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Abstract: This paper provides an analytical formula for the theoretical stress concentration factor in a
common type of excavation repair for large forgings and castings. Mechanical components obtained
with these processes are often subjected to superficial defects. As the rejection of such pieces is out of
question, given the relevant size and costs associated with them, usual industrial practice consists in
the removal of the defect and a portion of the surrounding material through milling processes. The
authors have selected a reference geometry of the excavation to be left on the mechanical pieces, which
can be easily controllable in practice by three operating parameters. Then, the domain of existence
of such a repair was investigated on a sequence of discrete points, by means of FEA, obtaining for
each, the values of the stress concentration factor K;. Finally, through polynomial regression, the
K¢ functions have been accurately approximated by a sixth degree polynomial formulation, which,
given a triplet of dimensional geometric parameters, is able to compute the stress concentration factor
K¢, with an error that never exceeds 8%.
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1. Introduction

Large mechanical components obtained by forging or casting can often be affected by
different types of superficial defects. The most common are bubbles and cracks [1], which,
depending on their shape and size, may lead to relevant stress concentration, compromising
the long-term life of the part. To overcome this issue, one of the most common industrial
practices consists of the simple technique of removing the defects and a portion of the
surrounding material, through manual milling operations, made with a conventional disc
cutter or with a ball nose cutter. Sometimes, after milling, the emptiness left on the surface
is also welded, aiming to fill it completely with additive metal. However, not all ferrous
materials may be easily subjected to this treatment. In addition, the time-consuming
welding operations may have a negative impact on final delivery times. In all such cases,
the remedy of sole milling does not bring the defective part to its ideal shape, since a small
portion of the material is still removed from its surface, but leaves an imperfection of a
more controlled shape. The stress amplification, therefore, persists, but at lower intensities
and can be grasped quantitatively through accurate FEM analyses. However, these require
the definition of numerical models for the specific purpose, where the detailed shape of the
new defect must be added to the original complexity of the system. Models usually turn
out to be very heavy computationally and the results are always a compromise between
accuracy and time. A practical solution of engineering interest is the identification of a
theoretical stress concentration factor Ky, defined as the following ratio:

Omax
K= —— 1
€= o (1)
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where oy, is the nominal stress (stress intensity that would develop in the region of interest,
when the part is subjected to certain boundary conditions, if the geometrical discontinuity
was not present) and omay is the maximum stress that develops due to the presence of the
imperfection. It should be noticed that the definition of a theoretical K; factor implies both
linear elastic material behaviour and small displacements. For these reasons, the theoretical
Kt is also known as “form factor”, or as “geometrical stress concentration factor” [2], since
its value depends only on the geometrical form of the local imperfection causing the stress
concentration effect and does not depend on the material Young’s modulus [3].

Once the excavation repair is applied on the defective part, a K; factor can be calculated,
op retrieved from the previous dimensioning calculations and finally, omax can be estimated.
To our knowledge, the available technical literature does not provide general analytical
formulas to calculate the numerical value of the K factor for this type of stress concentrator.
To fill this need, a wide campaign of FEM simulations was organized and several K; values
were drawn from it. Then, through multiple regression operations, a suitable polynomial
approximation of this stress concentration factor was obtained.

The shape of the portion of material removed from the defective piece depends on
many geometrical and technological parameters [4-7]. Some can be controlled with great
accuracy, while others embody the intrinsic variability of manual technological processes.
When a ball nose cutter is manually used to repair the defect, the only geometrical parameter
involved is the diameter of the ball nose. If instead, a disc cutter is used, the geometrical
parameters to be considered are the diameter of the disc, its thickness and the fillets” radius
on its two circumferential edges. Although a small consumption of the cutting surfaces
occurs during operation, geometrical parameters may be considered constant during the
time of a single repair. The technological parameters, which are the ones more affected
by uncertainties, are the depth of penetration of the tool, the inclination of incidence of its
rotation axis and the pattern to be followed during the strokes.

In light of the difficulties in controlling all of these parameters with great accuracy
during the industrial practices, a parametric numerical study that considers all the possible
combinations would be worthless. Therefore, the authors have selected a simple reference
shape of the excavation, as well as a set of the most relevant and easily controllable
parameters, which aim to be considered in the future as a guideline for this type of repair.

2. Materials and Methods

The simplest reference shape that can be associated with the volume of material
removed is the one of a square excavation (Figure 1) deep “H” and having, on the plane of
the surface of the mechanical piece, the length of its side equal to “L”. On the bottom plane
of the excavation, the length of the side is equal to “a”, being “a” < “L”, always. Such a
shape of removed material can be obtained using a ball nose cutter of radius “R”, which
initially penetrates the surface of the piece of a depth “H” and then moves consecutively
along two orthogonal axes parallel to this surface. In this case the length of every milling
stroke is equal to “a”.

As this type of repair interests the surface of the mechanical pieces, it is assumed that
the nominal stresses o, that the users shall retrieve are those characterizing a plane stress
state, where in the general case two normal and one tangential stress components exist.
In order to develop such a stress state in the numerical models employed in this study,
the generic “perfect” mechanical piece, i.e., exempt from any geometric defect, has been
modelled as an elastic half-space of theoretically “semi-infinite” extension. Practically, the
characteristic dimensions of the elastic substrate have been chosen sufficiently large to
satisfy the Saint-Venant principle, as set out in [8], by virtue of which, at that distance from
the geometric imperfection, the perturbation of the plane stress state due to the defect is
contained below a certain threshold.
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Figure 1. Quoted drawing and axonometric view of the square excavation.

As shown in Figure 1, the four side walls of the excavation are not vertical (i.e., parallel
to the z axis) and are not flat surfaces, but are inclined cylindrical surfaces whose single
curvature is equal to 1/R. These four curved surfaces are tangent to the flat bottom of
the excavation, so that no geometric discontinuities are formed. The four edges of the
excavation on the outer surface are joined together by four arcs of circumference of radius
Ry < R, extending over an angle of 90°. It follows the presence of four double-curvature
surfaces at the four excavation vertices, similar to triangular “sails”, that are all portions of
the same spherical surface of radius R. By varying the value of the geometric parameters
listed above (L, H, a, R) it is quite easy to adapt this general “reference” geometry to cover
a wide collection of actual analysis cases to be studied by FEM calculations.

Simple stress states to be applied to all FEM models are shown in Figure 2, which can
be described as: (1) a uniaxial tensile load acting in a direction parallel to one of the sides
of the excavation; (2) an equi-biaxial tensile load in the two directions parallel to the two
sides of the excavation; (3) a pure shear stress.

01
— —_—
v
4 Loadcase1: 0, =5; 0, =1=0.
O-2 T T 0'2 Load case 2: 0, =0, =07, 1=0.
” M B —_— lLoad case3: 0, =0, =0; T=T7.
v
— —
01

Figure 2. Loading conditions applied to the models’ sides.
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In all the analyses run throughout this study the angle 3 has been assumed equal to
0°. This makes geometric and loading conditions such that only a quarter of the geometry
needs to be modelled; solicitations are applied either perpendicularly, in load cases 1-2,
or parallelly to the models” sides, in load case 3. Moreover, symmetry boundary con-
ditions, in load cases 1-2, and antisymmetry boundary conditions, in load case 3, must
be applied to the nodes lying on the two cutting planes. However, these three different
loading cases imply three different definitions of the stress concentration factor K. In
the first case, the meaning of K; is the one originally defined by Kirsch [9], K; = omax/0n,
where omax stands for the maximum peak uniaxial stress while oy, is the so called “nominal
stress”. In the second case, the stress state is no longer uniaxial and therefore an equiva-
lent Von Mises ideal stress must replace both previous stresses in order to define a new
Kt = (034 v.M.) max/ (Oid V.M. ), @s proposed in [3,10]. In the third case, the stress state is still
biaxial, but in such circumstances a more convenient expression of the stress concentration
factor is then: Ki = Tax/tn [2,11].

All FEM calculations have been executed by using the general-purpose code ANSYS
APDL, rev. 2019 [12], obtaining, as a result of every sequential run, three different K; values
(K¢1, Kip, Kia), valid for the first, second and third load cases, respectively. Afterwards, for
every load case, a response—surface of K; values was analysed and suitably approximated
by a polynomial function of two independent dimensionless parameters.

Among the four geometric dimensional parameters listed above (L, H, a and R) only
three of them are mutually independent, since a geometric relationship subsists, expressed

by the two following equations:

—a
: @

R(1—cos6) = H ©)

L
Rsin® =

To carry out a cyclic sequence of numerical finite element analyses, a single versatile
parametric model can be employed. One of the three parameters can be referred to as the
“reference length” and set to a constant value. In fact, the geometric shape of the excavation
depends only on the ratio between the three independent dimensional parameters and not
on their individual values. In this case, the value L was chosen to be kept constant.

The other two parameters then no longer assume the values of the individual lengths,
but their ratios with the reference length, becoming hence dimensionless parameters. In
our case these have been referred to as p; and p,, where p; =a/L and p, = H/L.

The first limiting condition 0 < p; < 1 comes from the already mentioned inequality
“a” < “L”. The second one is assigned instead to the 8 angle, which must vary in the open
interval 0 < 0 < 71/2, as we assume that the ball nose cutter will never penetrate a depth H
greater than half its diameter.

The result of this campaign of numerical calculations consists of the function of two
variables K¢ = K; (p1, p2), which are obtained by points varying p; and p; in a discrete
way. For this goal, it is necessary to assign the upper and lower boundary values for the
dimensionless parameters p; and py, i.e., to set the limits of the two intervals:

(pl)min < P1 < (pl)max (4)

(pZ)min < P2 < (pZ)max (5)

The choice of the two minimum limits is very simple; in fact, it is possible to fix
them arbitrarily by choosing, for example, (P1)min = (P2)min = 0.01. In particular, the first
relationship a/L = p1 > (P1)min = 0.01 prevents the modelling of excavations too close to the
limit shape of a spherical cap, that requires a particular FEM mesh, not obtainable through
the analysed parametric FEM model by simply fixing a/L = 0. The second relationship
H/L =p2 2 (p2)min = 0.01 prevents the modelling of the almost imperceptible excavations
in which the depth of penetration of the tool tends to vanish, as the volume of the removed
material looks like a thin “flake”.
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As regards the two maximum limits, it can be observed instead that the choice of (p1)
conditions that of (py) and vice versa. In fact, there are two linear mathematical laws:

(p1)=1—2(p2) (6)

(p2) =—05(p1) + 0.5 (7)

which are a direct consequence of the two inequalities 0 < 0 < 7/2.

In any case, even the two maximum limits cannot reach the two respective extreme
values (p1)max = 1 and (p2)max = 1/2. In fact, the condition a/L = 1 would give birth to a
perfectly rectangular excavation, without any curved surface connecting its sides. On the
other hand, the condition H/L > 1/2 would correspond to an excavation with flat and
vertical side walls, which could only be obtained if the cutter disc penetrated to a depth H
greater than one half of its diameter.

In light of all the previous considerations, the limits have been decided as:

0.01 < p; <0.98 8)

0.01 < p; < 0.49 9)

The two inequalities (8) and (9) appear to define a domain of definition of the function
Ki = K; (p1, p2) of a rectangular type. However, Equations (6) and (7) cut this domain along
its descending diagonal into two triangular parts. In the lower triangular part, placed to
the left of the matrix diagonal, the function exists. In the upper triangular part, placed to
the right of the diagonal matrix, the function cannot exist, due to the inequality 6 < 7t/2.
For the numerical computations, both the intervals for p; and p; are divided into 43 parts.
However, these discrete values are not equally spaced with each other, but thickened on
the two extremes of the interval, where the K; surface is more curved. The result is a square
matrix of several points K; = K¢ (p1, p2)-

The sequential execution of 44 x 44 = 1936 FEM analyses, of which only about one-
half are actually carried out, provides all the calculation points on which to set up a
polynomial regression. From an operational point of view, it is possible to perform all the
FEM calculations in an uninterrupted way. In this way analyses are carried out one just
after the other, without the waste of the dead time in between for the “manual” start-up of
the code. This can be obtained by launching the structural analysis of a single parametric
model written in ANSYS APDL language which is controlled, in its basic structure, by
two mutually nested *DO cycles. The outermost *DO cycle governs the increase in the
a/L parameter and determines the sequence of the rows of the K; matrix. The innermost
*DO cycle governs the increase in the H/L parameter and determines the sequence of the
columns of the K; matrix.

Figure 3a—c show, as an example valid for a/L = H/L = 0.20, the FEM model mesh
composed of hexahedral second order 20-node brick elements, SOLID186 of ANSYS El-
ement Library. The total number of elements is not constant, since among the models
cyclically analysed it varies from a minimum of about 10°, to a maximum of about 3 x 10°.

In Figure 3a the coarse overall mesh surrounding the finer central mesh is a mapped
and regular 3-D mesh of parallelepiped brick elements. Solicitations are applied to the
two vertical surfaces that in this figure appear to be “hidden”. Specific symmetry or anti-
symmetry boundary conditions must be imposed to the nodes lying onto the geometrical
symmetry planes corresponding to the two vertical surfaces that in this figure appear to be
in view.

The finer central mesh of Figure 3b,c, instead, is not completely a mapped mesh, since
near the zone of the curved excavation the element conformation is that of a pyramid with
a rectangular base. The nodes in the FEM meshes of the two different regions are tied
together by means of proper constraint equations, automatically generated by the ANSYS
pre-processing command “CEINT”.
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The further zoomed view of Figure 3c shows some details of the pyramidal mesh
generated under the triangular sail, where the maximum K; always occurs.

The mesh quality has been investigated by using the criterion of the strain energy
error [13,14], already applied in [15]. In all the analysed FEM models the value of the
structural percentage error in energy norm (SEPC) is never greater than 1.5%. This value is
under the conventional limit that addresses the quality of mesh in the local area of high
stress. This is a sign of an optimal mesh size in all analysed cases.

Figure 3. Three zoom views of the FEM model mesh. (a) Coarse overall mesh. (b) Finer central
irregular mesh. (c) Pyramidal mesh generated under the triangular sail.

3. Results

Figures 4-6 show, for the same model as Figure 3, the contour lines plotting the
distribution of the stress concentration factor K¢, calculated for the three load cases 1-3,
respectively. They are intended to be simply qualitative images, without K values, here
reported just to show the position where the maximum stress concentration occurs. As
expected, the position of the point of maximum stress lies on a symmetry plane in load
case 1, while, in load cases 2 and 3, it is found on a diagonal plane, bisecting the right angle
between the two planes of symmetry, or antisymmetry.
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Figure 6. Distribution of K; values in load case 3.

The three spatial surfaces, shown in Figures 7-9, plot the calculated values of the three
stress concentration factors K; = K¢ (p1, p2), obtained for load cases 1-3, respectively. Where
the function does not exist, its value has been arbitrarily set to 0. The next section deals with
the discussion of these implicit functions and illustrates the numerical methods employed
to perform a suitable polynomial regression.
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Kt1
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Figure 7. K values in load case 1.
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Figure 8. K; values in load case 2.
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Figure 9. K; values in load case 3.
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The numerical regression was applied to find the coefficients of a sixth-degree polyno-
mial, written as:

Ky = agj + ayp; + azp, + agpi + agp;p, + asp; + agpy + a7jg%p2 + agjmp% + a9jP§4+ algpy + alle?éPz
+aigpips + a1piP; + a14ps + ai5p; + a1gPip, +a17pips + awgpips + aigipyPs +axps +azpi+  (10)
+axpip, + axipip; + axipip; + axsiPips + axpiPs + azps  (j=1,3)

where Ky, Ky, K3 are the stress concentration factors calculated for the three load cases
1-3, respectively. Formula (10) is only valid under the conditions 0.01 < p; < 0.98 and
0.01 <pp, <05—-05p;.

The regression problem was solved using the least square method, implemented in the
function linalg.Istsq, available in the Python library Numpy [16]. In Table 1, the (28 x 3) a;;
coefficients are reported.

Table 1. The aj; coefficient matrix.

Coeff Load Case 1 Load Case 2 Load Case 3
ap 1.016961394 x 10° 1.006965992 x 10° 1.007242102 x 10°
ay —7.714813786 x 1071 —4.874091070 x 1071 —4.709116740 x 1071
ap 3.730781538 x 10° 5261191914 x 100 4.887597416 x 10°
a3 8.541540052 x 109 6.325601734 x 100 6.099817374 x 100
ay 9.243997472 x 100 —2.354852538 x 100 —2.369479447 x 100
as 1.708568460 x 10° —4.225881840 x 10° —2.798267490 x 10°
ag —4.016474714 x 10! —3.243507132 x 10! —3.103958924 x 10!
ay —2.625554101 x 10! 3.358136920 x 10! 1.965519297 x 10!
ag —1.433009292 x 102 —1.728446950 x 10! —2.791846174 x 10!
ag —2.098923527 x 101 —3.023807318 x 10° 6.666379969 x 10°
ayg 9.369387507 x 10! 7.803176090 x 10! 7.365966277 x 10!
ar —4.609789596 x 10! —1.101709869 x 102 —6.636850028 x 10!
ap 9.943556248 x 102 1.452036523 x 102 1.457329063 x 102
ais 1.073163653 x 102 —3.526684769 x 10° 7.598207310 x 100
I 6.017300831 x 10! —4.697832157 x 101 —7.769518307 x 10!
ars —1.046027393 x 102 —8.824244625 x 101 —8.172884217 x 10!
ale 2.008368360 x 102 1.972152159 x 102 1.172865395 x 10?
ayy —1.306438606 x 103 —1.475331578 x 10? —1.268687641 x 102
ag —2.699040278 x 103 —6.902640918 x 102 —5.143138024 x 102
ajg 7.028675237 x 102 2.778015594 x 102 2.369568558 x 10?
ang —3.021019396 x 10° 1.570588351 x 102 1.830760539 x 10?
apy 4419178527 x 10 3.771807048 x 10! 3.415978402 x 10"
ax —1.119996354 x 102 —9.156577133 x 10! —4.771804624 x 101
a3 3.136686513 x 102 —1.869409980 x 102 —1.244095291 x 102
ap 2.252885456 x 103 7.613198334 x 102 5.235969502 x 10?
ans 2.306621887 x 103 5.178864939 x 102 3.256355455 x 107
ang —1.189832390 x 103 —4.146839531 x 102 —3.185600009 x 102

ayy —7.391816479 x 10! —1.197524163 x 102 —1.310156588 x 102
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4. Discussion

The FEA solution, for the three load cases, has been obtained for each of the parameter
combinations indicated by a dot in Figure 10. A total of 10,201 solutions were available for
each load case.

Calculation grid

0.5

0.4

03

= H/L

p2

01

0.0

0.0 0.2 04 0.6 08 Lo
pl=a/L

Figure 10. Grid representing FEA solution points.

A subset of 5100 randomly selected points, later referenced as regression set, has
been used for solving the regression. The remaining solution points, referenced instead as
validation set, have been used to validate the effectiveness of the polynomial approximation
in matching the FEA results (the separation of data between a regression set and a validation
set is inspired to the split applied to data in the training of neural network models where
the splits set are defined as training and validation set. In this case, the usage of a linear
least square, which does not require an iterative process for the solution, such as those used
in the training of neural networks, suggests the introduction of a different term, regression
set, to remind of the different nature of the process). The validation consisted of two steps.
The first step ensures that the error committed in the polynomial approximation of the
Ky is within acceptable limits. The second step ensures that the error committed in the
evaluations of the points belonging to the validation set is of the same magnitude as that of
the points in the regression set. The regression error is calculated, for each point i and for
each load case j, as:

o Kt_ij_regr - Kt_ij

.
) Kijj

(11)
where K¢ jj regr and K¢ j; are respectively the stress concentration factors obtained from
the polynomial regression and from the FEA. Plots of the cumulated number of points
versus the corresponding error levels are shown in the following Figures 11-13 for both the
regression and the validation sets.

For all three load cases, more than 90% of the points lay within an error band of £2%.
The cumulated plots for the regression and the validation sets are almost identical, which
confirms the effectiveness of the fit for points outside the set used for the regression and
the absence of overfitting. The error extremes are never greater than 8% and, as shown
in Figures 14-16, are localized where the pairs (p1, p2) approach the two points (0, 0.5) or
(1,0).
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Kt1l Cumulated error distribution
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Cumulated nr. of values [% of total|
w5 BBEHEE 580883 ABG 883

o

-10 -8 -6 A 2 ) 2 4 6 8 10
Regression error [%)]

Figure 11. Cumulated error distribution for load case 1.

Kt2 Cumulated error distribution

- Regression sct
~— Validation sct

Cumulated nr. of values [% of total|
g

-10 -8 -% 4 2 0 2 4 6 3 10
Regression error [%)]

Figure 12. Cumulated error distribution for load case 2.
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Kt3 Cumulated error distribution

= Regression sct
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Figure 13. Cumulated error distribution for load case 3.
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Figure 14. Regression error in load case 1.
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Kt2 Fitting error %

-6 -4
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Figure 15. Regression error in load case 2.

Kt3 Fitting error %
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Figure 16. Regression error in load case 3.

5. Conclusions and Future Developments of Analysis

At the end of this research, we can conclude that the analytical expressions provide a
suitable approximation of the stress concentration factor for this geometry under the three
most common load case scenarios. Moreover, we can assert that a gap in the technical
literature of the sector has been filled, as this type of excavation, obtained by means of a
ball-headed cutter, had not been investigated yet in terms of stress concentration. Finally,
our analyses have ascertained that load case 1 (uniaxial tensile load acting in a direction
parallel to one of the excavation’s sides) is the most dangerous, as it reaches the higher
K; values.

The real novelty that characterizes this publication certainly does not lie in the method
of investigation, which has already been applied by numerous other authors [2,10,11], in
the same form in which it was applied here. In fact, the systematic generation of large
amounts of numerical data, i.e., the K; values, as a function of one or more independent
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parameters, in this case the a/L and H/L ratios, and finally, the re-elaboration of the same,
with conventional regression techniques, is certainly a well-known methodology to all
researchers active in the sector.

However, it is the particular geometric shape of the stress concentrator, i.e., the square
excavation, which, despite being relatively simple to be made practically on the defective
pieces being repaired, is instead very complex to control correctly, through few independent
geometric parameters and, therefore, it had never been studied until today.

The difficulties in generating the geometric shape of this model then become critical for
the two “degenerate” shapes of the removed material, i.e., the one tending to the spherical
cap and the other tending to a very thin flake of a square shape, whose respective FEM
models must, however, always be adequate, that is respectful of the criterion of strain
energy error.

Furthermore, although the use of full 3-D FEM models, i.e., composed of all second
order solid elements, is not an important novelty to underline, both the total number of
analyses performed (more than 10,000) and the average number of elements components
of the generic FEM model (variable between 10° and 3 x 10°) are numbers not easily found
in the works of other authors. This is the necessary premise to an excellent accuracy of the
results obtained in this work.

Finally, it should be emphasized that the numerical regression, carried out here ac-
cording to the least squares criterion, was also addressed by the authors through the use
of artificial intelligence algorithms, obtaining very similar results to those published here,
albeit with a greater expenditure of time for preparation of post-processing analyses. For
this reason, the paper did not mention artificial intelligence algorithms, which are moreover
very promising, due to their extreme versatility and are, therefore, fit for purpose in more
complex cases than this one.

From the examination of the obtained results, some guidelines and some suggestions
emerge, which can already be understood with the simple common sense of the expert
designer, very useful for planning this type of repair in the best possible way. In the case of
a crack, with a depth greater than its surface extension, if the objective to be achieved is
the minimization of the volume of material removed, the ideal shape of the excavation is
the hemispherical one, despite the worst a/L and H/L ratios. On the contrary, there is the
minimum perturbation of the stress state (and therefore the lowest K;), when the depth of
the excavation becomes small if compared to its longitudinal dimensions, that is to say, if
H/L tends to zero. It is also clear that the final decision on the type of intervention also
depends on other factors that cannot be controlled in the study here addressed, such as the
actual availability of the tools with the required dimensions or the proximity of the defect
to structural details, such as spokes or stiffeners, that cannot be weakened by too wide a
removal of material.

However, our work can be extended and further developments can be expected.
Further research could concern the angle between the excavation edges and the line of
action of the external forces. In fact, the geometry herein analysed only considered the
case of parallelism between the two pairs of axes, assuming a relative rotation 3 equal
to 0°. Although, all the possible intermediate angular positions included in the range
0° < B < 45° should be analysed, since they are expected to provide different and maybe
higher results. Another development that could be envisaged originates from the study of
more generalized geometries for the repair excavation. In this study, a square geometry
with only one value for the fillet radii is studied. In a more general approach, excavations of
rectangular shapes and with different filled radii could be studied. Such geometry would
increase the number of parameters used to uniquely describe the problem. One of the
consequences would be an increase in the parameter combinations to cover the design
space and, consequently, of the number of FEA solutions needed to build an approximated
formula. Another consequence would be, because of the increased dimensionality, the
impossibility of directly plotting the stress concentration factor surfaces and the error
committed in the polynomial approximation, as a function of all the problem variables. The
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formal evaluation of the effectiveness of the fit will, thus, have to rely exclusively on the
similitude between the cumulated error plots of the regression and of the validation sets.
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