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Abstract

This study presents a mathematical model for dengue transmission which quantifies
two very important aspects: one- the impact of information based behavioural response
and the other - the segregation of infected human population into two subclasses, detected
and undetected. For the proposed model, the sensitivity analysis is conducted to identify
the key model parameters which not only influence the basic reproduction number but
also regulate the transmission of dengue. Further, in order to find the optimal pathways
for suitable control interventions that reduce the dengue prevalence and economic burden,
an optimal control problem is proposed by considering information-induced behavioural
change, quarantine, screening, use of repulsive measures and culling of mosquitoes as
control interventions. A weighted sum of various costs incurred in applied controls and
the cost due to dengue disease (productivity loss) is incorporated in the proposed cost
functional. The analysis of control system using Pontryagins Maximum Principle leads
the existence of the optimal control profiles. Further, an exhaustive comparative study
for seven different control strategies is conducted numerically. Our findings ensure that
every individual control strategy has their own impact on reducing the cumulative count
of infection as well as cost. The combined impact of all control interventions is highly
effective and economically viable in controlling the prevalence of dengue. We also investi-
gated the effect of the basic reproduction number on the designed control strategies and
observed that the comprehensive use of controls keeps a strong tab on the infective even
if the severity of epidemic is high.

Keywords: Dengue model; Information; Screening; Detection; Treatment; Sensitivity anal-
ysis; Optimal control.

∗E-mail: akhilkumar.srivastav2016@vitstudent.ac.in, asrivastav@bcamath.org
†E-mail:anujdubey17@gmail.com
‡E-mail: pksri@iitp.ac.in
§Corresponding Author,E-mail: minighosh@vit.ac.in

1



2

1 Introduction

Dengue fever is a vector-borne disease. It is transmitted via the bite of female Aedes aegypti
mosquitoes and is caused by four closely related dengue serotypes (DENV 1-4) [1, 2]. Dengue
affects almost all age groups. The symptoms of disease become apparent after 3-14 days of
the bite of an infected mosquito. In recent years, the dengue cases are increasing globally
and as per data from the World Health Organization there are 284528 million cases per year
around the world [4]. Although no effective vaccine is available against dengue fever [5] at
the moment but some clinical trials are in various phases. Thus, to avoid dengue infection
healthy individuals have to prevent themselves from the mosquitoes. For this purpose, the
use of insecticide or repellent and making people informed about using mosquito net and
other protective measures are some useful ways to control the disease [6, 7, 8, 9]. The proper
and efficient diagnosis of dengue is very important in order to provide clinical care (which
includes early detection of severe cases, confirmed cases etc), surveillance and control of
dengue epidemic. It is also important for studying pathogenesis, extracting further knowledge
and development of control measures such as vaccine. The diagnosis of dengue may involve
detection of viral load, viral nucleic acid, antigens or antibodies or even a combination of all
these. Normally, the virus is detected in bodily fluid and other tissues in about 5 days after
onset of illness. [10].

With the support from WHO, the National Strategic Plan (NSP) for dengue disease con-
trol was established by the NVBDCP, Ministry of Health and Family Welfare, Government
of India. Among the control strategies the factors include - EDPT (early case identification
and prompt treatment), vector control, personal protection against mosquito bites, environ-
mental management, and community awareness [11, 12]. The EDPT is considered to be basic
technique for dengue control. All cases of dengue require drastic treatment to avoid dengue
spread in the community. The control of mosquitoes in the community is possible using
chemical and biological control. Mosquito repellent creams, liquids, coils, mats, and house
screening with nets, use of insecticide-treated bed nets, and wearing clothing that covers the
body’s maximal surface area can all be utilized for personal protection. The identification and
clearing the breeding sites, environmental management and community awareness, can also
be effective strategies in mosquito control. In India, the Swachh Bharat Mission encourages
people to keep their surroundings clean, eventually removing mosquito breeding grounds.

Many mathematical models have been proposed literature to study the various aspects
of dengue transmission dynamics. In [14, 15] Esteva and Vargas proposed SIR-SI models
taking constant and variable human populations respectively. They found the existence of
the various equilibrium points and discussed their stability properties. In [16] Amaku et
al. considered the impact of vector-control strategies on the human prevalence of dengue
virus. They developed a mathematical model and discussed the sensitivity analysis of R0.
Based on the sensitivity analysis they suggested that the control of adult mosquitoes can
reduce the transmission of the dengue. In [17], Srivastav and Ghosh developed and analyzed
a mathematical model with treatment by considering logistic growth of mosquito. They
consiered the treatment rate proportional to the infective below the threshold for treatment
and as constant for exceeding the threshold. They also performed parameter estimation with
help of real data.

In [18], authors proposed a mathematical model of dengue disease by considering both
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mosquito and human population. They discussed vaccination and control strategies for the
model. They have focused on two types of controls: mechanical control, to eliminate the
mosquito breeding grounds, and chemical controls, to kill the dengue vector by using insec-
ticides and larvicides. Abdelrazec et al. [19] proposed a mathematical model for the dengue
fever where they considered nonlinear recovery rate and investigated the impact of available
resources on the spread and control of the dengue disease.

Recently Srivastav et al. [20] studied impact of the early case detection and analysed it
in both deterministic and stochastic setup. The authors divided infected population into un-
detected and detected which was further divided into moderately and severally infected pop-
ulation and results recommend that by sufficient management of quarantine/hospitalization,
the disease prevalence may be reduced. Another study by Ghosh et al. indicates that the
health-care organizations must focus on active case finding of symptomatic as well as asymp-
tomatic individuals along with personal protection and mosquitoes control to achieve rapid
reduction of dengue cases [21].

Optimal control is a mathematical tool that has been used in epidemiological models to
explore the impact of various control interventions and also to provide relevant cost analysis.
It provides helpful information in determining suitable control policy among the available
control interventions and their combinations [28, 29]. Optimal control has also been used in
dengue modeling to assess the impact of certain interventions. For example, Zheng and Nei
discussed two strain dengue model in the presence of awareness and vector control [22]. With
the help of optimal control problem they suggested that mosquito control and awareness
about the dengue in the human population can reduce the disease prevalence. Blayneh et
al. discussed the optimal control problem for vector-borne diseases. In this work they used
transmission of the disease and treatment of the infective as control and suggested that if both
controls are applied simultaneously, then disease control will be easy [23]. In [24] Rawson
et al. showed that combination of sterile insect techniques for the mosquito population and
vaccination for the human population is beneficial to reduce the disease in population. Tang
et al. considered vaccination with insecticide administration and isolation with insecticide
administration as two control policies for control of the dengue disease [25]. Rodrigues et al.
studied an optimal control model using vaccination as control [26]. With the help of optimal
control a costefficient strategy is investigated in [27]. They considered vaccination, applying
insecticides to adult and aquatic mosquitoes, and reducing the number of manmade breeding
places for the mosquitoes as controls.

Information about disease prevalence also plays a crucial role in the dynamics of the
disease. This is because in presence of information, healthy individuals take precautionary
and protective measures. Hence, this information induces behavioural change in the healthy
population and they become less susceptible to the disease. This intervention, which is
categorised as non-pharmaceutical interventions, is useful and can prove to be very effective
in combination with other control interventions [29].

In this paper, we have proposed a mathematical model for dengue where we have con-
sidered the infected individuals being divided into two subclasses, undetected and detected.
It is assumed that infection is spread via these and the interaction of host and vector is of
standard mass action type. Further, we have also incorporated the idea of information in-
duced behavioural change and consider such population into a separate compartment. As the
informed individuals are using self protective measures, their infection probability is less. The
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model is then modified to an optimal control problem by choosing the information induced
behavioural change, use of inhibitory measures to reduce infection, screening, detection and
mosquito culling as control measures. Our aim in this paper is to find suitable control policy
by finding an optimal combination of interventions so as to not only reduce the dengue load
but also reduce the economic burden.

This paper is organized as follows: first, in section 2 we describe a mathematical model.
In section 3 the model analysis is performed and some basic results are established. Section
4 deals with sensitivity analysis. In section 5 the optimal control problem is proposed and
analysed which is followed by description of proposed policies. Exhaustive numerical simu-
lation of the control measures is provided in section 6 before finally concluding the paper in
section 7.

2 Mathematical Model

In this section we propose a dengue spread compartmental model. We divide the total
human population N(t) into seven disjoint compartments, namely, susceptible individuals
(S), aware individuals (A) who have information about the disease prevalence and hence are
using protective measures, exposed individuals (E) and infected individuals with dengue. The
infected individuals are divided into two sub classes, the one which are detected for dengue
as detected (I1), and and other undetected (I2) who posses dengue but are not detected so
far. Furthermore compartments are of quarantine individuals (Q) and recovered individuals
from Dengue (R). In addition we also consider the density of information as (Z) along with
its growth equation depending upon the total infective individuals [29], this information is
assumed to be related with density of infective population (disease prevalence). When people
come in contact with the information, they start taking protective measures as they become
aware about the fatalities of the disease.Further, we choose the vector population, which is
divided into two compartments, namely, susceptible mosquito population (Sv) and infected
mosquito population (IV ).

The human population are recruited in the region at a constant rate Λ (by birth or immi-
gration) and are assumed to join the susceptible class. Individuals in susceptible class move
the exposed class on effective contact with infected mosquitoes. The interactions between
susceptible humans and infected mosquitoes are assumed to be of standard mass action type.
Also susceptible human join aware class by getting informed. The rate of susceptible human
and information is taken as η. Aware individuals join the exposed class on effective contact
with infected mosquitoes, however the susceptibility of aware humans is lesser than suscepti-
ble humans because these individuals use the information of disease to protect themselves by
using protective measures. The interactions between aware humans and infected mosquitoes
are assumed to be of standard incidence type. The exposed human after latency become
infected at a rate α, where a fraction m of these move to I2 class and remaining (1 − m)
are assumed to join I1 class. After detection, from undetected infected population I2 will
join detected infected population with the rate of δ. Detected infected human population
are assumed to join quarantine/ hospitalized class Q with the rate of γ1, and after recovery
quarantine/hospitalized population will move to recover class R with the rate of α1. The
information (Z) is assumed to grow proportional to detected infective with rate aI1 and it
will degrade with time at rate a0Z.
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Figure 1: Flow diagram of the model.

The flow diagram is given in Figure-1 and model equations are as follows:

dS

dt
= Λ− β1S

Iv
N
− µS − ηZS + γ2A,

dA

dt
= ηZS − β2A

Iv
N
− γ2A− µA,

dE

dt
= β1S

Iv
N

+ β2A
Iv
N
− αE − µE,

dI1
dt

= (1−m)αE − (µ+ µ1)I1 − γ1I1 + δI2, (1)

dI2
dt

= mαE − (µ+ µ2)I2 − γI2 − δI2,

dQ

dt
= γ1I1 − (µ+ α1 + µ3)Q,

dR

dt
= α1Q+ γI2 − µR,

dZ

dt
= aI1 − a0Z,

dSv
dt

= Λv − β3Sv
(
I1 + I2
N

)
− µvSv,

dIv
dt

= β3Sv

(
I1 + I2
N

)
− µvIv,

where β1 > β2 and µ2 > µ1 and N = S +A+ E + I1 + I2 +Q+R,Nv = Sv + Iv.
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Table 1: Description of parameters

Parameter Description Value Reference

Λ : Rate of recruitment in human population, Varies Demographic
Λv : Rate of recruitment in mosquito population, Varies Assumed
β1 : Transmission rate from S to Iv, 0.375 [18]
β2 : Transmission rate from A to Iv, 0.2 Assumed
β3 : Transmission rate from Sv to infected class (I1 + I2), 0.75 [18]
µ : Natural death rate for human population, 0.0000425 [37]
µ1 : Disease related death rate for Detected human population, 0.0004 Assumed
µ2 : Disease related death rate for undetected human population, 0.004 [20]
γ : recovery rate for undetected infected population, 0.143 [18]
γ1 : Progression rate from I1 to Q, 0.01 Assumed
γ2 : Progression rate from A to S, 0.02 [20]
δ : Progression rate from I2 to I1 , 0.01 Assumed
α1 : Progression rate from Q to R, 0.143 [18]
µv : Natural death of the mosquito population. 0.042 [18]
η : Awareness of susceptible human population rate 0.1 [28]
m : Fraction of Exposed human population rate 0.2 Assumed
α : Progression rate from E to I1 and I2 0.1 [18]
a0 : Degradation rate of Information 0.05 [28]
µ3 : Disease related death rate for Quarantine human population, 0.004 Assumed
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2.1 Positivity and boundedness of the solutions

Here, we shall show the positivity and boundedness of all populations. From the model
system (1), we have

dS

dt

∣∣∣∣
S=0

= Λ + γ2A > 0,
dA

dt

∣∣∣∣
A=0

= ηZS > 0
dE

dt

∣∣∣∣
E=0

= β1S
Iv
N

+ β2A
Iv
N
≥ 0,

dI1
dt

∣∣∣∣
I1=0

= (1−m)αE + δI2 ≥ 0,
dI2
dt

∣∣∣∣
I2=0

= mαE ≥ 0,
dQ

dt

∣∣∣∣
Q=0

= γ1I1 ≥ 0,

dR

dt

∣∣∣∣
R=0

= α1Q+ γI2 ≥ 0,
dZ

dt

∣∣∣∣
Z=0

= aI1 ≥ 0,
dSv
dt

∣∣∣∣
Sv=0

= Λv > 0,

dIv
dt

∣∣∣∣
Iv=0

= β3Sv

(
I1 + I2
N

)
≥ 0.

Here all the rates are non-negative, so if we start in the interior of the non-negative bounding
cone R10, we shall always remain in this cone keeping in view the fact that the direction of
the vector field is inward on all the bounding planes. Thus non-negativity of all the solutions
of the model system (1) is guaranteed.

Further from the model system (1), we note that the total population N = S +A+E +
I1 + I2 +Q+R, and Nv = Sv + Iv follows the following differential equation

dN

dt
= Λ− µN − µ1I1 − µ2I2 − µ3Q

and
dNv

dt
= Λv − µvNv

This gives lim sup
t→∞

N ≤ Λ

µ
, lim sup

t→∞
Nv ≤

Λv

µv
. Therefore all the solutions S(t), A(t), E(t),

I1(t), I2(t), Q(t) and R(t) are bounded by
Λ

µ
and the solutions Sv(t) and Iv(t) are bounded

above by
Λv

µv
. Further, Z(t) is bounded by

Λa

µa0
. Hence the biologically feasible region of the

model system (1) is given by the following positively invariant set:

Ω =

{
(S,A,E, I1, I2, Q,R, Z, Sv, Iv) ∈ R10 : 0 ≤ S,A,E, I1, I2, Q,R ≤

Λ

µ
, 0 ≤ Sv, Iv ≤

Λv

µv
and 0 ≤ Z ≤ Λa

µa0

}
.

3 Existence of Equilibrium Points and the Basic Reproduc-
tion Number

3.1 Disease-free equilibrium E0

We consider the system (1) and find the disease-free equilibrium. For our model we have
disease-free equilibrium as

E0 :=

(
N0 =

Λ

µ
, 0, 0, 0, 0, 0, 0, 0, N0

v =
Λv

µv
, 0

)
.
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3.2 The basic reproduction number

We find the basic reproduction number (R0) by following the next generation matrix method
[32] we find the matrix F and V as follows:

F =


β1S

Iv
N

+ β2A
Iv
N

0
0

β3Sv
(I1 + I2)

N

 and V =


(α+ µ)E

−(1−m)αE + (µ+ µ1 + γ1)I1 − δI2
−mαE + (µ+ µ2 + γ + δ)I2

µvIv

 ,

Following [32] we calculate

F= Jacobian of F at E0 =


0 0 0 β1
0 0 0 0
0 0 0 0

0 β3
N0

v

N0
β3
N0

v

N0
0

 ,

and V=Jacobian of V at E0 =


α+ µ 0 0 0

−(1−m)α (µ+ µ1 + γ1) −δ 0
−mα 0 (µ+ µ2 + γ + δ) 0

0 0 0 µv

 ,

and find that

FV −1 =


0 0 0

β1
µv

0 0 0 0
0 0 0 0
a41 a42 a43 0

 ,

Where

a41 =
β3αN

0
v [m(γ1 + µ+ µ1) + δ + (1−m)(γ + µ+ µ2)]

N0(α+ µ)(µ+ µ2 + γ + δ)(γ1 + µ+ µ1)
,

a42 =
N0

vβ3
N0(γ1 + µ+ µ1)

, a43 =
N0

vβ3(γ1 + µ+ µ1 + δ)

N0(δ + γ + µ+ µ2)(γ1 + µ+ µ1)
,

The largest eigenvalue of FV −1 is defined as the basic reproduction number R0 and is given
as follows:

R0 =

√
β1
µv
a41.

The quantity R0 is known as basic reproduction number, the expected number of secondary
cases produced in completely susceptible population, by a typical infective individual. where

the term
β1
µv

denotes the expected number of human generated by single infected mosquito,

and the term
β3αN

0
v [m(γ1 + µ+ µ1) + δ + (1−m)(γ + µ+ µ2)]

N0(α+ µ)(µ+ µ2 + γ + δ)(γ1 + µ+ µ1)
,
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denotes the expected number of infected mosquitoes generated by single infected human.

4 Numerical Simulation

4.1 Forward sensitivity analysis and impact of parameters on the basic
reproduction number

We establish the normalized forward sensitivity indices of the basic reproduction number with
respect to model parameters [21]. For that we use the forward sensitivity index of a variable,
with respect to a given parameter, which is defined as the ratio of the relative change in the
variable to the relative change in the parameter. If such variable is differentiable with respect
to the parameter, then the sensitivity index is defined using partial derivatives.The forward
sensitivity index of R0 , which is differentiable with respect to a given parameter p, is defined
by

γR0
p =

∂R0

∂p

p

R0

One can easily compute an analytical expression for the sensitivity of R0, using the above
formula, to each parameter that it includes. In Fig. 2, we plot the sensitivity indices of R0

with respect to the parameters of interest. Evidently, Fig. 5 suggests that the magnitude of
R0 increases with increase in the values of parameters β1, β3, µ and Λv as these parameters
possess positive indices with R0. Similarly, the parameters having negative indices with R0

are m, γ1, γ, µ1, µ2, µv and Λ. Hence, increments in these parameters cause decline in the
value of R0. It is clear that occurrence of a lower value of R0 helps to prevent the disease
prevalence. Thus, to wipe out the disease from the system, we must control the increase of
the parameters having positive indices with basic reproduction number whereas parameters
which have negative indices should be sustained. Therefore, any prevention measure which
can reduce the disease burden must be seriously considered by the health-care ocials to control
the subsequent outbreaks.
We have plotted contour plot of some key parameters on R0. It shows that in plot (3a )β1
and β3 has same effect on R0, which means if we increase or decrease the value of β1 and
β3, then the value of R0 will increase or decrease respectively, from the (3b) we can conclude
that increase the value of Λv will increase the value of the R0 but if we increase the value of
µv, it will decrease the value of decrease the value of the R0, which is the death rate of the
mosquito and this is the one of the best control policy to reduce the disease infection from
the population. Similarly from the figure (3c,3d), increase in the value of the β1 and δ will
increase the value of the R0 and increase the value of γ1 and δ will decrease the value of R0.

4.2 Sensitivity Analysis

We employed a global sensitivity analysis to assess the impact of uncertainty and the sen-
sitivity of the outcomes of the numerical simulations to variations in each parameter of
the model using Latin Hypercube Sampling (LHS) and partial rank correlation coefficients
(PRCC)[33, 34]. To generate the LHS matrices, we assume that all the model parameters
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Figure 2: Normalized forward sensitivity indices of R0 with respect to model parameters.
Parameter values: Λ = 200, Λv = 1000, β1 = 0.375, β3 = 0.75, µ = 0.000042, µ2 =
0.0004, µ2 = 0.004, γ = 0.143, γ1 = 0.01, α = 0.1, δ = 0.01, m = 0.2

are uniformly distributed. We calculate partial rank correlation coefficients (PRCCs) be-
tween the parameters Λ,Λv, β1, β2, β3, µ, µ1, µ2, γ, γ1, γ2, δ, α1 and µv from system (1) with
Exposed Human Population(E), Infected and Detected human populations(I1), Infected and
undetected human populations (I2) and Infected mosquitoes population (Iv). Nonlinear and
monotone relationships are observed for Exposed Human Population(E), Infected and De-
tected human populations(I1), Infected and undetected human populations (I2) and Infected
mosquitoes population (Iv) with the input parameters of the model, which is a prerequisite
for computing PRCCs. Then, simulations of the model per LHS run were carried out, using
the baseline values tabulated in Table 2 and the ranges as 25 % from the baseline values (in
either direction). The indexes are evaluated at the time points 1000 days and the bar diagram
of the PRCC values are shown in Figs. 4(a), 4(b), 4(c) and 4(d) for Exposed Human Pop-
ulation(E), Infected and Detected human populations(I1), Infected and undetected human
populations (I2) and Infected mosquitoes population (Iv) respectively. Based on the sensi-
tivity analysis results, we are formulating control model.The details description is provided
in following section.

5 Optimal Control Problem

In this section, we extend the mathematical model (1) to propose a corresponding optimal
control problem by introducing various control interventions to minimise the dengue burden
as well as financial loss generated. Here, we quantify five different types of control inter-
ventions, namely, u1(t), u2(t), u3(t), u4(t), u5(t), and these are either pharmaceutical or
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Figure 3: Contour plots of the basic reproduction number (R0) with respect to (a) β1 and
β3 (b) Λv and µv (c) β1 and γ1 (d) m and δ for the Parameter values: Λ = 200, Λv =
1000, β1 = 0.375, β3 = 0.75, µ = 0.000042, µ2 = 0.0004, µ2 = 0.004, γ = 0.143, γ1 =
0.01, α = 0.143, δ = 0.01

non-pharmaceutical. The details of each intervention are described as follows:
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Figure 4: PRCC Plots (a) exposed human population (E), (b) infected and detected human
populations(I1), (c) infected and undetected human populations (I2), (d) infected mosquitoes
population (Iv)
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• Control variable u1(t): Due to the disease prevalence, the information for the same
spreads within the population and induces the healthy individuals to take protective
measures against the dengue disease. This rate for protective measure will depend on
the severity of disease (density of infective population). Our aim is to optimize the
use of information-induced protection and minimize the corresponding cost. Therefore,
we introduce the intensity of behavioural response via information u1(t) as a variable
control measure to protect the susceptible individuals so that maximum individuals get
protected with minimum cost involved. The spread of information control considered
here depends on limited resources that are put in through media, TV, newspaper and
the protection coverage against the dengue disease. Therefore, due to the limitation of
resources, we consider restriction on control which is defined below.

• Control variable u2(t): This intervention represents the use of insecticide-treated
bed nets, mosquito repulsive lotions and electronic devices to reduce transmission be-
tween mosquitoes and human. If one can reduce mosquitoes to human and human to
mosquitoes transmission rate, then it will be helpful in controlling the mosquito-borne
disease. Hence, here, we consider u2(t) as a control intervention to reduce human-
mosquito interaction.

• Control variable u3(t): The control variable u3(t) represents to send the detected
infected human individuals into quarantine class for fast treatment and considered as
quarantine control. As has been found that the quarantine is effective intervention
and consumes huge amount of money. Thus the main objective is to minimise this
population with minimum cost. we are using the term η1u3(t) where η1 is the additional
quarantine rate of the detected infected individual undergoing quarantine for the better
treatment (i.e.(γ1 + η1u3(t)) = quarantine rate with treatment), is inserted in model.

• Control variable u4(t): Since, the undetected infected are very harmful from the
social well-being point of view. Therefore, the detection of such individuals becomes an
important task. Thus, the control u4(t) represents to improve screening and detection of
the undetected infected human population and quantified as a screening control. Simi-
larly the term η2u4(t) where η2 is the additional detection rate for the fast screening and
detection of the undetected infected individual will join detected infected individuals
(i.e.(δ + η2u4(t)) = detection rate), is inserted in model.

• Control variable u5(t): It represents the time dependent additional deaths of mosquitoes
due to insecticide treatment. This is very important strategy for mosquito control. But
at the same, a large amount of money is involved in implementing of such kind of inter-
ventions. Thus, we seek to find the optimal way for this. the term η3u5(t) where η3 is
the additional death rate for the control of Aedes mosquito (i.e.(µv + η3u5(t)) = death
rate of mosquito), is inserted in model.

Due to restriction on medical resources, it is important to impose some bounds on controls
as 0 ≤ u1(t), u2(t), u3(t), u4(t), u5(t) ≤ 1. Here, if u1(t), u2(t), u3(t), u4(t), and u5(t) are
zero, then there is no effort being placed in these controls at time t whereas one represents
the maximum capacity of applied interventions. Keeping in view of the above assumptions,
the optimal control model is formulated as follows:
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dS

dt
= Λ− (1− u2(t))β1S

Iv
N
− µS − (η + θu1(t))ZS + γ2A,

dA

dt
= (η + θu1(t))ZS − β2A

Iv
N
− γ2A− µA,

dE

dt
= (1− u2(t))β1S

Iv
N

+ β2A
Iv
N
− αE − µE,

dI1
dt

= (1−m)αE − (µ+ µ1)I1 − (γ1 + η1u3(t))I1 + (δ + η2u4(t))I2, (2)

dI2
dt

= mαE − (µ+ µ2)I2 − γI2 − (δ + η2u4(t))I2,

dQ

dt
= (γ1 + η1u3(t))I1 − (µ+ µ3 + α1)Q,

dR

dt
= α1Q+ γI2 − µR,

dZ

dt
= aI1 − a0Z,

dSv
dt

= Λv − (1− u2(t))β3Sv
(
I1 + I2
N

)
− (µv + η3u5(t))Sv,

dIv
dt

= (1− u2(t))β3Sv
(
I1 + I2
N

)
− (µv + η3u5(t))Iv.

For further analysis, we write u1(t) = u1, u2(t) = u2, u3(t) = u3, u4(t) = u4 and
u5(t) = u5 for our convenience.

5.1 Cost construction and characterization of optimal controls

This particular section devotes into two parts which include determination of the total cost
generated due to applied controls as well as diseases itself. Whereas the second part deter-
mines the analytical forms of the controls.

5.1.1 Total cost determination

Here, the total cost is determined for the applied control interventions and disease as well,
which need to be minimized.

• Cost due to disease: The cumulative cost incurred due to the disease burden is
modeled as follows:∫ T

0
(C1E + C2I1 + C3I2 − C4A+ C5(Sv + Iv)dt.

This cost consists of various components such as cost due to loss of manpower, oppor-
tunity loss and other related wealth loss.

• Cost incurred in enhancing information-induced behavioural response: The
cost generated in information-induced behavioural response is defined as∫ T

0
D1u

4
1dt.
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The term D1u
4
1 describes the temporal cost generated in inducing the behaviour of

individuals via information which is governed by various awareness programs and edu-
cational activities during the course of epidemic. Therefore, the total cost incurred in
process primarily includes the cost involved in awareness and educational campaigns,
cost of required manpower etc. Thus, in this case, we consider a relatively high nonlin-
earity in cost as (u41(t)) to account for the higher steepness in cost increment to cover
same fraction of effort at higher level.

• Cost incurred in insecticide-treated bed nets : The total cost involved in reducing
the transmission between human to mosquito is given as∫ T

0
D2u

2
2dt.

Insecticide-treated bed nets (ITNs) are a form of personal protection that has been
shown to reduce mosquito borne disease i.e. dengue, malaria etc. and death due to
mosquito borne disease in endemic regions. But at the same time, the execution of
ITNs requires lot of money which is given by the term D2u

2
2. Therefore, here, we have

considered a standard second order nonlinearity in this cost component.

• Cost incurred in treatment for detected infected human population: The
cumulative cost in process of treating infected human is defined by∫ T

0
D3u

2
3dt.

Once, an individual becomes infected, treatment is the only possible way to contain the
disease and that process consumes significant amount of money. So, here, the term D3u

2
3

describes the cost involved in treatment for detected infected human population which
primarily consists of the cost generated due to medical facilities, Hospitals, manpower
etc.

• Cost incurred in screening and detection in undetected human population:
The cost generated due to screening and detection process for undetected population
is modeled by ∫ T

0
D4u

2
4dt.

The term D4u
2
4 describes the cost involved in screening and detection in human pop-

ulation. The total cost incurred in this coverage includes the cost due to screening
campaigns, cost of kits used for detection and cost of other relevant measures.

• Cost incurred due to execution of insecticide treatment measure for mosquitoes:
The cumulative cost involved due to insecticides to enhance the additional deaths of
mosquitoes is defined as ∫ T

0
D5u

4
5dt.

The term D5u
4
5 describes the temporal cost generated by use of insecticides for addi-

tional deaths of mosquitoes. In this case, the components of total cost mainly include
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the cost due to implementation of insecticide measures (insecticide machine, manpower
etc.). Since, the execution of such intervention not only requires huge manpower but
also imposes significantly higher economic burden. Therefore, here, we consider a rel-
atively high nonlinearity in the cumulative cost as (u45(t)) to account for the higher
steepness in cost increment to cover same fraction of effort at higher level.

The cost functional corresponding to total cost incurred, for fixed time T , which need to be
minimised is given by

J =

∫ T

0
(C1E+C2I1+C3I2−C4A+C5(Sv+Iv)+D1u1

4+D2u2
2+D3u3

2+D4u4
2+D5u5

4)dt.

(3)
subject to the model system (2).

Here, the parameter C1, C2, C3, C4, C5, D1, D2, D3, D4, are D5 positive weight constants
that not only balance the unit of integrands but also measure the relative costs. Our objective
is to find the controls u1

∗, u2
∗, u3

∗, u4
∗ and u5

∗, such that

J(u1
∗, u2

∗, u3
∗, u4

∗, u5
∗) = min

(u1,u2,u3,u4,u5)∈U
J(u1, u2, u3, u4, u5), (4)

where U is the control set and is defined as

U = {u1, u2, u3, u4, u5 : 0 ≤ u1, u2, u3, u4, u5 ≤ 1, t ∈ [0, T ]}.

Here, all the controls are bounded and measurable.

5.1.2 Existence and characterization of optimal controls

Here, we shall first establish the existence of such control functions that minimises the cost
functional J . The Lagrangian of this problem is defined as:

L(S,A,E, I1, I2, Q,R, Z, Sv, Iv, u1, u2, u3, u4, u5) = C1E + C2I1 + C3I2 − C4A+ C5(Sv + Iv)

+D1u1
4 +D2u2

2 +D3u3
2 +D4u4

2 +D5u5
4.

Theorem 5.1. There exist optimal controls u1
∗, u2

∗, u3
∗, u4

∗, u5
∗ ∈ U such that

J(u1
∗, u2

∗, u3
∗, u4

∗, u5
∗) = min J(u1, u2, u3, u4, u5)

subject to system (2).

Proof. To establish this result, we follow the Theorem 4.1 mentioned in [39] for the existence
of optimal controls. As, we have discussed above that all the state variables (population) are
bounded for each bounded controls coming from the control set U . Furthermore, Lipschitz
condition with respect to state variables is satisfied by the right hand part of the model system
(2). The control variable set U is also convex and closed by the definition and the model
system (2) is linear in control variables. The integrand of the functional L = C1E + C2I1 +
C3I2−C4A+C5(Sv+Iv)+D1u1

4+D2u2
2+D3u3

2+D4u4
2+D5u5

4 is convex on the control set
U due to biquadratic and quadratic nature of control variables. Moreover, L = C1E+C2I1 +
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C3I2−C4A+C5(Sv+Iv)+D1u1
4+D2u2

2+D3u3
2+D4u4

2+D5u5
4 ≥ D1u1

4+D2u2
2+D3u3

2+
D4u4

2 + D5u5
4. Now, consider c1 = min(D1, D2, D3, D4, D5) > 0 and g(u1, u2, u3, u4, u5) =

c1(u1
4 +u2

2 +u3
2 +u4

2 +u5
4). Thus, L ≥ g(u1, u2, u3, u4, u5) holds true and g is continuous.

Also, g satisfies the condition | (u1, u2, u3, u4, u5) |−1 g(u1, u2, u3, u4, u5) → ∞ whenever
| (u1, u2, u3, u4, u5) |→ ∞. Thus, all the conditions for the existence of controls are fulfilled
(for more details one cam follow [28, 29]). Hence the result.

Now, we shall use Pontryagin’s maximum principle for necessary conditions for optimal
controls. For that the associated Hamiltonian H is given by

H = L(S,A,E, I1, I2, Q,R, Z, Sv, Iv, u1, u2, u3, u4, u5) + λ1
dS

dt
+ λ2

dA

dt
+ λ3

dE

dt

+λ4
dI1
dt

+ λ5
dI2
dt

+ λ6
dQ

dt
+ λ7

dR

dt
+ λ8

dZ

dt
+ λ9

dSv
dt

+ λ10
dIv
dt
,

where λi, 1 ≤ i ≤ 10, are the adjoint variables. The following result characterizes the optimal
controls.

Theorem 5.2. Let u∗i , 1 ≤ i ≤ 5, be optimal control functions and S∗, A∗, E∗, I∗1 , I
∗
2 , Q

∗,
R∗, Z∗, S∗v , I

∗
v are the corresponding state variables of the optimal control problem (2)-(3).

Then there exists adjoint variable λ = (λ1, λ2, . . . , λ10)
T ∈ R10, which satisfies the following
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equations:

dλ1
dt

= λ1µ+ (η + θu1)Z(λ1 − λ2) + β2A

(
Iv
N2

)
(λ3 − λ2)

+(1− u2)β1Iv
(
A+ E + I1 + I2 +Q+R

N2

)
(λ1 − λ3)

+(1− u2)β3Sv
(
I1 + I2
N2

)
(λ10 − λ9)

dλ2
dt

= C4 + λ2µ+ γ2(λ2 − λ1) + β2Iv

(
S + E + I1 + I2 +Q+R

N2

)
(λ2 − λ3)

+(1− u2)β3Sv
(
I1 + I2
N2

)
(λ10 − λ9) + (1− u2)β1Iv

(
S

N2

)
(λ3 − λ1)

dλ3
dt

= −C1 + λ3µ+mαE(λ3 − λ5) + (1− u2)β1Iv
(
S

N2

)
(λ3 − λ1)

+β2A

(
Iv
N2

)
(λ3 − λ2) + (1− u2)β3Sv

(
I1 + I2
N2

)
(λ10 − λ9)

dλ4
dt

= −C2 − aλ8 + (µ+ µ1)λ4 + (γ1 + η1u3)(λ4 − λ6) + (1− u2)β1Iv
(
S

N2

)
(λ3 − λ1)

+β2A

(
Iv
N2

)
(λ3 − λ2) + (1− u2)β2Sv

(
S + E +A+Q+R

N2

)
(λ9 − λ10)

dλ5
dt

= −C3 + (µ+ µ2)λ5 + γ(λ5 − λ8) + (δ + η2u4)(λ5 − λ4) + (1− u2)β1Iv
(
S

N2

)
(λ3 − λ1)

+β2A

(
Iv
N2

)
(λ3 − λ2) + (1− u2)β3Sv

(
S + E +A+Q+R

N2

)
(λ9 − λ10) (5)

dλ6
dt

= (µ+ µ3)λ6 + α1(λ6 − λ7) + (1− u2)β1Iv
(
S

N2

)
(λ3 − λ1)

+β2A

(
Iv
N2

)
(λ3 − λ2) + (1− u2)β3Sv

(
I1 + I2
N2

)
(λ10 − λ9)

dλ7
dt

= µλ7 + (1− u2)β1Iv
(
S

N2

)
(λ3 − λ1)

+β2A

(
Iv
N2

)
(λ3 − λ2) + (1− u2)β3Sv

(
I1 + I2
N2

)
(λ10 − λ9)

dλ8
dt

= a0λ8 + (η + θu1)S(λ1 − λ2)

dλ9
dt

= −C5 + (µv + η3u5)λ9 + (1− u2)β3
(
I1 + I2
N

)
(λ9 − λ10)

dλ10
dt

= −C5 + (µv + η3u5)λ10 + (1− u2)β1
(
S

N

)
(λ1 − λ3) + β2

(
A

N

)
(λ2 − λ3)

with transversality conditions
λi(T ) = 0, 1 ≤ i ≤ 10, . (6)

Proof. Let u∗i , 1 ≤ i ≤ 5, be the optimal control functions and S∗, A∗, E∗, I∗1 , I
∗
2 , Q

∗, R∗, Z∗,
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S∗v , I
∗
v are the corresponding state variables. Then, Pontryagin’s Maximum Principle ensures

the existence of the following adjoint variable λ = (λ1, λ2, . . . , λ10)
T ∈ R10, which satisfies

the following canonical equations:

dλ1
dt

= −∂H
∂S

,
dλ2
dt

= −∂H
∂A

,
dλ3
dt

= −∂H
∂E

,
dλ4
dt

= −∂H
∂I1

,
dλ5
dt

= −∂H
∂I2

,

dλ6
dt

= −∂H
∂Q

,
dλ7
dt

= −∂H
∂R

,
dλ8
dt

= −∂H
∂Z

,
dλ9
dt

= − ∂H
∂Sv

and
dλ10
dt

= −∂H
∂Iv

.

with transversality conditions (6). Where H is the Hamiltonian defined as above. Thus, the
adjoint system (5) can be obtained.

In the following result, we shall state the analytical forms of the optimal controls.

Theorem 5.3. The optimal controls (u1
∗, u2

∗, u3
∗, u4

∗, u5
∗) which minimizes J over the re-

gion U are given by

u1
∗ = min{1,max(0, ũ1)}

u2
∗ = min{1,max(0, ũ2)},

u3
∗ = min{1,max(0, ũ3)}

u4
∗ = min{1,max(0, ũ4)},

u5
∗ = min{1,max(0, ũ5)},

where

ũ1 =

(
θZS(λ1 − λ2)

4D1

)1/3

, ũ2 =
β3Sv

I1 + I2
N

(λ10 − λ9) + β1Sv
Iv
N

(λ3 − λ1)

2D2
,

ũ3 =
(λ4 − λ5)η1I1

2D3
, ũ4 =

(λ5 − λ4)η2I2
2D4

, ũ5 =

(
λ9η3Sv + λ10η3Iv

4D5

)1/3

.

Proof. : Using optimally condition, we have

∂H
∂u1

= 0,
∂H
∂u2

= 0,
∂H
∂u3

= 0,
∂H
∂u4

= 0, and
∂H
∂u5

= 0.

We have
∂H

∂u1
= 4D1u

3
1 − θZSλ1 + θZSλ2 = 0

This gives

u1 =

(
θZS(λ1 − λ2)

4D1

)1/3

:= ũ1.
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Similarily

∂H

∂u2
= 2D2u2 + β1S

Iv
N
λ1 − β1S

Iv
N
λ3 + β3Sv

I1 + I2
N

λ9 − β3Sv
I1 + I2
N

λ10 = 0,

u2 =
β3Sv

I1 + I2
N

(λ10 − λ9) + β1Sv
Iv
N

(λ3 − λ1)

2D2
:= ũ2.

∂H

∂u3
= 2D3u3 − λ4η1I1 + λ5η1I1 = 0,

u3 =
(λ4 − λ5)η1I1

2D3
:= ũ3.

∂H

∂u4
= 2D4u4 + λ4η2I2 − λ5η2I2 = 0,

u4 =
(λ5 − λ4)η2I2

2D4
:= ũ4.

∂H

∂u5
= 4D5u

3
5 − λ9η3Sv − λ10η3Iv = 0,

u5 =

(
λ9η3Sv + λ10η3Iv

4D5

)1/3

:= ũ5

Moreover, lower and upper bounds of these control are 0 and 1 respectively. Thus, if ũ1 > 1,
ũ2 > 1, ũ3 > 1, ũ4 > 1, and ũ5 > 1, then

u1 = u2 = u3 = u4 = u5 = 1.

Also, if ũ1 < 0, ũ2 < 0,ũ3 < 0, ũ4 < 0, ũ5 < 0, then

u1 = u2 = u3 = u4 = u5 = 0.

Otherwise, we have

u1 = ũ1, u2 = ũ2, u3 = ũ3, u4 = ũ4 and u5 = ũ5.

Hence, for these controls u1
∗, u2

∗, u∗3, u
∗
4, u
∗
5 we get optimum value of the function J .

6 Numerical experimentations and discussion

This part devotes to perform the numerical simulations for the control problem to further
explore the effect of control interventions on the dynamics of the disease transmission. For
this purpose, we shall define the following control policies:

Policy A: Execution of u1(t), u2(t) and u3(t),

Policy B: Execution of u1(t), u3(t) and u5(t),

Policy C: Execution of u2(t), u3(t) and u5(t),
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Policy D: Execution of all controls u1(t)− u5(t),

Policy E: Execution of u1(t), u3(t) and u4(t),

Policy F: Implementation of only u2(t) and

Policy G: Implementation of only u5(t).

In order to compile the numerical simulations, a set of representative parameters is chosen
as given below

Λ = 20, Λv = 1000, β1 = 0.375, β2 = 0.2, β3 = 0.75, µ = 0.000042, µ1 = 0.0004,

µ2 = 0.004, γ = 0.143, γ1 = 0.01, γ2 = 0.02, δ = 0.01, α = 0.1, α1 = 0.143, µv = 0.042,

θ = 0.01, η1 = 0.1, η2 = 0.1, η3 = 0.1, µ3 = 0.004, η = 0.1, a = 0.1, a0 = 0.05, m = 0.2.

The time period for controls to be applied is T = 120 days along with the initial population
size S(0) = 10000, A(0) = 10, E(0) = 20, I1(0) = 5, I2(0) = 5, Q(0) = 1, R(0) = 1, Z(0) = 1,
Sv(0) = 100000, Iv(0) = 200. We choose the positive weight constants as: C1 = 1.64, C2 =
1, C3 = 1, C4 = 0.1, C5 = 1, D1 = 10, D2 = 10, D3 = 10, D4 = 10, and D5 = 10. Further,
we simulate the optimality system (7) to explore the impact of applied controls numerically.
A standard forward-backward sweep scheme is accounted for simulation of the optimality
system (8). In this method, the optimal state system is solved starting forward in time using
an initial guess for the optimal controls and after that the adjoint state system is solved
backward in time using ode45 in MATLAB. Further, using these state and adjoint variables,
the corresponding optimal controls are updated and continued this iterative process till a
pre-defined convergence criterion is met (for details see [39]). The corresponding numerical
outcomes for different control policies are depicted in Figures 5-12.

The counts/profiles of the both infected population (detected and undetected) for each
control policy are plotted in Figure 5. One can easily see that Policy D (black colored curve)
which includes all controls is found highly effective to reduce the cumulative count of the
infected population. In addition, Policy A and Policy C (have similar impact) also play
an important role in reducing the cumulative count of the infected population. Thus our
finding suggests that use of bed nets and detection/quarantine along with either effect of
information (Policy A) or effect of insecticides keep a strong tab on the cumulative count
of the infection and have the equivalent effect. Therefore, in the absence of the information
impact, we can implement the use of insecticides to minimise the burden of infection count
within population and vice-versa. Furthermore, Policy B is found more effective than the
Policy E in suppressing the epidemic peak during the course. Whereas, Policy E has strong
impact on the detected infective population than the undetected one (curves given in magenta
color in Figure 5). Thus, we infer that the comprehensive usage of bed nets and effect of
information is more effective along with mosquito insecticides than the screening intervention
of undetected human infective. Moreover, in between the single control strategies of only use
of bed nets/mosquito repellents (Policy F) and mosquito insecticides (Policy G), the use
of bed nets/mosquito repellents has remarkable capacity to suppress the epidemic burden
(curves given in cyan color in Figure 5).

A similar effect of designed control policies as discussed above are also found in other
human population as seen in Figure 6 and Figure 7. For example, the count of the exposed
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Figure 5: Profiles of I1 and I2.

population is at a very minimum level for control policies A, C and D (Figure 6(a)). In
addition, the use of only bed nets/mosquito repellent (Policy F, cyan colored curve) plays
a vital role in suppressing the count of exposed population than the policies B, E and G.
Whereas, in the absence of the Policy F, the execution of the Policy B (in between policies
B and E) may be a viable option for controlling the future infection (red colored curve in
Figure 6(a)). Profiles of other human populations such as aware, quarantined and recovered
are shown in Figure 6(b) and Figure 7. One can easily observe from Figure 6(b) that the
count of the aware population settles at its maximum level during the course of epidemic
when all the controls (Policy D) are implemented.
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Figure 6: Profiles of E and A.

The profiles of the mosquito population (Sv and Iv) are depicted for all control policies in
Figure 8. We infer that the combined impact of all controls (Policy D) is highly effective in
reducing the count of mosquito population. Whereas, the only usage of mosquito insecticides
(Policy G) also has a strong impact on suppressing the count of the infected mosquito (yellow
colored curve in Figure 8(a)). Moreover, in between the policies B and E, the policy makers
can execute Policy B as it also has a significant impact on the mosquito population (red
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Figure 7: Profiles of Q and R.
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Figure 8: Profiles of Iv and Sv.

The profiles of all optimal controls (u∗1 − u∗5) are plotted in Figures 9-11. Our findings
infers that the optimal controls u∗2 (Policy F) and u∗5 (Policy G) are highly effective and
have to be applied with full potential during the entire course of the epidemic to minimise
the cumulative count of the human as well as mosquito infected population Figure 9(b) and
Figure 11. Whereas, optimal controls u∗1 and u∗3 have to be executed with various potential for
different control policies as shown in Figure 9(a) and Figure 10(a). For instance, the optimal
control u∗3 has to be applied with fill potential in Policy E (curve in magenta) whereas in
policies C and D, a reduced potential (up to 60-70%) is needed in controlling the disease
spread (green and black colored curves). A similar impact for the optimal control u∗4 is also
observed as given in Figure 10(b). In the case of Policy D, a minimum potential is required
than in the Policy E (black and magenta colored curves).
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Figure 9: Profiles of optimal controls u∗1 and u∗2.
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6.1 Analysis of cost-effectiveness of control policies

Execution of control interventions requires a large amount of the money which primarily
includes the costs of medicines, diagnostic charges, hospitalization charges and the cost of
man power needed. Thus, it becomes important to vet the cost-effectiveness, criticality and
applicability of the applied control policies. Therefore, in this part, we shall discuss the cost
effectiveness of applied control policies A-G by making a comparative study. The profiles
of the cost distribution for each control policies are plotted in Figure 12. The Policy D is
highly economically viable in controlling the disease spread. Moreover, policies A and C are
also found significantly cost effective in reducing the disease burden (blue and green colored
curves in Figure 12). Whereas, in between the policies F and G, Policy G (only u∗5) is more
cost effective than the Policy F (only u∗2) while they have reverse impact on suppressing
the count of the infected population either human or mosquito (cyan and yellow colored
curves in Figure 12). Thus, we accentuate that the policy makers or health officials can
select and execute the control policies according the present financial situation weather we
need to suppress the infection with larger cost and vice-versa. Moreover, Policy E does not
found much economically viable though it reduces the count of the detected infective human
population and one can compare the magenta colored curves given in Figure 5)(a) and Figure
12. Therefore, some designed control policies may be less cost effective than others but have
a huge impact on infection and vice-versa. Thus, policy makers have to very selective in
implementation of suitable control policies.
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Figure 12: Profiles of Cost under various control policies (A-G).

6.2 Impact of the basic reproduction number R0 on control policies

Generally, the basic reproduction number R0 is an important factor that determines the
severity of the disease persistence characterized by high epidemic peaks for its higher values
[38]. Further, these epidemic peaks can be measured by different values of R0 for various
degree of transmissibility. Therefore, in the following, we shall made a comparative study for
various values of R0 by varying the degree of transmissibility on the optimal control policies
(A-G) as well as on human and mosquito population. The basic reproduction number R0 of
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the system (as obtained in 1), in the absence of all controls u1 = 0 to u5 = 0, is defined as:

R0 =

√
β1
µv
a41.

For all control policies, the high epidemic peaks of populations for a certain range of R0

(1 ≤ R0 ≤ 7) are plotted in Figures 13-16. The maximum cost, in this case, is also depicted
in Figure 17. One can easily found from Figure 13 that the policies A, C, and D are highly
effective as the high epidemic peaks (high severity) are at a very low level for entire range
of R0. In between the policies B and F, Policy B is more effective when epidemic is less
severe (1 < R0 < 4) than Policy F whereas, for high severity (R0 > 4), the Policy F is more
constructive (red and cyan colored curves in Figure 13(a)). Moreover, Policy E and Policy G
have similar capacity to reduce the epidemic peaks of detected infective while Policy E has
less impact on undetected population as the peaks increase as R0 increase (magenta colored
curve in Figure 13(b)).
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Figure 13: Profiles of I1 and I2 for various R0.

Furthermore, the epidemic peaks for rest of the human populations are shown in Figures
14-15. A similar impact of all control policies are found in reducing the epidemic peaks for
higher severity as well (the value of R0 increases). Thus, the combined usage of all control
interventions (Policy D) is found highly applicable in keeping the severity/epidemic peaks
at a minimum level for entire range of R0. Figure 16 corresponds to the peaks of mosquito
populations for all values of R0. Our study infers that the implementation of only mosquito
insecticides (Policy G, u∗5) plays an important in minimising the epidemic peaks for all most
values of R0 except the tail. Other policies such as A, C and D also keep a tab on peaks of
mosquito population while Policy E is less effective.

The corresponding maximum peaks of optimal cost for each control policies are demon-
strated in Figure 17. As discussed in cost-effective part, here, we again found the similar
impact. For instance, Policy F (only u∗2) is found less cost-effective than Policy G (only
u∗5) for entire range of R0 whereas it has great impact on infected population and vice-versa.
Moreover, policies B, C and D are highly cost-effective even if epidemic is more severe. Policy
E corresponds to less cost-effectiveness and it increases as R0 increases. Thus, we conclude
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Figure 14: Profiles of E and A for various R0.
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Figure 15: Profiles of Q and R for various R0.
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Figure 16: Profiles of Sv and Iv for various R0.
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that the comprehensive impact of all controls (Policy D) is highly effective and economically
viable in controlling the spread of disease within the population.
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Figure 17: Profile of Cost for various R0.

7 Concluding Remarks

In this work, a dengue model is formulated by quantifying the impact of information-induced
behavioural change and separation of infected human class into two subparts - detected and
undetected. In order to determine the key parameters of the model system, a sensitivity
analysis is carried out that monitor the dynamics of dengue as well as the basic reproduction
number (R0). We found that the death rate of mosquito (µv) and the transmission rate
between mosquito and human (β1) are crucial parameters which can help in reduction of R0.
The parameters α, γ1δ, µv, and β2 have also significant impact on the dynamics of dengue
and particularly in infected human population.

We extended our proposed model to corresponding an optimal control problem by choos-
ing five different controls measures such as: information induced behavioural change, use of
mosquito repulsive, quarantine, screening and culling of mosquitoes. A cost functional that
consists of various weighted costs is designed and characterization of optimal control paths
analytically is performed with the help of Pontryagins Maximum Principle. In order to weigh
the effect of various combinations of controls and provided the comparative study numerically,
we proposed seven different control strategies, A to G (as mentioned in numerical section) by
considering various combinations of above mentioned control measures. Our findings suggest
that use of bed nets and detection/quarantine along with either effect of information (Strat-
egy A) or effect of insecticides keep a strong tab on the cumulative count of the infection and
have the equivalent effect. Similarly, other strategies also have significant on the prevalence of
dengue. Whereas, the cumulative count of infected human population is found at a minimum
level under the impact of Strategy D (all controls). Furthermore, we have also examined the
effect of the basic reproduction number R0 on the designed control strategies (A to G) and
on dengue prevalence. For this purpose, we have estimated the high epidemic peaks subject
to R0 for all strategies (A to G). Our study accentuates that the Strategies B, C and D are
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highly cost-effective even if epidemic is more severe (when the value of R0 is high). Whereas,
Strategy E corresponds to less cost-effectiveness and it increases as R0 increases. Thus, we
conclude that the comprehensive impact of all controls (Strategy D) is highly effective and
economically viable in controlling the prevalence of dengue.
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Appendix A Optimality system

The optimality system of the optimal control problem with minimized Hamiltonian H∗ at
S = S∗, A = A∗, E = E∗, I1 = I∗1 , I2 = I∗2 , Q = Q∗, R = R∗, Z = Z∗, Sv = S∗v , Iv = I∗v and
optimal controls ui = u∗i for i = 1− 5 (Theorem 5.3) is given by

dS∗

dt
= Λ− (1− u∗2(t))β1S∗

I∗v
N∗
− µS∗ − (η + θu∗1(t))Z

∗S∗ + γ2A
∗,

dA∗

dt
= (η + θu∗1(t))Z

∗S∗ − β2A∗
I∗v
N∗
− γ2A∗ − µA∗,

dE∗

dt
= (1− u∗2(t))β1S∗

I∗v
N∗

+ β2A
∗ I
∗
v

N∗
− αE∗ − µE∗,

dI∗1
dt

= (1−m)αE∗ − (µ+ µ1)I
∗
1 − (γ1 + η1u

∗
3(t))I

∗
1 + (δ + η2u

∗
4(t))I

∗
2 , (7)

dI∗2
dt

= mαE∗ − (µ+ µ2)I
∗
2 − γI∗2 − (δ + η2u

∗
4(t))I

∗
2 ,

dQ∗

dt
= (γ1 + η1u

∗
3(t))I

∗
1 − (µ+ µ3 + α1)Q

∗,

dR∗

dt
= α1Q

∗ + γI2 − µR∗,

dZ∗

dt
= aI∗1 − a0Z∗,

dS∗v
dt

= Λv − (1− u∗2(t))β3S∗v
(
I∗1 + I∗2
N∗

)
− (µv + η3u

∗
5(t))S

∗
v ,

dI∗v
dt

= (1− u∗2(t))β3S∗v
(
I∗1 + I∗2
N∗

)
− (µv + η3u

∗
5(t))I

∗
v .
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The corresponding adjoint system at λi = λ∗i for i = 1− 10 is

dλ1
dt

= λ1µ+ (η + θu1)Z(λ1 − λ2) + β2A

(
Iv
N2

)
(λ3 − λ2)

+(1− u2)β1Iv
(
A+ E + I1 + I2 +Q+R

N2

)
(λ1 − λ3)

+(1− u2)β3Sv
(
I1 + I2
N2

)
(λ10 − λ9)

dλ2
dt

= C4 + λ2µ+ γ2(λ2 − λ1) + β2Iv

(
S + E + I1 + I2 +Q+R

N2

)
(λ2 − λ3)

+(1− u2)β3Sv
(
I1 + I2
N2

)
(λ10 − λ9) + (1− u2)β1Iv

(
S

N2

)
(λ3 − λ1)

dλ3
dt

= −C1 + λ3µ+mαE(λ3 − λ5) + (1− u2)β1Iv
(
S

N2

)
(λ3 − λ1)

+β2A

(
Iv
N2

)
(λ3 − λ2) + (1− u2)β3Sv

(
I1 + I2
N2

)
(λ10 − λ9)

dλ4
dt

= −C2 − aλ8 + (µ+ µ1)λ4 + (γ1 + η1u3)(λ4 − λ6) + (1− u2)β1Iv
(
S

N2

)
(λ3 − λ1)

+β2A

(
Iv
N2

)
(λ3 − λ2) + (1− u2)β2Sv

(
S + E +A+Q+R

N2

)
(λ9 − λ10)

dλ5
dt

= −C3 + (µ+ µ2)λ5 + γ(λ5 − λ8) + (δ + η2u4)(λ5 − λ4) + (1− u2)β1Iv
(
S

N2

)
(λ3 − λ1)

+β2A

(
Iv
N2

)
(λ3 − λ2) + (1− u2)β3Sv

(
S + E +A+Q+R

N2

)
(λ9 − λ10) (8)

dλ6
dt

= (µ+ µ3)λ6 + α1(λ6 − λ7) + (1− u2)β1Iv
(
S

N2

)
(λ3 − λ1)

+β2A

(
Iv
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(
I1 + I2
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dλ7
dt

= µλ7 + (1− u2)β1Iv
(
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+β2A

(
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dλ8
dt

= a0λ8 + (η + θu1)S(λ1 − λ2)

dλ9
dt

= −C5 + (µv + η3u5)λ9 + (1− u2)β3
(
I1 + I2
N
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dλ10
dt
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(
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with transversality conditions (6).
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