to a gas interaction phenomenon with the intention of producing an inerted ullage in an
Airbus A320 aircraft centre fuel tank. We made use of the travelling wave (TW) solutions approach
to study the existence of solutions, stability and the precise evolution of profiles. The application
exercise sought to answer a key question for aerospace sciences which can be formulated as the time
required to ensure an aircraft fuel tank is safe (inerted) to prevent explosion due to the presence of
oxygen in the tank ullage.

Keywords: non-linearity; reaction; absorption; coupled system; gas interaction; inerting; aircrafts;
fuel tank; travelling waves

1. Introduction

In the 1930s, Fisher [1], proposed a reaction–diffusion model to describe the interactive
dynamic of genes. In parallel, Kolmogorov, Petrovskii and Piskunov [2] proposed the same
equation in combustion theory. In both cases, the models considered a Gaussian order
two-diffusion model with a non-linear reaction of the form f (u) = u(1− u). The authors
introduced the concept of travelling wave (TW) solutions to describe the propagation
features of each involved species. Afterwards, the Fisher–KPP model was subjected
to remarkable mathematical research to explore further applications (see [3–5]). More
recently, some analyses [6] have shown new patterns of formation in chemistry and biology
(compared to those existing in the current literature, see the remarkable references [7,8])
for travelling waves solutions and making use of numerical algorithms.

The aim of this paper was to define a model and obtain results to predict the behaviour
of interacting gases in a global medium with forced convection (advection) and diffusion.
The gas interacting process, aimed to model, consists of the removal of oxygen from a
fuel tank to prevent any hydrocarbon combustion in the case a generated spark or hot
spot occurs [9]. One of the technical solutions raised for this purpose is known as an
inerting system, which shall be understood as a fire preventive [10]. As a short description,
the inerting system consists of a filter or membrane that separates the nitrogen and oxygen
in the air. The nitrogen is introduced into the fuel tank while the oxygen is expelled
outwards. The inerted atmosphere prevents the fire propagation as there is not sufficient
oxygen concentration to produce and sustain a combustion process.

One possibility to model the nitrogen–oxygen interaction is to consider the nitrogen
replacement by oxygen in the fuel tank air space. In [11], the authors developed an algebraic
model based on a mass balance to determine the oxygen and nitrogen concentrations in
fuel tank bays. Additionally, in [12], the algebraic model was compared with a transport
differential equation based on a mass balance in a differential tank element. In both
cases, the modelling exercise does not introduce diffusion into the interacting species,
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although the forced convection is introduced by the transport (in the sense of particle
movement) phenomenon modelled.

The diffusion in the fuel tank was introduced by Ghadirian et al. [13] for simulating
the interactive process of fuel vapours in a fuel tank. Such diffusion was proposed to be
governed by the classical parabolic homogeneous equation:

∂C f

∂t
= D

∂2C f

∂z2 , (1)

where C f is the fuel concentration in the air, and z is the vertical coordinate. This problem
considers only the diffusion, disregarding the natural convection terms and reaction or
absorption phenomenon. The intention of this paper was to consider the forced convection
together with a proposed interaction between the substances in the fuel tank.

2. Materials and Methods

The methods followed along this research were based on a hybrid assessment, analyti-
cal and numerical, together with a validation exercise with real testing data. The modelling
set of equations were obtained based on the mass conservation principles.

The nitrogen gas was supplied by a manifold with several nozzles located along the
fuel tank (see [14] for a complete description). The gases were dynamic together with the
nitrogen nozzle location and the particular tank geometries led to an heterogeneous gas
distribution along the tank. This heterogeneous condition has been modelled considering
the stratified two-phase flows in [15], making use of the volume of fluid (VOF) model
(see [16,17] for a detailed description) by solving the phase continuity equation. In the
modelling exercise developed in this paper, it was considered that the heterogeneous
nitrogen discharge in complex tank geometries provoked gas dispersion. As a consequence,
a diffusion process emerges in response to the differences in the gas concentration along
the tank zones. The selection of an appropriate diffusion principle is of relevance and leads
to a whole significant discussion (see [18] and the references therein). For our purposes,
the considered set of equations is non-linear in general and aims to characterize the
propagation of the interacting gases. Such interactions are of significance in tank zones not
influenced by the advection, so that the nitrogen propagates by diffusion. This progressive
propagation in a diffusive front has been used for modelling purposes in other fields to
simulate porosity effects [19,20]. In our case, the propagation dynamic was conceived as
an inherent feature introduced by the travelling waves solutions.

In addition to the diffusion, the rate of nitrogen discharge along the domain induces a
forced convection within the tank airspace.

To obtain the modelling equations, we consider the following dynamics between the
nitrogen concentration (N) and the oxygen concentration (Θ): initially, the fuel tank ullage
is not saturated with nitrogen, so it is considered that the nitrogen time rate (Nt) is high.
As long as the nitrogen concentration increases, the oxygen is expelled and the nitrogen
time rate decreases. Then:

Nt = Θn, (2)
where n ∈ (0, 1) shall be obtained for each particular case. In the same manner, the oxygen
concentration decreases for increasing nitrogen quantities:

Θt = −Nm. (3)

The expressions (2) and (3) will be referred to as the reaction (Θn) and absorption
(−Nm) in the modelling set of equations

Note that both the nitrogen and oxygen are functions of space and time N(x, t) and
Θ(x, t) for 0 < t < ∞, x ∈ R3 (d = 3, in this case).

Consider a virtual domain within the fuel tank Σ ∈ R3. The mass conservation
principle establishes that the time rate of nitrogen and oxygen concentrations (Nt, Θt) shall
be equal to the concentration flux through the boundaries of Σ (∂Σ) plus the absorption or
reaction that act as independent terms.
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We admit that the vectors ΨN ∈ R3 and ΨΘ ∈ R3 are the concentration fluxes along
the boundary (∂Σ) per unit of area and per unit of time through the borders of the sub-
domain Σ. Consider the vector π ∈ R3 as the normal local at any point of ∂Σ. We admit
that the absorption and reaction terms per unit of time and volume are given by the generic
functions GN(N, Θ, x, t) for the nitrogen and GΘ(N, Θ, x, t) for the oxygen.

Each ΨN , ΨΘ, GN , GΘ is continuous with continuous derivatives. Therefore, for suf-
ficiently continuous initial data, i.e., in the domain, the evolving solutions N(x, t) and
Θ(x, t) are continuous and smooth (Chapter 7 [21]) in virtue of the regular parabolic spatial
operator that adopts the Laplacian form as it will be shown. Then:

∂

∂t

∫
Σ

N dx = −
∫

∂Σ
ΨN · π dA +

∫
Σ

GN(N, Θ, x, t) dx, (4)

∂

∂t

∫
Σ

Θ dx = −
∫

∂Σ
ΨΘ · π dA +

∫
Σ

GΘ(N, Θ, x, t) dx. (5)

The Fick law [21] enables us to account for an expression to the vector fluxes:

ΨN = −ρ∇N − aN, ΨΘ = −σ∇Θ− aΘ. (6)

The diffusion between the two interacting species requires that ρ = σ. Note that the
vector a ∈ R3 introduces the advection term to account for the forced convection within
the fuel tank. Hence:

∂

∂t

∫
Σ

N dx = −
∫

∂Σ
(−ρ∇N − aN) · π dA +

∫
Σ

GN(N, Θ, x, t) dx (7)

∂

∂t

∫
Σ

Θ dx = −
∫

∂Σ
(−σ∇Θ− aΘ) · π dA +

∫
Σ

GΘ(N, Θ, x, t) dx. (8)

Note that:∫
∂Σ
(−ρ∇N− aN) ·πdA =

∫
Σ
∇ · (−ρ∇N− aN)dx =

∫
Ω
(−ρ∇ · (∇N)− a · ∇N)dx, (9)

∫
∂Σ
(−σ∇Θ− aΘ) ·πdA =

∫
Σ
∇ · (−σ∇Θ− aΘ)dx =

∫
Σ
(−σ∇ · (∇Θ)− a · ∇Θ)dx. (10)

So that:

∂

∂t

∫
Σ

N dx = −
∫

Σ
(−ρ∆N − a · ∇N) dx +

∫
Σ

GN(N, Θ, x, t) dx, (11)

∂

∂t

∫
Σ

Θ dx = −
∫

Σ
(−σ∆Θ− a · ∇Θ) dx +

∫
Σ

GΘ(N, Θ, x, t) dx. (12)

The initial concentrations of nitrogen and oxygen are mathematically given by constant
homogeneous distributions, i.e., N0(x) = N0 > 0, Θ0(x) = Θ0 > 0:

N0(x), Θ0(x) ∈ L∞(R3) ∩ L1
loc(R

3). (13)

Considering the above information, the following problem P is formulated:

Nt = ρ∆N + a · ∇N + Θn,
Θt = σ∆Θ + a · ∇Θ− Nm,

0 < n, m < 1
N0(x) > 0, Θ0(x) > 0 ∈ L∞(R3) ∩ L1

loc(R
3).

(14)

The operator’s parabolic regularity ensures the monotone evolution of each of the
involved solutions (referring to Chapter 7 [21]). The decreasing and increasing condition of
the solutions are, then, given by the reaction (increasing) and absorption terms (decreasing).
As a consequence and preliminary, the nitrogen concentration N increases while the
oxygen concentration Θ decreases. Then, and upon evolution, the solutions will satisfy
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N(x, t), Θ(x, t) ∈ L1(R3), which means that the total concentration of each substance
does not blow up in the domain due to the non-linearity proposed in the reaction and
absorption terms.

The problem P was introduced as a baseline model to account for the different terms
involved in the gases dynamics. Now, a new problem is defined accordingly to account
for the asymptotic behaviour of each of the substances. As it will be shown in Section 3.3,
the fuel tank inerting process tends towards stationary values for the oxygen and nitrogen
concentrations. This fact leads to consider travelling waves (TW) solutions connecting
two stationary concentrations, both given by the initial and the asymptotic values. Mathe-
matically, such solutions can be modelled by a Fisher–KPP reaction type. Consequently,
the new problem in the TW domain PT is:

Nt = ρ∆N + a · ∇N −Θn(N − r),
Θt = σ∆Θ + a · ∇Θ− NmΘ,

0 < n, m < 1,
N0(x), Θ0(x) ∈ L∞(R3) ∩ L1

loc(R
3),

(15)

where r ≥ max{N0(x)} is the asymptotic solution to N. If the initial data are constant,
the same condition is expressed as r ≥ N0.

The kinematic boundary condition related to the non-slip suggests that the velocity
variations are located closed to the tank walls, while far from such borders, the described
dynamic behaves free with minor influence of the boundary conditions. In addition, a ded-
icated description of the involved gases kinematic is out of the analysis scope; nonetheless,
the influence and behaviour of the convective effects (through the vector a) are considered,
and particularly, so is the effect of such advection into the gases concentrations (u, v). Thus,
the intention is to study the dynamic associated with the solutions at the core of the domain
(sufficiently large as to consider R3) not affected by the domain borders.

3. Discussions and Results
3.1. Analysis in the Travelling Waves (TW) Domain

Solutions to problem PT (15) tend to equilibrium solutions upon evolution. Such
equilibrium conditions are given by the technological limits and other environmental
variables (see Section 3.3). In addition, note that the increasing monotone behaviour in the
nitrogen leads to Nt > 0 while Θt < 0 for the oxygen that is expelled out of the tank. Then,
the equilibrium condition for the nitrogen is expressed as

N = r > max N0(x). (16)

The oxygen concentration decreases so as to reach an asymptotic value close to the
null equilibrium: Θ→ 0+.

To understand the involved dynamic and permit the analysis of TW evolutions,
the initial conditions are given by a step function of Heaviside type:

N0 = Θ0 = H(−x) ∈ L∞(R3) ∩ L1
loc(R

3). (17)

The main objective is to determine the nitrogen and oxygen concentrations starting
from the given initial data and evolving to the equilibrium solutions in the TW domain.
Note that the step-like initial data permit us to analyse the behaviour for positive and null
initial masses, as both are defined in the x intervals of a Heaviside function, i.e., H(−x) = 0
for x ∈ (0, ∞) and H(−x) = 1 for x ∈ (−∞, 0). Along this section, solutions are obtained
making use of hybrid analytical and numerical evidence.

3.2. TW Profiles

TW solutions are obtained as N(x, t) = ϕ1(ξ) , ξ = x · d−λt ∈ R, where d is a unitary
vector in the TW direction, λ corresponds to the TW-speed and ϕ1 ∈ L∞(R3) ∩ L1

loc(R
3)

is the TW profile. Note that TW profiles are equivalent under translation ξ → ξ + ξ1 and
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symmetry ξ → −ξ. We admit the vector in the TW propagation direction is expressed as
d = (1, 0, 0) ∈ R3 and the TW moves from −∞ to ∞. Hence:

N(x, t) = ϕ1(ξ), Θ(x, t) = ϕ2(ξ), ξ = x− λt . (18)

After replacement and standard operations, the problem (15) reads:

Nt = ϕ′′1 + aϕ′1 − ϕn
2 (ϕ1 − r) = ϕ′′1 + aϕ′1 + ϕn

2 (r− ϕ1),
Θt = ϕ′′2 + aϕ′2 − ϕm

1 ϕ2,
ϕ0

1 = ϕ0
2 = H(−x) ,

Nt = −λϕ′1; Θt = −λϕ′2.

(19)

Note that the TW profile ϕ2 asymptotically tends towards zero whilst keeping the
positivity condition. In addition, ϕ1 increases to r > H(−x), so that (r− ϕ1) > 0. These
particular behaviours will be shown afterwards, but shall be taken into account during the
coming assessments.

A linearisation of (19) close to the equilibrium condition (ϕ1 = r, ϕ2 = 0) is difficult
in general due to the non-Lipschitz character of ϕn

2 . Note that close to the critical point
ϕ2 = 0, ϕn

2 > ϕ2, hence, the following alternative problem is formulated: (19):

ϕ′′1 + (λ + a)ϕ′1 + ϕ2(r− ϕ1) = 0,
ϕ′′2 + (λ + a)ϕ′2 − rm ϕ2 = 0,

ϕ0
1 = ϕ0

2 = H(−x).
(20)

TW profiles resulting from (20) are lower solutions to (19). This statement will be
shown afterwards, but it is relevant to ensure the positivity of any TW profile. Indeed,
any positive solution to (20) will provide evidence to ensure the positivity of any upper
solution in (19).

Considering r− ϕ1 = ϕ̂1, then:

−ϕ̂′′1 − (λ + a)ϕ̂′1 + ϕ2 ϕ̂1 = 0,
ϕ′′2 + (λ + a)ϕ′2 − rm ϕ2 = 0,

ϕ̂0
1 = r− H(−x),
ϕ0

2 = H(−x).

(21)

With the boundary conditions expressing the asymptotic behaviour of solutions:

ϕ̂1 → 0, ϕ2 → 0, ξ >> 1,
ϕ̂1 → r− 1, ϕ2 → 1 r > 1, ξ >> 1.

(22)

The fundamental TW problem consist of finding a positive and monotone profile for a
certain interval of TW speeds. Particularly, solutions are expressed in the proximity of the
equilibrium points ϕ1 = 0 and ϕ2 = 0. When solutions approach the boundary conditions
in (22), a linearisation approach can be followed, so that solutions can be exponentially
expressed as

ϕ̂1 = De−γ1ξ , ϕ2 = Ee−γ2ξ . (23)
Then, (21) reads:

−Dγ2
1e−γ1ξ + (λ + a)γ1De−γ1ξ + DEe−(γ1+γ2)ξ = 0,

Eγ2
2e−γ2ξ − (λ + a)γ2Ee−γ2ξ − Erme−γ2ξ = 0.

(24)

From the second identity, it is possible to find an expression to relate the given speeds
(TW speed and advection terms) with the exponential factor:

γ2 =
λ + a +

√
(λ + a)2 + 4rm

2
. (25)

Similarly, for γ1:

γ1 =
λ + a +

√
(λ + a)2 + 4Ee−γ2ξ

2
. (26)
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Note that for ξ >> 1, the term 4Ee−γ2ξ → 0+, then:

γ1 =
λ + a +

√
(λ + a)2 + 4Eω

2
, ω → 0+. (27)

Observe that the results for γ1 and γ2 establish that the exponential decaying terms
are bigger than the advection and TW-speed terms (λ + a). Hence, any TW profiles evolves
towards the asymptotic equilibrium and this evolution is convergent, independently of the
advection and TW speed terms.

Note that the existence, uniqueness and comparison of solutions to problems (19) and (20)
follow a standard procedure, as proposed in [21] (Chapter 7). Along the following analysis,
a numerical exercise is considered to provide particular forms of TW solutions to problem PT (19).
Furthermore, solutions to (20), close to the critical points (ϕ1 = r, ϕ2 = 0), are effectively
shown to be lower solutions to (19). As solutions to problem (20) are lower compared with
solutions to (19), a monotone (increasing or decreasing) TW profile and tip exist. The numerical
exercise has been pursued with the following features:

• The methodology is based on the Matlab function bvp4c which provides an implicit
Runge–Kutta approach with an interpolant extension [22]. The collocation method
requires the specification of boundary conditions, in this case, given by the stationary
solutions at −∞ and +∞;

• The integration interval is (0, 100), large enough to study the TW evolution in their
domain, and not impacted by the boundary conditions that act as tractors;

• The considered error for computation is 10−6;
• The integration domain has been divided into 100,000 nodes;
• To make the numerical assessment tractable and without loss of generality, particular

values were taken for the involved parameters: r = 2, (a + λ) = 4—and different
values of n and m.

Results are represented in Figures 1–5 with the following remarks:

• Case with n = 0.9 and m = 0.1—according to the results in Figures 1–3, TW profiles
to (20) are lower solutions compared to those for (19). Note that ϕ2m (as solution
to (20)) is positive along the domain. Then, any TW moving with the exponential
decaying term γ2 as per (25) is positive in the whole domain. In addition, we note that
the solutions to (19) are very close to solutions to the linearised (20), which permits
the validation of the goodness of the linearised exercise;

• Similarly, the same exercise is repeated for n = 0.2 and m = 0.9. TW profiles, as solu-
tions to (20), are lower compared with solutions to (19) (refer to Figures 4 and 5). In the
same way, note that solutions to (19) evolve close to solutions for the linearised (20).
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Figure 1. TW profiles for a + λ = 4 with n = 0.9, m = 0.1. For the sake of simplicity, r = 2.
The numerical exercise was performed for an integration interval (0, 100); nonetheless, the interval
was cut for representation purposes. Note that f1 and f2 represent ϕ1 and ϕ2 solutions to (19) while
f1m and f2m are solutions to (20) ..

Figure 2. TW profiles for a + λ = 4 with n = 0.9, m = 0.1. For the sake of simplicity, r = 2. Note the
lower solution ϕ1m as the solution for the problem (20). The numerical exercise was performed for
an integration interval (0, 100); nonetheless, the interval was cut for representation purposes. Note
that f1 and f2 represent ϕ1 and ϕ2 solutions to (19) while f1m and f2m are solutions to (20).
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Figure 3. TW profiles for a + λ = 4 with n = 0.9, m = 0.1. For the sake of simplicity, r = 2. Note the
lower solution ϕ2m as the solution for the problem (20). The numerical exercise was performed for
an integration interval (0, 100); nonetheless, the interval was cut for representation purposes. Note
that f1 and f2 represent ϕ1 and ϕ2 solutions to (19) while f1m and f2m are solutions to (20).

Figure 4. TW profiles for a + λ = 4 with n = 0.2, m = 0.9. For the sake of simplicity, r = 2.
The numerical exercise was performed for an integration interval (0, 100); nonetheless, the interval
was cut for representation purposes.
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Figure 5. TW profiles for a+ λ = 4 with n = 0.2, m = 0.9. Note that the solution to (20) is represented
by f1m in the graph.

To summarize, the TW-speed expressions in (25) and (26) provide positive lower solutions
to the problem (19). This result permits us to ensure that any TW profile to the original
problem (15) is positive upon evolution to the equilibrium conditions N = r and Θ = 0.

3.3. Application to a Fuel Tank Inerting Process

The phenomenon under study is related to the interaction between substances, i.e., the
oxygen and the nitrogen in an aircraft fuel tank to generate an inert gas ullage. The model in
Problem P has three different parameters (n, m, a) that need to be determined, making use
of real flight testing activities. Such flight test data are extracted from [14] and summarized
in Figure 6. Note that for the particular oxygen sampling location, we refer the reader to
the discussion in the sourced reference [14].

The diffusion coefficients between the interacting substances can be considered as
constant during the flight evolution:

ρ = σ = 0.196 cm2/s, (28)

which corresponds to a flight profile at a total environmental (static and dynamic) tempera-
ture of−7 ºC. Note that the diffusion coefficients can be determined at any temperature [23]:

ρT1

ρT2

=

(
T1

T2

)3/2
(29)

where ρT1 and ρT2 are the diffusion coefficients at temperatures T1 and T2 expressed in K.
The calibration exercise to assess the parameters (n, m, a) requires the measurement of

the nitrogen (N) or the oxygen concentration (Θ). Aiming to calibrate on (n, m) and for the
sake of simplicity, the air is assumed to be an homogeneous mixture formed of nitrogen
and oxygen. The flight test data measure the oxygen concentration in the centre tank of
an Airbus A320 [14]. Figure 6 considers the case of an empty tank and one nitrogen gas
generator acting (single membrane).



Appl. Sci. 2021, 11, 5846 10 of 14

Figure 6. Inerting flight test tank oxygen concentration measurements for an empty tank in different
positions (samples). Note that the increase in oxygen concentration at t = 78 min is due to air
ingestion in the fuel tanks during the descent phase (source [14]).

An empty tank is defined as that with low level of fuel and high level of fuel vapours.
It is usual that the inerting system is constituted by several inert gas generators or air
separation modules (ASM). This is important to increase the inerting capacity and reduce
risks. An empty tank has a higher level of oxygen that shall be replaced by nitrogen to
provide an inert condition. In addition, a test case with a single acting ASM is considered,
which means that only one ASM is available to filter the nitrogen and remove the oxygen.
This is conservative and leads to the most demanding configuration for the single inerting
ASM which, in turn, will lead to provide higher lead times to get the inert condition.

The flight test data compiled in Figure 6 are interpreted over homogeneous mean
oxygen values to define the parameters n and m. Hence, the flat problem P is:

Nt = Θn,
Θt = −Nm,

N0 > 0, Θ0 > 0 , 0 < n, m < 1.
(30)

For each time step, the time derivatives Nt and Θt are determined. For this purpose, it
is considered that the substance concentrations are expressed between the interval (0, 1)
and the time is expressed in minutes. Such time derivatives are obtained for different
discrete times and represented versus the concentration of each substance. Afterwards,
the optimal curve fitting is determined as

Nt ∼ Θ0.586. (31)

Therefore, n = 0.586. The same process for Θt provides:

Θt ∼ −N0.025. (32)

Then, m = 0.025. The parameters obtained, based on flight test data, are indeed
between (0, 1), as initially appointed.

Then, the forced convective parameter a is obtained. For this purpose, the basic
continuity equation is used:

a =
G

D AT
. (33)

where G is the inerted gas flow, rich in nitrogen, and D is the air density within the fuel
tank, mainly constituted of nitrogen in stabilized flight. Note that the nitrogen flow is
kept stable during the flight and increases during the descend phase. For the calibration
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exercise, it is considered the flight cruising phase (at t = 40 min), in which the nitrogen
flow value is given by Figure 7:

4.55 SCFM = 0.044 kg/min. (34)

Figure 7. Involved mass flow for the single membrane (only one inerting generator working) flight
test. The cruise phase (stabilized flight) is obtained at t = 40 min and the descent phase starts at
t = 78 min (source [14]).

The gas density (D) is obtained based on the predominant nitrogen and remaining
oxygen. It is considered an average value of 95% of nitrogen and 5% of oxygen during the
cruise phase (stabilized flight):

D = 0.95Dnitrogen + 0.05Doxygen = 0.391 kg/m3. (35)

The A320 centre fuel tank is almost of rectangular shape with a mean height of 1.5 m
and a mean wide of 6 m:

AT = 9 m2. (36)
Then, a can be determined as per (33) a = 0.0125 m/min.
After calibration, the problem P is summarized as

Nt = ρ∆N + a · ∇N + Θn,
Θt = σ∆Θ + a · ∇Θ− Nm,

n = 0.586 m = 0.025 a = 0.0125 m/min,
ρ = σ = 0.196 cm2/s,

N0(x), Θ0(x) > 0 ∈ L1
loc(R

3) ∩ L∞(R3).

(37)

Once the model parameters have been obtained, TW solutions are provided for the
initial concentrations given by the level of nitrogen and oxygen in the standard atmosphere:

N0 = 0.8; Θ0 = 0.2. (38)

The TW solutions are formed of a front and a tip. The front carries the information
transition in the media from one state to the other. This kind of behaviour exhibited can
be applied to the propagation of the nitrogen gas within the fuel tank. The nitrogen TW
constitutes a propagating front that shifts the tank ullage concentration by reducing the
oxygen and increasing the nitrogen.

Note that there exist stationary solutions given by the initial conditions and the asymp-
totic approximation. Such asymptotic solutions are provided by the levels of concentration
admitted by the particular technology employed (see [10] for a description). For this pur-



Appl. Sci. 2021, 11, 5846 12 of 14

pose, it is considered that t = 78 min (according to Figure 6 and previously to starting the
descent phase) is sufficiently large time for the stationary solutions:

N = r = 0.98; Θ = 0.02. (39)

The problem PT , analysed in the travelling wave domain, adopts the form:

Nt = ρ∆N + a · ∇N −Θn(N − 0.98),
Θt = σ∆Θ + a · ∇Θ− NmΘ,

0 < m, n < 1,
(40)

where the parameters n, m, ρ, σ and a are given in (37). In this case, a corrected speed
λ∗ = λ− a is introduced to account for the advection term. Then:

ξ = x− λ∗t. (41)

To determine the TW propagation speed, we first consider that the TW front and tip
move with corrected speed λ∗ = λ− a, so that when the variable ξ = 0, the wave has
propagated along the whole domain:

0 = x− (λ− a)t → x = (λ− a)t. (42)

Once the TW has finished the propagation along the tank, the inerted level corre-
sponding to N = 0.98 is reached. At t = 80 min, the TW has reached all tank areas to
provide the lowest value, measured in flight, for the oxygen concentration. In addition, x is
a typical tank dimension obtained as the geometric mean of the tank shape:

λ =
x
t
+ a =

3.88
80

+ 0.0125 = 0.061 m/min. (43)

After assessing the TW speed, the model (40) is solved with the function bvp4c in
Matlab, as shown in Section 3.2. The results, in the TW variable ξ, are compiled in Figure 8.

Figure 8. Travelling wave solutions. The blue solution represents the evolution of the nitrogen within
the tank evolving from 0.8 (80% in volume) up to filling the whole tank 1 (100%). The red solution
represents the oxygen density that evolves from 0.2 (20% in volume) down to zero. Note that the
horizontal axis represents the variable ξ, while ϕ1 = f1 = N and ϕ2 = f2 = Θ.

The time required to reach a certain level of nitrogen N that ensures an inerted
condition is then obtained. As an example, a concentration of 9% of oxygen in a fuel tank
is sufficient to get the inert status [24]. A value of Θ = 0.09 corresponds to the following
value of ξ (Figure 8):

ξ = 0.004 m. (44)
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To determine the time to inert, we consider that the advection term acts physically in
the same direction as the TW-speed λ. This assumption is realistic as the forced convection
drives the nitrogen to all tank areas where the gas is free to flow. Nonetheless, once the
nitrogen is in complicated tank shapes, it moves by diffusion only. Hence, the forced
convection (a) and the diffusive TW (λ) are summative terms that act to reach the inert
condition in all tank areas (both free paths and difficult geometries). Thus, the time to
obtain the inerted configuration under similar operational conditions compared to the
A320 aircraft is:

t =
x− ξ

a + λ
=

(3.88− 0.004)m
(0.061 + 0.0125)m/min

= 52.7 min. (45)

Globally, at t = 52.7 min, the tank will reach a value of 9% of oxygen in all areas. This
value is overly pessimistic compared to the value provided in Figure 6, in which the value
of 9% of oxygen is obtained at t = 44 min. Nonetheless, the values of oxygen in Figure 6
are only provided for different locations where the oxygen sensors are placed. Therefore,
the modelled value of t = 52.7 min, shall be seen as an approach in which the diffusion
acts as per the travelling wave front and tip to cover the whole domain.

It is particularly relevant to observe that the scale for the tank dimension (x = 3.88 m)
is much higher than the scale of the TW spatial variable ξ. This fact can be explained in
view of the TW features. The front and the tip represent the diffusion acting along the
wave so that ξ represents a dimension of the wave interface where the front and the tip
are confined.

4. Conclusions

The problem PT proposed with a coupled system of reaction diffusion equations to
model an aircraft fuel tank inerting process has been discussed with a mathematical ap-
proach stressing aspects related with the existence, uniqueness and behaviour of solutions
in the travelling wave domain. The application exercise to a centre fuel tank on an Airbus
A320 set the evidence for the use of the problem PT to model inerting processes in aircraft.
The information provided permitted the mathematical representation of the oxygen and
nitrogen concentrations and enabled our understanding of the dynamic of the process
based on a parabolic coupled system of equations.

In addition, finite values for the model parameters n, m and a have been shown to
exist, and furthermore, the combination of such values has been shown to provide global
solutions in the TW frame. Eventually, the model has been shown to provide an answer to
a basic question asked by the engineering and physical application, i.e., the global time
required to ensure a fuel tank is safe (inerted) to prevent explosion due to the presence of
oxygen in the tank ullage.
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