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Abstract: In order to valorize lignin wastes to produce useful aromatic compounds, the thermal
degradation pyrolysis of Kraft lignin in the absence of catalysts has been investigated at 350, 450,
and 550 ◦C. The high content of sulfur in the fresh sample led to the formation of S-containing
compounds in products whose evolution in the gas phase was monitored through GC-MS analysis.
Pyrolytic gas is rich in CH4, CO, CO2, and H2S with the presence of other sulfur compounds in
smaller amounts (i.e., CH3SH, CH3-S-CH3, SO2, COS, and CS2). Biochar morphology and elemental
composition have been investigated by means of SEM and EDX. The carbon content reaches ~90%
after pyrolysis at 550 ◦C, while the oxygen content showed a decreasing trend with increasing
temperature. From GC-MS analysis, bio-oil resulted rich in alkyl-alkoxy phenols, together with
(alkyl)dihydroxy benzenes and minor amounts of hydrocarbons and sulfur compounds. NaOH/H2O
and EtOH/H2O extraction were performed with the aim of extracting phenolic-like compounds.
Sodium hydroxide solution allowed a better but still incomplete extraction of phenolic compounds,
leaving a bio-oil richer in sulfur.

Keywords: lignin; pyrolysis; alkyl-alkoxy-phenols; sulfur compounds; extraction

1. Introduction

Over the last century, the world’s population and energy demands have increased,
highlighting the need to find valid renewable alternatives for energy and chemical inter-
mediate production. The use of non-renewable materials is no longer sustainable due to
their limited availability and their impact on the environment. Gaseous products deriving
from the combustion of these materials have been one of the major components responsible
for the enhancement of the global warming effect [1]. In recent years, biomasses have
been deeply studied as one of the most promising sources of hydrocarbons. However,
despite biomasses having already been adopted in many application fields, their actual
contribution is not sufficient to satisfy the global energy demand. Many issues concerning
large-scale applications of biomasses must be considered from the life cycle point of view.
The low availability of global landmass and water supply coupled with the necessity to
increase food production for an ever-growing population will be one most challenging
issues [2]. For this reason, lignocellulosic leftovers produced in paper or food production
as by-products must be valorized, because they are generally used in furnaces for heat
generation [3]. Moreover, the possible production of value-added products would be even
more desirable, allowing the development of green industrial chemistry processes for the
production of chemical intermediates or even fine chemicals.

Lignin is one of the three main components of wood, together with cellulose and
hemicellulose [4]. These compounds are the constituent of the plant cell wall, where lignin
plays a significant role in increasing the rigidity and the resistance of the cell. This is
mainly due to the complex lignin structure, i.e., a polymer of p-coumaryl alcohol, sinapyl
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alcohol, and coniferyl alcohol. The more complex structure of lignin and its chemical
recalcitrance compared to cellulose and hemicellulose has always represented an obstacle
in its utilization, even if it has a great potential from an industrial point of view [5].

Different processes can be performed to separate lignin from the other components
of wood. However, depending on both the employed chemicals and process conditions,
the obtained lignin has quite a different chemical structure and composition. Kraft lignin
is one of the most produced types of lignin, deriving from paper and pulping processes
that use a soda–sodium sulfide solution for lignin isolation (Kraft Process) [2,6,7]. For this
reason, Kraft lignin contains a sulfur amount (i.e., 2–4%) higher than that obtained with
other techniques.

Several thermochemical methods have been developed and used in the conversion of
biomasses into chemicals [8–14]. For sure, pyrolysis is the most commonly used, where
thermal conversion in an oxygen-free environment is carried out, allowing the production
of a bio-oil, together with a biochar and pyrolysis gas in different ratios as a function of
the process conditions and the feedstock’s properties [15]. However, the low selectivity
of employable biofuels in lignin pyrolysis led scientists to focus on possible chemical
reaction pathways that occur during the process in order to highlight promising chemical
intermediates to be obtained through this process [16,17]. Liquid products can contain a
great number of chemical species and, for this reason, the characterization of pyrolysis
bio-oil is not trivial [18]. The presence of oxygenated compounds in pyrolytic bio-oil
decreases the quality of the oil itself, which has to be upgraded with further treatments,
but are interesting platform molecules for fine chemicals production.

According to the literature, several zeolites and carbon-based catalysts have been used
in the pyrolysis processes of lignin with the aim to maximize the production of phenols
and guaiacols [19–21]. Other studies report the effects of formates in the alkyl phenol
production from the thermal degradation of lignin [22]. In particular, Wang et al. used
sodium, calcium, and nickel formates impregnated in Kraft lignin [23].

In this paper, commercial Kraft lignin has been pyrolyzed at different process con-
ditions in the absence of a catalyst. The resulting products have been separated and
quantified in order to give a better understanding of the chemical distribution of the
cracked compounds. In addition, the chemical composition of the liquid fraction has been
studied. Liquid–liquid extractions have been performed with the aim to extract aromatic
compounds in order to evaluate the feasibility of separation processes and the identification
of valuable molecules.

2. Materials and Methods
2.1. Materials

The commercial Kraft lignin (denoted as KL in the following) used in this work was
purchased from StoraEnso® (LineoTM Classic Lignin, Kotka, Finland), and its chemical char-
acteristics are available at the supplier website (https://www.storaenso.com/en/products/
lignin/lineo, accessed on 17 January 2022). Lignin was characterized in terms of moisture
and ash content. For liquid extractions, ethanol (assay 99.8%, Sigma Aldrich, St. Louis, MO,
USA) and NaOH (assay 99.7%, Sigma Aldrich, St. Louis, MO, USA) were used to obtain
the desired EtOH/H2O (1:1 v/v) and NaOH/H2O (0.1 M) mixtures. Chloroform (assay
99.9%, Carlo Erba reagents, Milan, Italy) was used to dilute reaction liquids. KBr (Carlo
Erba reagents, Milan, Italy) was adopted to perform FT-IR analysis of the samples. Sample
morphology and elemental compositions were investigated by means of a Zeiss Evo 40
equipped with a Pentafet Link Energy Dispersive X-ray Spectroscopy system managed by
the INCA Energy software (Oxford Instruments, Analytical Ltd., Bucks, UK).

2.2. Fresh Lignin Characterization Procedures

Fresh Kraft Lignin (KL) was characterized by focusing on ash and moisture content,
elemental composition, and morphology. Moisture and ash content were measured in
agreement with AOAC methods [24]. Morphology was investigated by scanning electron
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microscopy (SEM), while the elemental composition of KL was determined through energy-
dispersive X-ray spectroscopy (EDX). These analyses were performed on fresh KL and
on pyrolytic residues in order to evidence the influence of the reaction temperature on
morphological properties. In particular, EDX focused on the composition in terms of C, Na,
S, and O content, describing how their distribution varies with the reaction conditions.

2.3. Pyrolysis Setup

The reactions were carried out following the scheme reported in Figure 1. The reaction
system consists of a quartz tubular reactor (2 in Figure 1) charged with 5 g of KL (3) and
collocated in an oven (1, Carbolite, MTF 10/25/130, Pocklington, UK). A nitrogen purge
was needed to guarantee oxygen removal and to avoid a combustion reaction. Three
temperatures, 350, 450, and 550 ◦C were investigated and kept for a reaction time of 3 h.
The reactor was connected to a Liebig condenser (5) that allows the condensation of low
boiling compounds. The liquid condensate (L) was recovered in a flask (7) while non-
condensable gases (G) were collected in a latex balloon (6). The condensed liquid fraction
shows two phases: an aqueous light phase observed on top and an organic heavy phase in
the bottom part of the flask. At the reaction end, a solid was still present in the reactor as
biochar, and it is referred to as a solid residue (SR). Data reproducibility was evaluated by
running each experiment three times, allowing us to assess good data consistency.
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Figure 1. The experiment setup used for the pyrolysis reaction.

2.4. Extraction Procedures

As stated above, the qualitative analysis of liquid fraction L was performed by means
of L–L extractions. An amount of 1.0 mL of chloroform (CHCl3) was used to dissolve the L
fraction and characterize it with GC-MS. Even though L is constituted by two separated
phases, the aqueous fraction represents a negligible part of the total liquid. Moreover,
the GC-MS analysis was performed only on the chloroform soluble fraction which was
separated from the water phase by means of a centrifuge step. Two different liquid extrac-
tions were then performed on the chloroform-diluted L products: one with EtOH/H2O
(1:1 v/v) and a second with alkaline H2O 0.1 M. Then, the extraction solution was agitated
and centrifuged using a centrifuge set to 7500 rpm for 10 min. In both cases, the resulting
solution separated into two phases: a heavy phase (HL) consisting of bio-oil diluted in
chloroform and a lighter phase (LL) with the compounds extracted from the solutions. LL
was then analyzed using FT-IR spectroscopy while HL was analyzed by means of GC-MS.
In order to individuate all the species in the HL, all the relevant peaks of the resulting
chromatogram were integrated manually.
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2.5. Equipment and Characterization Procedures

Both KL and pyrolysis products (L, SR, G) were analyzed using Fourier transform
infrared spectroscopy (FT-IR) by means of a Nicolet 380 instrument (Thermo Scientific,
Madison, WA, USA). Reaction liquids were characterized by spreading a drop of sample
on a KBr disk (disk weight 1000 g) of powdered KBr. The solid residue was analyzed
using a pressed disk of KBr mixed with samples (1:100, w/w) while gaseous products were
imposed to pass in an IR glass cell with KBr windows. For both liquid and gaseous products,
additional analyses were performed in a gas chromatography–mass spectrometer (GC–MS)
Focus-ISQ equipped with a single quadrupole detector (Thermo Scientific, Milan, Italy)
using a TG-SQC column (15 m × 0.25 mm × 0.25 µm). Helium (>99.99) was used as a gas
carrier (1 mL/min) and the injection temperature was set at 230 ◦C. The oven temperature
changed according to the following conditions: 70 ◦C for 5 min, then the temperature was
increased from 70 to 270 ◦C at 5 ◦C/min, from 270 ◦C to 320 ◦C at 25 ◦C/min, and finally
left at 320 ◦C for 25 min. A quantitative analysis was carried out by injecting 100 µL of
reaction gas into the GC-MS. For each test, four injections were performed in total, one
every 45 min of reaction time, to monitor the changes in gas composition over the reaction
time. The areas of the resulting peaks related to the individual species detected were
normalized with the area of the total injection in order to quantify the relative amount of
the different species in the sampled gas.

Reaction liquids and extraction bio-oils were analyzed with an analogous procedure,
diluting the liquid sample with 1 mL of CHCl3 up to a ratio of 1:10 (v/v). A Scanning
Electron Microscope (SEM) was used to investigate the commercial Kraft lignin and biochar
residues morphology.

3. Results and Discussions
3.1. Characterization of Fresh Lignin

The fresh lignin was characterized by measuring its ash content (~1 wt.%) and humid-
ity content (~3 wt.%). An SEM analysis at low magnification (Figure 2) shows the presence
of particles/aggregates whose maximum size is around 20 µm or less. Simultaneously
realized EDX analysis is reported in Table 1. It must be remembered that this analysis
does not detect hydrogen. The measured O/C ratio is 0.47. The EDX analyses are in
rough agreement with the elemental analyses reported for Kraft lignin samples [25,26]. In
particular, the EDX elemental analysis revealed the presence of sulfur and of sodium, in
accordance with Latham et al. [27], which is related to lignin pretreatment with white liquor,
a solution of NaOH and Na2S, performed to isolate lignin from the other components of
wood in the Kraft process [27].
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Table 1. SEM-EDX analysis of fresh lignin and reaction residues at different temperatures.

Pyrolysis Temperature C (%) O (%) Na (%) S (%)

As received 67.1 31.6 0.2 1.1
300 ◦C 70.2 28.6 0.5 0.7
350 ◦C 73.7 24.6 0.5 1.3
450 ◦C 82.0 16.2 0.5 1.3
550 ◦C 89.8 7.7 0.7 1.9

The FT-IR spectrum of KL is shown in Figure 3. The strong band centered at 3418 cm−1

is due to the OH stretchings of phenolic and alcoholic (polysaccharidic) groups together
with water. Aromatic and aliphatic CHx stretching bands are evident in the region of
3100–2800 cm−1. The band at 1705 cm−1, with a shoulder around 1740 cm−1, is due to the
C=O stretchings of carbonyl and carboxyl (ester) groups. The stretchings of C-C bonds in
aromatic rings can be related to the peaks at 1597, 1513, 1453, and 1426 cm−1, while the
peak at 1463 cm−1 is likely mainly due to CH2 deformation (scissoring) modes. In this
region, OH deformation modes of cellulosic units are also present. The peak at 1362 cm−1

is usually assigned to phenolic OH in-plane deformation modes, while the many peaks
in the range of 1300–1000 cm−1 are due to C-C and C-O coupled stretchings in different
structural units. The region below 1000 cm−1 is mainly associated with out-of-plane CH
and OH bonds. The spectrum is fully consistent with those reported for Kraft lignin by
different authors [28–30].
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3.2. Effect of Reaction Temperature on Product Distribution

The effect of reaction temperature on product distribution is shown in Figure 4. The
yields were evaluated via gravimetric measurements on liquid and biochar after the reaction.
The amount of gas has instead been calculated from mass balance. The amount of solid
residue (SR) tends to decrease with increasing reaction temperature. Indeed, the SR at
350 ◦C is 72 wt.% while at 550 ◦C it is lowered to 42.7 wt.%. The gas production (G)
remains almost constant during all the tests with a slight increase at high temperatures.
Interestingly, the amount of liquid (L) is strongly affected by the reaction temperature.
At 350 ◦C the L production is negligible while the highest yield is obtained at 550 ◦C,
where it reaches 28.7 wt.%. Indeed, product yields in biomass pyrolysis are strongly
affected by both feedstock characteristics and reaction conditions, and, for this reason,
different values can be found in the literature. Setter et al. [31], for example, studied the
influence of different percentages of Kraft lignin on the bio-oil obtained from sugarcane
bagasse pyrolysis, resulting in a maximum yield of bio-oil between 400 and 550 ◦C and a
decreasing trend in biochar production with an increase in the temperature, in agreement
with our data.
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3.3. Solid Residue (Biochar) Characterization

The solid residue (SR) that remains at the bottom of the reactor after the pyrolysis
reaction is usually denoted as biochar. In general, it is essentially a carbon residue, and
when it has high porosity, it may have interesting applications as an activated carbon [32,33].
In our case, SEM images (Figure 5) show that in the case of the sample treated at 300 ◦C the
observed particles or aggregates had already grown significantly in size with respect to the
original lignin particles, up to a predominant size of around 0.2 mm. Further heat treatments
gave rise to further increases, at least of part of particles/aggregates, up to >0.5 mm. The
elemental analysis data (EDX) of SRs are reported in Table 1 and compared with data for
fresh lignin. The carbon content increases with increasing pyrolysis temperature, starting
from 67 wt.% in fresh lignin up to 89.76 wt.% in the sample obtained at 550 ◦C. Na wt%
content in the solid grows with pyrolysis temperature, showing that it does not participate
in volatile or liquid products. The behavior of sulfur is more complex, showing that
it decreases significantly at low pyrolysis temperatures, while its wt% increases at the
highest temperatures. This indicates that sulfur is in part released in the form of volatile
or liquid compounds at low temperatures, while it in part forms non-volatile compounds
still strongly bonded to biochar at higher temperatures. The amount of oxygen exhibits a
percentage drop which can be attributed to the formation of highly oxygenated gases and
vapors which are in part collected as bio-oil after their cooling in the condenser.

The FT-IR spectra of the samples produced at the different pyrolysis temperatures
(Figure 6) show a relatively high absorption baseline and, together with absorptions
of some water (3445 and 1614 cm−1), a few weak bands in the C-H stretching region
(3100–2800 cm−1) as well as in the region below 1700 cm−1, where CH deformations and
the stretching of double and single CC and CO bonds fall. Interestingly, the absorption in
the region of C=O double bond stretchings appears to be fully disappeared. This spectrum
is typical of highly carbonaceous solids, with few residual functional groups. The compar-
ison of this spectrum with that of the starting lignin sample shows that lignin is largely
decomposed and carbonized, in agreement with the EDX data. However, it is possible that
carbonized matter, which strongly absorbs the IR radiation, masks the permanence of the
features of still incompletely converted lignin.
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3.4. Gas Products Characterization

In Figure 7, the IR spectra of gases obtained by lignin pyrolysis are reported. All
the spectra show the presence of rotovibrational bands centered at 3715, 3612, 2345, and
667 cm−1 due to carbon dioxide (combination modes, asymmetric stretching, and deforma-
tion modes, respectively), at 3011 and 1304 cm−1 due to CH4 (stretching and deformation
modes), at 2140 cm−1 due to the stretching mode of carbon monoxide, and at 2062 cm−1

due to carbonyl sulfide (COS asymmetric stretching). Moreover, the expansion of the spec-
tra after treatments at higher temperatures show the presence of ethylene associated with
the peak at 949 cm−1 (c) and of propylene (band at 911 cm−1), while the rotovibrational
C-O stretching band of gaseous methanol centered at 1032 cm−1 is evident in particular in
the spectrum of the gas obtained by pyrolysis at 450 ◦C. Casazza et al. [34] investigated,
at the same temperatures used in this study, the pyrolysis of grape marc, where lignin is
present in significant amounts. They did not observe the formation of COS and other sulfur
compounds in the resulting gas, where instead nitrogen-containing molecules were found
due to the decomposition of protein compounds.
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Figure 7. FT-IR analysis of pyrolysis gas at 350, 450, and 550 ◦C.

GC-MS analysis of gases detects all the products observed by IR with additional
components, which are not detected or detectable in the IR spectrum or have a low con-
centration in the composition of the pyrolysis gas. Together with small amounts of some
light hydrocarbon and oxygenated compounds (i.e., ethanol), in particular, the GC-MS
results revealed the presence of other sulfur compounds in G such as CH3SH, CH3-S-CH3,
SO2, H2S, and CS2. The evolution of the sulfur-containing species during the reaction time
was monitored using a relative abundancy parameter, R, calculated as the ratio between
the areas underlying the peak of the considered sulfur species in the chromatogram and
the areas of the total compounds in the injection in GC-MS. Figure 8 represents the time–
temperature evolution of these compounds, where each histogram represents every GC-MS
injection performed during each test. The pyrolysis temperature influences the quantity of
sulfur-containing compounds produced, but it does not affect their time evolution. Since
gas is mainly produced in the first part of the reaction experiment at each temperature, the
R parameter tends to remain constant during the 3 h of the reaction time. However, there
are some exceptions: dimethyl sulfide (CH3-S-CH3) and methyl mercaptan (CH3SH) have
a drop in the concentration through the reaction time, while the concentration of hydrogen
sulfide (H2S) slightly increases. The changes in the H2S content are barely detectable since
it is by far the most relevant compound in the gas mixture and its relative abundance
parameter is one order of magnitude greater than that of the other compounds. Our data
are different from those of Yan et al., who performed a thermogravimetric analysis on Kraft
lignin showing hydrogen sulfide as the only relevant sulfur compound detectable, whose
production is restricted to a temperature range between 300 and 450 ◦C [35].
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3.5. Liquid Products Characterization

FT-IR analysis was performed on the L fractions, usually denoted as “bio-oils”, as
shown in Figure 9. After pyrolysis at 350 ◦C the spectrum of the liquid is dominated
by the features of water (OH stretchings at around 3400 cm−1, the scissoring mode at
around 1620 cm−1, broad “vibrational” modes around 600 cm−1), although some weak
features indicate that organic molecules are also present, dissolved in it. An expansion of
the spectrum reveals its similarity with that of water glucose or mixed sugars solution (in
particular, the doublet at 1049, 1032 cm−1) [36]. This suggests that in these conditions some
dehydration process occurs together with the hydrolysis/dissolution of polysaccharide
residuals. After higher temperature pyrolysis, the spectrum of the resulting bio-oil, much
more abundant, shows the presence of a wide range of compounds. Indeed, the spectra of
the bio-oils produced at 450 and 550 ◦C are essentially the same and are closely similar to
that of the starting solid lignin. This suggests that the liquid produced is constituted by
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“monomeric” or less polymerized species, retaining the same functional groups of lignin.
The most evident differences between the spectra of lignin and bio-oils are that the band at
1079 cm−1, well evident in the lignin spectrum, is not evident in the spectrum of bio-oils,
while in the CH stretching region, peaks at 3054 and 2959 cm−1 are relatively stronger.
Moreover, the bands at 791 and 747 cm−1 are much stronger, relatively, in the spectrum of
bio-oils than in that of lignin. These spectral modifications could be associated with the
reduced number of methoxy groups associated with methanol evolution in the gas phase.
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Figure 9. FT-IR spectra of L pyrolysis fraction at 350, 450, and 550 ◦C.

L characterization with GC-MS was realized after an extraction/dilution step with
CHCl3. The liquid produced during the pyrolysis process consists of two separated phases:
a bottom-heavy oily phase and an aqueous top phase. Despite the aqueous phase being
clearly visible, it represents a negligible percentage of the total liquid mass. Thus, the
extraction with CHCl3 previous to the GC-MS analysis was performed on the total L
produced. The CHCl3-soluble fraction was separated from the aqueous phase by means of
a centrifuge step, and then it was analyzed in the GC-MS (Table 2). The characterization
was only performed on liquids produced in the tests at 450 ◦C and 550 ◦C, due to the low
liquid yield at 350 ◦C (~1 wt.%).

The GC-MS analysis of the liquid extracted after pyrolysis at 450 ◦C, in agreement
with the IR analysis, shows the presence of many oxygenated aromatic compounds, with
a large predominance of alkyl- and alkoxy-phenols (Figure 10). Alkyl phenols have been
considered as a separated class of compounds since their importance as high-value inter-
mediates can influence the economic feasibility of the process. In the other oxygenated
compound fractions, alcohols, ketones, ethers, carboxylic acids, methoxy alkanes, aromat-
ics, aldehydes, and esters have been included. Among them, benzenediols, i.e., catechol,
resorcinol, hydroquinone, and some alkyl-derivatives are present. However, sulfur is
also present in a few non-aromatic compounds. A small amount of hydrocarbons is also
observed. In this fraction, alkyl benzenes, xylenes, and styrene are present. In particular,
the main peak corresponds to 3 methoxy-5-methyl-phenol, while strong peaks are also
those corresponding to the two isomeric compounds 2-methoxy-phenol (guaiacol) and
4-methoxy-phenol and to 4-ethyl-2-methoxy-phenol. The peaks of these four compounds
correspond to more than 65% of all GC spectra in the liquid obtained by pyrolysis at 450 ◦C,
as shown in Figure 11, where the chromatograms obtained from the GC-MS analysis of
the CHCl3-diluted bio-oil are reported. The same compounds are also the most abundant
after pyrolysis at 550 ◦C but their amount decreases significantly at this temperature. The
reaction liquid composition is completely different from that obtained from the pyrolysis
of vegetable oils. Phung et al. [37] studied the conversion of palm oil at 450 ◦C, and the
produced liquid was mainly composed of C8-C16 hydrocarbons. Furthermore, the thermal
treatment of plastics (PET, PU, PVC, etc.) led to liquids with different compositions in the
function of the used polymer [38].



Energies 2022, 15, 991 11 of 15

Table 2. List of most relevant compounds detected from the GC-MS analysis of bio-oil.

450 ◦C 550 ◦C

Compound Name Chloroform Ethanol/Water NaOH/Water Chloroform NaOH/Water

Furfural 0.57 0.36 3.11 0.32 3.35
EthylBenzene 0.18 0.16 1.33 0.16 1.81

o-Xylene, Benzene, p-Xylene 0.10 0.11 1.15 0.16 2.25
styrene 0.09 − 1.32 0.09 1.23

propanal 3 methyl thiol 0.11 − 1.40 0.10 1.06
Phenol 2-methoxy or 4-methoxy 19.35 11.43 2.08 8.66 1.50

disulfide, methyl (methyl thio) methyl 0.39 0.27 4.73 0.01 2.88
2 methoxy-6-methyl Phenol 1.21 1.11 2.18 0.94 1.57
3 methoxy-5-methyl Phenol 34.05 23.70 13.43 16.57 8.72

1-2 Benzenediol 2.11 1.72 − 2.65 0.67
3,4 dimethoxy Toluene 0.24 0.31 4.05 0.52 3.31
2 ethoxy methyl phenol 1.02 1.59 − 1.55 0.94

Phenol 4 ethyl 2-methoxy 14.41 10.59 23.10 8.84 17.92
1-2 Benzendiol 4-methyl 1.30 1.94 − 3.58 −
2-methoxy-4-vinilphenol 0.85 1.81 − 2.51 −

benzene 4 ethyl 1-2 di methoxy 0.17 0.36 1.34 0.28 0.88
Eugenol 0.99 1.62 3.81 1.13 1.76

Benzene, 4-ethyl-1,2-dimethoxy- 0.41 0.77 5.57 0.78 33.87
phenol 2-methoxy-4-propyl 1.15 2.38 9.74 1.88 7.19

4-ethyl cathecol 0.56 0.97 − 1.66 −
vanillin 1.18 1.85 − 1.40 −

phenol 2 methoxy-4-propenyl 0.59 1.47 1.51 1.45 1.05
1,4-benzenediol, 2,3,5, trimethyl − − 1.49 0.29 −
phenol 2 methoxy-4-propenyl 4.05 6.51 5.19 5.04 3.71

Ethanone (1-3
hydroxy-4-methoxyphenyl) 1.29 2.60 − 3.22 −

1-2 dimethoxy 4 n propyl benzene 0.11 0.27 1.07 0.58 −
2-propanone (1-3

hydroxy-4-methoxyphenyl) 0.29 1.99 − 1.88 −
3 ethoxy 4 methoxy benzaldehyde 0.58 1.18 − 1.27 −

4-(3-methoxy phenyl) propylcyanide − − 2.45 − −
methyl

2-hydroxy-3-ethoxyBenzylEther 1.50 3.25 − 3.65 −
L-4-Hydroxy-3-methoxyphenylalanine 0.11 0.22 1.30 0.24 −

2-isopropyl-10-methyphenantrene 0.24 0.49 1.38 1.71 1.36
1,1′-Biphenyl,

2,2′-dimethyl-6,6′-dinitro-
0.43 0.68 − 2.34 −

Phenol, 2-methoxy-4-propyl- 1.38 4.56 − 4.31 −
Phenantrene carboxylic acid 0.33 0.72 3.07 1.01 0.94
Phenol, 2-methoxy-4-propyl- 0.37 1.22 − 0.98 −

4 diethyl aminophenyl isothiocyanate 0.58 1.70 − 1.81 −
Phenantrene carboxylic acid 0.37 0.82 − 2.12 −
Phenol, 2-methoxy-4-Propyl- 0.27 0.83 − 1.01 −
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Figure 11. GC-MS chromatograms of the CHCl3-diluted bio-oil produced at 450 and 550 ◦C.

Once the composition of the L fraction was determined, two different extractions were
made with the main objective of extracting phenolic-like compounds from the liquid. The
solvents that were used in this process are ethanol/water and NaOH/water solutions, as
described in the methods section. Figure 12a shows the changes in the composition of the
bio-oil obtained. The phenolic fraction decreased by 13 and 30% in the raffinate bio-oils
obtained by extracting with ethanol/water and NaOH/water solutions, on the L produced
at 450 ◦C, respectively. The higher extraction power of the alkaline solution is due to the
acid behavior of phenols in solution, and for this reason, only the NaOH/water solution
was added to the L produced at 550 ◦C. In this case, a 31% reduction was also obtained, as
shown in Figure 12b. After extraction with the ethanol/water solution, the resulting refined
bio-oil also had a lower amount of sulfur compared to the one obtained with NaOH/water,
even if the extracted fraction of phenols was smaller. This suggests that sulfur compounds
were also extracted. In contrast, alkaline water solution allows the better extraction of alkyl
phenols but the percentage of sulfur in the bio-oil increases together with hydrocarbon
and oxygenated compound fractions. Similar behavior can be noticed for the extractions
performed at 550 ◦C.
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Interestingly, sulfur compounds can be found in liquid as dimethyl sulfide, thiols, and
thiophenes. Even though these compounds represent a small percentage of L, their presence
is still remarkable due to the implication of sulfur in the eventual bio-oil application as a
fuel. In fact, sulfur in liquid can be corrosive, can lead to the formation of gaseous sulfur
compounds such as SO2 and H2S (which are toxic), and can also poison the catalysts [39–43].

4. Conclusions

In this study, the behavior of a commercial Kraft lignin in different isothermal con-
ditions was investigated. The distribution of the products of the pyrolysis reaction was
studied and characterized.

Biochar is mainly a carbonaceous material, with the presence of a low quantity of
sodium and sulfur. Pyrolysis temperature affects the elemental composition of biochar. The
carbon content increases as the temperature increases, up to almost 90 wt.% in samples
produced at 550 ◦C. In contrast, the amount of oxygen in the pyrolytic residues follows an
opposite trend, showing a drop from 31 wt.% in fresh lignin to 7 wt.% for samples treated
at 550 ◦C.

The produced reaction gas contains carbon oxides, light hydrocarbons (methane,
ethylene, propene), and oxygenated compounds (methanol, ethanol). However, it also
presents a relevant amount of S-containing compounds, which affect the gas quality. Their
evolution and production depend on the reaction temperature. Hydrogen sulfide is by far
the most-produced S-compound in the gas product.

The composition of bio-oil produced in the test performed at 450 and 550 ◦C changes
with the temperature, even if the most remarkable class of compounds in the L fraction is
always represented by alkyl and alkoxy-phenols, present together with alkyl-di-hydroxy-
benzenes, oxygenated compounds, a few hydrocarbons, and also sulfur compounds. From
extractions performed on the pyrolysis liquid, it can be evinced that the phenol extraction
power of the NaOH/water solution is higher than the ethanol/water solution. However,
in the conditions adopted, the extraction of alkyl-alkoxy phenols is still far from complete.
On the other hand, most of the sulfur compounds are not extracted under these conditions.

Author Contributions: Conceptualization, M.B.; A.A.C.; G.G.; P.R.; methodology, M.B.; A.A.C.; G.G.;
P.R.; validation, M.B.; A.A.C.; G.G.; P.R.; formal analysis, M.B.; A.A.C.; G.G.; P.R.; investigation, M.B.;
A.A.C.; G.G.; P.R.; data curation, M.B.; A.A.C.; G.G.; P.R.; writing—original draft preparation, M.B.,
A.A.C.; writing—review and editing, M.B., A.A.C., G.B.; supervision, G.B. All authors have read and
agreed to the published version of the manuscript.

Funding: There is no external funding.



Energies 2022, 15, 991 14 of 15

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Spennati, E.; Casazza, A.A.; Converti, A.; Busca, G. Thermocatalytic Pyrolysis of Exhausted Arthrospira Platensis Biomass after

Protein or Lipid Recovery. Energies 2020, 13, 5246. [CrossRef]
2. Azadi, P.; Inderwildi, O.R.; Farnood, R.; King, D.A. Liquid Fuels, Hydrogen and Chemicals from Lignin: A Critical Review. Renew.

Sustain. Energy Rev. 2013, 21, 506–523. [CrossRef]
3. Kang, S.; Li, X.; Fan, J.; Chang, J. Hydrothermal Conversion of Lignin: A Review. Renew. Sustain. Energy Rev. 2013, 27, 546–558.

[CrossRef]
4. Kawamoto, H. Lignin Pyrolysis Reactions. J. Wood Sci. 2017, 63, 117–132. [CrossRef]
5. Vavilala, S.L.; Ghag, S.B.; D’Souza, J.S. Lignin: Understanding and Exploring Its Potential for Biofuel Production; Elsevier Inc.:

Amsterdam, The Netherlands, 2019; ISBN 9780128179413.
6. Zevallos Torres, L.A.; Lorenci Woiciechowski, A.; de Andrade Tanobe, V.O.; Karp, S.G.; Guimarães Lorenci, L.C.; Faulds, C.;

Soccol, C.R. Lignin as a Potential Source of High-Added Value Compounds: A Review. J. Clean. Prod. 2020, 263, 121499. [CrossRef]
7. Gellerstedt, G. Softwood Kraft Lignin: Raw Material for the Future. Ind. Crop. Prod. 2015, 77, 845–854. [CrossRef]
8. Qiao, Y.; Wang, B.; Ji, Y.; Xu, F.; Zong, P.; Zhang, J.; Tian, Y. Thermal Decomposition of Castor Oil, Corn Starch, Soy Protein, Lignin,

Xylan, and Cellulose during Fast Pyrolysis. Bioresour. Technol. 2019, 278, 287–295. [CrossRef]
9. Liu, X.; Wang, T.; Chu, J.; He, M.; Li, Q.; Zhang, Y. Understanding Lignin Gasification in Supercritical Water Using Reactive

Molecular Dynamics Simulations. Renew. Energy 2020, 161, 858–866. [CrossRef]
10. Dou, X.; Li, W.; Zhu, C. Catalytic Hydrotreatment of Kraft Lignin into Liquid Fuels over Porous ZnCoOx Nanoplates. Fuel 2021,

283, 118801. [CrossRef]
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