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Abstract

The intention along this article is to characterize Travelling Waves (TW) solutions for
a coupled system with KPP-Fisher non linearity and weak advection. The heterogeneous
diffusion introduces certain instabilities in the TW heteroclinic connections that are explored.
In addition, a weak advection reflects the existence of a critical combined TW speed for
which solutions are purely monotone. The study presented along this paper follows purely
analytical techniques together with numerical exercises used to validate or extent the contents
of the analytical principles. The main concepts treated are related to positivity conditions,
TW propagation speed and homotopy representations to characterize the TW asymptotic
behaviour.
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1 Problem description and objectives

Typically, the models involving spatial diffusion have been considered as coming from simple phys-
ical principles. This is the case of the Fick law that establishes a relation between the variable
flux in a media and the gradient of the variable concentration. The application if such law leads
to the classical gaussian order two diffusion. Nonetheless, in applied areas such as biology, op-
tics, structures or materials, the gaussian diffusion has been extended to account for new ways of
modelling introducing high order diffusion operators. Such operators are currently subjected to
intensive research, as an example, Bonheure and Hamel have shown the De Giorgi’s conjecture for
a fourth order Allen-Cahn equation together with classical solutions bounds [4]. The Allen-Cahn
elliptic equation is used to model stationary bi-stable systems in physics, chemistry or biology.

In some practical cases, the fourth order operators emerge from already known order two
diffusion. As an example, the classical Fisher-Kolmogorov equation was proposed to study the
interaction of different populations in a biological environment:

ut = ∆u+ u− u3. (1)

It has been observed an onset of instabilities near degenerate points given by (1) ([14] and refer-
ences listed there), which led to propose the Extended Fisher-Kolmogorov equation to model the
behaviour of bi-stable systems. These systems can be defined as those with only two uniform states
and a solutions ”travelling” from one stable solutions to the other, either forming a heteroclinic or
homoclininc orbit [8]. In [13] and [5]. Peletier and Troy, on one hand, and Bonheure in the other
hand, showed the existence of oscillatory spatial patterns for the Extended Fisher-Kolmogorov
equations. Additionally, they exhibited examples of oscillating heteroclinic (the author also called
it kinks) and homoclinic orbits (pulses) in the spatial domain. The instabilities were found to be
permanent oscillations, leading to think that there shall be evolution flows hidden by the regularity
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of the second order diffusion. Therefore, the original Fisher-Kolmogorov equation was perturbed
with a fourth order spatial derivative, leading to the Extended Fisher-Kolmogorov equation:

ut = −γ∆2u+ ∆u+ u− u3, (2)

where ∆2 is the bi-laplacian operator.
In the classical sense, the Extended Fisher-Kolmogorov equation requires solutions to have con-

tinuous derivatives up to the fourth order. One can think, preliminary, that oscillating functions
(such as sine, cosine or a combination of both) may be appropriate candidates to constitute solu-
tions. Peletier and Troy showed the existence of oscillating solutions [13]. In addition and making
use of a development in the exponential bundle of solutions, Rottschäfer and Doelman, showed the
nature of such oscillations [14].

A previous work [12] developed a set of analysis about the existence of minimal heteroclinic
orbits for a class of fourth order ODE systems (not necessarily cooperative) with variational struc-
ture. In the present analysis, we develop hetereclinic orbits for a cooperative system within the
PDE theory and making use of analytical and numerical evidences to account for solution profiles
in the Travelling Waves domain. In addition, the analysis focuses on the construction of exponen-
tial bundles of solutions that are represented through homotopy graphs. To illustrate the relevance
of the exponential bundles of solutions, recently, Dang [7] has provided a general method on the
complex plane to analyze exponential solutions (and others rational and elliptic) for the (2+1)-
dimensional, the ( 3 + 1 )-dimensional Boiti-Leon-Manna-Pempinelli equations and the ( 2 + 1
)-dimension Kundu-Mukherjee-Naskar equation. In addition in [3], the author studies Travelling
solutions to the non-local Fisher-KPP equation considering only the kernels for which the spatially-
uniform steady state u = 1 is stable. Further, the search of waves propagation for a damped wave
equation has been explored in [2] for a fractional Laplacian with nonlinear source. The existence
of solutions is assessed based on Galerkin approximations combined with the potential well theory
to show the decay behaviour of solutions. Along the presented analysis, such decay behaviour is
presented within the Travelling Waves solutions and exponential bundles. In addition, it is the
intention to search for the most appropriate TW-solution with positivity and homogeneous con-
vergence towards stationary solutions. In this sense, some previous works shall be mentioned. In
[16], the authors develop multiscale methods and asymptotic analysis to understand the homoge-
nization in domains with heterogeneous strips. With the same intention, an analysis in [19] aims
to characterize homogeneous processes in heterogeneous reaction-diffusion environments. In [17],
compactness criteria are employed to characterize the homogenization of a diffusion-convection
equation with divergence-free velocities. Further, some applications to other disciplinary subjects
of homogenizing techniques in heterogenous porous media can be consulted in [18] and [20] that
illustrate the relevance of the topic.

Fourth order operator equations have been assessed by Lyapunov stability approaches [1], in
which the existence of bifurcation branches for even, periodic solutions in both the Swift–Hohenberg
and extended Fisher–Kolmogorov equations have been considered. During the present analysis,
we use the homotopy analysis in stead of pure Lyapunov methods.

The high order operator induces a set of instabilities in the proximity of the stationary solu-
tions. Recently, Dı́az and Naranjo [9] have shown the oscillating behaviour of self-similar solutions
and have characterized regions of positivity for a class of high order cooperative system with no
advection. This work permits to introduce insights on the instabilities shown by spatially inho-
mogeneous structures when they are modeled by diffusion (see [15] and references there in for
further details). Particularly, it is the intention to characterize the propagation features of the
heteroclinic orbits connecting two spatially homogeneous solutions anticipated by the cooperative
system formulation. Note that cooperativeness shall be understood as the synergistic collaboration
between species to prosper and grow in a territory. Our observations will be made in the travelling
wave domain, and mainly, in the travelling waves fronts and tips where the transition involving
exponential bundles of solutions happen. The set of equations can be summarized as (Problem Q):

ut = −uxxxx + ε ux + u(a− u) + v,
vt = −vxxxx + ε vx + v(b− v) + u,

(3)

where ε ∈ R and sufficiently small, with initial conditions

u0(x); v0(x) ∈ X = L1(R) ∩ L∞loc(R), x ∈ R. (4)
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The minus sign before the fourth order derivative term is introduced to account for a regular
asymptotic stable system. As discussed such degenerate diffusion aims to introduce oscillatory
patterns close the equilibrium so as to model a centre manifold (in the sense of oscillatory) be-
haviour. The terms v and u in the u-equation and the v-equation forcing terms respectively account
for the coupled cooperation between species. The advection is introduced to account for a certain
preferred direction in the space, for instance a direction of food and/or shelter.

It is to be noted that terms u(a− u) and v(b− v) have been dealt previously, for a single order
two diffusion equation, by Kolmogorov, Pretrovskii and Piskunov leading to classical and so-called
KPP problem of order two [11]. The KPP term is typical in biological systems (also called Allee
effect) to model the birth, growth and death in species.

This analysis pretends to go beyond existence and uniqueness, providing some solutions profiles
obtained by a combination of numerical and analytical methods. Furthermore, this study provides
a stability analysis in the Traveling wave domain by homotopy representations.

2 Study in the Traveling Waves (TW) domain

2.0.1 Existence and Travelling Waves estructure

The TW formulation for problem Q (3) consists on operating in the TW variable (y) and profiles
(f, g), given by the following expressions [10]:

u(x, t) = f(y); v(x, t) = g(y),
y = x− λ0t,

(5)

where λ0 is the propagation speed.
The system (3), then, reads as

(λ0 + ε)f ′ = f (4) − f(a− f)− g, (λ0 + ε)g′ = g(4) − g(b− g)− f. (6)

Call λ = λ0 + ε.
The TW formulation is subjected to the pseudo-boundary conditions:

f(−∞) = 1; f(∞) = 0,
g(−∞) = 1; g(∞) = 0.

(7)

Firstly and aiming the understanding of basic TW profiles features, we enunciate the following
lemma:

Lemma 2.1. The traveling waves moves from y → −∞ to y →∞. In other words, the wave speed
λ is positive.

Proof. Multiplying the first equation in (6) by f ′, the second one by g′ and integrating by parts
(Note the calculations are presented only for the first equation):

−λ(f ′)2 = −f (4)f ′ + aff ′ + f ′g − f2f ′, (8)

such that:∫
f (4)f ′ = f ′f (3) −

∫
f (3)f (2) = f ′f (3) −

(
f (2)f (2) −

∫
f (2)f (3)

)
= f ′f (3) − f (2)f (2) +

∫
f (2)f (3) = f ′f (3) − f (2)2 + f ′f (3) −

∫
f (4)f ′.

(9)

Each of the involved integrals needs to be assessed with certain conditions at −∞ and ∞ to be
specified: ∫

f (4)f ′ =
1

2
(2f ′f (3) − f (2)2). (10)

The integral is assessed between −∞ and +∞, where we admit the following approximations:

f ′(−∞) = f (2)(−∞) = f (3)(−∞) = 0,

f ′(∞) = f (2)(∞) = f (3)(∞) = 0.
(11)
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Therefore: ∫ ∞
−∞

f (4)f ′ = 0. (12)

We continue assessing the next involved integral:

∫
ff ′ = ff −

∫
ff ′, (13)

such that: ∫ ∞
−∞

ff ′ =
1

2

[
f2
]∞
−∞ =

1

2

[
f2(∞)− f2(−∞)

]
=

1

2
[0− 1] = −1

2
. (14)

The process is followed for the next integral involved:∫
f ′g = fg −

∫
fg′. (15)

In the assessment of the previous integral, we are interested on determining the sign character
rather than a precise value. The cooperative state makes the solutions to evolve closely upon
selection of an appropriate value in the TW-speed (See Figures 1 to 5 obtained upon numerical
assessments). Then, assume that close the equilibrium conditions at −∞ and ∞ the following
holds

∫
f ′g ∼

∫
fg′. Returning to (15) :∫ ∞
−∞

f ′g ∼ 1

2
(f(∞)g(∞)− f(−∞)g(−∞)) ∼ 1

2
(0− 1) ∼ −1

2
. (16)

And finally, we repeat the same integration by parts for the last of the integrals involved:∫
f2f ′ = f2f −

∫
2ff ′. (17)

Note that the integral on right has been already assessed in (14). Then:

∫ ∞
−∞

f2f ′ =
[
f2f

]∞
−∞ − 2

∫ ∞
−∞

ff ′ = (0− 1)− 2

(
−1

2

)
= 0. (18)

The compilation of the assessed integrals yields:

−λ
∫

(f ′)2 ∼ 0− 1

2
a− 1

2
, (19)

λ ∼
1
2 (a+ 1)∫

(f ′)2
. (20)

Considering a > 0, immediately λ > 0. The same process can be followed for the second equation

of (6) to obtain:

λ ∼
1
2 (b+ 1)∫

(g′)2
. (21)

And considering b > 0, λ > 0 as well.

To further characterize the TW existence, the system in (6) is converted into a linear system
by the standard change of variables:

f = f1 g = g1
f ′ = f ′1 = f2 g′ = g′1 = g2

f ′′ = f ′′1 = f ′2 = f3 g′′ = g′′1 = g′2 = g3

f (3) = f
(3)
1 = f ′′2 = f ′3 = f4 g(3) = g

(3)
1 = g′′2 = g′3 = g4

f (4) = f ′4 = λf2 + af1 + g1 − f21 g(4) = g′4 = λg2 + bg1 + f1 − g21

(22)
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Figure 1: TW solutions for λ = 0.5 (left) and λ = 1 (right). Note that both solutions f, g are
superposed and represented by the blue line. Note that the advection term ε << λ0 ∼ λ.

This can be expressed as: 

f1
f2
f3
f4
g1
g2
g3
g4



′

=



f2
f3
f4

λf2 + af1 + g1 − f21
g2
g3
g4

λg2 + bg1 + f1 − g21


(23)

Note that the partial derivatives with respect to fi and gi for i = 1, 2, 3, 4 of each component
on the right hand vectorial function in (23) are continuous which is needed to ensure the Lipschitz
condition. In addition and to support the global existence of TW profiles f, g, the cooperative
system in (6) is solved with a numerical algorithm.

One of the key questions to answer is whether it exists a minimal TW speed, λ, such that
solutions are stable in the proximity of the stationary solutions. The minimal speed existence,
for which non-oscillating behaviour is given, is common to the KPP order two problems [11].
Nonetheless, for higher order systems, it is not possible to ensure the existence of a minimal speed
with a monotone decay at infinity, due to the existence of oscillating behaviour. Following the
KPP order two philosophy [11], this minimal speed is the critical speed at which any oscillation in
the solution vanishes. Nonetheless, in this case, as we are dealing with fourth order operators, this
is not guaranteed being a notable difference compared to the KPP models involving a second order
parabolic operator. Thus, if a minimal speed is not guaranteed, we can search for other common
property of the TW profiles in the KPP order 2 problems. In particular, when the TW moves at
the minimal-critical speed, the solution is positive everywhere for all y ∈ R. Our target can be
translated into finding a suitable value of the TW-speed for which the first minimum in y > 0 is
positive. Nonetheless, we cannot ensure the positivity of the solution for y ∈ R as the natural
instabilities in the high order operator impedes the possibility of a maximum principle.

The estimation of a TW-speed, at which the first minimum in y > 0 is positive in (6), is done
via a numerical algorithm. The numerical analysis has been done over a sufficiently large y inter-
val [−1000, 1000] to avoid the influence of the pseudo-boundary conditions (7) in the integration
domain. The relative and absolute errors for each iteration has been considered as 10−6 and the
number of nodes varies from 104 to 105. Additionally, the numerical results provide the evidence
related with the global structure of the both f, g for different values of the TW speed λ.

Firstly, the TW-speed λ is assumed to be equal for both solutions f, g in which the condition
a = b is considered. Previous to any formal proof, Figures 1 and 2 suggest that the oscillatory
character of the TW decreases for increasing values of λ. This property is common with the KPP-2
problems [11].

Conjecture 2.1. Let consider a = b in the set of equations (6) and that the TW-speed is
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Figure 2: TW solutions for λ = 1.5 (left) and λ = 2.394 (right). Note that both solutions f, g are
superposed and represented by the blue line. Note that the advection term ε << λ0 ∼ λ.

common to both solutions f, g. Let define the set M as:

M = {y ∈ R, f(y) =
1

2
}, (24)

representing the location of the TW front along the y axis and let define

m = {y > M, f ′ = 0, f ′′ > 0}, (25)

expressing a set whose elements locate the minimum points in solution f(y) beyond the TW-front
(i.e. in the TW-tail). In these conditions there exist a value of λ for which f(min(m)) > 0. This
value for λ represented by λf(min(m))>0 has been sharply estimated to be λf(min(m))>0 = 2.394

Note that the conjecture is postulated based on the numerical evidences results presented in
Figure 3.

The Conjecture 2.1 is particularly relevant and expresses some analogy with the minimal TW-
speed (λmin) typical of the TW associated to the KPP problems of second order [11]. In the high
order case, we cannot directly consider the minimal TW-speed, nonetheless, we have shown the
existence of an equivalent λf(min(m))>0 in the cooperative system. Indeed, the most remarkable
difference between the KPP-2 (KPP order two) TW and the cooperative system with a high
order operator relays on the fact that we shall change the concept of finding a λmin by finding
a λf(min(m))>0. For a KPP-2 TW moving at λmin, the profile does not oscillate as the second
order profiles changes from the sub-critical solution to the critical one [11]. In the fourth order
cooperative system, we use the concept of λf(min(m))>0, for which we know that the oscillatory
behavior is observed in the TW-tail when y >> 1 (See figure 3). This is a common behavior to all
high-order parabolic operators. Thus, we have found a λf(min(m))>0 for which, in an appropriate
inner region (inner compared to y >> 1), it is possible to express the high order TW profile in a
similar manner as done in the KPP-2 problem.

Note that the results obtained, up to now, consider that both TW profiles f, g move with
the same speed λ. It is considered, now, the possibility of different TW-speeds resulting in the
following cooperative system:

−λ1f ′ = −f (4) + f(a− f) + g,
−λ2g′ = −g(4) + g(b− g) + f.

(26)

We keep on the philosophy of finding suitable TW-speeds (in this present case different for
f, g) for which the conditions f(min(m)) > 0, g(min(m)) > 0 hold. The property of finding
λf(min(m))>0 and λg(min(m))>0 for each TW profile (f, g) is now more subtle. We start by assuming
that λ1 = 2.394 and we try to answer the following question:
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Figure 3: TW solutions for (λ = 2.394) with a zoom to show the oscillatory sing-changing character
in the TW-tail. Note that both solutions f, g are superposed and represented by the blue line

Figure 4: TW solutions for different values of TW-speeds: λ1,f(min(m))>0 = 2.394, λ2,g(min(m))>0 =
2.437 (left), λ1 = 2.394 and λ2 = 3.5 (right). Note that in this last case the first minimum of both
TW is negative

Is there an interval in λ2 for which there exist λ1,f(min(m))>0 and λ2,g(min(m))>0?

To answer this question, the cooperative system has been numerically modeled. The following
proposition in the form of conjecture compiles the numerical evidences:

Conjecture 2.2 Given λ1,f(min(m))>0 = 2.394, the TW-speed λ2,g(min(m))>0 associated to the
TW-profile (g) can only vary in the interval given by [2.145, 2.437].

Admit the following discussion to support the Conjecture 2.2 enunciation. Consider that a =
b in the set of equations (6). The proof of this proposition is given in Figure 4 (left). It is
convenient to highlight that there exists TW profiles for other λ2 > λ2,g(min(m))>0 = 2.437 and
λ1 > λ1,f(min(m))>0 = 2.394 (See Figures 4 (right) and 5 as examples), nonetheless these profiles
are oscillatory from the first minimum.

Now, the intention is to explore the effect of the advection term over the positivity regions in the
TW characterization. To this end, admit that the ε ∼ λ0, i.e. the advection is considered to interact
significantly with the TW propagation. As a consequence, consider λ1 = λ0,1 + ε, λ2 = λ0,2 + ε,
then:

min{λ1 − λ0,1 , λ2 − λ0,2}, (27)

while keeping positivity in the first minimum as described in Figure 4.
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Figure 5: TW solutions for different values of TW-speeds: λ1 = 5 and λ2 = 3.5 Note that in this
case the first minimum of both TW is negative.

2.1 Travelling waves Homotopy discussion

In the asymptotic case with y → ∞, the cooperative system (6) can be linearized, leading to the
following expression: 

f1
f2
f3
f4
g1
g2
g3
g4



′

=



f2
f3
f4

λ1f2 + af1 + g1
g2
g3
g4

λ2g2 + bg1 + f1


(28)

Firstly, to simplify the operations involved and without loss of generality, we consider a = b = 1.
The linearization exercise permits to represent the system (28) by making use of the first order
system autonomous matrix::

f1
f2
f3
f4
g1
g2
g3
g4



′

=



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
a λ1 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 b λ2 0 0





f1
f2
f3
f4
g1
g2
g3
g4


(29)

Or equivalently:
F ′ = A(a, b, λ1, λ2)F. (30)

The parametric analysis in the matrix A is very complex as it involves four parameters over a

eighth order matrix. Thus, we will consider some specific values for the parameters involved,
so that we account for a sufficient set of evidences to determine the asymptotic behaviour as
y → ∞. Additionally, the fact of having linearized, resuling in the matrix A, permits to proceed
via homotopy graphs to further determine the behaviour of the exponential bundles associated to
the matrix A eigenvalues.

8



Figure 6: Eigenvalues of the matrix A for λ = 0 and λ = 1.

Figure 7: Eigenvalues of the matrix A for λ = 15 and λ = 60.

Case 1: a = b = 1; λ1 = λ2 = λ.

For this case, the characteristic polynomial of A for different values of λ reads as:

λ = 0; µ8 − 2µ4 = 0,
λ = 1; µ8 − 2µ5 − 2µ4 + µ2 + 2µ = 0,
λ = 15; µ8 − 30µ5 − 2µ4 + 225µ2 + 30µ = 0,
λ = 60; µ8 − 120µ5 − 2µ4 + 3600µ2 + 120µ = 0,

(31)

For a generic λ the characteristic polynomial of the matrix A reads:

µ8 − 2λµ5 − 2µ4 + λ2µ2 + 2λµ = 0. (32)

We represent now the polynominal solutions for different values in λ to check the homotopy evo-
lution starting from λ = 0. The results are summarized in the following lemma.

Lemma 2.2. A) For any λ > 0, the linearized system (28) (obtained in the limit with y → ∞)
with a = b = 1 and λ1 = λ2 = λ presents a 6-D stable family of solutions (corresponding to two
pairs of complex conjugate, one constant and one real negative eigenvalues); and a 2-D unstable
family of solutions (corresponding to two different real solutions).

B) The eigenvalues tend to accumulate into four different clusters with increasing distance
among them when λ → ∞. One cluster is formed by the two eigenvalues with Re < 0, Im > 0,
another cluster with Re < 0, Im < 0 and another one with Re > 0, Im = 0, (See figure 7 with
λ = 60 and figure 8 with λ = 100 and λ = 1000).

C) There exists the null eigenvalue for any value of λ.
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Figure 8: Eigenvalues of the matrix A for λ = 100 and λ = 1000.

Proof. The determination of the eigenvalues in the matrix (29) provides the existence of complex
eigenvalues which introduce oscillatory bundles in the proximity of the null critical point. This
feature is common to all high order operators ([6] and references therein) and expresses the difficulty
to determine a pure monotone TW at a suitable speed λ 6= 0).

Under Lemma 2.2, it is possible to check that the oscillatory solutions cannot be avoided for a
suitable value of the TW-speed λ. Even further, one can check by a careful look to Figures 6, 7
and 8 that the imaginary parts of the complex eigenvalues increase when the TW-speed increases.

Case 2: For any a 6= b and λ1 = λ2 = λ.

The characteristic polynomial for the matrix A adopts the following structure:

µ8 − 2λµ5 − (a+ b)µ4 + λ2µ2 + (aλ+ bλ)µ+ (ab− 1) = 0. (33)

In this case ab 6= 1, the null eigenvalue is not a solution of (33) as in the case when ab = 1.
Again, the asymptotic behaviour of solutions is obtained for particular values of the parameters
a, b and λ due to the difficulty of performing a parametric root analysis in (33).

Note that, with the aim of understanding the different solution bundles for different actual
values of a, b and λ, we analyze firstly if the equation (33) has a pure imaginary root of the form
µ = ki for λ 6= 0 and k 6= 0 ∈ R:

k8 − 2λk5i− (a+ b)k4 − λ2k2 + (aλ+ bλ)ki+ (ab− 1) = 0, (34)

rearranging terms:

k8 − (a+ b)k4 − λ2k2 + (ab− 1) + (−2λk5 + (aλ+ bλ)k)i = 0. (35)

From the imaginary part, the two real solutions k = (a+b
2 )

1
4 and k = −(a+b

2 )
1
4 are obtained.

Substituting the first root into the real part we arrive to the following equation:(
a+ b

2

)2

− (a+ b)
a+ b

2
− λ2

(
a+ b

2

) 1
2

+ (ab− 1) = 0, (36)

(
a+ b

4

)2

+ λ2
(
a+ b

2

) 1
2

− (ab− 1) = 0. (37)

In the limit with a→ 0 the following equations holds:

J(a, b) =

(
b

4

)2

+ λ2
(
b

2

) 1
2

+ 1 = 0, (38)
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Figure 9: Homotopy graph for λ = 2 and different values for a, b. Note that the complex conjugate
eigenvalues converge to the imaginary axis

Figure 10: Homotopy graph for λ = 2 and different values for a, b. Note that the complex conjugate
eigenvalues converge to the imaginary axis

which has not positive real roots (b > 0). One can check, after doing the first derivative, that the
equation (38) is always positive for b > 0.

On the opposite side, if we consider values for both a→∞ and b→∞, the leading term in (37)
is the product ab, therefore the function J(a, b) evaluated under these circumstances is negative.

Given the positivity of the function J(a, b) for sufficiently small values of a and b, the negativity
of the same function for sufficiently high values of a, b and the continuity properties, it can be
concluded the existence of a combination of a, b satisfying the condition J(a, b) = 0. Given such
values for (a, b); the imaginary solution is given by

k =

(
a+ b

2

) 1
4

. (39)

The existence of such pure imaginary solution in (37) can be further characterized by representing
the homotopy graph for a fixed random value of the TW- speed (assumed to be λ = 2). Figures
9, 10 and 11 confirm, indeed, the existence of such pure imaginary root in (37) for a → ∞ and
b→∞.

In addition, and for λ = 0 the homotopy graph presents pure imaginary solutions. See Figure
12.

The following lemma aims to compile the different results obtained for a 6= b.

Lemma 2.3. A) For λ = 0, there exists four imaginary and for real eigenvalues of (37). In this
case, there exists a 2D stable bundle of solutions and a 6D unstable.

B) For λ 6= 0 and for sufficiently large values for a, b, the homotopy graph converges to four
imaginary solutions and four real solutions. Therefore, we can conclude that for large values of a
and b the behaviour of the solution bundles is similar to the case with λ = 0.
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Figure 11: Homotopy graph for λ = 2 and different values for a, b. Note that the complex conjugate
eigenvalues converge to the imaginary axis

Figure 12: Homotopy graph for λ = 0 and different values for a, b. Note that the complex conjugate
eigenvalues converge to the imaginary axis
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Figure 13: TW for a = 1, b = 2, λ = 0.01 (left) and associated homotopy graph. Note that the
advection term ε << λ0 ∼ λ. (right)

Proof. Given two particular values of a and b, with the same order, we characterize the TW-
solutions for different values of λ without loosing of generality. Any condition in which a >> b or
b >> a is already covered by the case B in Lemma 2.3.

The oscillatory character of the solutions f, g increases with λ → 0. Figure 13 represents the
evolution of a TW for a sufficiently small value of λ together with the homotopy diagram. The
eigenvalues satisfying Re < 0 has Re → 0. The consecutive figures give the evolution of the TW
and the homotopy graph for different values of the TW-speed.

For λ → ∞ and a 6= b in the same order a � b, the homotopy graph tends to dense and
converges to four eigenvalues with the following properties:

• Two eigenvalues densing to a homotopy point with Re < 0 and Im > 0.

• Two eigenvalues densing to a homotopy point with Re < 0 and Im < 0.

• Two eigenvalues densing to a homotopy point with Re > 0 and Im = 0.

• Two eigenvalues densing to a homotopy point with Re→ 0 and Im→ 0.

Case 3: For any a 6= b and λ1 6= λ2.

Figure 14: TW evolution and Homotopy graph for a = 1, b = 2, λ = 5
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Figure 15: TW evolution and Homotopy graph for a = 1, b = 2, λ = 100

Figure 16: TW evolution and Homotopy graph for a = 1, b = 2, λ1 = 0.1 and λ2 = 100

The analysis considers the case with a = 1, b = 2 and different values for λ1 6= λ2 within the
same order of magnitude and with substantially different order of magnitudes.

The case with a = 1 and b = 2 is analyzed considering two TW-speed cases: The case with
λ1 = 0.1 and λ2 = 100 is represented in figure 16 and the case with λ1 = 100 and λ2 = 0.1 in the
figure 17.

The homotopy graphs, for this third case, are formed by two eigenvalues with Re > 0 and
Im = 0 (Unstable) and six eigenvalues with Re < 0.

3 Conclusions

The objectives highlighted in relation with the searching, finding and characterisation of TW
profiles have been proposed based on analytical and numerical evidences. The main question
related with the existence of TW speeds for which the natural instabilities of the four order operator
are minimized has been answered. This fact has permitted to extend the classical concept of TW
speed for order two diffusion as done by the KPP models [11]. The weak advection term has been
shown to be bounded by the own TW propagation speeds determined so as to keep positivity in
the first minimum. In addition, the homotopy representation has permitted to characterize the
TW tail in the proximity of the stationary solutions in the cooperative system Q and to determine
the asymptotic behaviour of TW solutions via homotopy analysis.
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Figure 17: TW evolution and Homotopy graph for a = 1, b = 2, λ1 = 100 and λ2 = 0.1

4 Conflict of Interest

The author states that there is no conflict of interest.

5 Data availability

Data is made available upon request.

References

[1] Beardmore, R.E., Peletier, M.A., Budd, C.J. Wadee, M.A. (2005). Bifurcations of Periodic
Solutions Satisfying the Zero-Hamiltonian Constraint in Reversible Differential Equations.
SIAM Journal on Mathematical Analysis, vol. 36, no. 5, pp. 1461-28.

[2] Bidi, Y., Beniani, A., Zennir, K. Himadan, A. (2021). Global existence and dynamic struc-
ture of solutions for damped wave equation involving the fractional Laplacian: Demonstratio
Mathematica, 54(1), 245-258. https://doi.org/10.1515/dema-2021-0022

[3] Billingham, John. (2020). Slow travelling wave solutions of the nonlocal Fisher-KPP equation.
Nonlinearity. 33. 2106-2142. 10.1088/1361-6544/ab6f4f.

[4] Bonheure, D., Hamel, F. (2017). One-dimensional symmetry and Liouville type results for the
fourth order Allen-Cahn equation in RN . Chin. Ann. Math. Ser. B 38, 149–172.

[5] Bonheure, D (2006) Heteroclinics Orbits for some classes of second and fourth order differential
equations. Handbook of differential equations. Chapter in Handbook of differential equations:
Ordinary differential equations.

[6] Chavez, M. and Galaktionov, V. (2001) Regional blow up for a higher-order semilinear
parabolic equation. Euro. Jnl of Applied Mathematics vol 12, pp. 601-623.

[7] Dang, G. (2021). Meromorphic solutions of the (2 + 1)- and the (3 + 1)-dimensional
BLMP equations and the (2 + 1)-dimensional KMN equation. Demonstratio Mathematica.
54: 129–139.

[8] Dee, G.T. and Van Sarloos, W. (1998). Bistable systems with propagating fronts leading to
pattern formation. Physical Review Letter Vol 60.

[9] Dı́az, J.L. and Naranjo, A. (2021) Existence, uniqueness and positivity on a free-boundary
high order diffusion cooperative system. Results in Applied Mathematics. Vol 11, 100170. DOI:
//doi.org/10.1016/j.rinam.2021.100170.

15



[10] Galaktionov, V. (2012). Towards the KPP–Problem and Log-Front Shift for Higher-Order
Nonlinear PDEs I. Bi-Harmonic and Other Parabolic Equations. Cornwell University
arXiv:1210.3513.

[11] Kolmogorov, A.N.: Petrovskii I.G. and Piskunov N.S. (1937). Study of the diffusion equation
with growth of the quantity of matter and its application to a biological problem. Byull.
Moskov. Gos. Univ., Sect. A, 1.

[12] Panayotis, S. (2018). Minimal heteroclinics for a class of fourth order O.D.E. systems. Non-
linear Analysis. Volume 173, 154-163.

[13] Peletier, L.A. and Troy, W.C.(2001). Spatial Patterns. Higher order models in Physics and
Mechanics. Progress in non linear differential equations and their applications. Volume 45.
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