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Abstract—Ultra-wideband (UWB)-based techniques, while be-
coming mainstream approaches for high-accurate positioning,
tend to be challenged by ranging bias in harsh environments.
The emerging learning-based methods for error mitigation have
shown great performance improvement via exploiting high se-
mantic features from raw data. However, these methods rely
heavily on fully labeled data, leading to a high cost for data
acquisition. We present a learning framework based on weak
supervision for UWB ranging error mitigation. Specifically,
we propose a deep learning method based on the generalized
expectation-maximization (GEM) algorithm for robust UWB
ranging error mitigation under weak supervision. Such method
integrate probabilistic modeling into the deep learning scheme,
and adopt weakly supervised labels as prior information. Exten-
sive experiments in various supervision scenarios illustrate the
superiority of the proposed method.

Index Terms—UWB radio, ranging error mitigation, weakly
supervised Learning, generalized expectation-maximization algo-
rithm, deep learning

I. INTRODUCTION

Location-awareness has been playing an increasingly es-
sential role in the new generation of wireless networks [1],
[2], wherein centimeter-level precise positioning is required.
Among the related approaches, Ultra-wideband (UWB)-based
technique has continued too attract most of the research
interest due to the wide bandwith of more than 500 MHz
in the 3.1− 10.6 GHz band [3]. However, its performance is
often degraded in harsh environments due to multipath effects
[4] and non-line-of-sight (NLOS) conditions [5].

Extensive error mitigation techniques have been proposed
based on both statistical models and learning techniques [6],
[7]. Conventional model-driven methods mainly use a simpli-
fied propagation model [8] or manually extracted features [9],
[10]. Such models and features are often inefficient to derive
and can hardly reflect signal characteristics in complex envi-
ronment [11], [12]. Deep learning (DL) methods, on the other
hand, learn high semantic features from signals efficiently
and in turn can achieve significant performance improvements
[13]–[17]. These methods require large amount of labeled data,
where both the received signals and their corresponding rang-
ing error are known. As a result, the scarcity of labeled data
has become a severe issue for developing efficient and robust
solutions. The acquisition of fully and accurately labeled data,
especially for many wireless localization scenarios, is often
infeasible and at great cost of time, man-hour and money.

Fig. 1. Illustrations of the proposed generative model for received signals.
Instead of only considering mapping between signal and range measurement,
we add in the environment label as the latent variable.

In contrast to the labeled data, unlabeled data are much
easier to obtain while also convey helpful modeling informa-
tion [18]. Several semi-supervised learning techniques have
been developed in the world of wireless network applica-
tions, including Wi-Fi based localization [19], [20], smart city
services [21], tracking mobile users [22], etc. These works
develop efficient and relatively more robust learning solutions,
which both extract high semantic features and require less
labeling effort by exploiting both labeled and unlabeled data.
While greatly ease the data collection process, the supervision
scenario these methods consider is still limited from covering
the potential situations of data supervision in practical use.

We consider a border scenario with respect to data super-
vision, known as weak supervision [18], [23]. Such scenario
includes incomplete, inexact, and inaccurate labeling for data
samples, which often occur at the same time in data ac-
quisition. We propose a deep generative network based on
the generalized expectation-maximization algorithm for UWB
ranging error mitigation, which enables weakly supervised
learning with coarsely labeled training data. Such method
integrates the generalized expectation-maximization (GEM)
algorithm into deep learning techniques and obtains error
estimation with the help of Bayesian inference. Specifically,
the weak supervision is considered to include three categories:
1) incomplete supervision where only a subset of training data
is given with labels; 2) inexact supervision where the training
data are given with coarse-gained noised labels; 3) inaccurate
supervision where the given labels are not well paired to the
given samples. All of them suit well the conception of prior



knowledge for a Bayesian model. Therefore, the observed
waveform together with the unobserved environment label are
viewed as the complete data in the statistic model. The ranging
error, accordingly, is modeled as the unknown parameter
obtained by the maximum likelihood estimate (MLE) over the
complete data. The weakly supervised labels (i.e., incomplete
or coarse), in turns, are modeled to provide prior information.
Two sub neural modules, referred to as E-Net and M-Net,
are adopted to conduct the GEM algorithm in an end-to-
end manner. During training, E-Net estimate the environment
label while M-Net utilize raw received signal as well as
the estimation from E-Net to accomplish the ranging error
estimation.

Our contributions are summarized as follows:
• We present a Bayesian model for UWB ranging error

mitigation. The model inherits a transparent interpretation
and is flexible to scale to different environments.

• We propose a deep generative network based on the GEM
algorithm, which combines benefits from both sides and
conducts efficient ranging error mitigation on UWB data.

• Our framework is the first investigation that extends DL-
based error mitigation methods to the weak supervision
paradigm, which greatly reduce the effort in data collec-
tion.

• The proposed method based on weakly supervised data
contains competitive results against conventional methods
with fully supervised data.

The remaining sections are organized as follows. Section
II introduces the problem statement and the proposed GEM
framework. Section III introduces the implementation of the
proposed method in deep learning, consisting of neural mod-
ules to conduct the two steps and the parametric objective
function for efficient learning. Experimental results on two
different datasets are illustrated in Section IV, with comparison
to several conventional methods. Finally, a conclusion and
future focus can be found in Section V.

II. MODEL FORMULATION

A. Problem Statement

In a harsh environment with obstacles and reflecting sur-
faces, the received signal at the agent can be written as follows,

r(t) =
∑
l

αls(t− τl) + z(t), t ∈ [0, T ] (1)

where s(t) is a known wideband waveform, αl and τl are the
amplitude and delay, respectively, of the lth path, z(t) is the
observation noise, and [0, T ] is the observation interval. We
will denote r(t) as r for convenience in the rest of the paper.
The relationship between the true distance d and the delays of
the propagation paths is:

τl = 1/c(d+ bl) (2)

where c is the propagation speed of the signal, and bl ≥ 0 is a
range bias. Mostly, the range bias bl = 0 for LOS propagation,
whereas bl > 0 for NLOS propagation. Suppose dM is the

measured distance by the UWB device, the target of mitigation
is to estimate the range bias in the specific path and remove
from the measurement dM.

Suppose the ranging error is denoted by ∆d, where ∆d =
dM − d. In the following we will show a GEM framework for
efficient learning of the estimation of ranging error ∆d given
the received signal r.

B. GEM Framework

We take the actual ranging error ∆d as the unknown
parameter to be estimated. From an aspect of MLE, the target
is to estimate ∆d that maximizes log p(∆d|r). However, such
distribution is hard to obtain due to the complicated prop-
agation environment. Instead, we introduce the environment
label k for the latent variable, and estimate p(k|r) together
with p(∆d|k, r) alternatively. The procedures are conducted by
the generalized expectation-maximization (GEM) algorithm.
Such environment label can be the LOS or NLOS conditions,
different geometric rooms, or different blocking materials for
the received signal. The MLE of ∆d is then conducted on
complete data (r, k), i.e., log p(∆d|r, k).

With the complete data being (r, k) and unknown parameter
being ∆d, the estimation of ranging error can be obtained
from the MLE of the parameter by maximizing the marginal
likelihood of the observed data r. Such likelihood can be
written as:

log p(r|∆d) ≥Eq(k)

[
log

p(∆d|k, r)
p(∆d)

]
−DKL

(
q(k)

∣∣∣∣p(k|r))
+ log p(r)

:=F(q,∆d; r)
(3)

where DKL is the Kullback-Leibler divergence. The inequality
in the second line is obtained from the Jensen’s inequality,
achieving equality iff q(k) = p(k|r). The inequality in
equation (12) can be obtained as follows,

log p(r|∆d) = log
∑
k

q(k)
p(r, k|∆d)

q(k)

≥
∑
k

q(k) log
p(∆d|k, r)p(k|r)p(r)

q(k)p(∆d)

=Eq(k)

[
log

p(∆d|k, r)
p(∆d)

]
−DKL

(
q(k)

∣∣∣∣p(k|r))
+ log p(r)

:=F(q,∆d; r)
(4)

The GEM algorithm seeks to find the estimation by itera-
tively applying the following two steps:

• Expectation step (E-step)

q(n) = argmax
q

F(q,∆d(n); r) (5)

• Maximization step (M-step)

∆d(n+1) = argmax
∆d

F(q(n),∆d; r) (6)



To fulfill the formulation of the objective function in
Eq.(12), p(∆d) and p(k|r) can be given by prior knowledge,
while expressions for p(∆d|k, r) and q(k) are required. Since
these distributions are hard to be approximated by model
knowledge, we adopt techniques from deep learning to ac-
cumulate knowledge from data. Specifically, we utilize neural
networks as well as datasets labeled with actural ranging error
as environment labels to learn their analytical forms.

III. DEEP LEARNING IMPLEMENTATION

In conventional cases of GEM, the two steps are con-
ducted alternatively by optimizing the analytical solution of
F(q,∆d; r). However, it is hardly possible in our case as
the distribution of waveform data is complicated due to the
high dimensionality. Instead of making assumptions on the
distributions to reduce the complexity, we construct a neural
network to learn the optimization for the two steps. The
network structure is illustrated in Fig.2.

A. Weakly Labeled Dataset

Suppose we are given a weakly labeled dataset D =
{r(i), k̄(i),∆d̄(i)}Ni=1 with N i.i.d. sample pairs, where k̄(i)

denotes the label for ith environment index, and ∆d̄(i) denotes
the label for ith ranging error. Both labels are of weak
supervision. In particular, these labels are coarsely gained and
not always ground-truth. The specific values of these labels
could be ground-truth with noise, randomly mismatched values
for other samples, and at default. We take these weak labels
to construct prior knowledge for the GEM framework.

Let k̂(i) and ∆d̂(i) denote the according estimated environ-
ment label and ranging error.

B. Neural Modules

In E-step, the optimization of q is conducted via learning k̂
by the E-Net with parameter ϕ, i.e.,

k̂(i) = fϕ(r
(i)) ∼ q(k) (7)

where fϕ(·) : r → k denotes a vector-valued function
parameterized by ϕ, mapping from the observed data r to
the latent data k.

In M-step, the estimation of the ranging error ∆d̂ is obtained
by the M-Net with parameter θ, i.e.,

∆d̂
(i)

= gθ(r
(i), k̂(i)) (8)

where gθ(·) : r → ∆d denotes a vector-valued function
parameterized by θ, mapping from the observed data r to the
unknown parameter ∆d.

The back-propagation (BP) algorithm for deep learning can
avoid the dead-lock problem of the simultaneous optimization
over the latent data distribution and unknown parameter, and
hence merge the two-step GEM into a whole end-to-end
learning network without further alternation. Therefore, the
objective function of the end-to-end network with three neural
modules can be expressed as:

ϕ,θ = argmax
ϕ,θ

F̄(ϕ,θ; r). (9)

C. Parametric Objective Function

The optimization for network learning requires the objective
function to be differentiable w.r.t. parameters ϕ and θ. There-
fore, we derive the analytical version of the GEM objective
in Eq.12. Since the last term log p(r) remains constant, we
derive the analytical forms for the first two terms.

The optimization of the first expectation term
Eq(k)

[
log p(∆d|k,r)

p(∆d)

]
can be conducted via a MSE loss

between ranging errors given

Lexp(φ,θ; r
(i),∆d̄(i)) = ∥∆d̄(i) −∆d̂(i)∥2

= ∥∆d̄(i) −∆gθ(k
(i), r(i))∥2

(10)

The optimization of the second KL term
−DKL

(
q(k)

∣∣∣∣p(k|r)) can be conducted by the cross-
entropy loss between label distributions given as

Lkl(φ; r
(i), k̄(i)) =−

K∑
j=1

p(k
(i)
j ) log qφ(kj |r(i))

=H(p(k(i))||q(k|r(i)))

(11)

where the variational distribution qφ(k
(i)) is learned by the

network with parameter φ, which can be simply done by
empirically calculating the frequency of the output of the. The
prior p(k(i)|r) is estimated empirically from the weak labels
k̄(i) from the dataset.

Therefore, we achieve the analytical version of the GEM
objective in Eq.12 by combining Eqs.(11)-(10), which is dif-
ferentiable w.r.t. parameters φ and θ for the back-propagation
(BP) algorithm for network learning.

F̄(φ,θ; r(i), k̄(i),∆d̄((i))) =Lexp(φ,θ; r
(i),∆d̄(i))

+ Lkl(φ; r
(i), k̄(i))

(12)

Since the BP algorithm can avoid the dead-lock problem of
the simultaneous optimization over the latent data distribution
and unknown parameter, the two-step GEM can be unfolded
to an end-to-end learning network without further alternation.
The optimization on dataset {r(i), k̄(i),∆d̄

(i)}Ni=1 can be con-
ducted with the network structure in Fig.2, expressed as:

φ,θ = argmax
φ,θ

N∑
i=1

F̄(φ,θ; r(i), k̄(i),∆d̄(i)). (13)

IV. EXPERIMENTS

Suppose the values of the environment label k ∈ {0, 1} in
our case, where 0 refers to the LOS condition and 1 refers
to the NLOS condition. The proposed method, referred to
as GEM for convenience, is discussed with different weak
supervision scenarios and compared to baseline method to
illustrate the effectiveness and superiority.



Fig. 2. Network structure of the proposed method, consisting of an E-Net to approximate the distribution of unobserved environment label and a M-Net to
estimate the unknown ranging error. The network parameters, ϕ and θ respectively, are guided by the GEM algorithm on a weakly labeled dataset.

TABLE I
QUANTITATIVE RESULTS OF METHODS UNDER DIFFERENT SUPERVISION

RATE ηK AS FREEZING ηE = 0.8.

METHODS RMSE (M) MAE (M) TIME (MS)

UNMITIGATED 0.428 0.291 -
SVM [24] 0.286 0.175 4.915

GEM (ηk = 0.4) 0.135 0.074 1.643
GEM (ηk = 0.6) 0.132 0.073 2.368
GEM (ηk = 0.8) 0.134 0.072 2.621
GEM (ηk = 1.0) 0.123 0.072 0.983

TABLE II
QUANTITATIVE RESULTS OF METHODS UNDER DIFFERENT SUPERVISION

RATE ηE AS FREEZING ηK = 0.8.

METHODS RMSE (M) MAE (M) TIME (MS)

UNMITIGATED 0.428 0.291 -
SVM [?] 0.286 0.175 4.915

GEM (ηe = 0.4) 0.288 0.167 2.122
GEM (ηe = 0.6) 0.220 0.122 1.999
GEM (ηe = 0.8) 0.134 0.072 2.621
GEM (ηe = 1.0) 0.109 0.056 2.045

A. Database

We compare the performance of our models with other
methods on a public UWB database [13], consisting of the
received waveforms, LOS or NLOS condition labels, and
the actual ranging errors recorded in different indoor envi-
ronments. The dataset is created using SNPN-UWB board
with DecaWave DWM1000 UWB pulse radio module and
generated in two different office environments. In the first
environment, two adjacent office rooms with connecting hall-
way is considered, where 4800 measurements in the first
room and 5100 measurements in the second. The second
environment was a different office environment where multiple
rooms, including 25100 measurements in total. The waveform

is represented as the absolute value of CIR, with the length
of 152. We assign 80% of the data samples for training and
the rest 20% for testing, without overlapping between the two
sets.

B. Data Processing and Baseline

We test the algorithm under both weak and full supervision.
For the full supervision case, the fully labeled dataset from
the database is used, i.e. Dfull = {r(i), k̄(i),∆d̄(i)}Ni=1 with N
i.i.d. sample pairs, where k̄(i) denotes the actual label for ith
environment index, and ∆d̄(i) denotes the actual label for ith
ranging error.

For the weak supervision case, we synthesize a weakly
labeled dataset Dweak from Dfull. Specifically, suppose the
dataset consists of N labeled samples Mk samples with weak
environment labels, and Me samples with weak error labels.
The weak label here refers to incomplete, inexact, or inaccu-
rate cases. We define the supervision rate of environment label
k and error label ∆d as

ηk =
N

Mk +N

ηe =
N

Me +N

(14)

We randomly pollute the data labels with ηk and ηe by
deleting, adding noises, and substituting values with other
labels. The proposed method is evaluated under different
supervision rates, i.e., ηk, ηe ∈ {0.2, 0.4, 0.6, 0.8, 1.0}.

The classic Support Vector Machine (SVM) method is uti-
lized as baseline method for ranging error mitigation, trained
on the full supervised dataset with physical features extracted
from the waveform, as suggested in [11], [24]. It can be seen
that the proposed method conducts efficient error mitigation
under different supervision rates, and still outperforms SVM
even with weak supervision.

C. Results under Different ηk

While supervision rate ηe = 0.8 is frozen, the proposed
method implemented with different supervision rate ηk are
compared. Quantitative results are shown in Table I, in terms
of root mean square error (RMSE), the mean absolute error



(a)

(b)

Fig. 3. The CDFs of the residual errors (remaining errors in range measure-
ments after mitigation) after different mitigation methods under supervision
rate (a) ηk = 0.4, ηe = 0.8, and (b) ηk = 0.8, ηe = 0.8. It can be seen that
the proposed method outperforms SVM in both cases. The performance of
the proposed method is rather robust to the supervision of environment label
k, with a slight improvement with higher supervision rate ηk.

(MAE), and inference time. It can be seen that methods under
all supervision rates successfully mitigate the ranging error
to some extend. Methods with the higher ηk achieves better
performance in error mitigation, while the performance rise
w.r.t. ηk is not tremendous. This implies that the proposed
method can efficiently generate information from unlabeled
data samples, especially the inherent information in envi-
ronment label k. Thus, the proposed method can achieve a
satisfactory performance with a more simple dataset weakly
labeled in k with a rate at around 0.4.

D. Results under Different ηe

While supervision rate ηk = 0.8 is frozen, the proposed
method implemented with different supervision rate ηe are
compared. Quantitative results are shown in Table II, in terms
of RMSE (m), MAE (m), and inference time (ms). It can
be seen that methods under all supervision rates successfully
mitigate the ranging error to some extend. Methods with the

higher ηe achieves better performance in error mitigation,
while the performance rise w.r.t. ηe is more obvious compared
to k. This implies that the proposed method can efficiently
generate information from unlabeled data samples for ranging
error information. However, the method is more sensitive to the
supervision of ranging error ∆d than k. Thus, the proposed
method can achieve a satisfactory performance with a more
simple dataset weakly labeled in ∆d with a rate at around
0.6.

It is worth noting that, almost all the results of the proposed
method outperform SVM. This indicates the superiority of
learning-based features to hand-crafted features for ranging
error mitigation. In addition, the proposed method can exploit
the weakly labeled dataset efficiently, while SVM requires
fully labeled dataset.

E. CDF Plots for Residual Ranging Error

(a)

(b)

Fig. 4. The CDFs of the residual errors (remaining errors in range measure-
ments after mitigation) after different mitigation methods under supervision
rate (a) ηk = 0.8, ηe = 0.4, and (b) ηk = 0.8, ηe = 0.8. It can be seen that
the proposed method outperforms SVM in both cases, while its performance
is significantly improved with higher supervision rate ηe for ranging error
labels.



We additionally compare the ranging error mitigation per-
formance in terms of the cumulative distribution function
(CDF) for residual ranging errors (i.e., the remaining errors
in range measurements after mitigation) under different super-
vision rates, illustrated in Fig.3-4.

The CDFs of the proposed methods with baseline method
under different ηk for environment label are shown in Fig.3.
It can be seen that SVM trained in a fully supervised manner
conducts effective error mitigation, while the proposed method
outperforms it by a significant margin under both weak su-
pervision rates for ηk. While raising ηk from 0.4 to 0.8, the
performance of the proposed method has a relatively slight
improvement.

The CDFs of such methods under different ηe for ranging
error labels are shown in Fig.4. It can be seen that the
proposed method also outperforms the fully-supervised SVM
a significant margin under both the considered rates for ηe.
Moreover, the performance of the proposed method has an
observable improvement by raising ηe from 0.4 to 0.8,.

By comparison between the two figures, the proposed
approach achieves good results in both cases, while appears
to be more sensitive to the supervision on ηe than ηk. This
phenomenon is consistent with the intuition that environment
label k takes place as a latent variable to give extra model-
ing information, while ranging error label ∆d serves as the
ultimate estimation target.

V. CONCLUSION

We proposed a weakly supervised learning approach based
on GEM algorithm for UWB ranging error mitigation. The ap-
proach embedded the signal propagation model in a Bayesian
framework, and enabled both efficient and robust estimation of
the ranging error. The combination of statistic modeling and
deep learning is benefited from both flexibility and efficiency,
and enjoys the novelty of conducting such problem in the
weak supervision scheme. Although the method is proposed
for UWB techniques, it provides a promising methodology
for embedding Bayesian modeling in DL techniques, potential
to benefit a wide range of learning problems involving a
complicated process with latent variables. Future work would
be focused on a more flexible framework on radio signal
processing, integrating multiple related tasks in a unified
Bayesian model.
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