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Mathematical models play an important role in epidemiology. The inclusion of a spatial component in epidemiological models is
especially important to understand and address many relevant ecological and public health questions, e.g., when wanting to
differentiate transmission patterns across geographical regions or when considering spatially heterogeneous intervention
measures. However, the introduction of spatial effects can have significant consequences on the observed model dynamics and
hence must be carefully analyzed and interpreted. Cellular automata epidemiological models typically rely on simplified
computational grids but can provide valuable insight into the spatial dynamics of transmission within a population by suitably
accounting for the connections between individuals in the considered community. In this paper, we describe a stochastic cellular
automata disease model based on an extension of the traditional Susceptible-Infected-Recovered (SIR) compartmentalization of
the population, namely, the Susceptible-Hospitalized-Asymptomatic-Recovered (SHAR) formulation, in which infected
individuals either present a severe form of the disease, thus requiring hospitalization, or belong to the so-called mild/
asymptomatic class. The critical transmission threshold is derived analytically in the nonspatial SHAR formulation, and this
generalizes previously obtained theoretical results for the SIR model. We present simulation results discussing the effect of key
model parameters and of spatial correlations on model outputs and propose an algorithm for tracking the evolution of infection
clusters within the considered population. Focusing on the role of import and criticality on the overall dynamics, we conclude
that the current spatial setting increases the critical transmission threshold in comparison to the nonspatial model.

1. Introduction

Infectious diseases have shaped the global population
throughout history, and (whether through devastating
epidemics or recurrent outbreaks of endemic diseases) they
have been—and often still are—responsible for a large number
of deaths worldwide. The ongoing COVID-19 pandemic has
certainly brought significant attention to the important contri-
bution that mathematical modeling can have in monitoring
the spread of infectious pathogens across a population, in
better understanding its underlying mechanisms, and in
exploring the effects of possible control measures aimed at
containing the transmission of the considered disease (and
possibly eradicating it from the observed population).

While the foundations of modern epidemiology based on
compartmental models were laid in the first few decades of
the 20th century, thanks to the work of public health physicians
such as Ross, Hamer, McKendrick, and Kermack [1], the last
100 years have seen incredible advances in the field that were
made possible also by the advent of computers and modern-
day computational resources. The rapid increase in computer
power of the last few decades has in fact allowed us to tackle
many problems that were previously considered intractable
and to simulate numerically complex systems across the entire
spectrum of scientific disciplines, testing various working
hypotheses and making predictions in many different hypo-
thetical scenarios. This is true also in epidemiological modeling,
where modern computers and high-performance simulations

Hindawi
Computational and Mathematical Methods
Volume 2022, Article ID 3304532, 14 pages
https://doi.org/10.1155/2022/3304532

https://orcid.org/0000-0002-4477-5639
https://orcid.org/0000-0002-1373-1334
https://orcid.org/0000-0001-9315-5586
https://orcid.org/0000-0001-8354-9944
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/3304532


allow the rapid analysis of the detailed models often required in
order to provide quantitatively accurate predictions for the
design of suitable public health policies.

Probably themost famous compartmental model in epide-
miology is the SIR model [2]. In this formulation, individuals
in the population belong to one of three mutually exclusive
categories: susceptibles (individuals that have never been
exposed to the pathogen causing the disease), infected individ-
uals (the ones who have been exposed to the pathogen, becom-
ing ill, and are capable of transmitting it), and recovered (the
ones who have gone through the infection, recovering with a
certain degree of immunity)—hence the SIR name for the
model. The temporal evolution of the number of individuals
in each disease-related category is described mathematically
via a set of three ordinary differential equations involving
three rates describing the probability of susceptible individuals
becoming infected, of infected individuals to fight off the
disease and recover, and of recovered individuals to become
susceptible once again, that is, the so-called infection, recov-
ery, and waning immunity rates, respectively.

This model and its many variations (SI, SIS, SEIR, etc.)
give the basic framework for the vast majority of epidemiolog-
ical models found in the literature, and as such, they have been
analyzed in detail and extensively used to describe disease
transmission dynamics in many contexts (e.g., [3–5] just to
name a few). These classical models can be further refined in
order to address disease-specific questions or according to
the availability of data, for example, by including multiple
strains of the same type of virus (see, e.g., [6–11]) and by sub-
dividing the population into groups according to age or the
risk of contracting the disease (e.g., [12–15] and references
therein). Adding stochasticity is also an important aspect that
might be key in correctly describing observed transmission
patterns, especially when population size is small or in general
when the number of infectious individuals is low [16, 17].

While explicitly including a spatial component in an epi-
demiological model could be an unnecessary complication
to answer certain ecological and public health questions,
some degree of spatial resolution is essential when wanting
to differentiate transmission patterns across geographical
regions [18] or when considering spatially heterogeneous
intervention measures [19].

In this work, we consider the SHAR extension of the SIR
compartmental model and develop a cellular automata sto-
chastic formulation to explicitly account for spatial effects in
the considered framework. We discuss the role of import
and study the behavior of the system in various parametric set-
tings, determining the critical transmission threshold analyti-
cally in the nonspatial formulation and exploring the effect
of spatial correlations on the more general spatiotemporal
model. Finally, we introduce the concept of infection clusters
and investigate their evolution (in terms of the amount of clus-
ters present in the system as well as their individual size) as a
function of different parameter combinations.

2. The SHAR Model

The SHAR model is an extension of the well-known SIR
framework in which the I class is divided into two groups

labeled H and A, respectively: H stands for individuals
developing a severe form of the disease and likely being hos-
pitalized, while A refers to infected individuals who are
asymptomatic or have a mild form of the disease. The model
dynamics is described by the following reaction scheme:

S +H⟶
ηβ

H +H,

S +H ⟶
1−ηð Þβ

A +H,

S + A⟶
ϕηβ

H + A,

S + A ⟶
ϕ 1−ηð Þβ

A + A,

S⟶
ρηβ

H,

S ⟶
ρ 1−ηð Þβ

A,

H, A⟶
γ

R,
R⟶

α
S:

ð1Þ

In addition to the infection rate β, the recovery rate γ,
and the waning immunity rate α (already present in the gen-
eral SIR formulation), the SHAR approach includes two
extra epidemiological parameters: the severity ratio η that
gives the fraction of infected individuals who develop severe
symptoms and the scaling factor ϕ, which differentiates the
infectivity ϕβ of mild/asymptomatic infections with respect
to the baseline infectivity β of severe/hospitalized cases
[20]. The value of ϕ can be tuned to describe different situa-
tions: a value of ϕ < 1 indicates that severe cases have larger
infectivity than mild cases (which in the case of an infectious
respiratory disease, for example, could be linked to enhanced
coughing and sneezing), while ϕ > 1 would be used to
describe the scenario in which asymptomatic individuals
and mild cases contribute more to the spread of the infection
(e.g., due to their higher mobility and possibility of interac-
tion) than severe cases (that are more likely to be detected
and isolated). Here, we also consider the import factor ρ
which refers to the possibility of susceptible individuals con-
tracting the disease via an undetected infection chain which
started outside the studied population [21, 22].

The stochastic SHAR epidemic with import is modeled
as a time-continuous Markov process to capture population
noise. The temporal dynamics for the probability pðt, S,H,
AÞ of having at time t an integer number S of susceptible,
H hospitalized, and A asymptomatic can be described by
the following master equation [23]:

d
dt

p t, S,H, Að Þ = ηϕ
β

N
S + 1ð ÞAp t, S + 1,H − 1, Að Þ

+ 1 − ηð Þϕ β

N
S + 1ð Þ A − 1ð Þp t, S + 1,H, A − 1ð Þ

+ η
β

N
S + 1ð Þ H − 1ð Þp t, S + 1,H − 1, Að Þ

+ 1 − ηð Þ β
N

S + 1ð ÞH p t, S + 1,H, A − 1ð Þ

+ βηρ S + 1ð Þp t, S + 1,H − 1, Að Þ
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+ β 1 − ηð Þρ S + 1ð Þp t, S + 1,H,A − 1ð Þ
+ γ A + 1ð Þp t, S,H, A + 1ð Þ
+ γ H + 1ð Þp t, S,H + 1, Að Þ
+ α N − S − 1ð Þ −H − Að Þp t, S − 1,H, Að Þ

−
β

N
S H + ϕA + ρNð Þ + γ A +Hð Þ

�

+ α N − S −H − Að Þ
�
p t, S,H, Að Þ, ð2Þ

where the number of recovered individuals follows from
the constant population size assumption R =N − ðS +H + AÞ.

From the definition of the mean values

Sh i tð Þ = 〠
N

S=0
〠
N

H=0
〠
N

A=0
Sp t, S,H, Að Þ,

Hh i tð Þ = 〠
N

S=0
〠
N

H=0
〠
N

A=0
Hp t, S,H, Að Þ,

Ah i tð Þ = 〠
N

S=0
〠
N

H=0
〠
N

A=0
Ap t, S,H, Að Þ,

ð3Þ

we can derive dynamic equations for the averages. For exam-
ple, for the mean susceptible population, we derive

d
dt

Sh i tð Þ = 〠
N

S=0
〠
N

H=0
〠
N

A=0
S
d
dt

p t, S,H, Að Þ, ð4Þ

and then insert the master equation (2) on the right-
hand side. By using the so-called mean-field approximation
[24] (essentially assuming that the covariance between vari-
ables is negligible and hence approximating the second order
moments as follows: hSHi ≈ hSihHi and hSAi ≈ hSihAi), and
by suitably incorporating boundary modifications of Equa-
tion (2) for the cases in which S,H, A ∈ f0,Ng, we obtain
the mean-field ODE system for the SHAR model

dS
dt

= αR − β
S
N

H + ϕA + ρNð Þ,
dH
dt

= ηβ
S
N H + ϕA + ρNð Þ − γH,

dA
dt

= 1 − ηð Þβ S
N

H + ϕA + ρNð Þ − γA,

dR
dt

= γ H + Að Þ − αR,

ð5Þ

where we have not included the h·i to simplify notation.

2.1. The SHAR Model with Import around the Critical
Threshold. Let x = ðH, AÞT (where H and A could either be
the variables of the deterministic SHAR model or the
mean-field approximations of the corresponding stochastic

system) and assuming abundance of susceptibles (i.e., S/N
≈ 1), then we can rewrite in vector form the equations
for the dynamics of the infected classes of Equation (5)
as follows:

dx
dt

=Mx + v, ð6Þ

where the matrix M and the vector v are defined,
respectively, as

M =
ηβ − γ ηϕβ

1 − ηð Þβ 1 − ηð Þϕβ − γ

" #
,

v =
η

1 − η

" #
βρN:

ð7Þ

The steady-state x∗ = ½H∗,A∗�T of Equation (6) is
nothing but x∗ = −M−1v, where the matrix M−1 can be
explicitly computed via straightforward calculations as

M−1 = 1
γ γ − β η + ϕ 1 − ηð Þð Þð Þ

1 − ηð Þϕβ − γ −ηϕβ

− 1 − ηð Þβ ηβ − γ

" #
,

ð8Þ

leading to

H∗

A∗

" #
= βρN
γ − β η + ϕ 1 − ηð Þð Þ

η

1 − η

" #
: ð9Þ

The eigenvalues of the matrix M are

λ1 = β η + ϕ 1 − ηð Þð Þ − γ,
λ2 = −γ,

ð10Þ

so that community transmission is controlled (and
hence, the steady-state x∗ is an asymptotically stable equi-
librium) for values of β below the critical threshold

βc =
γ

η + ϕ 1 − ηð Þ : ð11Þ

The nonlinear dependence of βc on η and ϕ for a fixed
value of γ is illustrated in Figure 1, highlighting that dif-
ferent parametric combinations could lead to the same
value of βc, but the main underlying modeling assump-
tions in terms of the scaling parameter ϕ would be pre-
served (in fact, for η < 1, there are no combinations
ðη, ϕÞ with ϕ > 1 giving the same value of βc as any com-
bination of ðη, ϕÞ with ϕ < 1).

In these settings, letting ~I
∗ =H∗ + ϕA∗, we observe that

~I
∗ = β

βc − β
ρN , ð12Þ
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thus generalizing the critical threshold result obtained
for the SIR model with import [25]. Notice that, rather than
considering the asymptotic number of infected I∗ =H∗ + A∗

, in order to generalize previous results on the SIR model, we
had to suitably rescale A by the ϕ parameter. However, I∗

can also be written in compact form as

I∗ =
~β

βc − β
ρN , ð13Þ

with ~β = βðη + ϕð1 − ηÞÞ, and hence, its qualitative
dependence on the import term remains unchanged.

Figure 2(a) shows 100 realizations (obtained by using the
Gillespie algorithm [26]) of the stochastic SHAR model in
the subcritical regime (β < βc). Figure 2(b)) shows the limit-
ing case of community spreading at criticality β = βc, where
we can see a linear growth of infections, while in Figure 2(c),
an exponential increase of cases is observed for supercritical
community spreading with β > βc.

This transition of the dynamics from subcritical to
supercritical regimes is also illustrated in Figure 3, where
the mean-field solution is plotted for different values of β
both in natural and log-log scales. Note that throughout
the manuscript, we use days, labelled by d, as time units
for the proposed simulations. However, d could be changed
as to represent any relevant time unit of interest (which
would be typically dictated by the time scale on which
real-life data for model validation would be available).

3. The Spatial SHAR Model

In this section, we present the spatial version of the stochas-
tic SHAR model. Let us consider a lattice consisting of N
sites, each of which is occupied by an individual and labelled
by the indicators Si,Hi, Ai ∈ f0, 1g, according to its state.
Each site, i, can either have a susceptible (Si = 1, Hi = Ai =

0), hospitalized (Hi = 1, Si = Ai = 0), asymptomatic (Ai = 1,
Si =Hi = 0), or recovered (Si =Hi = Ai = 0). Notice that there
is no need to explicitly introduce the indicator Ri since in the
present settings, Ri = 1 − Si −Hi − Ai. The state vector for the
system is thus given by ðS1,H1, A1,⋯, Si,Hi, Ai,⋯, SN ,HN ,
ANÞ. Let J be the lattice adjacency matrix with entries Jij = 1,
if sites i and j are connected, and Jij = 0 otherwise. From the
matrix J and any given state configuration, the following
quantities of interest can be straightforwardly computed: the
number of neighbors to site i, Qi =∑N

j=1 Jij, the number of

infected neighbors to site i, ∑N
j=1 JijðHj + AjÞ, and the force of

infection to site i, β∑N
j=1 JijðHj + ϕAjÞ.

The adjacency matrix J gives the “neighboring” structure
of the lattice. Although different network structures can be
considered [27], it is known that the particular choice of
lattice structure does not make much difference on the “uni-
versality” property of the system [28]. In general, in two-
dimensional lattices, interactions are considered with the
nearest 4 (Von Neumann neighborhood) or 8 (Moore neigh-
borhood) neighboring lattice sites, as illustrated in Figure 4
for a 5 × 5 lattice. In our present study, we will consider
Von Neumann neighborhoods and apply periodic boundary
conditions so that Qi = 4 for all i.

The reaction scheme for the spatial SHAR model is

Si +Hj ⟶
ηβ

Hi +Hj,

Si +Hj ⟶
1−ηð Þβ

Ai +Hj,

Si + Aj ⟶
ηβϕ

Hi +Hj,

Si + Aj ⟶
1−ηð Þβϕ

Ai +Hj,

Si ⟶
ηβρ

Hi,
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Figure 1: Critical threshold surface βc as a function of η and ϕ for constant γ = 0:05. (a) Surface βc in three-dimensional space and (b)
corresponding contour diagram. For fixed η < 1, βc decreases for increasing ϕ, while for fixed ϕ, the behavior of βc as a function of η
depends on whether ϕ is greater than, equal to, or smaller than one.
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Si ⟶
1−ηð Þβρ

Ai,

Hi,Ai ⟶
γ

Ri,

Ri ⟶
α

Si, ð14Þ

where the processes involving contagion between indi-
viduals within the considered population may only occur

when sites i and j are connected. The master equation for
the stochastic spatial SHAR model with import is given by

d
dt

p t, S1,H1, A1,⋯, Si,Hi, Ai,⋯, SN ,HN , ANð Þ

= 〠
N

i=1
βη ρ + 〠

N

j=1
Jij H j + ϕAj

� � !
Hi p t, S1,H1, A1,⋯, 1ð

"

− Si, 1 −Hi, Ai,⋯, SN ,HN , ANÞ + β 1 − ηð Þ
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Figure 2: Ensemble of stochastic realizations and the analytic mean field solution for infected H + A in the SHAR model. Here, N = 2 · 106
with initially 2 infected (one hospitalized and one asymptomatic), γ = 0:05 d−1, α = 0 d−1, η = 0:4, ϕ = 0:5, ρ = e−12. The infection rate β varies
from subcritical to supercritical regimes with (a) β = 0:9βc, (b) β = βc, and (c) β = 1:1βc.
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Figure 3: Mean-field solution for infected H + A for different values of β in (a) natural scale and (b) log-log scale. From bottom to top β
= 0:95βc, β = 0:99βc, β = βc, β = 1:01βc, and β = 1:05βc.
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· ρ + 〠
N

j=1
J ij Hj + ϕAj

� � !
Ai p t, S1,H1, A1,⋯, 1ð

− Si,Hi, 1Ai,⋯, SN ,HN , ANÞ
+ γ 1 − Si −Hi − Aið Þp t, S1,H1, A1,⋯, Si, 1 −Hi, Ai,⋯, SN ,HN , ANð Þ

+ γ 1 − Si −Hi − Aið Þp t, S1,H1, A1,⋯, Si,Hi, 1 − Ai,⋯, SN ,HN , ANð Þ

+ αSi p t, S1,H1, A1,⋯, 1 − Si,Hi, Ai,⋯, SN ,HN , ANð Þ
#

− 〠
N

i=1
β ρ + 〠

N

j=1
J ij Hj + ϕAj

� � !
Si + γ Hi + Aið Þ + α 1 − Si −Hi − Aið Þ

#"

× p t, S1,H1, A1,⋯, Si,Hi, Ai ⋯ , SN ,HN , ANð Þ: ð15Þ

3.1. Critical Threshold. In Section 2, the critical threshold for
the stochastic SHAR model was obtained analytically from
the mean-field approximation, see Equation (11). In the
spatial case, the problem is much more challenging and
since we do not have an analytical expression for this thresh-
old, we must rely on numerical methods, which are often
computationally expensive.

To get a first insight into the spatial dynamics, let us
consider the one-dimensional SHAR process in which each
lattice site is connected to its nearest neighbors. Using peri-
odic boundary conditions, we can essentially think about a

ring lattice (a network in which each node is connected to
its 2 nearest neighbors, i.e., Qi = 2 for all i). Figure 5 shows
three different realizations of the SHAR process on a lattice
of size N = 100. Each pixel row of the given plots shows
the spatial configuration of the considered one-
dimensional system at a given time point, while time
increases from top to bottom. In all cases, we start from an
entirely susceptible population (green) with one hospitalized
individual in the center of the lattice and run the simulation
up to the final time 1000 d. Hospitalized individuals are
shown in red, and asymptomatic cases are yellow, while
recovered are blue. The set of parameter values for these
simulations is γ = 0:05 d−1, α = 0 d−1, η = 0:4, ϕ = 0:5, and ρ
= e−12, while β = 0:1 d−1 in Figure 5(a), β = 1 d−1 in
Figure 5(b), and β = 2 d−1 in Figure 5(c). We can see that
for the smallest value of β considered here, only a few infec-
tions occur (only asymptomatic for the particular realization
shown in Figure 5(a)) before extinction, but for increasing
values of β, larger outbreaks take place and import also starts
to play a role (see the small outbreak generated by import
towards the end of the simulation shown in Figure 5(c)).

For the two-dimensional case, let us consider a popula-
tion of N = 62500 individuals distributed in a 250 × 250
square lattice, once again adopting a Von Neumann neigh-
borhood with periodic boundary conditions. The population
is assumed to be entirely susceptible at the beginning, except
for one initial infected individual located in the center of the
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Figure 4: Schematic representation of a two-dimensional 5 × 5 lattice. (a) and (b) (resp., (c) and (d)) show the edges connecting neighboring
sites according to the Von Neumann (resp., Moore) neighborhood and the sparsity pattern of the corresponding adjacency matrix for the
considered lattice.
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lattice. Parameter values are γ = 0:05 d−1, α = 0 d−1, η = 0:4,
ϕ = 0:5, and ρ = e−12, as in the simulations for the nonspatial
model of Section 2. Figures 6 and 7 show four snapshots in
time of a single realization of the spatial SHAR system for
two different values of the infection rate, namely, β = 0:071

d−1 and β = 0:1 d−1, respectively. In both cases, a first out-
break is generated by the infected individual initially consid-
ered in the lattice center. Then, the import term produces
more isolated outbreaks of different sizes. While some of
these outbreaks involve only a few individuals and quickly

0 

1000
1 100

(a)

1 100

(b)

1 100

(c)

Figure 5: Three stochastic realizations of the one-dimensional SHAR model in a population of size N = 100 divided into susceptible (green),
hospitalized (red), asymptomatic (yellow), and recovered (blue). The horizontal axis gives the one-dimensional space, while time grows from
top to bottom and the scale is indicated on the left figure. Parameters are γ = 0:05 d−1, α = 0 d−1, η = 0:4, ϕ = 0:5, and ρ = e−12, while (a) β
= 0:1 d−1, (b) β = 1 d−1, and (c) β = 2 d−1.
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die out, with all individuals recovering, others may involve
many more active infections (severe and/or mild and asymp-
tomatic), spreading widely and eventually collapsing with
neighboring clusters, leading to much larger outbreaks. An
exponential growth of cases is to be expected when the com-
munity transmission is supercritical (see discussion below).

In order to decide whether there is critical percolation
threshold, numerous stochastic realizations are run for dif-
ferent infection rates β. Figure 8 shows the mean infected
population of 100 stochastic realizations for 10 different
values of β in log-log scale. As for the nonspatial case, we
observe that the mean number of infected individuals for
low values of β eventually levels off, approaching a constant
infected population size, while for the largest values of β, we
see a very fast increase in the mean number of infected (an
exponential growth is expected for values of β above critical

threshold). However, we notice that for β = 0:0714 d−1 (i.e.,
when β coincides with the βc of the nonspatial model in
the considered parametric setting), the mean number of
infected no longer grows linearly in time but rather levels
off, indicating a subcritical behavior for this particular
parameter value. Hence, we can infer that spatial correla-
tions for the considered model contribute to maintaining
disease transmission under control for larger values of the
infectivity β. Nevertheless, giving a more precise estimate
of the critical threshold for this spatial model would require
considering much larger lattice sizes (in order for the
“abundance of susceptible” assumption to remain valid for
longer times) and longer simulations (with the correspond-
ing heavier computational burden), thus allowing to disam-
biguate between values of β corresponding to a super- or
subcritical regime. Obtaining accurate estimates of the

t = 50.00

(a)

t = 100.00

(b)

t = 200.00

(c)

t = 300.00

(d)

Figure 6: Spatial configuration of the two-dimensional SHAR system with import at four different time points. The population of N = 2502
is divided into susceptible (green), hospitalized (red), asymptomatic (yellow), and recovered (blue). Parameter values are γ = 0:05 d−1, β
= 0:071 d−1, α = 0 d−1, η = 0:4, ϕ = 0:5, and ρ = e−12. One initial infected is present in the center of the lattice, and a Von Neumann
neighborhood is considered.
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critical exponents for the proposed spatial model is out of
the scope of the presented study but will surely be a topic
of our future investigation.

3.2. The Effect of Import and Cluster Formation. In this sub-
section, we focus on two key concepts of epidemiological

dynamics, namely, import and cluster formation. For the
sake of simplicity, let us assume that the considered infec-
tious disease is spread via human-to-human contact (i.e.,
ignoring vector-borne diseases and disease transmission
across species). When no infections are present within a
considered population, imports are responsible for

t = 50.00

(a)

t = 100.00

(b)

t = 200.00

(c)

t = 300.00

(d)

Figure 7: Spatial configuration of the two-dimensional SHAR system with import at four different time points. The population of N = 2502
is divided into susceptible (green), hospitalized (red), asymptomatic (yellow), and recovered (blue). Parameter values are γ = 0:05 d−1, β
= 0:1 d−1, α = 0 d−1, η = 0:4, ϕ = 0:5, and ρ = e−12. One initial infected is present in the center of the lattice, and a Von Neumann
neighborhood is considered.
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SHAR model. Parameter values are γ = 0:05 d−1, α = 0 d−1, η = 0:4, ϕ = 0:5, and ρ = e−12.
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triggering disease outbreaks. Imports typically take the
form of external visitors who remain for a short period
of time within the considered population (so that their
presence does not change the population size) either intro-
ducing or reintroducing the pathogen, or of individuals
belonging to the studied population who travel outside
and return infected. A disease outbreak may become an
epidemic but may also frequently die out due to the
stochastic nature of the process. However, import of the
pathogen from outside the population can prevent perma-
nent extinction and generate new and sometimes unex-
pectedly large outbreaks.

In the case of infectious diseases, the development of
useful testing and tracing strategies is fundamental. If we
know that a particular individual has been infected and
know her connections (in this context, her closest neigh-
bors), then by looking at their state, we can effectively
monitor the evolution of the outbreak and plan suitable con-
tainment measures accordingly. Fast and reliable testing
strategies are clearly essential in obtaining a clear picture of
the disease dynamics in the population of interest, and track-
ing individuals who enter from outside is particularly impor-
tant, due to their previously mentioned key role in
potentially triggering new outbreaks.

3.2.1. An Infection Cluster Computing Algorithm. Here, we
describe an algorithm to monitor the evolution of an
epidemic by tracking the number of infected individuals
generated by each isolated outbreak. We assume that the
population under study is often and regularly tested as to
quickly identify new infections (either due to import or
direct contact with an infected neighbor). For this purpose,
we define the concept of an infection cluster, that is, a group
of connected individuals who have been infected by the same
index case and are either still infected or have recovered but
have not lost their immunity yet.

Our proposed algorithm is coupled to the stochastic
SHAR model solver described above and stores the cluster
information in a cluster configuration matrix, C. Rows of
the matrix C correspond to different lattice sites, and a
new column is added to C for every cluster configuration
change, i.e., whenever the number of clusters present in the
system or any of the cluster sizes changes. C is initialized
as a column vector of zeros having the size of the spatial lat-
tice used for the simulation, and the label “1” is assigned to
the row corresponding to the only infected individual pres-
ent in the center of the lattice. A new isolated cluster is cre-
ated when there are no infected neighbors to the newly
infected site. Whenever this happens, our algorithm assigns
to the new cluster a new label (an integer corresponding to
the total number of clusters present in the system at that
particular time point) and all future infections in the same
cluster are then assigned the same label. When two clusters
collide, we choose for the new infection the label of the
larger cluster involved in the collision, but other choices
(e.g., random selection) are possible. Moreover, in all the
presented simulations, we assume α = 0 d−1 so that the num-
ber of clusters and their individual size never decreases.
Clearly, as soon as α > 0, this would be no longer the case
and care should be taken in ensuring the proper labeling of
new clusters. Notice that in order to monitor the number
of clusters and their sizes, it is not necessary to store the state
of the entire lattice for each time step. Instead, a new column
of C is only created when a new infection occurs. The pseu-
docode is given in Algorithm 1.

Figure 9 shows three different aspects of the monitored
cluster information for two realizations of the spatial sto-
chastic SHAR model with import obtained, respectively,
with β = 0:071 d−1 (left column) and β = 0:1 d−1 (right col-
umn). Figures 9(a) and 9(d) give the cluster configurations
at the end of the simulation, namely, at t = 300 d, for both
realizations, and in both plots, a different colour is assigned

If a new infection occurred at tn in location j then update cluster info as follows:
Create n-th column of cluster configuration matrix C
Copy all entries of Cð: ,n − 1Þ in Cð: ,nÞ
Update information in Cðj, nÞ as follows:
If no neighbours of j are infected use new cluster label

Cðj, nÞ =max fCð: ,n − 1Þg + 1
Else

Define vector of indicators of neighboring sites
Remove zeros and possible repetitions
If only one label k remains then assign the same label to location j
Cðj, nÞ = k

Else
Compute number of individuals in each neighboring cluster
Assign to location j the label of the largest cluster

End if
Update total number of clusters
Compute number of individuals per cluster

End if
End if

Algorithm 1: Pseudocode for the infection cluster computing algorithm.
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to each cluster in order to aid their visualization. Figures 9(b)
and 9(e) track the temporal evolution of the number of clus-
ters in each simulation, while Figures 9(c) and 9(f) display
changes in each individual cluster size over time.

By comparing these two individual realizations, we see
that when β is larger, many more clusters form in the time
interval considered and their individual size is generally
much bigger than for the other value of the considered
parameter. In order to confirm this trend, we perform a sim-
ple statistical analysis over several realizations of the spatial
SHAR model. In particular, we monitor infection cluster

information (i.e., cluster size and number of clusters) of
500 realizations for both values of β, plotting in Figures 10
and 11 the corresponding histograms. The obtained results
confirm our expectations. Specifically, Figure 10 shows that
clusters of much larger size form for the larger value of β
(which is to be expected due to the larger infectivity and
hence faster transmission of the pathogen), while in
Figure 11, we observe that, in average, a slightly larger num-
ber of clusters (i.e., new isolated outbreaks) forms for the
larger value of β due to its inflating effect on the net import
rate of the system.
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Figure 9: Tracing strategy and cluster formation. (a–c) β = 0:071 d−1; (d–f) β = 0:1 d−1. (a, d) cluster configuration at time t = 300 d, (b, e)
number of clusters, and (c, f) cumulative infected population; each curve represents a cluster.
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4. Conclusions

In this work, we have presented the stochastic SHAR model
with import and its mean-field approximation. We have
computed the critical threshold of the system under the
assumption of abundance of susceptibles and the asymptotic
number of infected for controlled community transmission
as a function of the model parameters, thus generalizing pre-
viously obtained results for the SIR model with import.
Then, we introduced a cellular automata extension of the
SHAR framework accounting for spatial variation within
the system and we presented the master equation for the
proposed model. Modifications to the critical threshold
behavior in the presence of spatial correlations have been
discussed in Section 3.1, showing that, in the parametric
setting considered, these correlations pushed the system crit-
ical threshold towards larger values, hence contributing to
maintaining community transmission controlled for a larger
range of β values. Finally, in Section 3.2, we have focused on
the role of import in triggering and maintaining an epidemic
and proposed a way to track the number of infected individ-
uals generated by each index case by looking at cluster

formation and their evolution in time. We see the proposed
algorithm as a way to mimic the contact tracing procedure
that might be implemented by the health system of a given
region in order to monitor disease transmission. To con-
clude the manuscript, we would like to mention some of
the limitations of the presented work and comment on pos-
sible directions of future work. The proposed analysis is
aimed at providing an overview of the potential offered by
the SHAR framework in a spatially extended context, focus-
ing in particular on tools such as the infection cluster com-
puting algorithm to study relevant features of the resulting
spatiotemporal dynamics. We explored the effect of varying
the infectivity parameter β on the model output but kept all
other parameters fixed at some given (and typically arbi-
trary) value. A much more in-depth exploration of the
parameter space remains to be performed. Clearly, accord-
ing to the considerations made in Section 2.1, we expect var-
iations in γ, η, ϕ to affect the critical threshold of the system,
and increasing values of ρ to produce more and more iso-
lated outbreaks, following our considerations of Section
3.2. However, studying the combined effect of multiple para-
metric changes (including different population sizes) will
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Figure 10: Distribution of the cluster sizes at final simulation time t = 300 d for 500 realizations of the spatial SHAR model with (a) β =
0:071 d−1 and (b) β = 0:1 d−1.
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Figure 11: Distribution of the number of clusters (at final simulation time t = 300 d) in 500 realizations of the spatial SHAR model with (a)
β = 0:071 d−1 and (b) β = 0:1 d−1. The green vertical line indicates the average number of clusters and is equal to 9.5 in (a) and 12.1 in (b).
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surely be a natural extension of this work. We remark also
that throughout this manuscript, we always assumed α = 0
d−1 and hence the case α > 0 (which will likely produce
much richer dynamical scenarios) should also be investi-
gated. Moreover, this particular work did not focus on
describing the dynamics of any specific disease and therefore
specific parameter values (or ranges) were not validated
against any real-life data. Nevertheless, the SHAR frame-
work already captures many important features of infectious
disease transmission, and as such, we expect it to be a very
versatile tool for further disease-specific investigation (e.g.,
in the context of COVID-19, seasonal influenza, etc.).
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