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The main production route for cast iron and steel is through the blast furnace. The silicon content 
in cast iron is an important indicator of the thermal condition of a blast furnace. High silicon contents 
indicate an increase in the furnace’s thermal input and, in some cases, may indicate an excess of coke 
in the reactor. As coke costs predominate in the production of cast iron, tighter control of the silicon 
content therefore has economic advantages. The main objective of this article was to design an artificial 
neural network to predict the silicon content in hot metal, varying the number of neurons in the 
hidden layer by 10, 20, 25, 30, 40, 50, 75, 100, 125 , 150, 170 and 200 neurons. In general, all neural 
networks showed excellent results, with the network with 30 neurons showing the best results among 
the 12 modeled networks. The validation of the models was confirmed using the Mean Square Error 
(MSE) and Pearson’s correlation coefficient. The cross-validation technique was used to re-evaluate 
the performance of neural networks. In short, neural networks can be used in practical operations 
due to the excellent correlations between the real values   and those calculated by the neural network.
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1. Introduction
The main route for the production of cast iron and steel is 

through the blast furnace. Steel is generally produced in two 
steps: First, the pig iron, also called hot metal, is obtained, 
which consists mainly of iron, a high carbon content (about 
4.5%), and impurities such as sulfur, phosphorus, and silicon1-3

.
Hot metal is usually produced in a blast furnace, although 

a chemically similar but spongy-looking material can be 
obtained by the process of direct reduction, which is then 
used in a similar way to the hot metal produced in a blast 
furnace. However, this article is about the control of silicon 
in blast furnaces fed with metallurgical coke4-6.

The blast furnace is fed from the top with lump iron ore, 
sinter, pellets, fluxes such as dolomite and limestone, and 
a fuel called metallurgical coke. Hot air is blown into the 
furnace from the bottom, through the tuyeres. Fuels such 
as pulverized coal, biogas and natural gas are also injected 
into this area. A part of the blast furnace gas is burned in the 
hot stoves to heat the air jet entering the furnace to about 
1050°C. The air jet is enriched with oxygen7-10.

The physicochemical interactions gas-solid, solid-solid 
and liquid-liquid occur in different zones of the blast furnace. 
The hot air combines with the descending glowing coke 
to produce carbon monoxide gas and release the energy 
needed to raise the internal temperature of the blast furnace 
by about 1б50°C10-14.

The hot metal and molten slag are removed from the 
bottom of the furnace and sent to the steel mill for further 
processing10.

However, during hot metal production it is necessary to 
control the impurities of the hot metal, especially silicon. 
Hot metal with excess silicon is harmful to the secondary 
refining process in the steelworks. The final concentration 
of the hot metal in terms of impurities such as silicon is the 
result of the equilibrium between the iron phase and the slag 
phase as the iron droplets percolate through the slag phase15.

The silicon content in the cast iron is an important 
indicator of the thermal condition of a blast furnace and 
can therefore reflect the quality of the steel. High values of 
silicon content indicate increased heat input to the furnace 
and in some cases may indicate excess coke in the furnace. 
Since coke costs predominate in the production of cast 
iron, tighter control of silicon content therefore clearly has 
economic advantages7,15-19.

In the field of complex process simulation, the application 
of solutions based on neural networks has become popular 
due to their versatility and possibility of development, as well 
as the greater reliability of the responses, since the neural 
network receives new data during the training process20,21.

Artificial neural networks are computational models 
that have a number of artificial neurons and mimic the 
functioning of a human biological neuron. The main feature 
of this technique is its ability to learn and solve problems 
that are not linearly separable using information from the 
environment in which it operates22-25.

The basic unit of the neural network is the artificial 
neuron, which can be divided into input signal, synaptic 
weight, bias, sum, activation function, and neuron output. 
These functions mimic the functioning of the human brain *e-mail: wandercleiton.cardoso@dicca.unige.it
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and make it possible to reproduce the synaptic communication 
between neurons2,3,10,26.

From the analysis of Figure 1, it can be concluded that 
xj represents the input of the network; wki represents the 
synaptic weight, where k is the neuron number and j is the 
input stimulus; bk represents the weight parameter (bias); f(.) 
represents the activation function of the neuron; uk represents 
the linear combination of the input signals; and yk represents 
the output response of the neuron.

The most common artificial neural network architectures 
are single-layer feed-forward networks, multilayer feed-
forward networks, recurrent networks, and lattice networks2,27. 
In this paper, a single-layer feedforward architecture with a 
sigmoid activation function and the Levenberg-Marquardt 
training algorithm was chosen. Figure 2 shows a single-layer 
feedforward neural network.

In this type of architecture, the input layer is directly 
connected to one or more neurons that generate the output 
response. This type of architecture is used to solve classification 
and pattern problems. Perceptron and Adaline neural networks 
work with feedforward architecture.

Defining the topology of an artificial neural network 
(ANN) is not a trivial task, as it is usually determined on 
the basis of past experience and trial-and-error processes. 
According to the literature, several authors suggest that 
one or two layers are sufficient for modeling metallurgical 
problems. Only one hidden layer, using a sigmoid-type 
activation function, is sufficient for the network to converge 
to good results as long as there are enough input variables 
to train the algorithm2,16,28.

The Levenberb-Marquardt (LM) is algorithm for 
approximating the minimum error function by Newton’s 
method. This approximation is described by Equation 1.

( ) ( ) ( ) ( )
1

 Tx J x J x I J x e xµ
− ∆ = +     (1)

Where, (𝐼) is the identity matrix, (𝑒(𝑥)) represents the error, 
and (𝐽) corresponds to the Jacobian matrix.

Considering all the context presented so far, the main 
objective of this paper was to model 12 different artificial 
neural networks to find out what is the ideal number of 
neurons in the hidden layer that gives the best results for 
predicting the silicon content in the hot metal. The number 

Figure 1. Artificial neuron.

Figure 2. Feed-forward single-layer artificial neural network.
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of neurons in the hidden layer were 10, 20, 25, 30, 40, 50, 
75, 100, 125, 150, 175, and 200 neurons.

2. Research Method

2.1. Selection of process variables
The blast furnace studied in this paper has a total height 

of 110m and a useful height of 43m (considering the useful 
volume), while its internal volume is 3,617.01m3. The 
crucible of the blast furnace, where the liquid metal and 
slag are stored, has a volume of 899.03m3.

There are a large number of process variables in the 
blast furnace that affect the silicon content of the hot metal. 
Selecting an appropriate set of these variables is not a trivial 
task. The inclusion of many secondary variables in the 
model complicates its training and use. On the other hand, 
the inclusion of few variables makes the model poor2,10,29.

The input variables were classified into 7 groups. Table 1 
shows the summary of the classification of the groups of 
input variables. Table 2 shows the output variables analyzed.

A total of 1100 operating days over a 3.5-year period 
were selected. 75 variables were selected as described in 
Tables 2 and 3. The database consists of 82,500 data.

During these 3.5 years the blast furnace was in normal 
operation and therefore the output of the neural network 
corresponds to the normal operation of the blast furnace.

2.2. Outlier removal
The database initially consisted of 1302 days of operation 

and after data processing and removal of the outlier resulted 
in a database composed of 1100 operational days.

In this paper, 2 techniques were used to identify the 
outliers. The first technique used the experience of engineers, 
consultants and operational technicians.

During a period of 3.5 years, the operation of the blast 
furnace under study was interrupted 10 times to perform 
maintenance on the reactor. The maintenance shutdowns 
lasted on average 3 days (72 hours) each. In the week before 
and after the maintenance shutdown, operational changes 
are made at the blast furnace. It was determined that the 
7 days before the maintenance shutdown and the 7 days 
after the maintenance shutdown would be classified as an 
operational outilier.

During the 3.5 years, the blast furnace experienced 7 
serious operational instability events. Five events involved 
an immediate reduction in the murmur volume and pressure 
of the reactor. It was determined that the day of the sudden 
reduction in blow volume event and the 2 days later of event 
were also classified as operational outlier.

There were also 2 events of load-lowering reduction 
(permeability) in the blast furnace. It was determined that 
the day of the event and the 2 days before and after the 
event are also classified as operational outilier. When the 
permeability of the blast furnace is reduced, the passage of 
air through the metallic charge inside the reactor is affected, 
and when this air is trapped in a zone, the internal pressure 
increases, resulting in a cage and consequently a decrease 
in the load of furnace.

Table 3 illustrates the number of days that were considered 
outliers and excluded from the database.

The second technique to identify the outliers used the 
principle of exploratory data analysis. The method consists 
of defining a pair of inner fences and a pair of outer fences, 
as illustrated in Equations 2 to 5.

The data located between the inner fences is the correct 
data, those between the inner and outer fences are the 
moderate outliers and those outside the outer fences are the 
severe outliers. Where Q1=firt quartile; Q3=third quartile; 
and IQR=interquatrile range10.

( )1   1.5  Lower inner fence Q IQR= − ×    (2)

( )1   3Lower outer fence Q IQR= − ×   (3)

( )3   1.5  Lower inner fence Q IQR= − ×   (4)

( )3   3Lower outer fence Q IQR= − ×   (5)

Following the principle of exploratory data analysis, 23 
days were found to be moderate outliers and 7 operational 
days were found to be severe outliers. The 23 days (moderate 
outliers) were retained in the database, but 7 days considered 
severe outliers were eliminated.

Table 4 illustrates the composition of the database. 
Figure 3 shows a normal distribution curve and the interval 
(> + 3σ and < -3σ ) that was considered a severe outlier and 
removed from the database.

In this paper, considering a normal distribution of the 
database, all points outside the range (µ + 3σ) and (µ - 3σ) 
were considered as outliers and eliminated. In the case of 

Table 1. Variable group division.

Variable groups Number of 
variables

Number of 
information

Blowing air 6 6600
Top gas 7 7700
Temperature 6 6600
Fuel 22 24200
Ore 11 12100
Hot metal 9 9900
Slag 13 14300
TOTAL 74 81400

Table 2. Output variable.

Output variable Number of 
variables

Number of 
information

Silicon 1 1100
TOTAL 1 1100

Table 3. Operacional outlier.

Operacional outlier Number of 
events

Number of 
days

Blowing air 05 15
Permeability 02 10
Operational maintenance 10 30
Weeks before/after maintenance 20 140
TOTAL 37 195
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normally distributed composition data, as in the case of the 
database of this research, the removal of outliers is justified10.

2.3. Database standardization
The database contains several physical variables such 

as temperature, hot metal production, slag production and 
blown air volume with very different magnitudes.

These data cannot be used directly to train an artificial 
neural network because variables with a high magnitude 
affect the respective synaptic weights compared to variables 
with a lower magnitude. In this paper, all variables were 
standardized to the range between 0 and 1, as shown in 
Equation 6.

 xZ µ
σ
−

=   (6)

To standardize a variable (Z), the mean (μ) and standard 
deviation (σ) are calculated. Thus, for each observed value 
(x) of the variable, the mean is subtracted and divided by the 
standard deviation. Database standardization is important 
to interpret the skewness and kurtosis behavior of each 
variable in the database.

Skewness is the degree of deviation or departure from 
symmetry of a distribution. When the curve is symmetric, 
the mean, median, and mode coincide at the same point on 
the maximum ordinate, so there is perfect equilibrium in 

the distribution. If no equilibrium occurs, that is, the mean, 
median, and mode are at different points in the distribution, 
it is asymmetric, that is, skewed to the right or left10.

A distribution with negative skewness exists when the 
values are concentrated at the top of the scale and gradually 
spread to the lower left. The skewness is positive when the 
third quartile moves away from the median, while the first 
quartile approaches the median and has a limit: Q1 = Q2 when 
the skewness takes the maximum positive value: (S=1).

A distribution with positive skewness exists when the 
values are concentrated at the top of the scale and gradually 
spread to the lower right. The skewness becomes negative 
when the first quartile moves away from the median while 
the third quartile approaches the median, which is a limit: Q3 
= Q2 when the skewness takes a maximum negative value10.

Kurtosis is the degree of flatness of a distribution, relative 
to the normal distribution. Kurtosis can be of three types: 
mesokurtic, when the distribution is normal; leptokurtic, when 
the distribution is sharper than normal; and platykurtic, when 
the distribution is flatter than normal10. Figure 4 illustrates 
the behavior of skewness, while Figure 5 illustrates the 
behavior of kurtosis.

2.4. Data segmentation
Several authors argue that normally 85% of the data is 

used to train and validate the neural network and the remaining 
15% of the dataset is presented to the neural network only 
when its performance in the training and validation phase 
is considered satisfactory2,16,30.

The test step is important to evaluate the generalization 
and learning ability of the neural network. The neural network 
must be able to generalize what it has learned and reproduce 
the solutions from the trained examples for any problems 
similar to the training2,16.

The database of the blast furnace operating records was 
segmented into 4 groups: (1) training, (2) validation, (3) test, 
and (4) cross-validation.

Figure 3. Normal distribution curve.

Table 4. Raw database.

Number of 
days Eliminated Sustained

Raw database 1302 * *
Operational outliers * -195 *
Moderate outliers * * 23
Severe outliers * -7 *

Clean database 1100
(1302 - 202) 202 23
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Segmenting the data into training set and validation set 
ensures that the weights do not converge to a local minimum. 
In this method, after the neural network has converged with 
the training data set, it is trained again with the validation 
data set10.

In the validation dataset, the final weights obtained in 
the training phase are used as the initial weights. If the error 
converges in the validation phase, the trained network can be 
used as a process model. To test the accuracy of the neural 
network model, test data is used. This data is used only once 
to test the accuracy of the model31-33.

After testing, it is possible to check the final result with 
an additional database to cross-validate the results obtained 
after the training, validation and testing steps.

The segmentation of the variables was performed 
randomly and an ANOVA test was performed to verify that 
the original set and the 4 segmented sets represent the same 
population given by their mean and standard deviation. 
Table 5 illustrates the segmentation of the database.

2.5. Network architecture
As explained above and shown in Figures 1 and 2, 

artificial neural networks are known to be computer models 
inspired by the human brain and used in machine learning 
and pattern recognition, where the smallest component of 
a neural network is the artificial neuron.

The optimization algorithm for training was the Levenberg-
Marquardt (LM) because it allows for fast convergence. 

The function used was of the sigmoid type. The model 
was evaluated using the mean square error (MSE) and the 
Pearson’s correlation coefficient (R).

According to the literature, the number of neurons in 
the hidden layer must be determined empirically, without 
explicit rules for an ideal calculation. It is recognized in 
the literature that in most cases the use of a single hidden 
layer is sufficient since this structure is able to approximate 
any non-linear equation (such as quadratic or exponential 
equations), as long as there are enough input variables to 
train the neural network.

Two hidden layers are already capable of representing 
any relationship between the data, including those that cannot 
be represented by equations.

More than two hidden layers are needed only for even 
more complex problems, such as time series and computer 
vision, where there is some relationship between the 
dimensions contained in the data (time in the first case and 
geometric shapes in the second).

Figure 4. Skewness behavior in a normal distribution.

Figure 5. Kurtosis behavior in a normal distribution.

Table 5. Division of variables.

Step Variables
Training 700
Validation 150
Test 150
Cross-validation 100
TOTAL 1100



Cardoso et al.6 Materials Research

The neural network in this paper has 74 input variables and 
1 output variable operating on 82,500 pieces of information. 
Figure 6 illustrates the architecture of an artificial neural 
network.

The purpose of this paper is to evaluate the behavior of a 
neural network with a single hidden layer, sigmoid activation 
function and using Levenberg-Marquardt algorithm varying 
the number of neurons in the hidden layer in 10, 20, 25, 30, 
40, 50, 75, 100, 125, 150, 175 and 200 neurons.

2.6. Statistical analysis
Descriptive statistics applies techniques to describe and 

summarize a database. Some measures commonly used to 
summarize a database are measures of central tendency and 
measures of variability or dispersion.

Measures of central tendency include mean, median, and 
mode. Measures of variability include standard deviation, 
maximum and minimum values, skewness, and kurtosis.

As mentioned earlier, the segmentation of the database 
was done randomly and an ANOVA test was performed to 
verify that the original set and the segmented sets represent the 
same population given by their mean and standard deviation.

The mean, standard deviation, minimum, median, 
maximum, asymmetry and kurtosis were calculated. 
Tables 6 to 12 show the descriptive statistics for the groups 
of input variables. Table 13 shows the descriptive statistics 
for the output variable (silicon).

3. Result and Discussion

3.1. Model variables
In selecting of input variables, it was decided to select 

the most important variables that affect the operation of 
the blast furnace. The variables were selected considering 
7 groups (Table 1): (1) blowing air; (2) blast furnace gas; 

Figure 6. Artificial neural network architecture.

Table 6. Top gas variables.

Variable Unit Mean Std_dev Minimum Median Maximum Skewness Kurtosis
CO % 23.8 0.74 21.1 23.91 26.71 -0.56 0.31
CO2 % 24.3 0.66 21.9 24.41 26.10 -0.47 0.21
N2 % 47.2 1.39 44.8 46.83 53.87 1.00 1.21
H2 % 4.5 0.43 3.0 4.53 5.85 -0.25 0.33
CO + CO2 % 47.9 0.6 44.0 48.1 48.1 -3.09 10.68
CO efficiency % 49.5 0.85 46.07 49.51 52.36 0.00 0.10
H2 efficiency % 40.7 3.25 12.80 40.80 51.64 -0.95 5.88

Table 7. Blow air variables.

Variable Unit Mean Std_dev Minimum Median Maximum Skewness Kurtosis
Volume Nm3/min 4852.90 148.60 4251.20 4854.10 5395.0 -0.21 0.71
Pressure Kgf/cm2 3.87 0.10 3.44 3.89 4.10 -0.49 0.33
Moisture kg/m3 19.81 3.73 12.07 19.80 27.93 0.03 -0.71
O2 enrichment % 5.27 0.95 2.91 5.27 6.89 -0.40 -0.64
Steam % 1.51 1.01 0.10 1.39 6.63 1.22 3.10
Total comsump. Nm3/min 7030.30 213.60 6112.80 7030.30 7824.40 -0.11 0.82
Volume Nm3/min 4852.90 148.60 4251.20 4854.10 5395.0 -0.21 0.71

Table 8. Temperature variables.

Variable Unit Mean Std_Dev Minimum Median Maximum Skewness Kurtosis
Hot metal °C 1508.3 12.2 1470.4 1508.7 1542.7 -0.35 0.17
Blowing air °C 1243.3 13.9 1200.8 1238.3 1249.8 -0.62 -086
Top gas °C 121,35 10,34 90,98 120,98 179,25 0,58 1,50
Flame temperature °C 2177.6 2108 2071.8 2178.6 2243.2 -0.48 1.03
Slag °C 1508.3 12.2 1470.4 1508.7 1542.7 -0.35 0.17
Thermal index - 504.70 54.03 364.77 516.41 659.00 -0.32 -0.52
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(3) thermal control; (4) fuel; (5) ore, sinter and pellets; (6) 
hot metal and (7) slag.

Blowing air is supplied at the bottom of the blast furnace. 
Flow measurements are important for process control of the 
blast furnace and provide information on operating deviations.

Operational control of the blast furnace gas is important 
information for the application of thermochemical models 

and the frequency of its analysis is important to determine 
specific carbon consumption and specific air flow 2.

Thermal control is important to ensure the performance 
of the blast furnace and the quality of the final product. The 
amount of silicon in the hot metal is directly dependent on the 
temperature of the hot metal and the quality of the minerals 
fed from the top of the furnace 20.

Table 9. Ore variables.

Variable Unit Mean Std_Dev Minimum Median Maximum Skewness Kurtosis
Ore/Coque - 5.10 0.31 3.82 5.15 6.27 -0.66 0.54
Sinter (type 1) ton 4536.3 884.2 190.2 4709.3 5983.0 -1.62 3.58
Sinter (type 2) ton 1697.2 1326.2 50.6 1354.8 5297.0 1.00 0.07
Pellet (type 1) ton 5132.0 1898.3 13.9 5790.7 7803.6 -1.33 0.71
Pellet (type 2) ton 4813.7 2183.1 53.7 5696.0 7626.7 -0.96 -0.52
Total metal load ton 12312 670 10010 12238 13506 -0.72 0.28
Raw material rate Kg/ton 1578.8 15.1 1528.6 1577.9 1618.5 -0.11 0.10
Ore % 8.9 4.5 0.6 9.0 18.0 -0.05 -0.88
Sinter % 39.6 2.8 32.9 40.0 49.0 -0.08 -0.39
Pellet % 51.5 5.1 42.0 51.4 65.0 0.12 -0.75
Ore day ton/day 12747 703 10170 12845 14093 -0.84 0.67

Table 10. Fuel variables.

Variable Unit Mean Std_dev Minimum Median Maximum Skewness Kurtosis
Injection PCI Kg/ton 58.99 6.16 41.89 57.88 72.29 -0.10 -0.32
Gas rate Kg/ton - - - - - - -
Coal/O2 tax Kg 755.27 75.57 562.99 745.94 933.38 0.09 -0.63
Coal/air tax - 170.03 74.12 2.15 191.76 265.25 -1.19 0.06
PCI rate Kg/ton 175.98 15.61 132.16 176.17 219.74 0.08 0.65
Direct reduction % 23.38 12.41 3.11 29.58 35.21 -0.94 -1.04
PCI tax 1078.30 540.90 12.20 1297.90 1845.60 -0.98 -0.65
Coke total Kg/ton 1932.20 911.70 23.20 2348.00 3365.20 -1.28 -0.20
Small coke Kg/ton 294.63 134.86 3.63 334.93 672.10 -0.65 0.19
Coke (type 1) Kg/ton 210.70 259.80 1.00 137.50 2133.00 3.47 17.81
Coke (type 2) Kg/ton 742.00 716.00 22.00 219.00 1769.00 0.55 -1.62
Coke (type 3) Kg/ton 946.00 956.00 39.00 265.00 2597.00 0.57 -1.71
Coke (type 4) Kg/ton 1878.00 143.00 1777.00 1878.00 1979.00 0.01 0.03
Coke (type 5) Kg/ton 1327.50 847.60 15.90 1822.00 2649.60 -0.53 -1.56
Moisture Kg/ton 6.40 1.41 1.29 6.48 13.74 -0.41 1.47
Coke/load Kg/ton 11.89 9.56 2.11 2.96 42.44 0.10 -1.80
Small coke total Kg/ton 4.28 0.03 4.26 4.26 4.32 0.44 -2.02
PCI/load Kg/load 174.74 14.32 16.73 175.30 212.27 -1.78 15.07
Fuel rate/load Kg/lod 484.08 18.14 362.91 482.35 599.50 2.53 14.09
Coke total/load Kg/load 24.52 0.89 22.25 24.24 27.80 1.04 1.20
PCI/day - 1214.40 44.90 1136.60 1222.10 1299.20 0.00 -0.62
Coke rate Kg/ton 319.68 25.98 272.82 318.84 417.68 0.87 0.64

Table 11. Hot metal variables.

Variable Unit Mean Std_Dev Minimum Median Maximum Skewness Kurtosis
Estimated production ton 7789.5 314.5 7014.4 7856.8 8526.8 -0.4 -0.3
Real production ton 7787.2 324.5 324.5 7836.1 8563.9 -0.4 -0.2
Carbon % 4.635 0.169 3.788 4.625 5.173 -0.1 0.8
Chrome % 0.025 0.002 0.019 0.025 0.042 1.3 5.2
Copper % 0.007 0.001 0.004 0.007 0.009 -1.2 1.7
Sulfur % 0.023 0.008 0.008 0.021 0.083 1.5 4.8
Phosphorus % 0.074 0.006 0.055 0.074 0.097 0.3 0.0
Manganese % 0.29 0.03 0.22 0.29 0.36 0.0 -0.6
Mn (hot metal/slag) - 0.13 0.22 0.09 0.16 0.7 1.1 3.1
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The control of the blast furnace fuels, which can be 
injected through the vents or loaded into the blast furnace 
from the top, is the main group of variables. The blast 
furnace studied in this paper was operated for 4 years with 
7 different types of coal, according Table 10.

The same reactor has a pulverized coal injection system 
and can also be operated with natural gas injection. Coal 
and coke play a dual role in the production of hot metal. 
As a fuel, it enables the high temperatures (about 1,500º 
Celsius) required to melt the ore to be reached, and as a 
reducing agent, it combines with oxygen and reduces the 
ore at high temperature 16.

Mineral control is important to optimize the final quality 
of the product and reduce the levels of unwanted impurities 
such as silicon, phosphorus and sulfur. Four years were 
spent running the blast furnace and parameterizing the 
chemical composition of the minerals and fuels. The hot 
metal control is important because it is necessary to ensure 
the final quality of the steel10.

Production of hot metal with high content of silicon, 
phosphorus and sulfur increases the final cost of the product 
and makes secondary refining unprofitable10.

Slag is obtained by melting and separating the gangue 
from the raw materials and fluxes. It consists mainly of 
thermodynamically stable oxides such as MgO, CaO, Al2O3 
and SiO2, which constitute up to 95 wt% in the slag. The 
control of hot-metal/slag is important because silicon should 
preferably be slagged2,10.

3.2. Statistical analysis
Analyzing the descriptive statistics of the input variables, 

one can see that the database generally has little noise, low 
standard deviation, asymmetry, and near zero kurtosis. In 
terms of silicon (output variable), the behavior is similar to 
the input variables.

The hypothesis tests were performed using the database as 
a reference. The hypothesis tests were performed in Minitab 

software. The hypothesis test was performed for the mean 
and for the standard deviation.

The artificial neural network showed excellent results for 
all neurons. The hypothesis test proved that all sample groups 
calculated by the neural network are equal in the database 
considering 99% confidence interval using Welch method.

Table 14 shows the descriptive statistics of the database 
(actual values) and the values calculated by the artificial 
neural network.

3.3. Model validation
The usual method for evaluating a neural network 

mathematical model is using the MSE (mean square error). 
Small MSE values indicate that the model has better predictive 
ability. The MSE is given by Equation 7.

( )2  
1

1  
n

neural real
i

MSE C C
n

=

= −∑   (7)

In many cases, Pearson’s correlation coefficient (R) 
can be used. However, this parameter evaluates the linear 
relationship between variables. The Pearson correlation 
coefficient (R) or linear correlation is given by Equation 8.

( ) ( )2 2
    

1 1

/  
n n

neural real real neural
i i

R C C C C
= =

   
   = − −   
      
∑ ∑   (8)

Where, (n) represents the number of observations, (Cneural) 
represents the value calculated by the artificial neural network 
and (Creal) represents the value measured during the blast 
furnace operation.

The training, validation and testing phase was performed 
with up to 1,000 iterations and automatically interrupted 
when it converged to the smallest error. The model was 
validated using Pearson’s correlation coefficient and mean 
square error. Five correlation coefficients were calculated: 
(1) training; (2) validation; (3) test; (4) cross-validation; 

Table 12. Slag variables.

Variable Unit Mean Std_Dev Minimum Median Maximum Skewness Kurtosis
Slag rate Kg/ton 246.99 13.74 206.20 247.95 295.72 -0.09 0.45
B2 basicity - 1.20 0.04 1.04 1.20 1.30 -0.4 0.70
B4 basicity - 1.07 0.04 0.91 1.07 1.16 -0.6 0.50
Al2O3 % 10.71 0.62 6.92 10.69 12.54 -0.7 2.70
CaO % 43.06 1.55 32.50 43.25 45.42 -3.41 15.77
Sulfur % 1.15 0.14 0.70 1.14 1.80 0.90 2.00
FeO % 0.42 0.04 0.32 0.42 0.50 -0.10 -0.35
MgO % 6.83 0.86 4.44 7.05 8.65 -0.30 -1.10
MnO % 0.31 0.10 0.06 0.30 0.80 0.70 1.60
SIO2 % 36.05 1.36 27.30 36.21 39.60 -2.51 10.42
TIO2 % 0.58 0.05 0.43 0.58 0.72 -0.27 -0.01
Production ton 1980.6 190.8 1494.9 1974.1 2466.3 -0.03 -0.38
Mn (slag/hot metal) - 0.87 0.22 0.30 0.84 0.91 1.1 3.10

Table 13. Output variable.

Variable Unit Mean Std_Dev Minimum Median Maximum Skewness Kurtosis
Silicon (%) % 0.337 0.100 0.107 0.315 0.727 0.95 0.87
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and (5) general correlation. The general correlation was 
calculated using the training, validation, and test variables.

A total of five mean square error values were calculated: 
(1) training; (2) validation; (3) testing; (4) cross-validation; 
and (5) general correlation. The mean square error was 
calculated with the training, validation, and testing variables. 
Figure 7 to Figure 10 show the results of model validation.

When analyzing the values for the MSE between training, 
validation, and testing, as shown in Figures 9 and 10, no 
differences were found that could indicate overfitting, i.e., 
when the model has a low error during training and a high 
error during testing.

From the analysis of Figures 7, 8, 9 and 10, the best 
results were obtained with 25 and 30 neurons. The neural 
network with 30 neurons in the hidden layer showed about 
1% better results than the ANN with 25 neurons. From 
Figures 7 and 8, it can be seen that the neural networks with 
25 and 30 neurons have 12% higher mathematical correlation 
than the network with 200 neurons.

Considering that the best results were those of the neural 
network with 30 neurons, it can be mentioned that silicon had 
a Pearson correlation coefficient of 0.975, while the mean 
square error (MSE) was 0.0006. Regarding cross-validation, 
it is noted that the best results were also obtained with 25 and 
30 neurons. During the cross-validation, the network with 
30 neurons showed a mean square error (MSE) of 0.00035 
and a Pearson’s correlation coefficient of 0.955.

From the analysis of Figure 9, the MSE decreases as the 
number of neurons increases. In the present study, the neural 
networks were configured in up to 1000 training epochs. 
The worst convergence result was obtained by the network 
with 200 neurons, which required 317 epochs to achieve 
convergence. The neural network with 30 neurons converged 
quickly, requiring only 28 epochs to reach convergence.

In this context, the authors Saxén and Pettersson19 mention 
that the silicon content has a more irregular behavior, which 
makes the convergence of the results more difficult. However, 
this fact was not found in this paper, probably due to the 
big data used and the elimination of severe outliers, which 
allowed better learning of the artificial neural network9,10.

Based on the results of this research, a comparison was 
made with the other models mentioned in the literature, as 
shown in Table 15.

The analysis of Table 15 shows that the results of this 
paper were superior to the models reported in the literature, 
suggesting that the use of Big Data and the prior treatment 
of databases is a beneficial alternative in modeling situations 
to refine the results.

Table 14. Silicon variables (%).

Variable Mean Std_Dev Minimum Median Maximum Skewness Kurtosis
Database 0.337 0.100 0.107 0.315 0.727 0.95 0.87
10 neurons 0.337 0.097 0.120 0.315 0.719 0.97 0.84
20 neurons 0.336 0.098 0.136 0.316 0.707 0.92 0.69
25 neurons 0.339 0.099 0.107 0.319 0.731 0.91 0.76
30 neurons 0.333 0.099 0.114 0.314 0.702 0.92 0.74
40 neurons 0.337 0.101 0.063 0.318 0.770 0.88 0.90
50 neurons 0.334 0.097 0.125 0.316 0.708 0.82 0.58
75 neurons 0.338 0.099 0.115 0.318 0.725 0.90 0.81
100 neurons 0.338 0.101 0.100 0.316 0.724 0.86 0.72
125 neurons 0.336 0.100 0.091 0.315 0.690 0.86 0.59
150 neurons 0.326 0.094 0.140 0.311 0.690 0.90 0.81
175 neurons 0.338 0.097 0.107 0.317 0.766 1.01 1.34
200 neurons 0.339 0.104 0.121 0.318 0.713 0.94 0.94

Figure 7. Model validation in training, validation and test.

Figure 8. Model validation general correlation e cross validation.
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From a metallurgical point of view, the silicon content 
in hot metal is an important quality parameter that must 
be monitored, as this element serves as an indicator of the 
thermal condition of the reactor. Lower amounts of silicon 
in the hot metal indicate that the reactor is probably cooling 
down. On the other hand, an increase in silicon content 
indicates excessive heat generation and thus wastage of 
metallurgical coke and pulverized coal10.

The silicon in the production process comes from raw 
materials, especially coke ash and gangue from the metallic 
charge. In order to improve the quality of the final product, 
it is necessary to use raw materials with low variations in 
chemical composition and with low silicon content, and to 
keep it as constant as possible with respect to its optimum 
level, in order to to minimize the costs of secondary refining 
in the steelworks’ converters. It is also worth noting that the 

excess silicon in the hot metal requires a greater amount of 
calcium oxide (CaO) in the steel mill to perform secondary 
refining, resulting in a greater amount of slag and increasing 
production costs2,10,16.

In this sense, silicon content prediction models are useful 
for the production process. They support the reactor operation 
and allow to work with smaller safety margins, to optimize 
the fuel consumption and to improve the reactor efficiency.

In conducting a comparison between machine learning 
and hot metal metallurgy and evaluating the synaptic weights 
of the models, it is found that the most important variables 
are sinter and blowing flow. As for sinter, it contains SiO2, 
which serves as a Si source for hot metal, which could 
explain its influence on the model. Regarding the blowing 
flow, higher values favor a stronger blowing penetration and 
affect the thermal level of the blast furnace, which affects 
the silicon content incorporated into hot metal.

Other variables that also have an effect on silicon content 
were the enrichment of O2, pressure, and the amount of 
air blow in the tuyeres. These are variables that can affect 
the shape, thickness and position of the cohesive zone and 
consequently the silicon content of the hot metal.

For example, low gas permeability may indicate a 
thicker cohesive zone. Increasing the O2 enrichment tends to 
increase the reactor temperature and decrease the amount of 
nitrogen injected, increasing the thermal level and favoring 
the permeability of the blast furnace. Thus, a high or thicker 
cohesive zone causes an increase in the silicon content in 
the hot metal10.

Finally, it turns out that the silicon introduced into the 
process is dissipated into the hot metal and slag. Thus, based 
on the binary basicity (CaO/SiO2) and using a mass balance 
calculation, it is possible to determine the silicon content in 
the hot metal. This information underlines the importance 
of controlling the conditions that affect the basicity of the 
slag. It is therefore entirely justifiable to use artificial neural 
networks to predict the silicon content during hot metal 
production10,16-18.

4. Conclusions
The increasing development of computing capacity, 

leading to cheaper devices with greater capacity, has driven 
the development of more complex algorithms with better 
results, as is the case with neural networks;

It should be noted that the most important part of modeling 
a neural network is the previous treatment of the database 
to be used for model development;

The neural network is an interesting tool to support 
decision making and operational planning in terms of fuel 
economy, operational stability, and delivery of a quality 
product for the steelworks, and helps to improve process 
monitoring;

Figure 9. Mean squared error (MSE).

Figure 10. Mean squared error (MSE).

Table 15. Comparison between models reported in the literature16-18.

Saxén and 
Pettersson19 Dobrzanski et al.18 David et al.16 Diniz et al.17 This paper 30 

neurons
MSE 0.0086 0.9695 0,0091 0.0017 0.0006
Pearson (R) - - 0.7286 0.9370 0.9752
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Neural networks are tools capable of predicting silicon 
content based on parameters of the reduction process in blast 
furnaces and this can be verified by the precision of the model;

The Pearson and MSE correlation coefficient values 
confirmed that the hidden layer with 30 neurons gave the 
best results;

The analysis of the synaptic weights confirmed that the 
blower air, the sinter, the oxygenation and the pressure have 
a greater influence on the silicon content in the hot metal;

In order to a lesser extent, the slag rate, (SiO2) and (CaO) 
have a lesser influence on the variation of silicon content 
and do not directly contribute to this silicon to hot metal 
transfer mechanism;

In conclusion, neural networks can be used in practise 
due to the excellent correlations between real values and 
the values calculated by the neural network.
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