
University of Genoa
Politechnic School

Ph.D. School “Science and Technology for Electronic and
Telecommunications Engineering”

Ph.D. Course “Electromagnetism, Electronics,
Telecommunications”

Doctoral Thesis

Intrusion Detection System
based on time related features

and Machine Learning

Author:

Alessandro Fausto

Coordinator:

Prof. Maurizio Valle

Advisor:

Prof. Mario Marchese

XXXIV Cycle

Questo lavoro è dedicato ai miei Genitori, a mio fratello, a mia moglie, a sua

figlia e a tutte le persone che mi hanno supportato e sopportato in questi tre anni

applicati alla ricerca scientifica.

Un sentito ringraziamento va al mio tutore scientifico che ha riposto molta

fiducia in me e nelle mie capacità tecniche.

Desidero anche ringraziare tutte le persone che mi hanno permesso di usufruire

della possibilità di usufruire dell’aspettativa per dottorato con assegno, mante-

nendo il mio stipendo e il trattamento pensionistico che altrimenti avrei perso per

tre anni.

L’amore è la condizione in cui il benessere e la felicità di un’altra persona è

essenziale alla tua stessa felicità.

Robert Anson Heinlein

"Cento pagnotte riportate indietro"

... per le nostre povere Armi a piedi oggi è stata una brutta giornata,

sia per il tempo brutto, sia perchè dovettero combattere accanitamente ma

morendo assai, perchè noi questa mattina abbiamo avuto 100 e più pagnotte

che hanno portato indietro dalle prime linee, dei nostri Bersaglieri che erano

restati morti.

Artigliere Antonio Grasso - Gorizia, settembre 1916

University of Genoa i

This work is dedicated to my parents, my brother, my wife, her daughter and all

the people who supported and endured me in these three years applied to scientific

research.

A special thanks goes to my scientific tutor who trust in me and in my technical

skills.

I would also like to thank all the people who allowed me to enjoy the PhD stay-

ing on payed leave of absence maintaining also my pension that I would otherwise

have lost for three years.

Love is that condition in which the happiness of another person is essential

to your own.

Robert Anson Heinlein

"One hundred loaves brought back" ... for our poor armies on foot today

was a bad day, both for the bad weather, and because they had to fight

hard but dying a lot, because this morning we had 100 or more loaves that

they brought back from the front lines, of our Bersaglieri who had remained

dead. ...

Gunner Antonio Grasso - Gorizia, september 1916

University of Genoa ii

Abstract

The analysis of the behavior of network communications over time allows the

extraction of statistical features capable of characterizing the network traffic flows.

These features can be used to create an Intrusion Detection System (IDS) that

can automatically classify network traffic. But introducing an IDS into a network

changes the latency of its communications. From a different viewpoint it is possible

to analyze the latencies of a network to try to identifying the presence or absence

of the IDS. The proposed method can be used to extract a set of phisical or time

related features that characterize the communication behavior of an Internet of

Things (IoT) infrastructure. For example the number of packets sent every 5

minutes. Then these features can help identify anomalies or cyber attacks. For

example a jamming of the radio channel. This method does not necessarily take

into account the content of the network packet and therefore can also be used on

encrypted connections where is impossible to carry out a Deep Packet Inspection

(DPI) analysis.

iii

Contents

Abstract iii

List of Figures vii

List of Tables xiii

List of listings xiv

List of acronyms xv

List of special terms xxi

1 Introduction 1

2 Analysis of delay added by an IDS 3

2.1 Introduction . 3

2.2 Intrusion Detection System . 4

2.3 State of the art IDS and SDN . 4

2.4 Creation of the prototype SDN-SF-IDS 8

2.5 Description of the implemented SDN-SF-IDS infrastructure 9

2.6 Delays introduced on the network monitored by SDN-SF-IDS 12

2.7 Minimize delays . 13

2.8 Auxiliary scripts to support experiments 41

iv

CONTENTS

2.9 Final prototypes . 49

2.10 Delay measurement ∆TT OT . 52

2.10.1 Method of measurement . 52

2.10.2 Loading data . 52

2.10.3 Measurement graphs . 53

2.10.4 System A2B5 (hardware SDN switch) 54

2.10.5 Measurements of packet forwarding delay SDN software B4

switch in bridge mode . 55

2.10.6 System delay measurements A2B4 55

2.11 Conclusions . 62

2.12 Future work . 64

3 LoRa gateway IDS 66

3.1 Introduction . 66

3.2 IoT infrastructure and LoRaWAN 67

3.3 LoRa packet forwarder analysis . 69

3.4 LoRa forward protocol . 69

3.4.1 Upstream protocol . 73

3.4.2 Downstream protocol . 80

3.4.3 Information extracted from network packet analysis 86

3.5 Analysis of captured data . 86

3.5.1 Monitoring the connection between LoRa Gateway and LoRa

Server . 87

3.5.2 Monitoring the connection between end nodes and LoRa

Gateway (and LoRa Server) 88

3.6 Software Defined Radio and LoRa physical layer 95

3.7 LoRa signal jamming testbed . 96

3.7.1 Software Defined Radio useful tools 114

University of Genoa v

CONTENTS

3.7.2 LoRa temperature sensing IoT demoboard 116

3.8 Analysis of features during jamming 121

3.9 LoRa IDS to detect RF jamming 123

3.10 Possible industrial applications . 138

3.11 Related work . 142

3.12 Conclusion . 145

3.13 Future work . 146

4 Conclusions 148

4.1 Future Work . 150

University of Genoa vi

List of Figures

2.1 Functional blocks of the architecture making up the SDN-SF-IDS. . 5

2.2 Logical structure of the prototype 9

2.3 Identification parameters of an UDP or TCP/IP flow 10

2.4 IP packet header . 10

2.5 TCP packet header . 11

2.6 UDP packet header . 11

2.7 Messages exchanges inside SDN-SF-IDS 13

2.8 Connection of SDN-SF-IDS with the Test system used to measure

delays . 15

2.9 Timing diagram of the Openflow message exchange following the

receipt of the 1st packet (P1) of a new P flow 16

2.10 Timing diagram of the Openflow message exchange following the

receipt of the n-th packet (Pn) of the previously detected P flow . . 17

2.11 Physical structure of the prototype during the test phases 17

2.12 Graph showing peak of new flow (first image) and corresponding

avalanche effect (other images) on ∆TP acketIn, ∆TT OT delays and

classification time is greater than normal. 23

2.13 Increase in delays following a spike in new flows entering the switch 24

2.14 Packets Delays ∆TT OT of prototype A1B1 24

vii

LIST OF FIGURES

2.15 Number of detected flows and corresponding analysis time (feature

extraction, flow classification and SDN rule insertion) 25

2.16 Scheduling of SDN-SF-IDS feature extraction and flow classification

procedure . 26

2.17 Packets delays ∆TT OT of the A1B2 prototype 29

2.18 Packets delay ∆TT OT of the A1B3 prototype 29

2.19 Analysis time of a single "PacketIN" (IDS with array structure, pro-

totype A1B1) . 30

2.20 Analysis time of a single "PacketIN" (IDS with hash structure, pro-

totype A1B1) . 30

2.21 Simplified diagram of the interaction between ryu and the Threads

dedicated to requesting and analyzing statistics 32

2.22 Sequence diagram trigger by SDN switch connection with Ryu Con-

troller . 35

2.23 Flowchart of the Ryu procedure _recv_loop() 36

2.24 Flowchart of the Ryu procedure _send_loop() 38

2.25 Flowchart of the Ryu procedure _echo_request_loop() 39

2.26 Result of message handling logic implemented in Ryu "recv_loop" . 40

2.27 active and terminated flows (within statistical calculation window) . 42

2.28 total delay ∆TT OT of network packets 43

2.29 number of detected streams separated by type (IP/TCP/UDP) . . 43

2.30 number of True positive, False positive, True negative, False nega-

tive flows . 43

2.31 Time used to analyze the statistics 43

2.32 Memory used by the OS and by Ryu 43

2.33 Network throughtput of OS ethernet interfaces 44

2.34 Local MAC address format (bit G/L=0) 47

University of Genoa viii

LIST OF FIGURES

2.35 Unique identifier, minimum and maximum value. 48

2.36 logical structure of the OpenFlow rules as used by the A1 controller 51

2.37 logical structure of the OpenFlow rules as used by the A2 controller 51

2.38 Count of packets histogram grouped by its delays. Different color

has been used for each protocols. 54

2.39 UDP packet delay histogram (network communications of a month) 57

2.40 TCP packet delay histogram (network communications of a month) 57

2.41 UDP packet delay histogram (network communications of five hours) 59

2.42 UDP packet delay histogram (network communications of two days) 59

2.43 UDP packet delay histogram (network communications of a month) 60

2.44 TCP packet delay histogram (network communications of five hours)

. 60

2.45 TCP packet delay histogram (network communications of two days) 61

2.46 TCP packet delay histogram (network communications of a month) 61

2.47 Throughput of OpenFlow control channel 62

3.1 Example of a LoRaWAN based IoT network 68

3.2 LoRa packet structure before complete understanding of all data field 70

3.3 LoRa packet common fields . 72

3.4 Sequence diagram of upstream protocol: Push Data/Push Ack . . . 73

3.5 Sequence diagram of upstream protocol: Pull Data/Pull Ack 73

3.6 Sequence diagram of downstream protocol: Pull Resp/TX Ack . . . 74

3.7 Upstream protocol: Push Data Message (ID 0x00) 74

3.8 LoRa packet binary format of ["rxpk"][i]["data"] after base64 decoding 79

3.9 Upstream protocol: Push Ack message (0x01) 80

3.10 Downstream protocol: Pull Data message (0x02) 81

3.11 Downstream protocol: Pull Ack message (0x04) 81

3.12 Downstream protocol: Pull Resp message (0x03) 82

University of Genoa ix

LIST OF FIGURES

3.13 Downstream protocol: TX Ack message (0x05) 84

3.14 Round trip times between Request and Ack (logarithmic scale). . . 88

3.15 LoRa packets RSSI, indoor antenna. 89

3.16 LoRa packets RSSI, antenna close to a window. 89

3.17 LoRa packets RSSI in the used frequencies. 89

3.18 Utilization of LoRa frequency by device ID. 90

3.19 LoRa end node traffic . 90

3.20 Use of Datr by LoRa devices. 91

3.21 LoRa gateway SNR feature for normal traffic. 92

3.22 LoRa gateway received packets. 93

3.23 LoRa gateway inter-arrival time between two consecutive messages

in case of fixed periodic data transmissions. 93

3.24 LoRa gateway inter-arrival time between two consecutive messages

in case of fixed periodic data transmissions under attack by reactive

jammer. 94

3.25 LoRa testbed . 97

3.26 Logical structure of LoRa jammer 97

3.27 GNU radio LoRa detector from radio dump file (RX) 98

3.28 Binary format used by GNU Radio to store IQ samples on file . . . 99

3.29 Information obtained by using TShark Lora dissector on LoRa packed

decoded by Gr-LoRa . 100

3.30 Hexadecimal dump of LoRa packed decoded by Gr-LoRa 100

3.31 Results of VCO Jam on GNU radio LoRa software decoding 102

3.32 GNU radio LoRa jammer simulator by using WBFM or FM modu-

lated signals . 103

3.33 GNU radio LoRa jammer simulator results by using gr-radar Chirp

module . 104

University of Genoa x

LIST OF FIGURES

3.34 Visual monitoring of trigger value stored in shared memory 105

3.35 reactive jamming in rest mode (lower image) and jam (Upper image)106

3.36 RF Spectrum WaterFall showing both LoRa and jamming signals . 107

3.37 RF Spectrum WaterFall showing the noise power level 107

3.38 RF Spectrum WaterFall showing the jamming and the power peaks

of LoRa signals . 108

3.39 RF spectrum of a successful or unsuccessful jam of a LoRa signal . 109

3.40 Signal presence detection by using GNU radio script 109

3.41 Power of the noise detected by using GNU radio script 110

3.42 Moving average smoothing effect when signal start or end 111

3.43 GNU radio flowgraph for signal presence detection with embedded

python block . 113

3.44 Jamming signal multiplied by the signal present trigger output . . . 113

3.45 Binary format used by hackrf_transfer to store IQ samples on file . 115

3.46 Inspectrum showing packet captured from hackrf_transfer 116

3.47 Arduino MKR WAN 1310 LoRa board 116

3.48 Schematic of testbed board LoRa_A Release 1.00 118

3.49 Board layout of testbed LoRa_A Release 1.00 119

3.50 Fully working prototype of LoRa_A Release 1.00 120

3.51 Graph of the inter-arrival time between two consecutive packets.

Notice the "holes" in periodicity due to the action of the jammer . . 123

3.52 Graph of the SNR feature under the jamming action 124

3.53 Scatterplot of "SNR" and "fiveMinPacketCount" features showing

clusters of features in normal and anomalous states 124

3.54 Robust covariance and One Class SVM, changing contamination

factor and feature group (A for Odd columns and B for even columns).129

University of Genoa xi

LIST OF FIGURES

3.55 Isolation Forest and Local Outlier Factor, changing contamination

factor and feature group (A for Odd columns and B for even columns).130

3.56 Robust covariance on feature group A (above) and group B (below). 132

3.57 Isolation Forest on feature group A (above) and group B (below). . 133

3.58 One class SVM on feature group A (above) and group B (below). . 134

3.59 Local Outlier Factor on feature group A (above) and group B (below).135

3.60 Confusion matrix for Robust covariance algorithm 136

3.61 Confusion matrix for Isolation Forest algorithm 136

3.62 Confusion matrix for One-Class SVM algorithm 136

3.63 Confusion matrix for Local Outlier Factor algorithm 137

3.64 Textual dump of LoRa IDS classification output 137

3.65 Flowchart of the Lora Jam IDS . 139

3.66 potential position of services offered for IDS jamming detection . . 141

University of Genoa xii

List of Tables

2.1 Testbeds A1B1, A1B2, A1B3 . 20

2.2 Summary of prototype A2B4 and A2B5 50

2.3 Delays ∆TT OT of switch B5 in milliseconds measured during the

observation interval of one day . 55

2.4 Delays ∆TT OT of B4 . 58

3.1 Possible items of "stat" JSON array 76

3.2 Possible items of "rxpk" JSON array 78

3.3 Possible items of "txpk" JSON object 83

3.4 LoRa frequency table . 115

3.5 Considered features for the detection of RF jamming 127

3.6 Tested ML algorithms with parameters 131

xiii

List of Listings

2.1 TShark command with used parameters 45

3.1 Code extracted from signal detection Trigger block 112

3.2 Commands used to build GNU Radio version 3.8 114

3.3 Dump of Arduino demoboard serial output 122

xiv

List of acronyms

5G 5th Generation 63, 95

ANN Artificial Neural Network 7

CAD Channel Activity Detection 144

COTS Commercial off-the-shelf 143, 144

CR Carriage Return 120

CRC Cyclic Redundancy Check 75, 77, 83, 88, 94, 146, 147

CSS Chirp Spread Spectrum 95

CSV Comma-Separated Values 41, 42, 45

DL deep learning 6

DOS Denial of Service 6

DPDK Data Plane Development Kit 7, 27, 28, 62, 63

DPI Deep Packet Inspection iii

DSP Digital Signal Processing 95, 99, 146

FM Frequency Modulation 101, 143

xv

List of acronyms

FPGA Field Programmable Gate Array 7

FSK Frequency Shift Keying 78, 83, 95

G/L Global/Local 47

GIL Global Interpreter Lock 65

GOOSE Generic Object Oriented Substation Events 3, 63

GPU Graphics Processing Unit 7

GRU-RNN Gated Recurrent Unit Recurrent Neural Network 7

HTTP Hypertext Transfer Protocol 7

I/G Individual/Global 47

I/O Input/Output 33

I2C Inter Integrated Circuit 117

IDS Intrusion Detection System iii, viii, 1–8, 10, 11, 13, 20, 22, 30, 31, 41, 64, 67,

96, 144, 145, 149

iForest Isolation Forest 123, 125, 137

IoT Internet of Things iii, 1, 2, 64, 66–68, 72, 145, 149

IP Internet Protocol viii, 9, 22, 42, 43, 45, 49, 52, 56, 69, 70, 80, 99, 140

IPC Inter-Process Communication 33, 105

IPS Intrusion Prevention System 5

IQ I and Q Components 99, 114

University of Genoa xvi

List of acronyms

ISP Internet Service Providers 140

IT Information Technology 66

JSON JavaScript Object Notation 70, 71, 75, 79, 82, 84, 86, 87, 127

KPI Key Performance Indicator 63

LED Light Emitting Diode 117, 140

LF Line Feed 120

LOF Local Outlier Factor 123, 126, 131, 145, 149

LoRa Long Range protocol 2, 67–76, 78–84, 87, 89–92, 94–99, 101, 107, 108, 114,

116, 117, 120, 121, 126, 127, 138, 140–147, 149

LoRa-net Long Range network 70, 71, 74, 82

LoRaJamIDS LoRa Jam Intrusion Detection System 123, 127, 128, 137, 138,

140–142

LoRaWAN Long Range Wide Area Network 1, 67–70, 95, 96, 121, 144, 145, 149

LPWAN Low Power Wide Area Network 67, 68, 149

MAC Media Access Control xxiii

ML Machine Learning xiii, 4–6, 8, 11, 19, 20, 24, 123, 125, 126, 128, 131, 137,

138, 146

MoDem Modulator-Demodulator 69, 70, 72, 73, 77, 87, 96, 120

NIC Network Interface Controller xxiii

University of Genoa xvii

List of acronyms

NIDS Network IDS 6

OCSVM One Class Support Vector Machine 123, 125

OF OpenFlow 4, 8–12, 18, 19, 22, 24, 25, 27, 29–32, 34, 36–39, 42, 46, 49–51, 53,

55, 56, 58, 63–65

OS Operating System 8, 12–14, 17, 18, 21, 27, 42, 48, 98, 149

OTAA Over The Air Authentication 117, 120, 121

OvS Open virtual Switch 8, 9, 13, 14, 19, 21, 28, 31

PNG Portable Network Graphics 41

RBF Radial Basis Function 125

RF Radio Frequency 68, 72, 73, 85, 97, 107, 108, 116, 140, 144

rForest Random Forest 8, 11, 19, 24, 31

RNN Recurrent Neural Network 6

RRD Round-Robin Database 41, 42

RSSI Received Signal Strength Indication 78, 88–90, 144, 145, 149

RTT Round Trip Time 87, 146

RX Receiver 77, 88

SCADA Supervisory Control And Data Acquisition 3, 63

SDN Software Defined Networking 3–15, 17, 19, 21, 22, 25, 27–34, 37, 39, 41, 44,

46–50, 52, 55, 56, 62–65

University of Genoa xviii

List of acronyms

SDN-SF-IDS Intrusion Detection System using Statistical Fingerprint based on

Software Defined Networking vii, viii, 3–9, 11–15, 19–22, 25–27, 29, 31, 42,

45–47, 49, 50, 52, 62, 63, 65, 66, 145, 148, 149

SDR Software Defined Radio 67, 69, 95–97, 108, 116, 146, 147

SFD Start Frame Delimiter 96

SFTP Secure File Transfer Program 41

SNR Signal-to-Noise Ratio 78, 91, 121, 145, 149

SPI Serial Peripheral Interface 117

SSH Secure SHell 41, 138

SVG Scalable Vector Graphics 41

SVM Support Vector Machine 125

TCP Transmission Control Protocol viii, 9, 10, 22, 34, 42, 43, 45, 56, 58, 148

TTL Transistor-Transistor Logic 117

TTN The Things Network 67, 96

TX Transmitter 80, 82–85, 88

UDP User Datagram Protocol viii, 10, 22, 42, 43, 45, 56, 70, 72, 99, 100, 138,

141, 148

USB Universal Serial Bus 95, 117, 120, 146

UTC Coordinated Universal Time 75, 77

VCO Voltage Controlled Oscillator 101

University of Genoa xix

List of acronyms

WAN Local Area Network 19, 52

WAN Wide Area Network 18

WBFM Wide Band Frequency Modulation 101

WPT Wireless Power Transfer 144

University of Genoa xx

List of special terms

airtime When a signal is send from a sender it takes a certain amount of time

before a receiver receives this signal. This time is called airtime or Time on

Air. 95

ASCIIZ ASCII string terminated using as End Of String a NUL character (ASCII

code 0, byte with a value of zero,

0). They are even called C strings. 75, 84

bandpass Filter is a device that passes frequencies within a certain range and

rejects (or at least attenuates) frequencies outside that range. 108

base64 is a group of binary-to-text encoding schemes that represent 8-bit binary

data in an ASCII string format by translating the data into a radix-64 rep-

resentation. Base64 is designed to carry data stored in binary formats across

channels that only reliably support text content. 71, 79, 86

Bash Bash is a command processor that typically runs in a text window where

the user types commands that cause actions. Bash can also read and execute

commands from a file, called a shell script. 41

botnet Botnet (a blend of the words “robot” and “network”)A botnet is a num-

ber of Internet-connected devices, each of which is running one or more

bots. Botnets can be used to perform Distributed Denial-of-Service (DDoS)

xxi

List of special terms

attacks, steal data, send spam, and allow the attacker to access the device

and its connection. 3, 4, 11, 12, 14, 21, 52

Ethernet family of wired computer networking technologies commonly used in

local area networks (LAN). It was commercially introduced in 1980 and first

standardized in 1983 as IEEE 802.3. 3, 12–14, 18, 27, 28, 44–49

ethertype EtherType is a two-octet field in an Ethernet frame. It is used to

indicate which protocol is encapsulated in the payload of the frame. 45, 52

frame ethernet data link layer unit of IEEE 802.3 standard. 52

greenlet Coroutines are computer program components that generalize subrou-

tines for non-preemptive multitasking, by allowing execution to be suspended

and resumed. Coroutines are well-suited for implementing familiar program

components such as cooperative tasks, exceptions, event loops, iterators, in-

finite lists and pipes. Coroutines provide concurrency but not parallelism.

33, 34

GreenThread The GreenThread class is a type of Greenlet which has the addi-

tional property of being able to retrieve the return value of the main function.

GreenThread provide concurrency but not parallelism. 33, 34, 36–38

hash MD5 The MD5 message-digest algorithm is used as hash function used to

map data of arbitrary size to a 128-bit hash value 44–48

Hugepages Most modern architectures provide memory pages with size larger

than the normal 4KBytes. For example, x86 CPUs normally support 4K and

2M (1G if architecturally supported) page sizes, ia64 architecture supports

multiple page sizes 4K, 8K, 64K, 256K, 1M, 4M, 16M, 256M and ppc64

University of Genoa xxii

List of special terms

supports 4K and 16M. This optimization is more critical now as bigger and

bigger physical memories (several GBs) are more readily available. 27

IOMMU In computing, an input–output memory management unit (IOMMU) is

a memory management unit (MMU) that connects a direct-memory-access–capable

(DMA-capable) I/O bus to the main memory. Like a traditional MMU,

which translates CPU-visible virtual addresses to physical addresses, the

IOMMU maps device-visible virtual addresses (also called device addresses

or I/O addresses in this context) to physical addresses. Some units also

provide memory protection from faulty or malicious devices. 27

jamming Jamming is defined as the act of developing and broadcasting another

electronic signal to cause interference. The attack is done on the physical

layer of a Radio protocol. 1, 2

latency Time delay between the moment the input or signal is sent to the system

and the moment its output is available. 6

MAC Address A Media Access Control (MAC) address is a unique identifier

assigned to a Network Interface Controller (NIC) for use as a network ad-

dress in communications within a network segment. This use is common

in most IEEE 802 networking technologies, including Ethernet, Wi-Fi, and

Bluetooth. 44, 46–49

malware Malware (a blend of the words “malicious” and “software”) is any soft-

ware intentionally designed to cause damage to a computer, server, client,

or computer network. 3, 4, 8, 11, 21

multithread In computer architecture, multithreading is the ability of a central

processing unit to provide multiple threads of execution concurrently, sup-

University of Genoa xxiii

List of special terms

ported by the operating system. This approach differs from multiprocessing.

In a multithreaded application, the threads share the resources of a single or

multiple cores, which include the computing units, the CPU caches, and the

translation lookaside buffer. 64

nonce is an arbitrary number that can be used just once in a cryptographic

communication. It is often a random or pseudo-random number issued in an

authentication protocol to ensure that old communications cannot be reused

in replay attacks. 144

pcap typical file extension used for dump files created and read by libpcap, Win-

Pcap, and Npcap libraries and containing captured network traffic. 46, 48,

52, 96

preemptive In computer science, preemption is the act of temporarily interrupt-

ing an executing task, with the intention of resuming it at a later time. This

interrupt is done by an external scheduler with no assistance or cooperation

from the task. 64

pure ALOHA the time of transmission is continuous.Whenever a station has an

available frame, it sends the frame. If there is collision and the frame is de-

stroyed, the sender waits for a random amount of time before retransmitting

it. 69

Python is an interpreted high-level general-purpose programming language. Its

design philosophy emphasizes code readability with its use of significant in-

dentation. Its language constructs as well as its object-oriented approach

aim to help programmers write clear, logical code for small and large-scale

projects. Python is dynamically-typed and garbage-collected. 8, 29, 41, 65

University of Genoa xxiv

List of special terms

rack (19-inch) is a standardized frame or enclosure for mounting multiple elec-

tronic equipment modules. Each module has a front panel that is 19 inches

(482.6 mm) wide. The 19 inch dimension includes the edges or "ears" that

protrude from each side of the equipment, allowing the module to be fas-

tened to the rack frame with screws or bolts. Common uses include computer

servers, telecommunications equipment and networking hardware, audiovi-

sual production gear, and scientific equipment. 49

scatterplot A is a type of plot using Cartesian coordinates to display values

for two variables of a set of data. For each data point the posizion on the

horizontal axis is determined by the value of the first varialbe and the position

on the vertical axis by the other variable. 53, 121

semaphore In computer science, a semaphore is a variable or abstract data type

used to control access to a common resource by multiple threads and avoid

critical section problems in a concurrent system such as a multitasking oper-

ating system. A trivial semaphore is a plain variable that is changed (for ex-

ample, incremented or decremented, or toggled) depending on programmer-

defined conditions. 31

thread the smallest sequence of programmed instructions that can be managed

independently by a scheduler viii, 25, 31, 32, 65

VT-d Intel’s "Virtualization Technology for Directed I/O" (VT-d) isolate and

restrict device accesses to the resources owned by the partition managing

the device. It provides the following capabilities: • I/O device assignment:

for flexibly assigning I/O devices to VMs and extending the protection and

isolation properties of VMs for I/O operations. • DMA remapping: for

supporting address translations for Direct Memory Accesses (DMA) from

University of Genoa xxv

List of special terms

devices. • Interrupt remapping: for supporting isolation and routing of in-

terrupts from devices and external interrupt controllers to appropriate VMs.

• Interrupt posting: for supporting direct delivery of virtual interrupts from

devices and external interrupt controllers to virtual processors. • Reliability:

for recording and reporting of DMA and interrupt errors to system software

that may otherwise corrupt memory or impact VM isolation. 27

VT-x VT-x represents Intel’s technology for virtualization on the x86 platform.

27

watchdog electronic or software timer that is used to detect and recover from

computer malfunctions. Watchdog timers are widely used in computers to

facilitate automatic correction of temporary hardware faults, and to prevent

errant or malevolent software from disrupting system operation. During nor-

mal operation, the computer regularly restarts the watchdog timer to prevent

it from elapsing, or "timing out". If, due to a hardware fault or program er-

ror, the computer fails to restart the watchdog, the timer will elapse and

generate a timeout signal. The timeout signal is used to initiate corrective

actions. The corrective actions typically include placing the computer and

associated hardware in a safe state and invoking a computer reboot. 117

University of Genoa xxvi

Chapter 1

Introduction

The analysis of the behaviour of network communications over time allows the

extraction of statistical features capable of characterising the traffic itself. These

features can be used for an automatic classification based on the peculiar intrinsic

behaviours of the analyzed traffic. Furthermore, the same characteristics can be

used to identify anomalies in the network operations.

The thesis is structured in two parts corresponding to Chapter 2 and Chapter

3. Chapter 2 presents the problems and the solution adopted to minimise the

delays introduced on network traffic passing through an IDS based on statistical

features analysis. From the analysis of the delays introduced by the IDS emerges

how it is possible to use these measurements to infer the operations carried out by

this system.

It is therefore possible to carry out a statistical analysis of the delays introduced

by a system in a normal situation. Then keeping monitored the delays is possible to

understand when the system is behaving normally or abnormally. Chapter 3 apply

this approach on Long Range Wide Area Network (LoRaWAN) IoT infrastructure

under radio jamming attack. Through the analysis of the LoRaWAN protocol in

normal state or under attack I have proposed a series of features that characterise

1

Chapter 1. Introduction

the behaviour of the IoT infrastructure. I have used these proposed features to

build an IDS able to detect a radio Jamming attack on the Long Range protocol

(LoRa) radio communication channels.

With this thesis we want to underline how intrinsic characteristics of a network

protocol sequence exchange can be used a posteriori to carry out an automatic

classification of the system status and detect anomalies.

University of Genoa 2

Chapter 2

Analysis of delay added by an IDS

2.1 Introduction

In this chapter I present the implementation of a IDS based on Statistical Fin-

gerprint that exploits the already state-of-the-art Software Defined Networking

(SDN) architecture Intrusion Detection System using Statistical Fingerprint based

on Software Defined Networking (SDN-SF-IDS) [1]. The IDS collects traffic data

and implements the algorithm presented in [1] to detect the presence of Botnet

Malware within the network data traffic. The goal of this work is to reduce the

delays introduced by the infrastructure itself in a network based on Ethernet in

view of an application in industrial environments (for example Supervisory Control

And Data Acquisition (SCADA) or Generic Object Oriented Substation Events

(GOOSE) networks) in which latencies are not well tolerated. At the same time,

we want to verify to what extent it is possible to reduce the delays introduced by

the SDN-SF-IDS system.

The first problem to be addressed is the delay introduced by the SDN-SF-IDS

system, which can hinder the practical application of the IDS. The performance

analysis of the SDN-SF-IDS permit to identify and reduce system bottlenecks.

3

Chapter 2. Analysis of delay added by an IDS

The next sub-chapters present the improvements applied to the SDN-SF-IDS

infrastructure and the results of the measurements on the delay introduced by the

SDN-SF-IDS infrastructure on the analyzed network packets. The implemented

actions are described in detail.

2.2 Intrusion Detection System

IDS are hardware/software components or groups of devices and components de-

signed to monitor a network or system for malicious activity. The document

originally appeared in [2] introduces an IDS based on statistical analysis which,

after extracting a fingerprint of network flows, uses a classifier of Machine Learning

(ML) to decide whether a network flow is affected by Botnet Malware or not.

Parallel to the evolution of IDS, the need to simplify network management

has led to the development of the SDN paradigm, based on the decoupling of the

data plane from the control plane. The data forwarding functions are located

inside devices (switches, routers, gateways) called switches SDN, while the control

functions are concentrated in the SDN controllers. Communication between these

two entities is handled through the OpenFlow (OF) signalling protocol. The basic

idea in [1] is to implement the IDS detector for Botnet Malware in [2] inside a

SDN controller by taking advantage of the packet parsing capabilities provided by

a SDN switch. [1] provides the main functional blocks of the proposed architecture

also shown in Fig. 2.1.

2.3 State of the art IDS and SDN

The first example of using SDN for IDS can be found in [3] where suspicious traffic

was redirect taking advantage of properties of OF in an SDN environment and [4]

University of Genoa 4

Chapter 2. Analysis of delay added by an IDS

Figure 2.1: Functional blocks of the architecture making up the SDN-SF-IDS.

where the SDN switch was used to collect metadata about forwarded data.

The ML algorithms are used in many technological fields such as image analysis

and classification, analysis of large amounts of data, etc. In telecommunications

networks, some ML techniques have been used to classify cyber attacks and to

detect anomalies. There are multiple state-of-the-art IDS methods applying ML

methods for intrusion detection. [5] contains a review of using ML for intrusion

detection while [6] presents a detailed overview of the technologies in the field of

IDS. In [7] a cloud-based Intrusion Prevention System (IPS) based on SDN is pro-

posed to mitigate the single point of failure problem of a classic IPS architecture.

They also show that the CPU utilization factor of a classical IPS is higher than the

IPS based on SDN. The author of [8] analyze a combination between SDN and IDS

where IDS is deployed at a strategic location in the network and it receives the mir-

University of Genoa 5

Chapter 2. Analysis of delay added by an IDS

ror of the inbound and outbound traffic to and from all the devices on the network

to monitor. The focus is put on the high traffic in the link between switches and

IDS in this kind of IDS, with can lead to congestion in case of a DOS attack. To

address this problem, they propose to use an historical database to keep track of

the incident information of the sender. If the sender has no incident registered the

traffic mirrored to IDS is defined as given minimum traffic. The simulations they

performed shows that in the average, 54.1% of traffic mirrored to IDS is reduced

compared to the original schemes. The authors of [9] They compare the Snort IDS

(signature based detection) with the Bro IDS (anomaly based detection method)

on a SDN network measuring the impact on throughput, delay, packet loss, CPU

usage, and memory usage. The test show that Bro IDS outperform Snort IDS for

throughput, delay, and packet loss parameters. However, CPU usage and memory

usage on bro requires higher resource than Snort IDS.

The author of [10] present a small survey on SDN Network IDS (NIDS) and on

possible ML and deep learning (DL) approaches. Another small survey on SDN

Intrusion Detection System (IDS) and on possible ML is presented in [11].

A comparision between Ryu and Floodlight SDN controller is presented in [12].

The result show that Floodlight controller has higher bandwidth and lower latency

than Ryu controller on a mininet emulated SDN network. A partial review of the

available SDN controllers is reported in [13]. The authors measured the Latency

times of various SDN controllers but do not consider the SDN controller Ryu used

by our SDN-SF-IDS. Latency measurements were also performed in [14] in order to

optimize response times of switch-to-controller interactions through an intelligent

controller selection mechanism. Each switch adaptively selects its own controller,

preferring the one with a shorter response time for flow-routing requests. The

Authors of [15] propose to use Recurrent Neural Network (RNN) ML algorithm

for anomaly detection in Real-Time IDS based on SDN Environments. They also

University of Genoa 6

Chapter 2. Analysis of delay added by an IDS

conduct a network performance analysis in terms of throughput and latency.

In [16] is proposed a Gated Recurrent Unit Recurrent Neural Network (GRU-

RNN) enabled IDS for SDN. The experiment results also show that the proposed

GRU-RNN does not deteriorate the network performance.

The author of [17] proposes a hybrid software/hardware IDS on SDN network

that uses Field Programmable Gate Array (FPGA) and Graphics Processing Unit

(GPU) to implement Artificial Neural Network (ANN). Different performance pa-

rameters are analyzed by changing the hardware used (i7 CPU, FPGA, GPU).

Although focused on optimizing software routers alone (not implementing SDN),

[18] compares its routing solution to other solutions, addressing similar problems

to those addressed in this article using Data Plane Development Kit (DPDK).

The SDN-SF-IDS is based on the statistical analysis of network traffic and in

particular on the analysis of simple statistical properties of the most used commu-

nication protocols in telecommunication networks. It is assumed that the infor-

mation carried by packets at the network and transport level, such as the size of

the packets and the inter-arrival time between consecutive packets, is sufficient to

be able to infer the nature of the application that generated the aforementioned

packets and therefore to be able to distinguish between a malicious or a benign

application.

This information is closely related to the operations that created it. For ex-

ample, human interactions related to web browsing generate data exchanges with

Hypertext Transfer Protocol (HTTP) characterised by large intervals between two

successive requests. This behaviour is related to the time needed by humans to

read the information contained in the web page before requesting other web pages.

The same operations carried out by automatic web navigation systems (web mir-

roring tools, etc) while using the same communication protocol HTTP generate a

faster data exchange.

University of Genoa 7

Chapter 2. Analysis of delay added by an IDS

The SDN-SF-IDS exploits the SDN paradigm, and in particular the ability of

the SDN switches to monitor the network packets that traverse them to compute

statistical features used by the IDS to characterize data flows. In this way, part of

the statistics calculation is offloaded.

2.4 Creation of the prototype SDN-SF-IDS

The SDN-SF-IDS prototype consists of two parts separated logically and physically

(fig. 2.2): the SDN controller and the SDN switch.

For its realization, Open Source software and Operating System (OS) GNU/Linux

were used in order to be able to operate, if necessary, on the source code of each

component of the system.

The SDN controller was built using Ryu Open Source software specifically

modified to contain the SDN-SF-IDS developed in our laboratory. To implement

it, we used the Random Forest (rForest) provided by the Python library scikit-

learn1. This algorithm was identified in [1] as one of the three best performing

algorithms with respect to the metrics

min(FalsePositive + FalseNegative)

which minimizes errors in recognizing a Malware stream or not.

The SDN switch routes packets on the monitored network and works with the

SDN controller to perform statistical analysis of the flows. The SDN switch be

composed of a hardware switch or a software switch. In both cases, communication

between the switch and the SDN controller takes place via the OF protocol. In

the first case, a network device (switch, router, etc) is used. In the second case, a

computer with OS GNU/Linux and Open virtual Switch (OvS) software is used.
1https://scikit-learn.org/stable/ was chosen as the ML algorithm for cataloging the

extracted features

University of Genoa 8

https://scikit-learn.org/stable/

Chapter 2. Analysis of delay added by an IDS

The OvS software simulates the operation of a SDN switch by managing the routing

of network packets received by the interfaces assigned to it.

2.5 Description of the implemented SDN-SF-IDS

infrastructure

The SDN-SF-IDS system (fig. 2.2) is made up of a SDN Switch controlled by

a special SDN controller. The SDN switch manages, through special OF flow

tables, the network flows received from the #1 and #2 interfaces and is connected

via a third network interface dedicated to the SDN Controller who supervises its

operations.

O
pe

nF
lo

w

PacketIn
FlowMod

PacketOut

#1
SDN switch

SDN Controller

#2External

network

Internal

network

SDN-SF-IDS

Figure 2.2: Logical structure of the prototype

Network flows are identified through the vector of following five elements (see

Fig. 2.3): Internet Protocol (IP) Source and Destination (IP SRC and DST),

Source and Destination Ports from Transmission Control Protocol (TCP) (fig.

University of Genoa 9

Chapter 2. Analysis of delay added by an IDS

2.5) or User Datagram Protocol (UDP) (fig. 2.6) headers (SRC and DST Ports),

Transported protocol (6 for TCP or 17 for UDP).

Figure 2.3: Identification parameters of an UDP or TCP/IP flow

0 8 16 24 32

Version (4
bit) hlen (4 bit) TOS (8 bit) Total Lenght (16 bit)

Identification (16 bit) Flags (3
bit) Fragmentation Offset (13 bit)

TTL (8 bit) Protocol (8 bit) Header Checksum (16 bit)

Source IP Address (32 bit)

Destination IP Address (32 bit)

Options (0-40 bytes bit)

Figure 2.4: IP packet header

For each flow received from the #1 or #2 interfaces, the SDN switch checks if

its OF flow table contains a rule to be applied. Instead, for each packet belonging

to flows already present in the flow table, the SDN switch applies the rules related

to that flow. For example, it can forward or drop packets.

When fully operational, the flow routing OF flow tables contain the manage-

ment rules for each flow that passes through the switch. Otherwise, for each

packet belonging to a stream not present in these tables, the SDN switch sends a

OF "PacketIn" message to the SDN Controller asking how to process it. The SDN

controller receives this message and passes it to the IDS code which: stores the

data related to the new flow within its own data structure, analyses the packet,

and then, by using the OF "FlowMod" message, adds the appropriate rules for

University of Genoa 10

Chapter 2. Analysis of delay added by an IDS

0 8 16 24 32

Source port number (16 bit) Destination port number (16 bit)

Sequence number (32 bit)

Ack (32 bit)

Hlen (4 bit) Reserved (6 bit) Flags (6 bit) Window size (16 bit)

Checksum (16 bit) Urgent pointer (16 bit)

Figure 2.5: TCP packet header

0 8 16 24 32

Source port number (16 bit) Destination port number (16 bit)

Total Lenght (16 bit) Checksum (16 bit)

Figure 2.6: UDP packet header

monitoring and forward the data flow to the SDN switch. As a last step, it sends

the OF "PacketOut" message to the switch to allow the packet to be forwarded.

The training of the ML algorithm is done using a labeled dataset of network

flows lasting about three days containing both Botnet Malware traffic and normal

network traffic. During this operation, the SDN-SF-IDS system calculates and

stores the statistics and, once a threshold (number of analyzed streams) chosen by

us has been reached, starts the training phase of the rForest algorithm by using

the extracted features.

Once the training is finished, the IDS code saves the trained parameters of the

ML algorithm inside a special file that is loaded during the normal execution of

SDN-SF-IDS. The SDN-SF-IDS performs at regular intervals the calculation of the

statistical features and their classification through the rForest algorithm. Once the

class ("malware" or "normal") of each monitored stream is identified, a drop rule

is added to the OF flow table of SDN switch for each "malware" class stream. If

University of Genoa 11

Chapter 2. Analysis of delay added by an IDS

necessary, it is possible to change this rule in order to forward the flow catalogued

as Botnet to a specific network port of the SDN switch to which further analysis

systems can be connected for the analysis of network packets of the flow deemed

malicious.

Each of these operations can introduce delays in the forwarding of the analysed

packets.

2.6 Delays introduced on the network monitored

by SDN-SF-IDS

The SDN-SF-IDS system performs different operations and therefore introduces

different delays depending on whether or not the received packet belongs to an

already known flow and therefore with rules already present in the OF flow tables

(see figure 2.7). If the packet does not belong to an already known flow, the SDN

switch forwards the packet to the SDN controller to create the rules necessary to

perform the statistical calculations for this new flow.

Particularly significant are the delays related to the exchange of OF messages

between the SDN switch and the internal delays of the two systems.

In the first case, the delays are greater as they involve the forwarding of packets

to the SDN Controller and their analysis. This time is further extended by the fact

that for each new flow the SDN Controller must send two OF messages ("FlowMod"

and "PacketOut") to the SDN switch.

Other factors affecting delays depend on the OS side of SDN-SF-IDS infrastruc-

ture because, to perform the analysis of a single network packet, many software

components must interact by communicating with each other and many lines of

code come into play(Ethernet driver reception and transmission queues, context

switch between kernel and user space, etc.)

University of Genoa 12

Chapter 2. Analysis of delay added by an IDS

Figure 2.7: Messages exchanges inside SDN-SF-IDS

Each of these interactions adds a delay that needs to be minimized.

2.7 Minimize delays

To minimize the impact of the SDN-SF-IDS infrastructure on the monitored net-

work, it is necessary to reduce the delays introduced by it.

The SDN controller is based on a GNU/Linux OS (Gentoo or Debian) and the

SDN software controller Ryu in which the IDS code has been installed. By acting

on the IDS code, the time required for the analysis of the new flows has been

significantly reduced (see section 2.7 pag. 29).

The SDN switch is based on GNU/Linux OS (Debian or Mint distributions)

with (at least) three Ethernet network cards (10/100 or 10/100/1000 Mbit/s) and

OvS software implemented SDN switch.

Next subsection includes further information on the used software and hard-

University of Genoa 13

Chapter 2. Analysis of delay added by an IDS

ware. By acting on the software (Linux kernel, OvS, Ryu) and on the hardware

(CPU, Ethernet card) of the systems, it was possible to reduce the delays associ-

ated with the SDN-SF-IDS.

Laboratory tests

I have created various prototypes of increasing complexity to overcome the bot-

tlenecks gradually highlighted by the tests carried out in order to improve the

performance in terms of latency. The analyzes were carried out by sending to the

SDN-SF-IDS system the entire set of network flows at my disposal, containing

or not containing packets belonging to Botnet. The laboratory tests are aimed

at evaluating and reducing the delays introduced by the SDN-SF-IDS. The de-

tected delays have been minimized both by increasing the resources of the used

computers, and also through deep modifications of the SDN-SF-IDS code and OS

configuration.

The laboratory tests were carried out using the logic schema presented in figure

2.8, connecting the #1 and #2 interfaces of the SDN-SF-IDS to a special system

"Tester" capable of generating and receiving a stream of Ethernet packets and

calculates the delay suffered by each individual Ethernet packet. The tester sends

the network stream to be filtered from the internal Ethernet interface "ethTINT "

to port #1 of the switch SDN-SF-IDS and receives on the interface "ethTEXT "the

filtered stream outgoing from port #2 of the above system.

Figure 2.9 and figure 2.10 show the sequence diagram of the message exchange

within the SDN-SF-IDS infrastructure in case SDN Switch receives a new stream

or an already known stream.

By measuring the instant T1 in which the packet leaves the "ethTINT " interface

and the instant T2 in which it returns from the "ethTEXT " interface, it is possible to

estimate the total delay ∆TT OT generated by the SDN-SF-IDS system as ∆TT OT =

University of Genoa 14

Chapter 2. Analysis of delay added by an IDS

OpenFlow
PacketIn FlowMod PacketOut

ethTINT ethTEXT

SDN-SF-IDS

prototype
Tester

#1

SDN switch

SDN Controller

#2

Externalnetwork

Internalnetwork

Figure 2.8: Connection of SDN-SF-IDS with the Test system used to measure

delays

T2 − T1. For more information see section 2.8 at page 41.

To simplify the test operations of the SDN-SF-IDS, the SDN Controller itself

was used instead of the "Tester", connecting it as in figure 2.11.

In the first laboratory tests, the two parts of the SDN-SF-IDS infrastructure

were created using two computers: the first (A) acts as a SDN controller; the

second (B) as the SDN switch.

As the test trials progressed, five different versions of the SDN-SF-IDS infras-

tructure were implemented.

For the first three versions the same Controller A1 was used by varying only the

SDN Bi switch (A1B1, A1B2, A1B3) with the aim of obtaining increasingly reduced

latencies at the cost of software complexity ever increasing and ever more binding

hardware requirements.

The results of this optimization phase were used to create a final prototype

equipped with a new SDN A2 controller capable of controlling a SDN B4 switch

or a SDN switch hardware B5. The latest two versions of the SDN-SF-IDS infras-

University of Genoa 15

Chapter 2. Analysis of delay added by an IDS

Tester SDN Switch SDN Controller

∆
T

T
O

T
=

T
2

−
T

1

∆
T

P
a

ck
et

I
n

=
T

P
2

−
T

P
1

T1

ethTINT

P1 packet
#1

Search for matching

rules failed
OpenFlow PacketIn TP 1

OpenFlow FlowMod

TP 2

OpenFlow PacketOut

#2
P1 packet

T2 ethTEXT

Figure 2.9: Timing diagram of the Openflow message exchange following the

receipt of the 1st packet (P1) of a new P flow

University of Genoa 16

Chapter 2. Analysis of delay added by an IDS

Tester SDN Switch SDN Controller
∆

T
T

O
T

=
T

2
−

T
1

T1

ethTINT

Pn packet
#1 Successful search for

matching rules

#2
Pn packet

T2 ethTEXT

Figure 2.10: Timing diagram of the Openflow message exchange following the

receipt of the n-th packet (Pn) of the previously detected P flow

O
pe

nF
lo

w

#1
SDN switch

SDN Controller

#2External

network

Internal

network

SDN-SF-IDS

Figure 2.11: Physical structure of the prototype during the test phases

tructure (A2B4 and A2B5) which make up the final prototype of this infrastructure

and will be presented in section 2.9 49.

The A1 processor uses a GNU/Linux OS (Gentoo distribution) and SDN Con-

troller software Ryu (ryu-4.26). The system is equipped with a quad-core Intel®

Core™ CPU i5-3340 running at 3.10 GHz, 16 GByte RAM and with four network

University of Genoa 17

Chapter 2. Analysis of delay added by an IDS

cards Gigabit Ethernet:

ethAW AN Wide Area Network (WAN) / Internet;

ethAOF connected to systems B1, B2, B3 dedicated to OF communications;

ethAINT network to be analyzed (internal side);

ethAEXT network to be analyzed (external side).

The B1, B2 and B3 computers use a GNU/Linux OS (Debian or Mint distri-

butions) and are equipped with 3 network cards:

ethBOF Connection dedicated to OF communications;

ethBINT network to be analyzed (internal side);

ethBEXT network to be analyzed (external side).

The B1 system is a Nokia IP120 device equipped with a 266 MHz AMD Geode

CPU, 128 MByte RAM and 3 Ethernet 10/100 Mbit/s network cards. The B2

system is a PC equipped with a 2.4 Ghz quad core Intel Q6600 CPU, 4 GByte of

RAM and 3 Ethernet 10/100/1000 Mbit/s network cards. The B3 system is a PC

equipped with an Intel® Core™ i5-7400 CPU at 3.00 GHz, 16 GByte of RAM and

3 network cards Ethernet 10/100/1000 Mbit/s.

The systems A1B1, A2, B1, A1B3 are connected as in figure 2.11 in order to

create the following networks:

WAN port ethAW AN directly connected with WAN and Internet;

CTRL direct connection between ethAOF and ethBOF dedicated to OF connection;

University of Genoa 18

Chapter 2. Analysis of delay added by an IDS

INT direct connection between ethAINT and ethBINT used to simulate an internal

Local Area Network (WAN). The traffic to be analized and filtered is sent

by ethAINT port and received by ethAINT port;

EXT direct connection between ethAEXT and ethBEXT used to simulate the exter-

nal. The ethAEXT port receive the WAN traffic filtered by the SDN-SF-IDS

and sent from ethBEXT port;

A virtual SDN Switch composed of two logic ports (#1 and #2) has been

created inside each Bi computer using the OvS software. Port #1 is assigned to

the ethBEXT interface and consequently is dedicated to the input traffic to be

analyzed and filtered. Port #2 is assigned the ethBINT interface and is therefore

dedicated to output (filtered) traffic. The OF communication of the control plane

(Ryu - OvS) takes place via the dedicated connection ethAOF ⇐⇒ ethBOF .

The Bi switch receives the traffic to be filtered on the ethBEXT interface,

forwards it to the virtual port #1 of OvS which checks if in the OF flow table

there are rules applicable to the received packet. If so, it applies the corresponding

rule which can contain a drop command or a forward rule to the exit port #2.

In this case, the packet is passed to the virtualSDNport #2 and then sent in

output without modification by the associated ethBINT card. If no rule matches,

the packet is forwarded to the SDN Aj Controller through the dedicated CTRL

connection. The SDN Bi switch works as a pass through filter with the sole purpose

of monitoring and acting on data flows. The SDN Aj Controller receives the first

packet of each new stream detected by Bi over the CTRL connection. Then,

it creates and sends the monitoring and packet forwarding rules to Bi which,

at each predetermined interval, sends the statistics of all the monitored flows to

the Ai controller which, through a supervised ML algorithm rForest, catalogs the

flows and adds rules for managing flows based on their assignment ("normal" or

"malware").

University of Genoa 19

Chapter 2. Analysis of delay added by an IDS

test-

bed
Controller A1: CPU Intel® Core™ i5-3340 running at 3.1 GHz, 16 GByte RAM,

4 Eth 10/100/1000 Mbit/s

description of SDN switch Bn ∆TP acketIn ∆TT OT notes

A1B1 switch software CPU AMD

Geode running at 266 Mhz,

RAM 128 MByte, 3 Eth 10/100

Mbit/s

average 2 ms,

peaks < 14ms

- IDS use array

data structure

A1B1 switch software CPU AMD

Geode running at 266 Mhz,

RAM 128 MByte, 3 Eth 10/100

Mbit/s

average 1 ms,

peaks < 3 ms

average 12.01 ms,

peaks < 189.61 ms

IDS use hash

data structure

A1B2 switch software CPU Intel®

Q6600 running at 2.4 Ghz,

4 GByte RAM, 3 Eth

10/100/1000 Mbit/s

- average 1.09 ms,

peaks < 54.29 ms

IDS use hash

data structure

B2 has more

computational

power

Table 2.1: Testbeds A1B1, A1B2, A1B3

For more information on the ML mechanism used, see the aforementioned [1]

and [2].

The entire prototype has been designed to work in real-time with constant

performance monitoring (further information can be found in the section 2.8 at

page 41).

Table 2.1 shows a summary of the A1B1, A2, B1, A1B3 prototypes with a tech-

nical description of the prototypes hardware, the optimization done and obtained

result.

The Aj controller can analyze in detail the results of the filter action performed

by SDN-SF-IDS as it creates the data streams to be filtered by sending them to the

EXT network which is analyzed in real-time by Bi. At the same time the same

University of Genoa 20

Chapter 2. Analysis of delay added by an IDS

Aj receives the outgoing network traffic from the SDN switch through the INT

network (free of infected streams). Through the analysis of the flows sent on EXT

and received by INT, it is possible to verify the correct elimination of the infected

flows. With the same method, by temporarily disabling the rules for dropping the

Botnet Malware streams, you can measure the delay that each individual packet

undergoes, from the instant when it is sent from the ethAEXT interface to the

instant when is received in the ethAINT interface. The INT network data flow is

created through port mirroring of the ethW AN connection with the ability to add

any network sample ("normal" or "malware") to the traffic.

The debug scripts running on Ai measure the OS performance of both comput-

ers and individual software (OvS and Ryu) every 10 seconds. For more information

refer to the section 2.8.

Laboratory tests: prototype A1B1

The first tests carried out were aimed at determining the influence of the computa-

tional power of the SDN Switch software and on the delays suffered by the analyzed

packets. The CPU of B1 system was chosen among those with the least compu-

tational power at my disposal. The A1B1 system did not experience particular

overloads during the entire test period and the OS, even with limited resources,

always remained responsive. This prototype was fundamental to bring out two

SDN-SF-IDS problems related to each other and related to the SDN controller.

The implementation, created based on the Ryu open source software, intro-

duces delays both in the management phase of the new flows and in the phase of

acquiring the statistics (carried out periodically) aimed at the classification and

filtering of the flows.

With reference to the management of new flows, delays are introduced only

for the first packet of each new flow. An important part of this delay is linked

University of Genoa 21

Chapter 2. Analysis of delay added by an IDS

to the fact that the first packets of the new flows do not find a rule dedicated to

them within the OF flow tables of the SDN switch. Then, they require the OF

"PacketIn" message to be sent to the SDN Controller. When the SDN Controller

receive the OF "PacketIn" message analyse it and, in response, the OF "FlowMod"

and OF "PacketOut" messages has to be sent back to the SDN switch. If a rule is

already present, the packet only passed trough the SDN switch with timing below

one millisecond. In the following, ∆TP acketIn will indicate the time necessary for

the IDS module to complete the handling of the OF "PacketIn" message. The time

taken for the packet to go through the entire SDN-SF-IDS will be indicated as

∆TT OT .

From the analysis emerged that the frequency of new flows detected by the

SDN switch (and therefore sent to the controller for analysis) is not constant over

time but there are peaks of new flows and consequently peaks of OF messages

"PacketIn" sent to SDN Controller (see Fig. 2.12).

The OF "PacketIn" messages are processed in sequence so the delays add up

with a consequent rapid extension of the response times (Fig. 2.13). Most of

the burst of new flows are caused by traffic carried over the UDP protocol. The

low percentage of traffic peaks generated by TCP is due to the fact that in the

analyzed traffic (mirror of our local network) there are stable TCP connections of

long duration which result in a low rate of new flows IP per second. For example

during a test 2 500 111 network packets were analysed and only 52 242 "PacketIn"

messages has generated.

In the prototype A1B1, the time ∆TP acketIn (figure 2.19) is about 2 milliseconds

but in correspondence to the arrival of peaks it can increase reaching 14 ms.

The SDN-SF-IDS demo code used in [1] has been revised, extended and opti-

mized. The data structure used to trace new network flows has been re-implemented

using a hash table optimized for accessing data via the flow identifier. This action,

University of Genoa 22

Chapter 2. Analysis of delay added by an IDS

Figure 2.12: Graph showing peak of new flow (first image) and corresponding

avalanche effect (other images) on ∆TP acketIn, ∆TT OT delays and classification time

is greater than normal.

University of Genoa 23

Chapter 2. Analysis of delay added by an IDS

Figure 2.13: Increase in delays following a spike in new flows entering the switch

Figure 2.14: Packets Delays ∆TT OT of prototype A1B1

combined with other minor changes, resulted in a reduction of the ∆TP acketIn time

to 1 ms average time with 3 ms peaks related to OF request peaks (see figure 2.20).

With reference to the statistics acquisition phase, the delay is linked to the fact

that the calculation of the statistics and the cataloging action performed by the

ML algorithm are carried out within the main Ryu process. For this reason, Ryu

is no longer able to process other requests, including the receipt of new flows, until

the end of the cataloging phase (see figure 2.15 and figure 2.16).

The time required to compute statistical features, classify the flows using rFor-

est ML algorithm on them and sending corresponding OF "FlowMod" messages

is not high but not negligible. It takes 101.68 ms to process 166 streams (see

figure 2.15).

In figure 2.15 the Ryu main process stay blocked for 100ms, this causes a rapid

University of Genoa 24

Chapter 2. Analysis of delay added by an IDS

Figure 2.15: Number of detected flows and corresponding analysis time (feature

extraction, flow classification and SDN rule insertion)

increase in the length of the queue of OF messages awaiting response (most are

"PacketIn") with the associated increase in the response time of the SDN Controller

to OF requests "PacketIn" and consequently the entire SDN-SF-IDS infrastructure.

To solve this problem, the analysis of the flow statistics and their classification

have been moved to a special Thread which processes them in parallel. This way

Ryu main process is free to immediately proceed with handling other OF messages

sent to it by the SDN switch. For more detailed information, refer to section 2.7

page 29.

Once the time required to process OF "PacketIn" requests was minimized, I

moved on to measuring the ∆TT OT delay times introduced by the overall SDN-SF-

IDS system. To do this, a specific script described in section 2.8, was used.

The total delays ∆TT OT measured in prototype A1B1 (see Fig. 2.14) show an

average value of 12.01 ms with peaks of 189.61 ms of maximum delay in corre-

spondence of new flow peaks.

University of Genoa 25

Chapter 2. Analysis of delay added by an IDS

Figure 2.16: Scheduling of SDN-SF-IDS feature extraction and flow classification

procedure

University of Genoa 26

Chapter 2. Analysis of delay added by an IDS

Laboratory tests: prototype A1B2

Once the optimization of the SDN A1 controller code is complete, We assessed the

impact of higher available system resources on system performance by replacing

the SDN B1 switch with the better performing one B2 system.

As expected, the delays introduced by the SDN-SF-IDS ∆TT OT infrastructure

(see Fig. 2.17) decreased to 1.09 ms average, with peaks of 54.29 ms, thanks to a

faster management of the OF flow tables due to a more powerful CPU.

The ∆TP acketIn time required to process the OF "PacketIns" message has re-

mained comparable to that obtained with the A1B1 prototype as it is linked to

operations performed on the SDN A1 controller.

Laboratory tests: DPDK libraries

At the end of these measurements, a performance limit emerged due to the soft-

ware nature of the SDN switch running inside a general purpose OS, such as

GNU/Linux. An analysis of the state of the art2 shows that the presence of

a scheduler that manages the execution of parallel processes and other strictly

technical elements introduces waiting times that result in delays that cannot be

optimized.

DPDK can be used to overcome this problem. This development kit has been

designed to ensure faster handling of packets received by Ethernet cards at the price

of a significant increase in complexity. The DPDK libraries work in close synergy

with the Linux kernel and require the presence of the most advanced architectural

solutions offered by today’s CPUs (Hugepages, IOMMU, VT-x, VT-d, etc.). First

of all, it is necessary to act on the boot parameters of the Linux kernel to enable

the use of the Hugepages (pages larger than 4KBytes) and configure the DPDK
2R. Giller. Open vswitch with DPDK overview. https://software.intel.com/en-us/art

icles/open-vswitch-with-dpdk-overview

University of Genoa 27

https://software.intel.com/en-us/articles/open-vswitch-with-dpdk-overview
https://software.intel.com/en-us/articles/open-vswitch-with-dpdk-overview

Chapter 2. Analysis of delay added by an IDS

libraries so that they take advantage of them benefit. Then, a part of the system

CPUs has to be reserved for running the DPDK libraries and the software that

uses them, preventing their use from the Linux scheduler.

In order to use a network card with these libraries, special optimized drivers3,4

which are only available for a small set of network cards are needed.

Laboratory tests: prototype A1B3

The B2 system does not support the minimum hardware requirements to use

DPDK5, so we used the B3 system equipped with an Intel 82571EB/82571GB

Gigabit Ethernet D0/D1 network card rev 06 (double RJ-45 port). The DPDK

library version 19.05.06 was compiled and installed on system B3. The configu-

ration was done in a manner consistent with the DPDK guidelines7. The OvS

software version 2.11.18 was compiled to take advantage of the DPDK libraries to

further improve the performance of the SDN controller. The results of the tests

(Fig. 2.18) show a reduction of the maximum delays ∆TT OT to 11.76 ms. The

minimum delays are approximately 141 µs.

To obtain these results was used one of the least performing models supported

by the DPDK.
3DPDK Linux drivers are required. http://doc.dpdk.org/guides/linuxgsg/linuxdriver

s.htm
4DPDK overview of networking drivers. http://doc.dpdk.org/guides/nics/overview.htm
5DPDK system requirements. http://doc.dpdk.org/guides/linuxgsg/sysreqs.htm
6http://git.dpdk.org/dpdk/snapshot/dpdk-19.05.tar.gz
7Configure open vswitch with DPDK on Ubuntu server 17.04. https://software.intel.c

om/en-us/articles/set-up-open-vswitch-with-dpdk-on-ubuntu-server
8https://www.openvswitch.org/releases/openvswitch-2.11.1.tar.gz

University of Genoa 28

http://doc.dpdk.org/guides/linuxgsg/linuxdrivers.htm
http://doc.dpdk.org/guides/linuxgsg/linuxdrivers.htm
http://doc.dpdk.org/guides/nics/overview.htm
http://doc.dpdk.org/guides/linuxgsg/sysreqs.htm
http://git.dpdk.org/dpdk/snapshot/dpdk-19.05.tar.gz
https://software.intel.com/en-us/articles/set-up-open-vswitch-with-dpdk-on-ubuntu-server
https://software.intel.com/en-us/articles/set-up-open-vswitch-with-dpdk-on-ubuntu-server
https://www.openvswitch.org/releases/openvswitch-2.11.1.tar.gz

Chapter 2. Analysis of delay added by an IDS

Figure 2.17: Packets delays ∆TT OT of the A1B2 prototype

Figure 2.18: Packets delay ∆TT OT of the A1B3 prototype

Optimization of SDN Controller

The optimization of the SDN Controller code went in parallel with the one of the

SDN switch software.

As mentioned in section 2.1, the Open Source Ryu software, running on the

SDN A1 and A2 controllers, was written in Python. The use of this language,

on the one hand, allows a rapid modification of the code with simple debugging

procedures, but, on the other hand, it does not guarantee to obtain the maximum

possible performance. Other languages, such as C++, could achieve higher perfor-

mance, but the debugging would be more complex. For this reason, we have chosen

to continue to use the Python language during the optimization and improvement

phases of the SDN-SF-IDS.

The first tests (second row of Table 2.1) based only on the measurement of

the time needed to process a single OF "PacketIn" message had highlighted the

slowness of the insertion and search phases of the flows within the data structure

used for their storage. The first optimization carried out focused on minimizing

the time required for interactions with the data structure containing the flows.

University of Genoa 29

Chapter 2. Analysis of delay added by an IDS

Figure 2.19: Analysis time of a single "PacketIN" (IDS with array structure,

prototype A1B1)

Figure 2.20: Analysis time of a single "PacketIN" (IDS with hash structure,

prototype A1B1)

We have changed a data structure based on arrays (list) into a structure based

on hash tables (dictionary). These changes have resulted in an increase in system

performance (figure 2.19 and figure 2.20) reducing the peaks of ∆TP acketIn from

13.82 ms to 3.22 ms.

However, the tests revealed a problem strictly related to the structure of the

Ryu software which is based on a single process programming model. The han-

dling of each received OF packet is done sequentially, so parsing the one OF

"STAT_REQ" message blocks Ryu execution until it is finished. Meanwhile other

OF messages sent to the SDN Controller Ai remain stuck in the system queue

of the socket associated with OF port 6633 without being processed. For further

information see section 2.7. This problem occurs for each OF message received but

it is particularly critical during the receipt of the OF "STAT_RESP" message as,

upon receipt, the IDS module performs the extraction of the statistical features

and the cataloging of the flows. These operations take much more time to complete

University of Genoa 30

Chapter 2. Analysis of delay added by an IDS

than the time required to manage other OF messages. Furthermore, the statis-

tics calculation procedure is repeated at regular time intervals, blocking Ryu for

a variable time depending on the number of packets to be cataloged. This causes

further congestion in the handling of OF "PacketIn" messages and the consequent

slowdown in the management of new flows.

The IDS module of the SDN-SF-IDS has been enhanced by adding two parallel

running Threads to the main Ryu process.

This solution allowed us to perform slower operations within a separate Thread

leaving the main process free to handle incoming OF messages. The Thread "MON-

ITOR" cyclically wakes up to request the SDN switch to send the statistics of the

flows it monitors and then returns to sleep. The Thread for calculating the statis-

tics "STAT_THR" is awakened by the main process when the statistics are ready

to be calculated. The Thread moves the necessary data within a data structure

reserved for it. In this way, the execution of the Thread and the main process con-

tinues in parallel without concurrent access to the data. The main process signals

through a special Semaphore the presence of new data to the Thread "STAT_THR"

and immediately starts managing the OF messages again, finding the data struc-

ture empty and ready to store the data relating to the new flows.

The Thread "STAT_THR" calculates the statistics of the flow and performs

the cataloging using the rForest algorithm, then proceeds to insert any drop rules

inside the switch and finally goes back to rest. The execution time of these Threads

is limited to a few milliseconds at each statistics request interval (configurable by

the user and set to 30 or 220 seconds in tests). Figure 2.21 shows a summary of

the possible interactions between all agents in action: OvS on the SDN switch;

Ryu and the Thread dedicated to requesting and analyzing the statistics on the

SDN Controller. In the diagram, it has been shown that having separated the flow

cataloging phase in a special Thread allows Ryu to immediately manage theOF

University of Genoa 31

Chapter 2. Analysis of delay added by an IDS

Figure 2.21: Simplified diagram of the interaction between ryu and the Threads

dedicated to requesting and analyzing statistics

"PacketIn" messages received by the SDN switch.

The second criticality that emerged from the tests is a relation between peaks

in the number of OF messages received and increasing slowdowns in their analysis.

A slowdown in the parsing phase causes a slowdown in the handling of all

other OF requests sent to the SDN Controller. This behaviour depends on a

sequential and non-parallel management of the phases of reception and analysis of

OF messages.

In order to better manage the problem and understand in depth the interde-

pendencies related to Ryu’s internal functioning, we have analyzed the source code

of Ryu version 4.319).
9https://github.com/faucetsdn/ryu/commit/050bfbc711ed9f3bcab458a904eab74aad90

b076

University of Genoa 32

https://github.com/faucetsdn/ryu/commit/050bfbc711ed9f3bcab458a904eab74aad90b076
https://github.com/faucetsdn/ryu/commit/050bfbc711ed9f3bcab458a904eab74aad90b076

Chapter 2. Analysis of delay added by an IDS

Ryu software analysis

Ryu’s source code uses the Greenlet10 library that allows you to manage calls

to Input/Output (I/O) functions in a clean and simple way blocking and pro-

vides through the GreenThread11 a cooperative multitasking execution logic12.

The GreenThread alternate the execution on single CPU13, in a given instant

of time only one GreenThread is running on the system. Specifically, schedul-

ing can take place in the following ways: voluntarily with cooperative logic (via

hub().sleep(0)); when the GreenThread sleep waiting for data (socket.read(),

queue.get()); when Inter-Process Communication (IPC) primitives (queues, sema-

phores, etc) are used. Each scheduling event corresponds to a CPU contention by

all GreenThreads awaiting execution. The scheduling logic is implemented in the

hub class14.

The analysis of the main classes used in the Ryu software the majority of which

are implemented in the code file controller.py15 showed:

• the main process of Ryu waits, with the Controller class, for connection

requests sent by the switches (line 205);

• For each connection request received by a new SDN switch, a specific Data-

path class is instantiated;

• After being instantiated, the Datapath class is put into execution on a special

GreenThread;

• The Datapath class creates two further GreenThread, the first GreenThread
10https://eventlet.net/#eventlet
11http://eventlet.net/doc/modules/greenthread.html
12https://eventlet.net/doc/hubs.html#how-the-hubs-work
13https://eventlet.net/doc/basic_usage.html
14https://github.com/eventlet/eventlet/blob/master/eventlet/hubs/hub.py
15https://github.com/osrg/ryu/blob/master/ryu/controller/controller.py

University of Genoa 33

https://eventlet.net/##eventlet
http://eventlet.net/doc/modules/greenthread.html
https://eventlet.net/doc/hubs.html##how-the-hubs-work
https://eventlet.net/doc/basic_usage.html
https://github.com/eventlet/eventlet/blob/master/eventlet/hubs/hub.py
https://github.com/osrg/ryu/blob/master/ryu/controller/controller.py

Chapter 2. Analysis of delay added by an IDS

will manage the transmission of messages (line 460), the second is dedicated

to verify the connection (OF "Echo request") with the SDN Switch (line 466)

and finally starts an infinite loop for receiving messages (line 469);

To manage a new SDN switch, Ryu generates three new GreenThread but only

one of them will be running on the CPU. Therefore, an effective parallelism can

never take place between receiving and sending OF messages.

The sequence diagram resulting from the connection of a single SDN switch is

shown in figure 2.22. In this case, the Greenlets in scheduling are:

1. The main Greenlet waiting, with the OpenFlowController, class for new SDN

switches to manage (lines 124-218);

2. The Greenlet in charge of receiving the OF messages through the def _recv_loop()

member function (line 320) of the Datapath class;

3. The Greenlet in charge of sending OF messages to the switch through the

def _send_loop() memberfunction (line 383) of the Datapath class;

4. The Greenlet in charge of sending "echo requests" OF message to the switch

at regular intervals through the def _echo_request_loop() member func-

tion (line 442) of the Datapath class.

The OpenFlowController class waits for most of the time (inside the function

server.serve_forever()) for new connections (TCP listen) on OF port TCP

6633. Its GreenThread is scheduled to run only when it receives a connection

request16. Then, through the function def datapath_connection_factory()

(passed as parameter "handle" in the creation phase of the class StreamServer

file controller.py lines 185-202) it creates the Datapath class and executes it on a

special GreenThread created for this purpose through the hub.spawn () function.
16https://github.com/osrg/ryu/blob/master/ryu/lib/hub.py line 150

University of Genoa 34

https://github.com/osrg/ryu/blob/master/ryu/lib/hub.py

Chapter 2. Analysis of delay added by an IDS

Figure 2.22: Sequence diagram trigger by SDN switch connection with Ryu

Controller

University of Genoa 35

Chapter 2. Analysis of delay added by an IDS

Start _recv_loop()

Waiting for OpenFlow messages from

the SDN switch (Green thread sleeping)

Message Analisys

Call the correct handler to process the message request

count++

count < 2048 ?

count=0 ;

hub.sleep(0)

no

yes

Figure 2.23: Flowchart of the Ryu procedure _recv_loop()

The _recv_loop() member function (fig. 2.23) consists of an infinite loop in

which the GreenThread waits for new messages OF from the switch of its com-

petence (socket.recv()) and analyzes it by calling the appropriate management

functions (handler) after which it returns waiting for new messages.

If there are no new OF requests inside the socket’s reception queue, the Green-

Thread goes into sleep releasing the CPU otherwise the execution of the infinite

loop resumes immediately without waiting. In the infinite loop, the received mes-

sages are tracked and every 2048 processed OF messages the CPU is released

voluntarily (hub.sleep(0) #line 381). During the analysis and management

University of Genoa 36

Chapter 2. Analysis of delay added by an IDS

phase of the individual OF messages (through the handler functions), it is possi-

ble that they are created, using the send_msg() and send(), new OF messages

to send. These functions do not send the message directly but put it in a special

“send_q” data queue capable of managing up to a maximum of 16 elements. These

messages to be sent to the SDN switch remain blocked within this queue until the

GreenThread _send_loop() ends. In the _recv_loop() function, there are three

different situations in which the GreenThread can go into sleep freeing the CPU

to the other GreenThread:

1. socket queue is empty;

2. queue for sending data send_q full (16 elements);

3. the loop processed 2048 received OF messages.

The Ryu developers left a comment (line 376-383) regarding the need to im-

prove the logic regarding the voluntary suspension of 2048th message.

We need to schedule other greenlets. Otherwise, Ryu cannot accept

new switches or handle the existing switches. The limit is arbitrary.

We need the better approach in the future.

This logic of managing messages in groups, until the “send_q” queue is sat-

urated or to process 2048 messages, justifies the increase in the time required to

process the OF "PacketIn" messages that emerged in the presence of high message

peaks of OF messages to manage. Furthermore, analyzing the traffic of the OF

connection, it can be seen that during the peaks of OF messages, the messages

are exchanged between the two sides of the connection according to a series of

messages of the same type grouped together. This is a direct consequence of the

request handling method in which a series of N OF "PacketIn" messages are ac-

cepted and handled until the “send_q” queue becomes full, then the GreenThread

University of Genoa 37

Chapter 2. Analysis of delay added by an IDS

Start _send_loop()

message present

in the send queue ?

Extracts message and possible

exit request from the send queue

Send the message

to SDN switch

exit requested ?

Stop

no

yes

no

yes

Figure 2.24: Flowchart of the Ryu procedure _send_loop()

"send_loop" starts and empties the queue by sending a series of OF ‘FlowMod’

and "PacketOut" messages after which the GreenThread starts running again. This

data sending scheme restarts ending only at the end of the peak of OF “PacketIn”

messages.

If the number of OF messages per second arriving at the Controller socket is

greater than the number of messages extracted from the socket itself and processed

by Ryu in one second, the socket queue would never be empty. Consequently, the

GreenThread running _recv_loop() would keep control of the CPU preventing the

scheduling of the other GreenThread for a time equal to that necessary to process

2048 messages after which it would release the CPU allowing to the GreenThread

running _send_loop() to send all the OF requests in the send queue “send_q”

and to the GreenThread running _echo_request_loop() to send any OF "echo

University of Genoa 38

Chapter 2. Analysis of delay added by an IDS

Start _echo_request_loop()

Send "ECHO REQUEST"

to SDN switch

Sleep for echo_request_interval millisecond

Figure 2.25: Flowchart of the Ryu procedure _echo_request_loop()

request". It should be noted that the time _recv_loop() remains running may

be less than this because when the message queue reaches the limit of 16 elements

it automatically blocks the _recv_loop() (which inserts the data into it). Not

all OF messages require a response to be sent to the SDN switch, so the queue of

messages to be sent can grow at a rate lower than that of OF packets received.

These are the reasons why at a peak of "PacketIn" OF message requests there

is a rapid increase in the time required to complete the request management with

consequent significant delays in sending the OF "FlowMod" and "PacketOut" mes-

sages. The "PacketOut" OF message linked to a "Packet_In" OF message can

remain stuck in the “send_q” queue until the "recv_loop" processes up to a max-

imum of 8 OF "PacketIn" messgaes after which the queue becomes saturated, the

"recv_loop" goes into sleep and the "send_loop" goes into execution disposing of

the packets to be sent. This as presented in Fig. 2.26 causes the increasing delays

which emerged during all the tests.

University of Genoa 39

Chapter 2. Analysis of delay added by an IDS

Figure 2.26: Result of message handling logic implemented in Ryu "recv_loop"

University of Genoa 40

Chapter 2. Analysis of delay added by an IDS

2.8 Auxiliary scripts to support experiments

Bash scripts or Python programs have been created to facilitate and automate the

execution of the tests by monitoring the results in real-time through special graphs

and saving all the metrics of our interest in special files. These scripts have been

gradually simplified and integrated with each other, in order to reduce the opera-

tions to be performed and ensure better replicability of the tests themselves. Most

of these scripts save the acquired data both in a text file in Comma-Separated

Values (CSV) format, and in a database of type Round-Robin Database (RRD)17.

This database is used to automatically create graphics in Portable Network Graph-

ics (PNG) and Scalable Vector Graphics (SVG) format every minute. These results

and graphs can be viewed in real-time even remotely through a web page or an

Secure File Transfer Program (SFTP) connection. The CSV file can be imported

into many software (MatLab, Excel, OpenOffice, etc) for further analysis.

All the operations necessary to start and monitor the tests can be managed

both from the local console and from the remote console (Secure SHell (SSH)

protocol). To ensure the operation of the commands even in case of interruption

of the SSH session from which you operate, the software Tmux18. The tests are

carried out through the use of four programs executed in parallel within the SDN

controller:

1. the Ryu software containing the IDS module;

2. the debug script;

3. the script for calculating network packet delays;

4. the script that sends the packets to be scanned.
17High performance data logging and graphing system for time series data https://oss.oe

tiker.ch/rrdtool/
18tmux: terminal multiplexer https://github.com/tmux/tmux/wiki

University of Genoa 41

https://oss.oetiker.ch/rrdtool/
https://oss.oetiker.ch/rrdtool/
https://github.com/tmux/tmux/wiki

Chapter 2. Analysis of delay added by an IDS

Figure 2.27: active and terminated flows (within statistical calculation window)

Since all these scripts are run within the same machine, the used clock is com-

mon. Therefore, problems related to computers not perfectly synchronized with

each other are avoided and the times detected by them can be directly compared

The first console runs Ryu-based SDN-SF-IDS software using the command

ryu-manager switch_IP.py 2>\&1 | tee -a log.txt

The output, which contains a large amount of information (received OF mes-

sages, cataloging of flows, times used, etc), is displayed on the screen and simul-

taneously saved in the "log.txt" file.

In the second console, the debug script analyzes both the status of the OS

(used memory, etc) and the "log.txt" file, extracting various information (including

the time ∆TP acketIn). The extracted data is stored in CSV and RRD format.

The latter is used to create the following graphs every minute: 1. active and

terminated flows (within the statistical calculation window) (figure 2.27); 2. total

delay ∆TT OT of network packets (figure 2.28); 3. number of detected streams

separated by type (IP/TCP/UDP)(figure 2.29); 4. number of True positive, False

positive, True negative, False negative flows (figure 2.30); 5. Time used to analyze

the statistics (figure 2.31); 6. time ∆TP acketIn spent processing the OF "PacketIn"

message (figure 2.19 and figure 2.20); 7. Memory used by the OS and by Ryu

(figure 2.32); 8. Network troughtput (figure 2.33);

In the third console, the script that calculates the network packet delays is

executed. The fourth console sends the packets to be analyzed.

University of Genoa 42

Chapter 2. Analysis of delay added by an IDS

Figure 2.28: total delay ∆TT OT of network packets

Figure 2.29: number of detected streams separated by type (IP/TCP/UDP)

Figure 2.30: number of True positive, False positive, True negative, False nega-

tive flows

Figure 2.31: Time used to analyze the statistics

Figure 2.32: Memory used by the OS and by Ryu

University of Genoa 43

Chapter 2. Analysis of delay added by an IDS

Figure 2.33: Network throughtput of OS ethernet interfaces

The delay calculation method depends on the correct and univocal identifica-

tion of the network packets. The two previous scripts are closely related to each

other by the unique identification method of network packets.

Two methods have been developed to associate a unique identifier to a Ethernet

packet that allows a certain identification. The first method uses a system based

on the comparison of the Hash MD5 of the Ethernet packet, while the second

method is based on the direct use of the source MAC Address field of Ethernet

packet.

In case we rely on Hash MD5, the two scripts behave as described below.

To uniquely identify a single network packet, the Hash MD5 value calculated

on the entire Ethernet packet is used. It is assumed that hash collisions do not

occur, that is if there are no different packets that give the same hash value.

Unfortunately, this method does not allow to distinguish two identical packets

sent at different instants. This problem is detected by the script when it receives

more than one pair of identical Hash MD5. In this case, to avoid errors, the script

ignores all Ethernet packets whose Hash MD5 occur more than twice.

The script uses the "TShark" network packet capture software to monitor all

packets that are sent or received by the "ethAEXT " and "ethAINT " interfaces of the

SDN Controller. These interfaces, as seen in Fig. 2.11, are connected respectively

to port #1 (input) and port #2 (output) of the SDN Switch B4 or B5. The time

calculation script executes the "TShark" capture software with appropriate param-

University of Genoa 44

Chapter 2. Analysis of delay added by an IDS

tshark -te -o frame.generate_md5_hash: TRUE -i ethAEXT -i ethAINT

-Tfields -e frame.md5_hash -e frame.time_epoch -e frame.number

-e ip.src -e ip.dst -e tcp.srcport -e tcp.dstport -e

udp.srcport -e udp.dstport -Y "not stp and not arp and not

loop"

↪→

↪→

↪→

↪→

Listing 2.1: TShark command with used parameters

eters (listing 2.1) in order to obtain for each packet received from the "ethAEXT "

and "ethAINT " the following data:

1. the time instant when the network interface receives or sends the packet;

2. the value of the Hash MD5 of the entire Ethernet packet;

3. the fields of interest of the Ethernet and IP protocols (Ethertype, source

and destination IP addresses, IP protocol conveyed (TCP/UDP), TCP/UDP

source and destination port, etc.).

The script receives all this data in real-time through a pipe connected to the

"Tshark" command executed in the background and stores them temporarily in a

support structure.

This data is associated with each other through the same Hash MD5 values

every minute. The analysis result is saved in appropriate files in CSV format.

These data are linked to the output of the same packet from the "ethAEXT " in-

terface and to its reception from the "ethAINT " interface after undergoing the

delays introduced by the passage inside the SDN-SF-IDS. So, if the interface

"ethAEXT " sends a packet P with value MD5P of Hash MD5 at time T1 and

a packet with the same value MD5P reappears on the interface "ethAINT " at time

T2 the time ∆TT OT taken by the P packet to traverse the system SDN-SF-IDS is

University of Genoa 45

Chapter 2. Analysis of delay added by an IDS

equal to T2 − T1. Since the associations are made every minute, it is not possible

to measure delays longer than this time interval.

The data submission script uses the "tcprewrite"19 program to send to the

SDN-SF-IDS, through the " ethAEXT "connected to the network to be filtered,

the network packets previously captured and stored in a Pcap file. The packet

transmission takes place in compliance with the original timing sequence of the

captured flow, otherwise the statistics would be distorted. Furthermore, through

specific commands, it is also possible to carry out the port mirroring of the main

interface of the system so that the packets sent or received by it are automatically

replicated and sent from the "ethAEXT " interface to the SDN switch.

Using the packet identification method based on the Hash MD5 of the Ethernet

packets it is complex to correlate the delay times ∆TT OT of a specific packet with

the ∆TP acketIn parsing the associated OF "PacketIn" message. In order to associate

a OF "PacketIn" message to the delay suffered by the first packet of the flow

that generated it, it would have been necessary to modify the SDN-SF-IDS code

in order to calculate and print the Hash MD5 of the packet Ethernet linked to

OF "PacketIn" messages. But this is not possible as the OF "PacketIn" message

contains only a limited part of the Ethernet packet to be parsed. Moreover, the

Hash MD5 calculation operation would have added unjustifiable delays to the

management of the OF "PacketIn" message itself.

This problem, combined with the fact that tracing based on Hash MD5 is not

able to manage the sending of multiple copies of the same Ethernet packet, has

led to the creation and use of the second method of packet identification which

does not present these problems. But it is more invasive.

The second method used to uniquely trace a Ethernet packet is based on chang-

ing the Ethernet "source MAC Address" field of each packet to be monitored with
19https://tcpreplay.appneta.com/wiki/tcprewrite

University of Genoa 46

https://tcpreplay.appneta.com/wiki/tcprewrite

Chapter 2. Analysis of delay added by an IDS

47 42

unused bits

41

G/L

40

I/G

39 0

Unique identifier

Figure 2.34: Local MAC address format (bit G/L=0)

a new value consisting of a unique identifier.

This invasive procedure can only be used inside the testbed as use on larger

systems containing Ethernet switches could cause problems. In fact, the Ethernet

switches would detect a large number of different MAC Address arriving on a single

Ethernet port and this would fill the association tables used by them to route the

packets at level 2 (MAC Address table overflow attack). The method based on

Hash MD5 does not suffer from this limitation.

This operation does not cause problems for the SDN-SF-IDS system, as there

are no Ethernet switches in the path of the packets with MAC Address modi-

fied. The SDN switch (hardware or software), through which the Ethernet packet

passes by, not performing any analysis of the MAC Address is not affected by this

method. Once the destination has been reached (interface "ethAINT "), the packet

is forwarded to the application layer without checking the source MAC Address.

Within our prototype, the packets identified with this method are sent, pro-

cessed, retransmitted and received without any problem.

These operations are related only to the measurement of delays. Therefore

they are not carried out during the normal functioning of the SDN-SF-IDS.

To create this identifier, the local addressing of MAC Address (fig. 2.34) was

used by setting the Global/Local (G/L) bit to 1. The first 6 bits and the Indi-

vidual/Global (I/G) bit have not been used and remain at zero. In this way, the

MAC Address can vary between 0x02:00:00:00:00:00 and 0x02:FF:FF:FF:FF:FF

(fig. 2.35). Before this number rolls over back to 0x02:00:00:00:00:00, 240 =

University of Genoa 47

Chapter 2. Analysis of delay added by an IDS

47 42

0 0 0 0 0 0

41

1

40

0

39 0

0x00:00:00:00:00
47 42

0 0 0 0 0 0

41

1

40

0

39 0

0xFF:FF:FF:FF:FF

Figure 2.35: Unique identifier, minimum and maximum value.

1 099 511 627 776 network packet must be sent so it is unlikely that a single ex-

periment could use the same identifier for two or more different packets.

This identifier will be used by the delay calculation script to quickly identify

packets captured on the two monitored interfaces "ethAEXT " and "ethAINT ".

The delay calculation script based on the second identification method works

as in the previous case, but to associate the T1 and T2 times linked to the same

packet it does not calculate the Hash MD5 but directly read the "source MAC

Address" field.

It is no longer possible to take advantage of the OS port mirroring or the

“tcprewrite” tool to insert traffic and monitor delays as the Source MAC Address

would not contain the ascending unique identifier.

In order to send the network packets so that they contain the unique identifier,

a specific script has been created. The script loads one Ethernet packet at a

time from a Pcap file, modifies the source MAC Address by inserting the unique

identifier and sends the modified Ethernet packet to the SDN switch respecting its

original interval of times. A second script is able to forward the Ethernet packets

received from a network interface to the external interface "ethAEXT " effectively

simulating a port mirroring operation but inserting the unique identifier in the

packet envoy.

The source MAC Address can be traced very easily within the prototype so

University of Genoa 48

Chapter 2. Analysis of delay added by an IDS

that it is possible to follow the temporal evolution of the events related to the

reception of individual packets, including any OF "PacketIn" messages (generated

by system only upon receipt of the first packet of a new stream).

The delay calculation script detects the instant T1 when each packet is sent

through the "ethAEXT " interface and the instant T2 when it is received by the

"ethAINT ". At the same time, the monitoring script extracts the information

regarding the instant in which the handling procedure of the OF "PacketIN" mes-

sage associated with the new flows arriving at the SDN controller begins and ends.

Given that the Ethernet and IP headers of the packet to be analyzed (for which

the OF "packetIN" message was sent) are contained within the OF "PacketIn" mes-

sage, it is possible to use the "source MAC Address" to uniquely identify it. The

data is saved on two separate files, but in this case both contain the identifier so

it is easy to merge all the information together.

2.9 Final prototypes

Once this phase of optimising the software switch and the SDN-SF-IDS code in-

side the SDN Controller A1 was completed, the knowledge acquired was used to

create the final prototype which can use both types of SDN switches (software or

hardware) in order to compare the delays.

This prototype, housed inside a Rack (19-inch), consists of the Controller A2,

a software SDN switch B4 and a hardware SDN switch B5. The A2 controller

is equipped with an Intel® Xeon ™ E3110 CPU running at 3.00GHz, 2 GByte

of RAM and 3 Ethernet 10/100/1000 Mbit/s cards. The B4 software switch is

equipped with an Intel® Core™ i5-3450S CPU running at 2.80GHz, 8 GB RAM

and 3 Ethernet 10/100/1000 Mbit/s cards. The B5 hardware switch consists of an

HPE Aruba M2940-48G switch with firmware WC.16.07.0003.

University of Genoa 49

Chapter 2. Analysis of delay added by an IDS

proto-

type
Controller A2: CPU Intel® Xeon™ E3110 running at 3.00GHz, 2 GByte of RAM,

3 Eth 1000 Mbit/s

description of SDN switch Bn ∆TT OT

A2B4 switch software CPU Intel® Core™ i5-3450S running at

2.80GHz, 8 GByte RAM, 3 Eth 10/100/1000 Mbit/s

96% of packet <= 10ms,

peak of 150ms

A2B5 switch hardware HPE Aruba M2940-48G WC.16.07.0003 98% of packet <= 10ms,

peak of 150ms

Table 2.2: Summary of prototype A2B4 and A2B5

Table 2.2 shows a summary of the ∆TT OT obtained with the two configurations

of the final prototype.

In A2B4 and A2B5 systems the CTRL dedicated connection is not present and

the OF communications pass through the local network.

Following the introduction of the hardware B5 SDN switch in the SDN-SF-IDS

system, slight changes to the logical structure of the OF rules inserted by the SDN

controller A2 in the OF flow table of SDN switches was applied in order to use OF

rules compatible with the hardware tables present in switch B5.

Figure 2.36 presents the logical structure of the OF rules as used by the A1

controller. In figure 2.37, the new logical structure of the rules compatible with

the OF hardware accelerated flow table as used by the controller A2 is presented.

Therefore, the SDN A2 controller is able to operate both with the SDN B4

switch and with the SDN B5 switch using the same rules for monitoring, forwarding

or dropping streams (see figure 2.37).

The ∆TT OT delay measurements introduced by the SDN-SF-IDS A2B4 system

(with SDN software switch) were repeated before and after the changes to the

logic used in the OF flow table verifying that the changes did not cause substantial

differences in the delays suffered by the packets due to the passage in the SDN-

University of Genoa 50

Chapter 2. Analysis of delay added by an IDS

Table 0

if proto=UDP
GOTO

if proto=TCP
GOTO

if ethtype=IP
GOTO
forward

port 1 -> 2
forward

port 2 -> 1

Table 1

Rules for

IP

flows

...

GOTO Ctrl

Table 2

Rules for

TCP

flows

...

GOTO Ctrl

Table 3

Rules for

UDP

flows

...

GOTO Ctrl

Figure 2.36: logical structure of the OF rules as used by the A1 controller.

Incompatible with SDN hardware switch.

Table 0

if ethtype=IP
GOTO

forward port
1 -> 2

forward
port 2 -> 1

Table 1

if proto=UDP
GOTO

if proto=TCP
GOTO

Rules for

IP flows

...

GOTO Ctrl

Table 2

Rules for

TCP

flows

...

GOTO Ctrl

Table 3

Rules for

UDP

flows

...

GOTO Ctrl

Figure 2.37: logical structure of the OF rules as used by the A2 controller.

Compatible with both SDN hardware switch and SDN software switch.

University of Genoa 51

Chapter 2. Analysis of delay added by an IDS

SF-IDS system.

The total delay measurements ∆TT OT introduced by the SDN-SF-IDS A2B5

and A2B4 have been taken. The results obtained gave comparable results.

Therefore it is believed that the software B4 SDN switch has been satisfactorily

optimized and can be used indistinctly in place of the hardware B5 SDN switch.

Both solutions are viable and can be chosen depending on the cost or needs.

2.10 Delay measurement ∆TTOT

The results presented in this section were obtained using the final prototypes A2B4

and A2B5. The traffic analyzed consists of the entire traffic of the laboratory WAN

network and all the Pcaps at my disposal containing Botnet.

2.10.1 Method of measurement

For each packet sent in input to SDN-SF-IDS and received in output from SDN-

SF-IDS the sending and receiving times, the delay, the IP or the Ethertype of

the packet, the source/destination IP address and port, the length of the received

Frame ethernet.

The data is stored for each individual packet without making any time average.

2.10.2 Loading data

The saved data is of considerable size as it contains millions of samples.

During data loading, the data throughput (equation 2.1) is calculated over an

interval of 1 second,

Throughputi =
Ti+1s∑
j=Ti

packetSizej (2.1)

University of Genoa 52

Chapter 2. Analysis of delay added by an IDS

the average delay (equation 2.2) over an interval of 1 second,

AverageDTi = 1
n

n∑
j=1

∆Tj : Tj ∈ [Ti, Ti + 1s] (2.2)

the maximum delay (equation 2.2) over an interval of 1 second,

MaxDTi = max
j∈[1,n]

∆Tj : Tj ∈ [Ti, Ti + 1s] (2.3)

Due to the large number of samples, analyzing the data and creating graphs

requires many quarter of hour and a very large amount of memory.

2.10.3 Measurement graphs

For each test carried out, the following graphs are generated:

• Throughput of OF control socket (figure 2.47);

• total throughput of packets forwarded to the system;

• delays suffered by individual network packets (figure 2.38);

• Histogram of count of packet received with delays included in the time in-

terval from 0 to 200ms with subdivision every 10ms (figure 2.38);

• pie chart of the percentage of packets received as the delay varies, grouped

into 10ms intervals (figure 2.38);

• Histogram of count of packet received with delays included in the time in-

terval from 0 to 20ms with subdivisions of 1ms; (figure 2.38).

The plot of delays suffered by individual network packets is made up of a

Scatterplot graph in which for each received packet a circle of 2 pixels is drawn at

the coordinates with abscissa equal to the sending time and ordinate equal to the

University of Genoa 53

Chapter 2. Analysis of delay added by an IDS

∆TT OT delay in milliseconds. The density of the points is therefore proportional

to the number of packets received in that specific time and delay interval.

Figure 2.38: Count of packets histogram grouped by its delays. Different color

has been used for each protocols.

2.10.4 System A2B5 (hardware SDN switch)

The results were obtained with previous versions of the analysis script which pre-

sented only the total graphs without creating the graphs divided by protocol.

The 93.9 % of packets are delayed between 0-5ms, 4.20 % between 5-10ms (see

table 2.3).

University of Genoa 54

Chapter 2. Analysis of delay added by an IDS

max delay % of

samples ethertype Protocol delay range packet

10 000 001 all all 150 0-10 98.1

Table 2.3: Delays ∆TT OT of switch B5 in milliseconds measured during the ob-

servation interval of one day

2.10.5 Measurements of packet forwarding delay SDN soft-

ware B4 switch in bridge mode

The bridge mode represents the absolute minimum obtainable delay and corre-

sponds to having all necessary OF rule installed in the OF flow table ofSDNswitch

for all possible flows without having to start the OF "Packet In"/"Flow Mod"/"Packet

Out" message exchange.

All packets cross the bridge without triggering any interaction with theSDNcontroller.

Almost all packets passed through the switch with delays ranging from 0 to 1 ms.

Only 16 packets on 58 749 (0.027 %) took between 1 and 5 ms.

2.10.6 System delay measurements A2B4

Measurements have been made with increasing number of samples:

1. 1 000 001 samples, about 6 hours in the afternoon: the data stream contains

the network traffic downloads with episodes of web browsing traffic.

2. 10 000 001 samples, about one day: the data stream contains the downloaded

network traffic with episodes of web browsing traffic.

3. 82 999 983 samples, about one month: the data stream contains the network

traffic downloads with episodes of web browsing traffic.

University of Genoa 55

Chapter 2. Analysis of delay added by an IDS

As expected, from the graphs (2.41 - 2.46) there is a clear dependence between

the delays suffered and the protocol used. This dependence is linked to the number

of OF rules checked (see figure 2.37) before being forwarded by any interaction with

the SDN Controller.

• Non IP protocols are forwarded after a couple of interactions with the rules

of the first OF flow table with minimal delays;

• IP protocols other than UDP and TCP are forwarded once the second OF

flow table is reached and suffer longer delays;

• The protocols IP TCP and UDP are forwarded once the second or third OF

flow table is reached respectively, assuming they have already been analyzed

(slightly higher delay than the previous). If not, OF messages are exchanged

with the Controller causing longer delays.

As the number of samples contained in the pcap file used varies, the trends

remain practically similar except for small variations linked to the times of the

day and the type of flows captured.

Table 2.4 shows the delays in milliseconds measured during the observation

interval of one month (82 999 983 samples).

As you can see in the figure 2.39, 2.41, 2.42 and 2.43 the histogram of the

delays of the UDP protocol shows a stable plateau between 0-40ms which rapidly

decreases between 40 and 90, reaching zero on 110ms. So there is no packet with

delay higher than 110 ms with the exclusion of 2 packet with delay between 130 and

140ms. The connectionless nature of UDP linked to the fact that often the source

and destination ports change for each packet causes a high interaction with the

controller that has to catalog the new flows and insert the appropriate rules. This

leads to noticeable increases in delay, a considerable number of packets reaching

40ms delays.

University of Genoa 56

Chapter 2. Analysis of delay added by an IDS

Figure 2.39: UDP packet delay histogram (network communications of a month)

Figure 2.40: TCP packet delay histogram (network communications of a month)

University of Genoa 57

Chapter 2. Analysis of delay added by an IDS

max delay % of

samples ethertype Protocol delay range packet

146 0x0800 0x00 IPv6 Hop by Hop 1 0-1 100.00

411 485 0x0800 0x01 ICMP 80 0-6 99.38

195 775 0x0800 0x02 IGMP 110 0-10 99.82

75 353 718 0x0800 0x06 TCP 150 0-10 96.96

2 639 983 0x0800 0x11 UDP 140 0-40 97,70

1 188 637 0x0800 0x27 TP++ 8 0-1 99.99

3 0x0800 0x29 IPv6 encapsulation 3 2-3 100.00

2 0x0800 0x2F GRE 18 2-18 100.00

1 183 910 0x0800 0x32 ESP 7 0-1 99.99

237 477 0x0800 0x59 OSPF 110 1-3 99.47

80 419 0x0800 0x67 PIM 100 1-3 99.52

1 680 234 0x0806 ARP 9 0-1 99.99

28 194 0x86dd IPv6 2 0-1 99.98

82 999 983 all all 150 0-10 95.36

Table 2.4: Delays ∆TT OT in milliseconds of B4 measured during the observation

interval of one month (82 999 983 samples)

As you can see in the figure 2.40, 2.44, 2.45 and 2.46 the histogram of the delays

of the TCP protocol shows a peak between 0-4ms, a few samples (0.1 %) between

4-30ms, a new sample increment between 30-70 (2.88 %) which slowly decreases

until it reaches 150ms. The peak between 0 and 4ms is linked to the packets

belonging to a flow already present in the OF flow table while the second peak

between 30-70ms is linked to the interaction with the controller for the insertion

of the relative rule in the OF flow table.

The OF control channel flow throughput plot shown in figure 2.47 together with

University of Genoa 58

Chapter 2. Analysis of delay added by an IDS

Figure 2.41: UDP packet delay histogram (network communications of five

hours)

Figure 2.42: UDP packet delay histogram (network communications of two days)

University of Genoa 59

Chapter 2. Analysis of delay added by an IDS

Figure 2.43: UDP packet delay histogram (network communications of a month)

Figure 2.44: TCP packet delay histogram (network communications of five

hours)

University of Genoa 60

Chapter 2. Analysis of delay added by an IDS

Figure 2.45: TCP packet delay histogram (network communications of two days)

Figure 2.46: TCP packet delay histogram (network communications of a month)

University of Genoa 61

Chapter 2. Analysis of delay added by an IDS

Figure 2.47: Throughput of OpenFlow control channel

δTT OT of SDN-SF-IDS has remained fairly constant and does not consist of high

data throughput. However, it should be noted a peculiar episode in which there

is a marked increase in traffic in correspondence with a peak of ∆TT OT delays.

This event appears to be related to a system overload that caused a large part

of the memory to swap into disk swap partition resulting in a large decrease in

computational performance.

In order to guarantee the reliability of a SDN software switch, it is necessary

to balance the computational resources of the system in the best possible way and

avoid carrying out operations that could lead, even only momentary, to shortage

or lack of resources (RAM, CPU, disk space, etc).

2.11 Conclusions

The delays introduced by the SDN-SF-IDS system have been significantly reduced.

The B5 hardware switch has slightly better performance than the B4 software

switch (optimized with DPDK) but is still comparable. A software SDN switch to

have a high level performance, comparable to an hardware SDN switch, must use

University of Genoa 62

Chapter 2. Analysis of delay added by an IDS

the DPDK libraries which require professional network cards, thus increasing the

price of this solution. To date, the cost of a B4 computer configured to operate

as a high performance SDN switch is less than the cost of a hardware SDN switch

B5. However, a non-perfectly balanced software SDN switch can get blocked due

to unexpected software problems such as an unexpected software upgrade, an

overload of the CPU or an exhaustion of available memory leading to swap memory

on disk can ruin the performance of the system.

The SCADA and GOOSE industrial networks have a very stringent Key Per-

formance Indicator (KPI) for maximum delays [19] [20] [21]. These KPIs imply

device-to-device transfer times of less than 20 ms for non-tripping and P2/P3 class

messages and less than 100 ms for non-tripping and P1 class messages. The KPI

of tripping messages and intervention class P1 messages require transfer times

< 10 ms and the transfer times of the KPI of tripping and P2/P3 intervention

class messages < 3 ms. For these messages, it is necessary to further reduce the

latencies of the SDN-SF-IDS system.

The SDN-SF-IDS code that analyzes the statistics collected by the SDN switch

can be separated from the system by moving it to the 5th Generation (5G) edge

as it has no particular constraints. This cannot be done with the part of the

code that manages the start of the statistical analysis of each individual flow (

OF "PacketIn" messages) as the response times to these messages are critical for

the global delays of the SDN-SF-IDS system. The traffic generated by the OF

connection during the prototype tests was found to be limited (fig. 2.47) but the

system is very sensitive to latencies introduced during the management of new

flows (OF "PacketIn" messages) The SDN Controller must analyze and respond

to these messages as quickly as possible to avoid a rapid increase in delays following

the arrival of OF "packetIn" message peaks (section 2.7 and figure 2.13).

The measurement of the delays introduced by the SDN-SF-IDS to the analyzed

University of Genoa 63

Chapter 2. Analysis of delay added by an IDS

network traffic has revealed how a statistical analysis of the distributions of these

delays can be used to infer the operations that the system has performed on the

analyzed packets. The point of view can be reversed by exploiting the distribution

of delays suffered by a packet within an unknown system to characterise a nor-

mal operating model and use anomaly detection techniques to identify anomalous

behaviours.

For example, it can be assumed that the inter-arrival time between consecutive

packets belonging to a periodic exchange of information carried out at predeter-

mined intervals is sufficient to be able to infer any unexpected and potentially

anomalous delays. This technique was used to build the IDS for an IoT infrastruc-

ture discussed in the next chapter.

2.12 Future work

The SDN Controller is based on server machines with limited resources when

compared to today’s standards. Currently, the amount of memory required to

run the system is less than 2 GByte and an old bi-processor system can be used

without problems (PowerEdge R200 from 2010). In the next months i can have

at my disposal a more powerful system, and I can check if there is still room for

performance improvement.

I have purchased a network card with higher performance to verify if the per-

formance of software SDN switch can be further improved or if lead only to a sharp

increase in system costs.

The Ryu message reception and analysis loop could be modified using an ar-

chitecture that uses Multithread programming with Preemptive scheduling could

process these events in parallel taking the best out of current multiprocessor CPU

and reducing delays in handling OF messages. But the complexity of the code can

University of Genoa 64

Chapter 2. Analysis of delay added by an IDS

grow considerably.

Enabling the use of multiple parallel Thread the controller can process received

OF messages in parallel. A slowdown in parsing a packet would only slow down

one Thread while the others would continue to work independently. This could

lead to an asynchronous handling of the OF requests and to the violation of the

temporal consequentiality of the OF operations as requested by serving in the

wrong order the requests. In the case of the receipt of two OF requests, if the

second request took less time than the first to be completed, any replies would

arrive at their destination in reverse order than expected.

It should be noted that using the Python language could come into play the

Global Interpreter Lock (GIL) which manages access to the interpreter to permit

the use to only one Thread at a time. The presence of GIL is controversial20 as

it partially limits the performance of a multithreaded Python21. Many developers

would like to get rid of it, and there are Python interpreters available that don’t

use this system22.

The next improvements of the SDN-SF-IDS in order to minimize the problem

with the management of bursts of OF requests are to be found in the optimization

of the Ryu SDN controller source code or in its replacement with other software

able to avoid the aforementioned congestion in receiving OF messages. In the

second case it would also be necessary re-implement of the IDS module to allow

its integration in a different SDN Controller.

20GIL https://wiki.python.org/moin/GlobalInterpreterLock
21http://dabeaz.blogspot.com/2010/01/python-gil-visualized.html and http:

//dabeaz.com/python/UnderstandingGIL.pdf
22https://github.com/larryhastings/gilectomy

University of Genoa 65

https://wiki.python.org/moin/GlobalInterpreterLock
http: //dabeaz.blogspot.com/2010/01/python-gil-visualized.html
http://dabeaz.com/python/UnderstandingGIL.pdf
http://dabeaz.com/python/UnderstandingGIL.pdf
https://github.com/larryhastings/gilectomy

Chapter 3

LoRa gateway IDS

3.1 Introduction

From the distribution of SDN-SF-IDS delays emerged that the timing to process

network packets of a specific protocol strictly depends on the operations carried

out on them by the system under analysis.

An Information Technology (IT) infrastructure under normal conditions should

perform the same operations on the same type of packets to be forwarded and the

introduced delays should be similar in case of no anomalies. Observing a whole

system as a black box, it is possible to observe an almost constant trend in this

timings. This timings can be affected and modified by problems or changes in the

software execution.

Furthermore, the measurements carried out on the delays added to packets can

be done for any protocols and for packets sent and received through any standard

communication media that can be monitored. It is not important to understand

the contents of the analysed packets but only the delay they suffer. Therefore, the

method can also be applied to proprietary or encrypted protocols.

Devices belonging to a monitoring IoT infrastructure often carry out repetitive

66

Chapter 3. LoRa gateway IDS

operations to send temperature, pressure and other physical measurements to a

central database. These infrastructures are characterised by messages sent with

regular intervals with a consequent constant throughput. So, I verified if this

technique could be applied to a LoRaWAN infrastructure which consists of a radio

link part and a wired link network part. I created an IoT infrastructure consisting

of temperature monitoring devices connected to a LoRaWAN network with an

IDS able to analize the packets sent to and from the LoRa gateway to a cloud

database platform (by example The Things Network (TTN) server) in order to

detect anomalies.

This chapter is structured as follow: introduction of IoT and LoRaWAN in-

frastructure, presentation of LoRa Forward protocol used for communications be-

tween LoRa gateway and the LoRa server, analysis of all information that can be

extracted from the intercepted communication and used to characterise the IoT ap-

plication, presentation of Software Defined Radio (SDR) and LoRa physical layer,

description of LoRa jamming testbed and IDS used to detect the presence of the

jammer, a presentation of related work on jamming and IDS for LoRa, conclusion

and future work.

3.2 IoT infrastructure and LoRaWAN

According to Ericsson mobility report1, there will be 18 billion IoT devices by

2022. Low Power Wide Area Network (LPWAN) has been introduced to correctly

handling the characteristics of IoT devices. IoT refers to the fastest growing net-

work of physical things that can be accessible through the Internet. These variety

of IoT applications and devices originate different solutions. When the applica-

tion needs to transmit a large amount of data over a small area, devices with high
1https://www.ericsson.com/en/reports-and-papers/mobility-report

University of Genoa 67

https://www.ericsson.com/en/reports-and-papers/mobility-report

Chapter 3. LoRa gateway IDS

capacity battery equipped with ZigBee, Bluetooth or WiFi protocols are typically

used. Instead, when the application needs to transmit a small amount of data with

low bitrate over a large area, devices with limited capacity battery but equipped

with LPWAN protocols, such as Sigfox, LoRa, or other LPWAN solutions, are

typically used.

LoRaWAN is a specification developed by the LoRa Alliance and got my at-

tention due to the growing number of IoT solutions used in industrial systems,

such as smart electricity grids, smart cities, smart agriculture, and healthcare

management, that require strong security support.

Figure 3.1: Example of a LoRaWAN based IoT network

A LoRaWAN network is composed by LoRa end nodes, gateways, network

server(s), and application server(s) as illustrated in Figure 3.1. The LoRa end

node transmits packets on Radio Frequency (RF) uplink channels (see table 3.4)

and one or more LoRa gateways can receive the same packet. Each LoRa gateway

forwards the received packets to the LoRa network server. The LoRa network

server can receive one or more copies of the same packet from different gateways but

University of Genoa 68

Chapter 3. LoRa gateway IDS

it forwards just one copy to the LoRa application server discarding the duplicated

ones. The network server is also responsible to select the proper LoRa gateway for

the downlink transmission.

The LoRaWAN specifications define three different types of end nodes: class

A, class B and class C. In our testbed, we use only the Class A end node which

uses Pure ALOHA protocol to transmit data on the uplink channel and has two

small downlink receiving window after the end of each uplink transmission.

3.3 LoRa packet forwarder analysis

The LoRa gateway we used is based on a Raspberry PI 2 board equipped with a

LoRa Modulator-Demodulator (MoDem) Shield and specific software.

From the LoRa gateway, two types of analysis has been conducted on the

network layer:

• Analyses of communications between LoRa Gateway and LoRa Server;

• Analyses of communications between LoRa end nodes and LoRa Gateway.

Another type of analyses can be done by using an SDR card to monitor the radio

link or act on the radio spectrum. See section 3.6 for more information on SDR

card.

3.4 LoRa forward protocol

The LoRa Gateway communicate with the LoRa end nodes by using a LoRa Mo-

Dem and with the LoRa Server through an IP network.

The LoRa Gateway packet forwarding application runs on the Raspberry Pi

and does the following operations:

University of Genoa 69

Chapter 3. LoRa gateway IDS

1. Read the received LoRa packets from the LoRa MoDem and forward them

to the LoRa Server through an IP network;

2. Receive LoRa packets from the LoRa Server and send them on the air by

using the LoRa MoDem;

3. At predefined time intervals, this application sends internal state information

and statistics to the LoRa Server.

This application is open source and is available on github repositories2 in different

version depending on the used hardware.

To monitor the communication between the LoRa end nodes and the LoRa

server, it is sufficient to acquire all network UDP packets that use 1700 as source

or destination port.

At a first analysis, the protocol is composed by a binary encoded header some-

times followed by a JavaScript Object Notation (JSON) Object written in textual

format with only the LoRa message item scrambled and not understandable. So

at least part of the information transmitted can be inferred from network capture

without knowing the protocol.
0 8 16 24 32

Unknown binary data

JSON Object

Figure 3.2: LoRa packet structure before complete understanding of all data

field

Using the public information contained in the github repositories, LoRaWAN

communications can be identified knowing how the Long Range network (LoRa-
2https://github.com/LoRa-net

University of Genoa 70

https://github.com/LoRa-net

Chapter 3. LoRa gateway IDS

net) packet forwarder protocol is structured. I found the documentation for the

revision 1.43 and 1.54 of LoRa packet forwarder specification. Similar information

can be found in a public document written by Semtech (Revision 1.0 – July 2015)
5

The first two documentations seem different version of the same protocol. The

"ANNWS.01.2.1.W.SYS" application note seems strictly related to the LoRa-net

revision 1.4 but differs substantially in Push Ack binary format. Also in JSON

Object some names and structures are different. substantially In the following

section the LoRa-net documentation (revision 1.4 and 1.5) has been used but

any differences with "ANNWS.01.2.1.W.SYS" application note has been taken in

account.

However, these complete protocol information have been useful to decode the

binary fields and understand unclear items present inside the JSON Object. The

documentation shows that the LoRa message item inside the JSON Object has

been encoded by using Base64 to avoid problems related with non printable char-

acters present in the encrypted message. After decoding this entry, the complete

LoRa payload cannot be analysed because it is encrypted.

A simple analysis of the captured packets allows to extract statistical features

related to the use of the radio channel and the behaviour of the gateway or the

LoRa server. But to be able to generate features related to the behaviour of a single

end node, it is necessary to find and decode the device unique identifier. This is

indispensable because it is necessary to group together all the packet related to a
3LoRa-net packet forwarder (rev 1.4) https://github.com/LoRa-net/packet_forwarder

/blob/master/PROTOCOL.TXT
4LoRa-net sx1302_hal packet forwarder (rev 1.5) https://github.com/LoRa-net/sx1302

_hal/blob/master/packet_forwarder/PROTOCOL.md
5semtech "ANNWS.01.2.1.W.SYS" application note https://things4u.github.io/Proje

cts/SingleChannelGateway/DeveloperGuide/5_LoRa_TTN_Reading/LoRa%20gateway%20to

%20network%20server%20interface%20definition.pdf

University of Genoa 71

https://github.com/LoRa-net/packet_forwarder/blob/master/PROTOCOL.TXT
https://github.com/LoRa-net/packet_forwarder/blob/master/PROTOCOL.TXT
https://github.com/LoRa-net/sx1302_hal/blob/master/packet_forwarder/PROTOCOL.md
https://github.com/LoRa-net/sx1302_hal/blob/master/packet_forwarder/PROTOCOL.md
https://things4u.github.io/Projects/SingleChannelGateway/DeveloperGuide/5_LoRa_TTN_Reading/LoRa%20gateway%20to%20network%20server%20interface%20definition.pdf
https://things4u.github.io/Projects/SingleChannelGateway/DeveloperGuide/5_LoRa_TTN_Reading/LoRa%20gateway%20to%20network%20server%20interface%20definition.pdf
https://things4u.github.io/Projects/SingleChannelGateway/DeveloperGuide/5_LoRa_TTN_Reading/LoRa%20gateway%20to%20network%20server%20interface%20definition.pdf

Chapter 3. LoRa gateway IDS

specific end nodes.

The protocol does not authenticate the identity of LoRa Gateway or LoRa

Server. Acknowledge messages are present but unused, the protocol does not

perform any retransmission when an acknowledge message is lost.

The communications between LoRa gateway and LoRa Server use UDP pro-

tocol with an ephemeral source port and 1700 as destination port. The commu-

nications between LoRa Server and LoRa Gateway use UDP protocol with source

port set to 1700 and an ephemeral port as the destination port.

Thanks to the documentation, it was possible to fully decode the captured

packets. The format of the packet in Figure 3.3 is different depending on the type

of message (operation ID). The first three fields are always present: 1. protocol

version (1 or 2); 2. random token; 3. operation ID (0 . . . 5).
0 8 16 24 32

Protocol version random token operation ID

Remaining data

Figure 3.3: LoRa packet common fields

Depending on the operation ID field, the format of remaining fields changes.

The packets analysed in this chapter belong to the version 2.

The protocol can be distinguished between two categories (Upstream and Down-

stream) and define three different packet exchange sequences:

1. Upstream protocol: this sequence is used to send to the IoT Server the

data received from the LoRa MoDem (LoRa RF packets).

2. Downstream protocol: this sequence (repeated every N seconds) is used

to open (and keep open) a bidirectional route between LoRa Gateway and

University of Genoa 72

Chapter 3. LoRa gateway IDS

LoRa
Gateway

LoRa
Server

LoRa RF

packet
Push Data(token X, GW MAC, JSON String)

Push Ack(token X)

Figure 3.4: Sequence diagram of upstream protocol: Push Data/Push Ack

LoRa Server.

LoRa
Gateway

LoRa
Server

Pull Data (token Y, GW MAC)

Pull Ack (token Y)

Figure 3.5: Sequence diagram of upstream protocol: Pull Data/Pull Ack

3. Downstream protocol: This sequence is used to sent to the LoRa Gateway

the LoRa Packets to be transmitted over the air (LoRa RF packets) by the

LoRa MoDem.

The RF communication channel between LoRa Gateway and LoRa end nodes

is the "downlink".

3.4.1 Upstream protocol

The upstream protocol uses two operation ID (0x00 Push Data/0x01 Push Ack).

University of Genoa 73

Chapter 3. LoRa gateway IDS

LoRa
Server

LoRa
Gateway

LoRa RF packet
Pull Resp(token Z, JSON string)

TX Ack (token Z, JSON string)

Figure 3.6: Sequence diagram of downstream protocol: Pull Resp/TX Ack

Operation ID 0x00 Push Data

The Push Data (0x00) message is used to send data to the LoRa Server. This

message can be used to send the data received from one LoRa end node or the

status of the LoRa Gateway. The LoRa-net documentation does not set any length

limit but the "ANNWS.01.2.1.W.SYS" application note sets a maximum length of

2408 bytes.
0 8 16 24 32

Protocol version random token draw by the Gateway 0x00

Gateway Unique Identifier

(MAC address)

JSON object, starting with {, ending with }

Figure 3.7: Upstream protocol: Push Data Message (ID 0x00)

As shown in Figure 3.7, in addition to the common fields two new fields, are

present:

1. Gateway Unique Identifier: identify the gateway;

University of Genoa 74

Chapter 3. LoRa gateway IDS

2. JSON Object: an ASCIIZ in JSON format;

The JSON Object can contain:

1. The status of the LoRa Gateway inside a "stat" item. See Table 3.1 for a

complete list of possible items;

{ "stat":{ "time":"2020-03-20 08:51:11 GMT",

"lati":36.55989, "long":136.65347, "alti":69,

"rxnb":1, "rxok":0, "rxfw":0,

"ackr":100.0, "dwnb":0, "txnb":0

}

}

Name Type Rev. Seen Description

time string 1.4 Yes Coordinated Universal Time (UTC) ’system’ time

of the gateway, ISO 8601 ’expanded’ format

lati number 1.4 Yes UTC latitude of the gateway in degree (float, N is

+)

long number 1.4 Yes UTC longitude of the gateway in degree (float, E

is +)

alti number 1.4 Yes UTC altitude of the gateway in meter (integer)

rxnb number 1.4 Yes Number of radio packets received (unsigned inte-

ger)

rxok number 1.4 Yes Number of radio packets received with a valid

Physical Cyclic Redundancy Check (CRC)

rxfw number 1.4 Yes Number of radio packets forwarded (unsigned in-

teger)

Table 3.1 – Continued on next page

University of Genoa 75

Chapter 3. LoRa gateway IDS

Continued from previous page

Name Type Rev. Seen Description

ackr number 1.4 Yes Percentage of upstream datagrams that were ac-

knowledged

dwnb number 1.4 Yes Number of downlink datagrams received (un-

signed integer)

txnb number 1.4 Yes Number of packets emitted (unsigned integer)

temp number 1.5 No Current temperature in celsius degree (float).

Warning: not present in "ANNWS.01.2.1.W.SYS"

application note

Table 3.1: Possible items of "stat" JSON array with explicit dependence on

revision. Information taken from github LoRa-net.

2. The LoRa packets received by the LoRa Gateway inside a "rxpk" item array.

Each array entry contains (inside specific fields) the payload of received LoRa

packet and all related information. See Table 3.2 for a complete list of

possible fields;

{ "rxpk" : [{ "tmst":4217091219,

"time":"2020-03-20T08:52:24.052551Z",

"tmms":1268729563052,

"chan":2, "rfch":1, "freq":868.500000,

"stat":1, "modu":"LoRa", "datr":"SF7BW125",

"codr":"4/5", "lsnr":8.2,

"rssi":-92, "size":51,

"data":"UUFZb0FmOGRkUUFCbjRXWk9NU3Z6eUp5bWZTM

0VCaUxFR012QXgwTFpEbHZvOHZFeEhRTmVBN1

University of Genoa 76

Chapter 3. LoRa gateway IDS

NrTE9mUnFQK09ySngK"

}]

}

The "ANNWS.01.2.1.W.SYS" application note says that the "rxpk" item may

be a single object and not an array.

{ "rxpk": {...}

}

Name Type Rev. Seen Description

time string 1.4 Yes UTC time of pkt RX, us precision, ISO 8601 ’com-

pact’ format

tmms number 1.4 Yes UTC time of pkt RX, number of milliseconds since

06.Jan.1980

tmst number 1.4 No Internal timestamp of "RX finished" event (32bit

unsigned). Warning: not present in "AN-

NWS.01.2.1.W.SYS" application note

freq number 1.4 Yes RX central frequency in MHz (unsigned float, Hz

precision)

chan number 1.4 Yes Concentrator "IF" channel used for RX (unsigned

integer)

rfch number 1.4 Yes Concentrator "RF chain" used for RX (unsigned

integer)

mid number 1.5 No Concentrator MoDem ID on which pkt has

been received. Warning: not present in "AN-

NWS.01.2.1.W.SYS" application note

stat number 1.4 Yes CRC status: 1 = OK, -1 = fail, 0 = no CRC

Table 3.2 – Continued on next page

University of Genoa 77

Chapter 3. LoRa gateway IDS

Continued from previous page

Name Type Rev. Seen Description

modu string 1.4 Yes Modulation identifier "LORA" or "FSK"

datr string 1.4 Yes LoRa datarate identifier (eg. SF12BW500)

number 1.4 No Frequency Shift Keying (FSK) datarate (un-

signed, in bits per second)

codr string 1.4 Yes LoRa ECC coding rate identifier

rssi number 1.4 Yes Received Signal Strength Indication (RSSI) of the

channel in dBm (signed integer, 1 dB precision).

rssis number 1.5 No RSSI of the signal in dBm (signed integer, 1

dB precision).Warning: not present in "AN-

NWS.01.2.1.W.SYS" application note

lsnr number 1.4 Yes LoRa Signal-to-Noise Ratio (SNR) ratio in dB

(signed float, 0.1 dB precision)

foff number 1.5 No LoRa frequency offset in Hz (signed integer).

Warning: not present in "ANNWS.01.2.1.W.SYS"

application note

size number 1.4 Yes RF packet payload size in bytes (unsigned integer)

data string 1.4 Yes Base64 encoded RF packet payload, padded

Table 3.2: Possible items of "rxpk" JSON array with explicit dependence

on revision. Information taken from LoRa-net github. Column Seen reports

whether the field was seen on the wire

3. Both "stat" and "rxpk" information.

{ "rxpk":[{...},...],

"stat":{...}

University of Genoa 78

Chapter 3. LoRa gateway IDS

}

The "ANNWS.01.2.1.W.SYS" application note says that the "rxpk" item may

not be an array but a single object.

{ "rxpk":{...},

"stat":{...}

}

The "data" item of "rxpk" array contains the Base64 encoded string of LoRa

data entries in binary format, as shows in the Table 3.2. The structure of the

binary format of LoRa data entry shown in Figure 3.8 has been extracted from

the source code of the LoRa forwarder.
0 8 16 24 32

device address

fCnt

remaining data

Figure 3.8: LoRa packet binary format of ["rxpk"][i]["data"] after base64 decoding

After the decoding of the "data" item, the fields "device address" and fCnt can

be read, but the rest of the binary data is encrypted.

The "ANNWS.01.2.1.W.SYS" application note describes another format for this

JSON Object: 1. The "rxpk" item can be an array or a single value. 2. Unknown

item can be present inside the JSON object (example: "other", etc).

The Push Data message is acknowledged from the LoRa Server through the

Push Ack (0x01) message.

University of Genoa 79

Chapter 3. LoRa gateway IDS

Operation ID 0x01 Push Ack

The Push Ack (0x01) message is sent from LoRa Server to LoRa Gateway im-

mediately after the reception of one Push Data message to confirm its correct

reception. For our analysis, it is not a problem if the LoRa Gateway does not

receive an acknowledgement message.
0 8 16 24 32

Protocol version
same token as the PUSH DATA

message to acknowledge 0x01

Figure 3.9: Upstream protocol: Push Ack message (0x01)

As shown in Figure 3.9, this message uses only the common header fields.

3.4.2 Downstream protocol

The downstream protocol defines four possible operation ID (0x02 Pull Data/0x03

Pull Ack/0x4 Pull Resp/0x05 TX Ack).

Operation ID 0x02 Pull Data

The Pull Data (0x02) message is sent to LoRa Server at regular intervals (config-

ured in gateway) to establish and keep open the connection channel between LoRa

Gateway and LoRa Server. This is needed when the LoRa Gateway is inside a

NAT or a firewall. When the NAT assigns a public IP/port to the LoRa Gateway,

the route is open and the message originated from the server can reach the LoRa

Gateway. When a firewall is present, it can block requests incoming from the ex-

ternal interface unless a matching outgoing traffic is present. Moreover, a firewall

can be configured to kill idle sessions, so, a keep alive technique must be used.

As shown in Figure 3.10, there is the Gateway Unique Identifier in addition to

the common fields.

University of Genoa 80

Chapter 3. LoRa gateway IDS

0 8 16 24 32

Protocol version random token draw by the Gateway 0x02

Gateway Unique Identifier

(MAC address)

Figure 3.10: Downstream protocol: Pull Data message (0x02)

This message is acknowledged from the LoRa Server by using the Pull Ack

(0x04) message. The reception of the Pull Ack indicates the correct opening of a

bidirectional route between LoRa Gateway and LoRa Server and the LoRa Gate-

way must be ready to receive requests from the LoRa Server.

Operation ID 0x04 Pull Ack

The Pull Ack (0x04) message is sent from the LoRa Server to the LoRa Gateway.

When this packet reaches the LoRa Gateway, it is an implicit confirmation of the

establishment of one bidirection route. Now, the LoRa Server can send Pull Resp

(0x03) messages when it is needed.
0 8 16 24 32

Protocol
same token as the Pull Data

message to acknowledge 0x04

Figure 3.11: Downstream protocol: Pull Ack message (0x04)

As shown in Figure 3.11 this message uses only the common header fields.

The "ANNWS.01.2.1.W.SYS" application append the Gateway Unique Identi-

fier to the common header.

University of Genoa 81

Chapter 3. LoRa gateway IDS

Operation ID 0x03 Pull Resp

The Pull Resp (0x03) message is used to send from LoRa Server to the LoRa

Gateway the LoRa Packet to be emitted on Air.

The LoRa-net documentation does not set any length limit, but the "AN-

NWS.01.2.1.W.SYS" application note sets a maximum length of 1 000 bytes.
0 8 16 24 32

Protocol version random token draw by the Server 0x03

JSON object, starting with {, ending with }

Figure 3.12: Downstream protocol: Pull Resp message (0x03)

As shown in Figure 3.12, there is the C string JSON Object field in addition to

the common fields. The JSON Object contains the LoRa packet to be sent from

the LoRa Gateway and all related information inside an item "txpk".

The "ANNWS.01.2.1.W.SYS" application note says that the JSON string may

contain zero or more "txpk" items.

See Table 3.3 for a complete list of possible fields. Most fields are optional,

default parameters are used when a filed is not present.

{ "txpk":{...}

}

In the protocol version 2, the Pull Resp message is acknowledged by the LoRa

Gateway by using the TX Ack (0x05) message.

University of Genoa 82

Chapter 3. LoRa gateway IDS

Name Type Description

imme bool Send packet immediately (will ignore tmst & time)

tmst number Send packet on a certain timestamp value (will ignore time)

tmms number Send packet at a certain UTC time (UTC synchronization

required). Warning: not present in "ANNWS.01.2.1.W.SYS"

application note

freq number TX central frequency in MHz (unsigned float, Hz precision)

rfch number Concentrator "RF chain" used for TX (unsigned integer)

powe number TX output power in dBm (unsigned integer, dBm precision)

modu string Modulation identifier "LORA" or "FSK"

datr string LoRa datarate identifier (eg. SF12BW500)

number FSK datarate (unsigned, in bits per second)

codr string LoRa ECC coding rate identifier

fdev number FSK frequency deviation (unsigned integer, in Hz). Warning:

not present in "ANNWS.01.2.1.W.SYS" application note.

ipol bool LoRa modulation polarization inversion.

prea number RF preamble size (unsigned integer). Warning: not present

in "ANNWS.01.2.1.W.SYS" application note

size number RF packet payload size in bytes (unsigned integer)

data string Base64 encoded RF packet payload, padding optional

ncrc bool If true, disable the CRC of the physical layer (optional)

Table 3.3: Possible items of "txpk" JSON object (revision 1.4 & 1.5). I did not

see this type of message on the wire. Information taken from github LoRa-net.

University of Genoa 83

Chapter 3. LoRa gateway IDS

Operation ID 0x05 TX Ack

The TX Ack (0x05) message is sent from the LoRa Gateway to the LoRa Server to

inform if a Pull Resp has been rejected or accepted (with or without errors/warn-

ings).
0 8 16 24 32

Protocol version
same token as the Pull Resp

message to acknowledge 0x05

Gateway Unique Identifier

(MAC address)

Optional JSON object, starting with {, ending with }

Figure 3.13: Downstream protocol: TX Ack message (0x05)

As shown in Figure 3.13, there are two other fields in addition to the common

fields:

1. Gateway Unique Identifier: identify the gateway;

2. optional JSON Object: a ASCIIZ in JSON format;

The optional JSON Object is used to report errors. This JSON String can be

empty6 to indicate the absence of errors/warning or includes a single "txpk_ack"

item in case of one error or warning which contains the following fields:

1. The error code inside a "error" item with one of the following values:

(a) NONE: Packet has been programmed for downlink (removed in revision

1.5, not present in "ANNWS.01.2.1.W.SYS" application note);
6An ASCIIZ is empty when it starts with the End Of String character that is a single byte

with value zero (NUL characher, ASCII code 0, \0).

University of Genoa 84

Chapter 3. LoRa gateway IDS

(b) TOO_LATE: Rejected because it was already too late to program this

packet for downlink;

(c) TOO_EARLY: Rejected because downlink packet timestamp is too

much in advance;

(d) COLLISION_PACKET: Rejected because there was already a packet

programmed in the requested timeframe;

(e) COLLISION_BEACON: Rejected because there was already a beacon

planned in the requested timeframe;

(f) TX_FREQ: Rejected because requested frequency is not supported by

TX RF chain;

(g) TX_POWER: Rejected because requested power is not supported by

the gateway (removed in revision 1.5, present in "ANNWS.01.2.1.W.SYS"

application note);

(h) GPS_UNLOCKED: Rejected because UTC is unlocked, so UTC times-

tamp cannot be used.

In the revision 1.5, the "NONE" value has been removed and the "TX_POWER"

has been moved from "error" category to "warn" category of "txpk_ack" ob-

ject.

{ "txpk_ack": { "error": "COLLISION_PACKET"} }

2. The "warn" and "value" items were introduced on revision 1.5 to specify a

warning code and a value. The "warn" field contains one of the following

codes:

(a) TX_POWER: Rejected because requested power is not supported by

gateway, the power actually used is given in the "value" item.

University of Genoa 85

Chapter 3. LoRa gateway IDS

{ "txpk_ack": { "warn": "TX_POWER", "value": 20} }

3.4.3 Information extracted from network packet analysis

Based on the information previously described, all the binary and JSON text or

Base64 encoded strings can be extracted from the network flow.

Other information can be computed exploiting the timestamp of the received

packets, keeping in mind that the RF channels are shared with a lot of devices and

the information can be sent with a delay of seconds from the real sent request.

{"timestamp":"1584694285.068462","ver":"2", "rnd":"8386", "opID": "0", "gw":"dcc025feffeb27b8",

"value":{"rxpk":[{"tmst":4157095595,"time":"2020-03-20T08:51:24.056932Z","tmms":1268729503056,

"chan":1,"rfch":1,"freq":868.300000,"stat":1,"modu":"LoRa","datr":"SF7BW125",

"codr":"4/5","lsnr":9.0,"rssi":-93,"size":51,

"data":"QAYoAf8AKAABUBwZaZ3p43YNK1Ww3hbU2f4gmT5TPypq24y6E6dKW90Bm2iCJ0MEfvH0"}]},

"unpacked":{"size":"51", "devAddr":"ff012806","fCnt":"2800"} }

{"timestamp":"1584694271.810198","ver":"2", "rnd":"33472", "opID": "0", "gw":"dcc025feffeb27b8",

"value":{"stat":{"time":"2020-03-20 08:51:11 GMT","lati":36.55989,"long":136.65347,"alti":69,

"rxnb":1,"rxok":0,"rxfw":0,"ackr":100.0,"dwnb":0,"txnb":0}} }

{"timestamp":"1584694271.851998","ver":"2", "rnd":"33472", "opID": "1" }

{"timestamp":"1584694272.164906","ver":"2", "rnd":"36450", "opID": "2", "gw":"dcc025feffeb27b8" }

{"timestamp":"1584694272.202189","ver":"2", "rnd":"36450", "opID": "4" }

{"timestamp":"1584694282.284887","ver":"2", "rnd":"9379", "opID": "2", "gw":"dcc025feffeb27b8" }

{"timestamp":"1584694282.321339","ver":"2", "rnd":"9379", "opID": "4" }

{"timestamp":"1584694285.068462","ver":"2", "rnd":"8386", "opID": "0", "gw":"dcc025feffeb27b8",

"value":{"rxpk":[{"tmst":4157095595,"time":"2020-03-20T08:51:24.056932Z","tmms":1268729503056,

"chan":1,"rfch":1,"freq":868.300000,"stat":1,"modu":"LoRa","datr":"SF7BW125",

"codr":"4/5","lsnr":9.0,"rssi":-93,"size":51,

"data":"QAYoAf8AKAABUBwZaZ3p43YNK1Ww3hbU2f4gmT5TPypq24y6E6dKW90Bm2iCJ0MEfvH0"}]},

"unpacked":{"size":"51", "devAddr":"ff012806","fCnt":"2800"} }

{"timestamp":"1584694285.109693","ver":"2", "rnd":"8386", "opID": "1" }

{"timestamp":"1584694292.414888","ver":"2", "rnd":"3216", "opID": "2", "gw":"dcc025feffeb27b8" }

{"timestamp":"1584694292.455639","ver":"2", "rnd":"3216", "opID": "4" }

3.5 Analysis of captured data

The analysis of the captured data can be done from two different viewpoints:

University of Genoa 86

Chapter 3. LoRa gateway IDS

1. Monitoring the connection between LoRa Gateway and LoRa Server;

2. Monitoring the connection between LoRa end nodes and LoRa Gateway (and

LoRa Server);

It is possible to extract information on the periodicity of the information ex-

change from the analysis of the temporal sequence of the messages exchanged

between the LoRa gateway and LoRa server.

Further information have been deduced from the first time analysis of the

message timestamp sequence. The Pull Data (0x02) message used to keep open the

network path between LoRa Gateway and Server is sent to the LoRa Server every

10 seconds. The Push Data (0x00) message is always followed by a Pull Ack (0x04)

message. The Push Data (0x00) message containing a "stat" JSON Object is sent

to the LoRa Server every 30 seconds. The Push Data (0x00) message containing

"rxpk" LoRa Packed payload does not seem to respect any fixed scheduling (but

they seem to be sent when a packet is received from LoRa MoDem). As expected

the Push Data (0x00) message is always followed by an Push Ack (0x01) message.

These timing are stable during normal execution. My intention is to use these

properties to detect an attack.

3.5.1 Monitoring the connection between LoRa Gateway

and LoRa Server

It is possible to monitor the quality of the connection between LoRa Gateway and

LoRa Server through the analysis of the Round Trip Time (RTT) between data

transmissions and acks. The graph in Figure 3.14 shows a quite stable RTT. It

also shows an increasing RTT near the origin. This can be related to network

congestions or LoRa Server overloads. In the second graph, different colours have

been used for each operation IDs.

University of Genoa 87

Chapter 3. LoRa gateway IDS

Figure 3.14: Round trip times between Request and Ack (logarithmic scale).

3.5.2 Monitoring the connection between end nodes and

LoRa Gateway (and LoRa Server)

A lot of information is sent unencripted by using textual format or base64 encod-

ing. Using this information, I can keep track of the number of present devices,

transmission rate, RSSI, datarate, RX and TX throughput, used frequency chan-

nels, CRC errors, etc.

University of Genoa 88

Chapter 3. LoRa gateway IDS

Received signal strength indication

The intensity of the received LoRa packets (Figure 3.15 and Figure 3.16) changes

throughout the day for all end nodes according to the environmental conditions.

Also the orientation of the LoRa Gateway antenna can affect the RSSI depending

on the position of the transmission thyroidal emissions.

The colour in these figures are proportional to the signal to noise level of the

received LoRa packets.

Figure 3.15: LoRa packets RSSI, indoor antenna.

Figure 3.16: LoRa packets RSSI, antenna close to a window.

Figure 3.17: LoRa packets RSSI in the used frequencies.

University of Genoa 89

Chapter 3. LoRa gateway IDS

The LoRa frequencies ranges used to transmit data are compact. The radio

channel properties and the noise level are similar. The RSSI grouped by LoRa

frequency show similar intensities.

Figure 3.18: Utilization of LoRa fre-

quency by device ID.

Figure 3.19: LoRa end node

traffic

Usage pattern of the available LoRa frequencies

The graph in Figure 3.18 shows the frequency used and the RSSI of the received

packets to estimate the presence of a frequency hopping rule.

LoRa datarate

The LoRa transmission datarate "datr" varies from end node to end node. Most

of the analysed LoRa end nodes communications did not change their datarate

University of Genoa 90

Chapter 3. LoRa gateway IDS

(Figure 3.20).

Figure 3.20: Use of Datr by LoRa devices.

LoRa SNR

For each of the received packet, the LoRa SNR shown in Figure 3.21 represents

the ratio of the Signal power over the signal Noise in dB. This value depends on

both signal and noise powers, so a low SNR value is expected for packets coming

from long distance. However, a low SNR value can be expected also for signals

sent from near devices when the noise power is high.

University of Genoa 91

Chapter 3. LoRa gateway IDS

Figure 3.21: LoRa gateway SNR feature for normal traffic.

LoRa end node TX/RX throughput

In our tests, a single LoRa end node sent more than the 50% of the total traffic

while the rest of devices make less transmission traffic (Figure 3.19).

The number of LoRa Radio packets received by the gateway remains constant

(Figure 3.22). During only two or three days in the daytime, the LoRa Gateway

received radio packet throughput graph shows a marked increase.

University of Genoa 92

Chapter 3. LoRa gateway IDS

Figure 3.22: LoRa gateway received packets.

LoRa gateway inter-arrival time between two consecutive messages

The inter-arrival time between two consecutive messages remains constant in case

of fixed periodic data transmission (Figure 3.23).

Figure 3.23: LoRa gateway inter-arrival time between two consecutive messages

in case of fixed periodic data transmissions.

The number of packet received in 5 minutes, named "fiveMinPacketCount" from

now on, can be used as a feature. In case of periodic transmissions, the number

University of Genoa 93

Chapter 3. LoRa gateway IDS

of packets sent in an interval of time larger than the LoRa end node periodic

transmission leads to a stable number of received packets.

LoRa packet physical CRC errors

The communication has a high number of physical CRC errors due to collisions

between LoRa end nodes transmissions or noise problems. The number of physical

CRC errors is higher than 30% for most of the time.

Figure 3.24: LoRa gateway inter-arrival time between two consecutive messages

in case of fixed periodic data transmissions under attack by reactive jammer.

University of Genoa 94

Chapter 3. LoRa gateway IDS

3.6 Software Defined Radio and LoRa physical

layer

One or more cyber attacks have to be identified and replicated to verify if the

identified features allow detecting a potential cyber attack situation. I did not

find a freely available dataset containing attacks against the LoRa protocol, so I

built a radio jammer device to disrupt the reception of LoRa packets.

I used an SDR card to sense, monitor, jam or disrupt a LoRaWAN network.

SDR software, hardware and methods demonstrated a great flexibility and useful-

ness in different technological areas (Wireless protocol security, 5G radio access

network, etc). In the last years, most of the radio equipment use SDR modules

in the physical layer to provide the better flexibility granted by software-based

demodulation and signal reconstruction.

The recent drop in the price of this kind of equipment generated a lot of small

portable devices able to perform complex and dangerous attacks on commonly

used radio transmission protocols.

The old analog signal processing has been substituted by Digital Signal Process-

ing (DSP) components. In a similar way, also the software tools became simpler

and the increased bandwidth of Universal Serial Bus (USB) 3.0 allowed increasing

the SDR sampling throughput. The know-how level required to implement new

attacks on unknown radio protocols is still high but is really simple to find on the

Internet a lot of open source programs that can be used in a malicious way just

pressing a few buttons.

The physical layer of LoRaWAN supports LoRa modulation and FSK modu-

lation. The LoRa modulation is based on Chirp Spread Spectrum (CSS) which

is known to be robust against interference and noise. But the Airtime of LoRa

messages is long because the transmission bitrate is small. This causes a higher

University of Genoa 95

Chapter 3. LoRa gateway IDS

probability of collisions with other signals. The Chirp signal is a sinusoidal tone

with the instant frequency increasing (up-chirp) or decreasing (down-chirp) lin-

early at a constant rate over time and wrapped around a predefined frequency

range.

The LoRa Packet Structure is composed of a preamble with several identical

up-chirps followed by 2 sync word symbols and a Start Frame Delimiter (SFD)

2.25 symbols long. In the explicit header mode, the SFD is followed by the LoRa

physical header and LoRa payload. The LoRa MoDem listens to the radio fre-

quencies trying to detect a valid LoRa preamble and SFD. Then, we expect the

LoRa physical header and payload.

If a jamming attack disrupts the preamble, the LoRa MoDem completely ig-

nores the incoming packet.

LoRa jamming has been attracting attention in both academia and industry.

I proposed a reactive jamming attack to interfere or disrupt the LoRa network by

using two SDR cards and the GNU radio software.

When a single LoRa gateway is deployed in a large area, the LoRaWAN network

forms a star topology. In this topology, the LoRa gateway can become a single

point of failure if jammed by malicious attackers. Adding more LoRa gateway

increases the resistance against jamming but the jamming attacks can be extended

also to this additional gateways.

3.7 LoRa signal jamming testbed

The LoRa testbed (as show in fgure 3.25) uses two or three Class A LoRa end

node equipped with one temperature sensors (see section 3.7.2). The Intrusion

Detection System (IDS) analyses the communication between LoRa Gateway and

LoRa TTN Server working on network packets previously saved inside Pcap files.

University of Genoa 96

Chapter 3. LoRa gateway IDS

Figure 3.25: LoRa testbed

The reactive jammer consists in a Linux System with GNU Radio software and

two SDR cards. The first SDR card senses the channel and the second one acts on

the radio channel as show in Figure 3.26 It consists of two GNU radio flowgraphs

Figure 3.26: Logical structure of LoRa jammer

working together using a shared memory buffer. We present each flowgraph at

page 101 and 108.

These flowgraphs use an HackRF SDR card to transmit the jamming signal

and one RTL-SDR card to monitor the activity in the LoRa RF channels.

University of Genoa 97

Chapter 3. LoRa gateway IDS

A multitude of software for Linux and Window OS are available to monitor

the radio frequencies. In this section, we show images taken by using CubicSDR7

Linux software.

GNU radio LoRa jamming simulation from radio dump file

Figure 3.27: GNU radio LoRa detector from radio dump file (RX)

I realised the GNU radio flowgraph shown in Figure 3.27 to test the jamming

of a LoRa transmission. This flowgraph detects and decodes the LoRa packets

contained in a LoRa radio frequency dump file8. The dump file contains the radio
7https://cubicsdr.com/
8� https://github.com/rpp0/gr-LoRa-samples.git, last change 5 Sep 2016

University of Genoa 98

https://cubicsdr.com/
https://github.com/rpp0/gr-LoRa-samples.git

Chapter 3. LoRa gateway IDS

I and Q Components (IQ) samples saved as complex 32 bit floating point binary

format as show in Figure 3.28.
0 8 16 24 32

sample 0 - I

sample 0 - Q

sample 1 - I

sample 1 - Q

other IQ samples

Figure 3.28: Binary format used by GNU Radio to store IQ samples on file

The jam signal is generated in real-time and added9 to the LoRa radio sig-

nals read from the dump file. The gr-LoRa Software Decoder10 tries to decode

this distorted signal. The LoRa packets are demodulated using Gr-lora decoder

and sent as datagrams to a specific IP address and UDP port (by default set to

127.0.0.1:40868).

We can use Tshark to show a detailed explanation of decoded LoRa packets as

shown in Figure 3.29.

We can print on a Linux console an hexadecimal dump of the decoded LoRa

data by using the “hexdump” command and the “netcat”11 tool to open the des-

tination UDP socket as show in Figure 3.30.

I tested different types of jamming signal sources by using different DSP blocks

in GNU Radio:
9to simulate an additive radio channel

10� https://github.com/rpp0/gr-LoRa.git, last change 6 Feb 2021
11https://nmap.org/ncat/

University of Genoa 99

https://github.com/rpp0/gr-LoRa.git
https://nmap.org/ncat/

Chapter 3. LoRa gateway IDS

tshark -i lo -f "UDP port 40868" -w loracap.pcap -d UDP.port==40868,loratap -V

@..................@

LoRaTap header

Header Version: 0

Padding: 00

Header Length: 0

Channel

Frequency: 0Hz

Bandwidth: Unknown (0)

Spreading Factor: 0

RSSI

Packet: -139 dBm

Max: -139 dBm

Current: -139 dBm

SNR: 12 dB

Sync Word: Unknown (0x00)

Data (28 bytes)

0000 17 91 a0 12 12 12 12 12 12 12 12 12 12 12 12 12

0010 12 12 12 12 12 12 12 12 12 12 a3 69i

Data: 1791a012...

[Length: 28]

Figure 3.29: Information obtained by using TShark Lora dissector on LoRa

packed decoded by Gr-LoRa

nc -l -u -b 127.0.0.1 40868|hexdump -C

00000000 00 00 00 00 00 00 00 00 00 00 00 00 00 30 00 17 |.............0..|

00000010 91 a0 00 01 02 03 04 05 06 07 08 09 10 11 12 13 |................|

00000020 14 15 16 17 18 19 20 21 22 b8 73 00 00 00 00 00 |...... !".s.....|

00000030 00 00 00 00 00 00 00 00 30 00 17 91 a0 88 88 88 |........0.......|

00000040 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 |................|

00000050 88 88 88 88 fd e5 00 00 00 00 00 00 00 00 00 00 |................|

00000060 00 00 00 30 00 17 91 a0 12 12 12 12 12 12 12 12 |...0............|

00000070 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 a3 |................|

00000080 69 00 00 00 00 00 00 00 00 00 00 00 00 00 30 00 |i.............0.|

Figure 3.30: Hexadecimal dump of LoRa packed decoded by Gr-LoRa

University of Genoa 100

Chapter 3. LoRa gateway IDS

1. VCO: I used Voltage Controlled Oscillator (VCO) block to generate a sinu-

soidal tone moving in the frequency domain on a sinusoidal, triangular and

saw shaped signals. The most effective jamming is obtained through sinu-

soidal and triangular controlled movements of the sinusoidal tone as shown

in Figure 3.31;

2. WBFM, FM, and phase modulation: The most effective jamming is ob-

tained by using Wide Band Frequency Modulation (WBFM) and Frequency

Modulation (FM) modulated random noise. WBFM modulation generates

a continuous noise in a wider frequency range (200 kHz) and needs a higher

signal intensity to overcome LoRa chirps, while FM modulation generates

fast changes in the jam frequencies causing problems on parts of the LoRa

packets as show in Figure 3.32. This jamming is better if compared with

VCO ones;

3. gr-radar chirp source: A continuous upchirp and downchirp chirp signal

generated by gr-radar block as show in Figure 3.33 causes a complete and

permanent failure of the GNU radio LoRa software decoder.

The jamming signal waveform that guaranteed the best chance of success is

the chirp modulation.

GNU radio LoRa reactive jammer (RX/TX)

The aim of the jammer is trying to destroy the LoRa signal preamble and the

following LoRa data symbols. This GNU radio flowgraph sends for one second a

continuous up-chirp and down-chirp signal to jam the LoRa frequencies only when

a transmission is detected.

This jamming system is composed by two GNU radio flowgraphs working to-

gether. The first one detects the presence of one transmission and sends a floating

University of Genoa 101

Chapter 3. LoRa gateway IDS

Bits (nominal) per symbol: 3.5 Bins per symbol: 128

Samples per symbol: 1024 Decimation: 8

17 91 a0 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 b8 73 (!"s)

17 91 a0 88 fd e5 ()

17 91 a0 12 a3 69 (i)

17 91 a0 00 01 02 03 04 05 06 8b 4c 45 64 1f 3b 06 f9 0f 04 f6 b5 90 df c6 e1 34 83 (LEd;4)

17 91 a0 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 b8 73 (!"s)

88 88 88 88 88 88 88 fd e5 ()

17 91 a0 8a 40 a8 c0 f5 4f ad ec 25 99 79 06 4c 2d eb c7 ee eb c6 a2 de 6e b3 ec 86 (@O%yL-n)

17 91 a0 12 a3 69 (i)

17 91 a0 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 b8 73 (!"s)

17 91 a0 88 fd e5 ()

17 91 a0 12 12 12 12 12 12 12 a0 05 42 51 d9 3b b3 ac 6d a0 71 27 bb b7 f1 58 bf 96 (BQ;mq'X)

17 91 a0 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 b8 73 (!"s)

17 91 a0 88 fd e5 ()

17 91 a0 a6 de 79 28 ac 70 23 95 5a a6 21 9d 00 f1 9a 4d ea fd d1 6a c3 e0 01 7c 84 (y(p#Z!Mj|)

17 91 a0 12 12 12 12 9a 92 9a de b8 c4 a5 bc 7e e3 c4 3e 98 78 9f 54 ea f8 e2 e5 ec (~>xT)

17 91 a0 12 12 12 12 12 12 12 12 12 12 12 9a dd 7a ce 7c ee f1 dd 26 c3 c9 79 f1 ad (z|&y)

17 91 a0 a5 30 5a b0 6e e5 23 f4 8b 96 63 9e 18 ba 5b f9 cf ec d3 2f c3 58 9d e5 a0 (0Zn#c[/X)

Figure 3.31: Results of VCO Jam on GNU radio LoRa software decoding

University of Genoa 102

Chapter 3. LoRa gateway IDS

17 91 a0 88 fd e5 ()

17 91 a0 12 a3 69 (i)

34 8d 80 00 81 a3 d7 5f c6 3c 91 7b ef d6 2c e1 6b 46 ec 90 1f 7a fd 22 4f ec 5f f8 14 6e f7 93

0b e8 7d f4 bf 02 2e bc 13 62 5c 98 55 85 f5 2f 26 59 55 07 dd 21 6d (_<,kFz"O_n.b

U/&YU!m)

17 91 a0 12 a3 69 (i)

Figure 3.32: GNU radio LoRa jammer simulator by using WBFM or FM mod-

ulated signals

University of Genoa 103

Chapter 3. LoRa gateway IDS

17 91 a0 88 fd e5 ()

17 91 a0 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 82 1a 34 68 d0 a0 40 80 (4h@)

00 00 00 ()

()

()

Figure 3.33: GNU radio LoRa jammer simulator results by using gr-radar Chirp

module

University of Genoa 104

Chapter 3. LoRa gateway IDS

point trigger value [0.0 or 1.0] able to switch the jamming signal On or Off. This

flowgraphs uses various embedded python blocks12 to implement dedicated logic

and operations.

The second flowgraph creates the jamming signal, multiplies it by the trigger

value to switch the signal On/Off, and transmits the result. When the received

trigger value is 0.0, the jamming signal is cancelled, otherwise, is modulated in

amplitude.

We need two different flowgraph because the RTLSDR card used to listen

the radio channel cannon get more than 2 million samples per seconds, while

the HackRF used to transmit the jamming signal runs at 10 million samples per

second.

The communication of the trigger value is done by using a shared memory

buffer. The current value of the trigger can be monitored by using a command

line tool as show in Figure 3.34.

Figure 3.34: Visual monitoring of trigger value stored in shared memory

This IPC done by using shared memory is the fastest possible but it must be

used on the same computer. The value of the trigger changes only when a signal is

detected and when the trigger returns to the normal untriggered state. The trigger

value is read by the jamming flowgraph at each loop of the GNU radio flowgraph.

Figure 3.35 shows the jamming signal in jamming and silent operation.
12More info at https://wiki.GNURadio.org/index.php/Embedded_Python_Block

University of Genoa 105

https://wiki.GNU Radio.org/index.php/Embedded_Python_Block

Chapter 3. LoRa gateway IDS

Figure 3.35: reactive jamming in rest mode (lower image) and jam (Upper image)

University of Genoa 106

Chapter 3. LoRa gateway IDS

Figure 3.36: RF Spectrum WaterFall showing both LoRa and jamming signals

Monitoring Radio Frequencies channels

The attacker can monitor all RF LoRa channels by using CubicSDR or similar

software and tries to estimate the power needed to jam the signals. By viewing

the RF spectrum in real time, it is possible to see the differences between the

amplitude of LoRa and jamming signals (Figure 3.36).

The peak detection of power spectrum graph can be used to estimate the actual

intensity of noise in specific portion of the radio frequencies (Figure 3.37).

Figure 3.37: RF Spectrum WaterFall showing the noise power level

University of Genoa 107

Chapter 3. LoRa gateway IDS

We can track the differences between the overall RF amplitude of LoRa and

jamming signals by using peak detection (Figure 3.38).

Figure 3.38: RF Spectrum WaterFall showing the jamming and the power peaks

of LoRa signals

The attacker can also use a monitor device to see if the jamming has the

expected effects on the LoRa signals. A successful jam signal completely disrupts

the LoRa signal, as show in the right part of Figure 3.39. In the left part of the

same figure, we show a LoRa signal sent on frequencies different from the disturbed

ones.

Signal presence detection

The presence or absence of a signal in a specific frequency channel can be estimated

by using the power of the signal in that channel.

The signal x(t) captured with the SDR card is filtered through a Bandpass

Filter to remove all unwanted frequencies, obtaining the y(t) signal. The power of

this digital signal can be calculated by using the formula P = |y(t)|2 .

Figure 3.40 shows the part of the GNU radio flowgraph that carries out the

signal presence detection.

University of Genoa 108

Chapter 3. LoRa gateway IDS

Figure 3.39: RF spectrum of a successful (right image) or unsuccessful (left

image) jam of a LoRa signal

Figure 3.40: Signal presence detection by using GNU radio script

A threshold energy value PT HR can be used to estimate the presence or absence

of a transmission. When there is no transmission on the channel, the power of the

signal y(t) can be near to the power of the channel noise (see Figure 3.41), but

some electromagnetic noise spike can temporarily increase the power value P over

the expected threshold value PT HR.

To avoid triggering the jamming process on isolated spikes, we compute a mov-

ing average over the last N values of the estimated signal power. This operation

has the effect of smoothing the transitions (see Figure 3.42) and the power spikes

University of Genoa 109

Chapter 3. LoRa gateway IDS

Figure 3.41: Power of the noise detected by using GNU radio script

avoiding false detections, but introducing some delay on the signal detection.

A transmission is considered present on the monitored frequency channel when

the signal power PAV G moving average is greater than the Power threshold PT HR.

This threshold depends on the noise power level and changes over time.

This approach has been used to build the GNU radio flowchart in Figure 3.43.

The embedded Python "Trigger" block has a triggered timer and the output is

used to switch On or Off the jamming signal generation. This block triggers when

the PAV G moving average of the sensed signal power is above a user selectable

threshold. If the block is triggered, the output changes to 1.0, otherwise, the output

is set to 0.0. The block remains triggered for a selectable amount of seconds (1

second in the test). After this "ON" period, the trigger ignores the moving average

for a selectable amount of seconds (0.1 second in the test) to avoid to be triggered

by the tail of the jamming signal energy. In the tests, the parameters are set as

follows: a trigger ON timer of 1 second; a ignore timer of 0.1 second; output 0.0

when not triggered and 1.0 when triggered. The core logic of the code can be seen

in listing 3.1.

Multiplying the jam signal by the output of this block to switch off the jamming

signal when a signal is not detected as show in Figure 3.44 for a Baseband jamming

signal.

University of Genoa 110

Chapter 3. LoRa gateway IDS

Figure 3.42: Moving average smoothing effect when signal start or end

University of Genoa 111

Chapter 3. LoRa gateway IDS

if self.triggered:

if time.time() >= self.timestamp:

switch off when timer is expired

print("Done")

self.shm.buf[0:4] = struct.pack('f', self.offValue)

self.triggered = False

self.timestamp = time.time() + self.ignore_timer

elif time.time() >= self.timestamp:

trigger ?

m = min(input_items[0])

if m >= self.threshold:

self.triggered = True

self.timestamp = time.time() + self.trigger_timer

print("T %f %s" % (input_items[0].all(),time.strftime(

'%m/%d/%Y %H:%M:%S', time.localtime(self.timestamp))))

self.shm.buf[0:4] = struct.pack('f', self.onValue)

if self.triggered:

for i in range(0, len(output_items[0])):

output_items[0][i] = self.onValue

else:

for i in range(0, len(output_items[0])):

output_items[0][i] = self.offValue

return len(output_items[0])

Listing 3.1: Code extracted from Trigger block to show the trigger delay logic

University of Genoa 112

Chapter 3. LoRa gateway IDS

Figure 3.43: GNU radio flowgraph for signal presence detection with embedded

python block

Figure 3.44: Jamming signal multiplied by the signal present trigger output

Compiling GNU radio by using PyBOMBS

To run the jammer prototype, I used the GNU Radio radio version 3.8. To compile

GNU radio 3.8 (last current version 3.8.2) by using PyBOMBS, I followed the

instructions in https://github.com/GNURadio/GNURadio and presented in

listing 3.2.

Then, I installed the missing blocks following the instructions found on https:

//sdr-setup-notes.readthedocs.io/en/latest/software_grc.html.

Some modules need to explicitly set the 3.8 branch by using the following

command:

pybombs config -P gr-osmosdr gitbranch gr3.8.

University of Genoa 113

https://github.com/GNU Radio/GNU Radio
https://sdr-setup-notes.readthedocs.io/en/latest/software_grc.html
https://sdr-setup-notes.readthedocs.io/en/latest/software_grc.html

Chapter 3. LoRa gateway IDS

sudo -H pip3 install PyBOMBS

pybombs auto-config

pybombs recipes add-defaults

pybombs prefix init ~/GNU Radio -R GNU Radio-default

Compile other needed modules

pybombs install gr-LoRa gr-LoRa2 gr-radar

sudo ldconfig

volk_profile # make a profile for optimized fft on local system

Listing 3.2: Commands used to build GNU Radio version 3.8

3.7.1 Software Defined Radio useful tools

Some LoRa packets can be captured for offline analysis by using the following

command in the HackRF card:

hackrf_transfer -r LoRa12sf200bw.cu8 -f 868000000 -s 8000000 The

frequency band to tune is 868.00 MHz and is specified in Hz after the ’-f’ option

of "hackrf_transfer" tool. Table 3.4 reports the frequency bands used by the LoRa

signals. The sample rate is set to 8 000 000 samples per seconds, each sample is

composed of a IQ pair of 8 bit value (complex byte, see figure 3.45).

For the Nyquist–Shannon sampling theorem, the maximum visible frequency

range is ±4 MHz, centered in 868 MHz. So, for each second of capture, the

software writes 2 Bytes
samples

∗ 8 ∗ 106samples = 16 MBytes of data. We can use “dd”

command to extract part of the samples. We can use the formula ofs = 2 ∗

int(T ∗ 8 ∗ 106) to convert the sample position from second to sample position

inside the file (byte offset), where int() extracts the integer part of a floating point

number. The opposite conversion (byte offset to time position) can be calculated

University of Genoa 114

Chapter 3. LoRa gateway IDS

LoRa Frequency Band LoRa Channel Frequency

863 to 870 MHz 868.10 MHz (used by Gateway to listen)

868.30 MHz (used by Gateway to listen)

868.50 MHz (used by Gateway to listen)

864.10 MHz (used by end node to transmit Join Request)

864.30 MHz (used by end node to transmit Join Request)

864.50 MHz (used by end node to transmit Join Request)

868.10 MHz (used by end node to transmit Join Request)

868.30 MHz (used by end node to transmit Join Request)

868.50 MHz (used by end node to transmit Join Request)

Table 3.4: LoRa frequency table13

0 8 16 24 32

sample 0 - I sample 0 - Q sample 1 - I sample 1 - Q

sample 2 - I sample 2 - Q sample 3 - I sample 3 - Q

other IQ samples

Figure 3.45: Binary format used by hackrf_transfer to store IQ samples on file

University of Genoa 115

Chapter 3. LoRa gateway IDS

as T = int(ofs/2)
8∗106 .

Different open source tools are available to plot the spectrum of the captured

signal, such as inspectrum14. Figure 3.46 shows a waterfall spectrum graph of a

LoRa packet captured with "hackrf_transfer" and plotted with "inspectrum" tool.

Figure 3.46: Inspectrum showing packet captured from hackrf_transfer

A multitude of different Open Source programs, such as CubicSDR and gqrx,

can show in real-time the RF spectrum of the signals captured with the SDR card.

3.7.2 LoRa temperature sensing IoT demoboard

Figure 3.47: Arduino MKR WAN 1310 LoRa board

I built a LoRa end node interactive demoboard able to send a LoRa packet

each time a mechanical button is pressed or every 30 seconds. This device is based
14available as dpkg in Ubuntu or through git � https://github.com/miek/inspectrum.git

University of Genoa 116

https://github.com/miek/inspectrum.git

Chapter 3. LoRa gateway IDS

on Arduino MKR WAN1300 or MKR WAN1310 (see Figure 3.47) connected to

a doughter board (see Figure 3.50, schematics in Figure 3.48, board layout in

Figure 3.49) with one button and four Light Emitting Diode (LED). The device

can be controlled through the USB serial port.

Figure 3.50 pictures the demo board.

To avoid software deadlocks, the sketch uses a Watchdog to automatically

reboot the device avoiding software crashes. The Watchdog timeout is set to 10

seconds but is temporally disabled during the network join operation. The sketch

is able to send a LoRa packet when a button is pressed or every 30 seconds.

The onboard LED is used to have a feedback of the operation done by the

Arduino main code. During the setup procedure, it is on, then, during the normal

operation, toggle on and off states every second. The demoboard has one LM35

analogue sensor used to sense the environmental temperature and one button able

to do different actions depending on how much time it is pressed. When pressed

for a short time, the device immediately sends a LoRa packet, when pressed for

more than 5 seconds, the device re-starts the LoRa Over The Air Authentication

(OTAA) Join procedure. Also the other LED on the demoboard are used to

have some visual feedbacks on the status of the LoRa Network and of the LoRa

transmissions:

• LED D1 yellow: on when the board is actively operating LoRa transmissions,

such as when it sends a data packet or during the join network process.

• LED D2 orange: on when the LoRa device is connected to the LoRa network;

• LED D3 red: on when the LoRa packet transmission failed;

• LED D4 green: on when the LoRa packet transmission succeed;

The demoboard has also Transistor-Transistor Logic (TTL) level Serial, Inter In-

tegrated Circuit (I2C), Serial Peripheral Interface (SPI), 3.3V and signal ground

University of Genoa 117

Chapter 3. LoRa gateway IDS

Figure 3.48: Schematic of testbed board LoRa_A Release 1.00

University of Genoa 118

Chapter 3. LoRa gateway IDS

Figure 3.49: Board layout of testbed LoRa_A Release 1.00

University of Genoa 119

Chapter 3. LoRa gateway IDS

Figure 3.50: Fully working prototype of LoRa_A Release 1.00

connectors for future expansion.

The sent LoRa packet contains as a payload the environment temperature

measured by the LM35 temperature sensor converted in string format and padded

with some "_" character to reach the user defined packet length.

The device can be controlled through the USB virtual serial port (ttyACM in

Linux) by using a normal serial terminal (Putty in Windows or Minicom in Linux).

The device listens on the serial port and performs some actions when it receives

the following characters:

’ ’ print the module version, the device EUI, and the information menu;

’+’ or ’-’ increase or decrease the packet length;

’s’ send a LoRa packet now;

’m’ reset the LoRa MoDem;

’r’ restart the device;

’j’ rejoin the network by using the OTAA Join procedure.

Carriage Return (CR), Line Feed (LF), and any other characters will be ignored.

University of Genoa 120

Chapter 3. LoRa gateway IDS

The device sends debug information on the serial port (see Figure 3.3). It sends

one single char every second to signal that it is still working (not crashed). It prints

the timestamp (in uptime seconds), the payload length, the payload content, the

transmission result (succeeded or failed), and the time needed by the library to

complete the data packet creation (in milliseconds) for each packet when it has

been sent. It also prints the request result (succeeded or failed) and the time

needed by the LoRa library to complete the request creation (in milliseconds) for

each OTAA Join network request.

3.8 Analysis of features during jamming

The network traffic was memorized during the tests carried out with the jam-

mer and analized to compare the performance of the extracted features with and

without active jamming.

Significant differences emerged in three of the features. These features are di-

rectly linked to the actions performed by the jammer on the radio communications

of the LoRaWAN network.

Switching on the jammer causes a sharp increase in the inter-arrival time be-

tween two consecutive messages (Figure 3.51).

At the same time, the LoRa packets that reach the LoRa Gateway have a much

lower SNR than that detected during the tests in the absence of jamming (Figure

3.52).

The Scatterplot of the "SNR" and "fiveMinPacketCount" features in Figure 3.53

shows two clusters well separated even if not perfectly defined. The cluster in the

top of the graph contains the features in the normal situation and the cluster in

the bottom part contains the features in anomalous situation.

University of Genoa 121

Chapter 3. LoRa gateway IDS

Serial configured for 115200 baud.

Reset the controller setting the speed of virtual serial to 1200 by using the following command

sudo stty -F /dev/ttyACM0 speed 1200 cs8 -cstopb -parenb

Set the watchdog timeout to 10 seconds

Modem module correctly started

Your module version is: YYY-999 4.5.0

Your device EUI is: XXXXXXXXXXXXXXXX

Temporarily disable the watchdog

Start join OTAA procedure by using XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX key, please wait.

LoRa device is connected to the network (6240).

Set the watchdog timeout to 10 seconds

Setup completed.

bcdefghijklmnopqrstuvwxyzabcd

uptime 29 s , payload(62): 29.814272___

Message sent correctly (58ms)!

efghi

BUTTON pressed, send packet!

uptime 34 s , payload(62): 29.814272___

Message sent correctly (49ms)!

jklmnopqrstu

BUTTON pressed for long time, rejoin!

Temporarly disable the watchdog

Start join OTAA procedure by using XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX key, please wait.

@.....................@

Uptime: 710 minutes.

mnopqrstuvwxyzabcdefghijklmnop

uptime 42629 s , payload(62): 28.836754___

Error sending message (11ms).

qrstuvwxyzabcdefghijklmnopqrst

Listing 3.3: Dump of Arduino demoboard serial output

University of Genoa 122

Chapter 3. LoRa gateway IDS

Figure 3.51: Graph of the inter-arrival time between two consecutive packets.

Notice the "holes" in periodicity due to the action of the jammer

3.9 LoRa IDS to detect RF jamming

The LoRa Jam Intrusion Detection System (LoRaJamIDS) was built by using the

Python language, the scapy library for the extraction of network data and the

scikit-learn library for the ML algorithms. The system must be able to decide if a

new sample of features belongs to normal traffic (inlier), or should be considered

different (outlier). The novelty detection algorithms are able to detect whether a

new set of features is an outliers (also called a novelty) which is defined as obser-

vations that are far from the others. Four novelty detection ML algorithms have

been tested: Robust covariance, One Class Support Vector Machine (OCSVM),

Isolation Forest (iForest) and Local Outlier Factor (LOF).

These algorithms during the training phase learn a close frontier approximately

delimiting the N-dimensional contour (bidimensional in our case) of the initial

University of Genoa 123

Chapter 3. LoRa gateway IDS

Figure 3.52: Graph of the SNR feature under the jamming action

Figure 3.53: Scatterplot of "SNR" and "fiveMinPacketCount" features showing

clusters of features in normal and anomalous states

University of Genoa 124

Chapter 3. LoRa gateway IDS

training dataset.

When new samples fall inside the frontier, they are considered as coming from

a communication made in "normal" situation. Otherwise, if they falls outside the

frontier, we can say with some degree of certainty that they are novel and coming

from transmissions made under jamming attack.

One common way of performing novelty detection is to assume that the normal

dataset (inlier) comes from a known distribution (by example Gaussian). Then we

generally try to define the “shape” of the data in the n-dimensional feature space,

and the samples which stand far enough from the frontier contour can be defined

as outlier/novelty.

The scikit-learn provides a Robust Covariance method that applies a robust

covariance estimation to the training dataset, and surrounds with an ellipse the

central part of the data points ignoring all points outside the central part. The

distance from this elliptical frontier is considered to classify the samples as inlier

or outlier/novelty.

The OCSVM is an unsupervised outlier/novelty detection ML algorithm and

has been introduced by [22]. A classic Support Vector Machine (SVM) ML al-

gorithm search an hyperplane that separates two classes of samples keeping the

maximum possible distance from all n-dimensional samples. The OCSVM finds a

hyper-plane that separates the given dataset from the n-dimensional origin keep-

ing the hyperplane at the minimum distance from all datapoints. To be able to

encompass a non-linear frontier, we use an Radial Basis Function (RBF) as kernel.

One efficient way of performing novelty detection is to use the iForest ML

algorithm introduced by [23]. The samples are ‘isolated’ by using a recursive

partitioning of the feature hyperplane by randomly selecting both a feature and a

split value between its maximum and minimum values. The recursive partitioning

can be seen as a decision tree. The number of splittings required to isolate a sample

University of Genoa 125

Chapter 3. LoRa gateway IDS

correspond to length of the path from the tree root node to the leaf node. This

measure, averaged over an ensemble of trees (a forest), can be used to discriminate

between a normal or abnormal/novel sample because the random partitioning

produces shorter paths for anomalies.

The LOF ML algorithm identifies anomalous/novel samples measuring the local

density deviation of a given data point with respect to its neighbours. A normal

sample is expected to have a local density similar to the one of its neighbours, while

abnormal data are expected to have much smaller local density. The number k

of neighbours considered can be selected by the user. The question is not how

isolated the sample is, but how isolated it is with respect to the surrounding

neighbourhood.

Table 3.5 summarises the features considered to be used with a ML algo-

rithm for the novelty identification. The features "fiveMinPacketCount" and "inter-

arrivalTime", both described at page 93, are linearly dependent so it is not useful

to use these features together. We can try grouping the remaining features in

order to generate, if possible, "normal" and "anomalous" clusters well separated

on the feature plane. We can use the "SNR" feature, both described at page 91,

together with "fiveMinPacketCount" or "interarrivalTime" to build two groups of

features A = ["fiveMinPacketCount", "SNR"] and B = ["interarrivalTime", "SNR"

]. Both groups take into consideration the communication periodicity and the elec-

tromagnetic noise of the radio channel where the LoRa transmission takes place.

The "fiveMinPacketCount" feature keeps track of the number of packets received

in the last 5 minutes while the "interarrival" feature measures the time between

two consecutive messages. Both of these features allow you to keep track of the

traffic volume of LoRa packets and the timing properties (periodicity, minimum

∆T) of sending data from the LoRa end node. In case of periodic transmissions,

the number of packets sent in an interval of time larger than the LoRa end node

University of Genoa 126

Chapter 3. LoRa gateway IDS

Features Description Notes

"fiveMinPacketCount" number of packet received in

5 minutes.

In case of periodic transmissions the

number of packets sent in an inter-

val of time larger than the LoRa end

node periodic transmission leads to

a stable number of sent packets.

"interarrivalTime" interarrival time between two

consecutive LoRa packets

remains constant in case of fixed pe-

riodic data transmission.

"SNR" ratio of the Signal power over

the signal Noise in dB

depends on both signal and noise

powers, so a low "SNR" value is ex-

pected for packets coming from long

distance. However, a low "SNR"

value can be expected also for sig-

nals sent from near devices when the

noise power is high.

Table 3.5: Considered features for the detection of RF jamming

periodic transmission leads to a stable number of sent packets. The "SNR" feature

is extracted directly from the "lsnr" field present in the Push Data message (Op-

eration ID 0x00) of the LoRa protocol inside the JSON item "rxpk" (see chapter

3.4.1)

When a jammer succeed in jamming all LoRa transmissions, the number of

packets received in 5 minutes drop to zero and the "interarrivalTime" between

consecutive packets grows reaching a value of tens of seconds. In the case of a

jamming attack, sometimes a packet overcomes the high level of noise and the dis-

tortions suffered by the signal waveform. These packets successfully complete the

demodulation and decoding phase of the LoRa protocol by reaching the application

layer and then forwarded to the LoRa server via the LoRa forward protocol. At the

same time, the LoRa forward protocol is intercepted and analysed by the LoRa-

University of Genoa 127

Chapter 3. LoRa gateway IDS

JamIDS which extracts the "SNR" features and updates the "fiveMinPacketCount"

and "interarrivalTime" features. The same jamming operation can potentially be

detected by both groups of features. The identification occurs for the A feature

group when both the "SNR" feature and the "fiveMinPacketCount" feature have

very low values. For the B group it happens when the "SNR" feature has very

low values and at the same time the "interarrivalTime" feature reaches very high

values.

All the four tested algorithms allow, through the contamination parameter,

to specify the proportion of outliers in the training dataset. In the case that

the training dataset contains a certain percentage of anomalous samples, linked

for example to transmissions received from very distant sensors that have low

"SNR", the training was repeated with different contamination values (as show in

Table 3.6) to verify which value guarantees the better performance. The features

extracted from the communications captured in the absence of jamming (Figures

3.23 and 3.21) has been used as training dataset.

Then the LoRaJamIDS was tested by using the features extracted from the

communications captured in the presence of jamming. (Figures 3.51 and 3.52).

Figures 3.54 and 3.55 show the results changing the group of features (A or

B), ML algorithm and contamination factor (0.01, 0.05, 0.1, 0.5).

The presence of separated clusters of features eases the work of some ML algo-

rithms, for example as happens in the Robust Covariance in Figure 3.56. During

the training phase of this algorithm the learned elliptical barrier can encompass

the "normal" cluster avoiding to keep inside a vast part of the empty areas. The

group A or B can lead to a better clustering of the feature array depending on

the type of decision surface (hyperplane or rules) as show in Figures from 3.56 to

3.59. The group A, composed of "fiveMinPacketCount" and "SNR" features, has a

better shape (more compact) so the learned barrier of tested ML algorithms can

University of Genoa 128

Chapter 3. LoRa gateway IDS

Figure 3.54: Robust covariance and One Class SVM, changing contamination

factor and feature group (A for Odd columns and B for even columns).

University of Genoa 129

Chapter 3. LoRa gateway IDS

Figure 3.55: Isolation Forest and Local Outlier Factor, changing contamination

factor and feature group (A for Odd columns and B for even columns).

University of Genoa 130

Chapter 3. LoRa gateway IDS

Algorithm parameters dataset

contamination

Robust covariance Elliptical frontier shape

0.01

0.05

0.10

0.50

Isolation Forest 100 samples used to train each base estimator

0.01

0.01

0.10

0.50

One Class SVM RBF kernel with gamma 0.1

0.01

0.05

0.10

0.50

Local Outlier

Factor
35 neighbours analized during k-neighbours search

0.01

0.05

0.10

0.50

Table 3.6: Tested ML algorithms with parameters

fit well the cluster of "normal" state features.

The ML algorithm that guarantees the best performance for the identification

of anomalies/novelty remains to be determined. Figures from 3.56 to 3.59 show

how each algorithm separates the samples with similar property on what they

have seen during the training and all other sample candidates to be marked as

"novel". They also show an empirical visual estimate of the best fit as the ML

algorithms vary. As expected, the learned frontier is reduced increasing the value

of contamination, leading to an higher rate of false negative. For all algorithm

the better precision is achieved with a contamination factor of 0.01. The decision

surface of LOF, show in figure 3.59, seem the better to match the characteristics

University of Genoa 131

Chapter 3. LoRa gateway IDS

Figure 3.56: Robust covariance on feature group A (above) and group B (below).

University of Genoa 132

Chapter 3. LoRa gateway IDS

Figure 3.57: Isolation Forest on feature group A (above) and group B (below).

University of Genoa 133

Chapter 3. LoRa gateway IDS

Figure 3.58: One class SVM on feature group A (above) and group B (below).

University of Genoa 134

Chapter 3. LoRa gateway IDS

Figure 3.59: Local Outlier Factor on feature group A (above) and group B

(below).

University of Genoa 135

Chapter 3. LoRa gateway IDS

Figure 3.60: Confusion matrix for Robust covariance algorithm

Figure 3.61: Confusion matrix for Isolation Forest algorithm

Figure 3.62: Confusion matrix for One-Class SVM algorithm

University of Genoa 136

Chapter 3. LoRa gateway IDS

Figure 3.63: Confusion matrix for Local Outlier Factor algorithm

of normal behaviour of the selected features. To confirm the facts, the confusion

matrix was calculated for each of the considered ML algorithms in order to identify

the one with the best performance. The confusion matrices are shown in Figures

from 3.60 to 3.63 in both normalised (on the left) and not normalised form (on

the right). The confusion matrix of the iForest ML algorithm shown in Figure

3.61 has a high rate of false negatives (19%) and cannot be considered reliable

when compared with the others algorithm. With the exclusion of the iForest ML

algorithm, all the others algorithm can be used to detect novelty.

An example of the LoRaJamIDS output is show in Figure 3.64. The first

column contains the tree features of the sample to be classified followed by the

classification results of the fourMLalgorithm.

[9 60.002824 1.5] Robust cov -1.0 OC-SVM -1.0 iForest -1.0 LOF -1.0

[10 4.92456 11.] Robust cov -1.0 OC-SVM -1.0 iForest 1.0 LOF -1.0

[11 33.84149 11.5] Robust cov -1.0 OC-SVM -1.0 iForest 1.0 LOF -1.0

[12 15.831349 -18.8] Robust cov -1.0 OC-SVM -1.0 iForest -1.0 LOF -1.0

[12 5.402017 2.] Robust cov -1.0 OC-SVM -1.0 iForest -1.0 LOF -1.0

Figure 3.64: Textual dump of LoRa IDS classification output. False Negatives

are show in red color.

University of Genoa 137

Chapter 3. LoRa gateway IDS

The LoRaJamIDS can be executed locally, inside the LoRa gateway, or re-

motely. The logic is the same, the only difference is in the network packet capture

phase where the remotely executed LoRaJamIDS has the necessity to receive a

copy of the LoRa forward protocol traffic. This traffic can be captured inside

the gateway using an SSH channel or duplicated by any network appliance (by

example switch, router or firewall) through which the communication passes.

This paragraph describes the logic of LoRaJamIDS running locally on the gate-

way. The flowchart is shown in figure 3.65.

The IDS begins its execution with a network packet capture cycle. This cycle

is concluded at the request of the user. For each packet captured, the program

analyses only those belonging to the UDP protocol with source or destination

ports set to 1700 which characterise the LoRa forward protocol. Each of these

communication packets is analysed and all the unencrypted fields presented in

Chapter 3.4.1 are extracted. The program extracts the "lsnr" field from the "rxpk"

information and updates the number of packets received in the last five minutes.

These two values are the group of features A which are passed to one of the

previously selected and trained novelty detection ML algorithms. If these features

are classified as "novelty", the program prints an alert on the console. This action

can be extended by alerting an external monitoring system. At the end of this

cycle, if the user has requested to exit the program, the execution ends by releasing

all resources. Otherwise the cycle resumes waiting for new network packets.

3.10 Possible industrial applications

Many companies use sensors with LoRa technologies to gather and send to the

headquarter various measurements necessary for remote monitoring of the pro-

cess. For example, in water or gas pipelines the pressure is monitored at different

University of Genoa 138

Chapter 3. LoRa gateway IDS

Start

capture network data

UDP packet with source or

destinazion port 1700 ?

Extracts headers and messages of

LoRa forward protocol

Compute "fiveMinPacketCount"

and extract "SNR" features

classify the features using

novelty detection ML algorithms

data classified as novelty ?

Print or send an alert

exit requested ?

Stop

no

yes

yes

no

yes

no

Figure 3.65: Flowchart of the Lora Jam IDS

University of Genoa 139

Chapter 3. LoRa gateway IDS

points in the network, even far away from the control room. In the management

of smart reefer many physical measurements are carried out at various locations

and sent back to the company headquarter. In addition to this information, it is

possible to receive automatic reports relating to failures in the refrigerant system

or security breaches of the container. In this context, the use of LoRa technology

to communicate sensor data overcomes the problems of other wireless technologies

such as Bluetooth, which are not robust enough to penetrate the insulation of the

refrigerated container. During land transport of smart reefer, the LoRa gateway

services can be provided by truck or railway infrastructure. Port infrastructures

can guarantee the forwarding of LoRa radio packets by providing integrated gate-

ways on the quays. During maritime transport, even on the high seas, the ship can

provide a LoRa gateway service through its network with satellite Internet uplink.

Each of these applications can be subject to RF jamming which, as presented in

the 3.7 chapter, is easy to implement with low cost hardware.

Many players may be interested in deploying systems capable of detecting this

type of threat. LoRa gateway systems manufacturers may be interested in pro-

viding a system capable of detecting and reporting this type of threat. The same

service can be provided, at the request of the customer, by any data network

service provider that conveys the LoRa forward protocol communications, for ex-

ample Internet Service Providers (ISP) or cellular networks, as the information

used to generate the features is not encrypted. The LoRaJamIDS can be installed

in many locations within an IP network as show in figure 3.66. Upon authorisation

of the customer, the ISP can run it within its own network wherever he wants (for

example on the edge or the core network). The vendors of LoRa gateway systems

can provide the onboard service by reporting any attacks also through onboard

LED or acoustic signals. Finally, the LoRaJamIDS can also reside within the LoRa

application server.

University of Genoa 140

Chapter 3. LoRa gateway IDS

Figure 3.66: potential position of services offered for IDS jamming detection

When the LoRaJamIDS is integrated into the LoRa gateway, it must be keep

in mind that any problem in the Internet connection would make impossible to

receive the alerts. To avoid this possibility, it is necessary to constantly monitor

the accessibility of the LoRa gateway through the Internet. Furthermore, when

designing the gateway, the LoRaJamIDS requests (albeit minimal) for computing

resources, memory, disk space and network communication must be taken into

account. In the event that the communication takes place through network equip-

ment owned by the same company, it is possible to forward, by using port mirroring

or similar technology, a copy of the UDP packets with source or destination port

equal to 1700 to an external monitoring system where the LoRaJamIDS is exe-

cuted without any computational burden for the gateway. If it is not possible to

intercept these packets when they pass through the data network, it is still pos-

sible to capture them inside the LoRa gateway and forward them directly to the

monitoring server. However, in this case the communication would be duplicated

University of Genoa 141

Chapter 3. LoRa gateway IDS

and the number data to be sent to the internet would increase.

When the LoRaJamIDS is run remotely and is necessary to limit the number of

data sent through the Internet, the program can be easily split into two modules.

A probe can reside inside the LoRa gateway taking care of the interception of the

LoRa forward protocol and the extraction of the features ["fiveMinPacketCount",

"SNR"]. The probe would communicate only the features (3 floating point values)

to a remote analysis and alerting module capable of processing them and sending

reports. Furthermore, the remote module would automatically detect any inter-

ruption in the connection between the probe and the internet. This minimises the

use of particularly expensive or slow internet connections.

3.11 Related work

The authors of [24] presents the design goals and the techniques, which different

LPWA technologies exploit to offer wide-area coverage to low- power devices at the

expense of low data rates. They also present as future challenges the interference

control and mitigation. They point out that the increase in the number of devices

expected in the next years combined with the use of the simple ALOHA scheme

to content the RF channel access will cause a deterioration in performance and

higher interference.

An overview of the capabilities and the limitations of LoRaWAN are discussed

in [25]. The authors present different use case scenario with positive and negative

issues. One issue is that LoRa to to cope with higher interference levels use of

larger Spreading Factor and this could cause an increase in collision probability.

Different studies present the problem related to the fact that the same trans-

missions can unintentionally collide with each other when the number of devices

present in the area is high. [26] demonstrate that the collision resolution approach

University of Genoa 142

Chapter 3. LoRa gateway IDS

used in LoRawan is inefficient with a high number of lora end notes and leads

to collision avalanches. [27] shows that in a dense LoRa multicell system the in-

tercell interference cause non-negligible performance degradation. [28] present a

theoretical expressions for both the collision and the packet loss probabilities in a

LoRaWAN network.

The Wireless Communication jamming method are discussed in [29], [30] and

[31]. Four jamming method are described: constant, deceptive, random and re-

active jammer. The constant jammer continuously sends jamming signal with a

waveform unrelated to the modulation used by the legitimate traffic. The decep-

tive jammer continuously sends legitimate packets. This can be seen as a wireless

media congestion by the media channel access logic controllers. The random jam-

mer activate it jamming signal at random time. It stays On for a user selectable

period of time, then it switches Off and stays silent for another user selectable

period of time. The reactive jammer continuously monitor the radio channel and

switch on the jammer signal only when a legitimate traffic is detected. The au-

thors of [32] describe the LoRa network stack and present different types of attacks

using COTS hardware, including an selective jamming attack. The selective jam-

mer continuously monitor the radio channels and switch on the jammer signal

only when a legitimate traffic sent by a specific devices (identified by its EUI) is

detected. In [33] several possible threads agaist LoRaWAN are analyzed, includ-

ing RF jamming where the authors call attention to the difficulty of identifying a

selective jamming.

The authors of [24] employ a FM signal with 200 kHz bandwidth to interfere

with one specific LoRa channel; A similar jamming attack on LoRa Infrastructure

is proposed in [34] but use a valid LoRa Radio Packet as jamming signal. A mea-

sure of packet loss under white gaussian noise interference signal was discussed

in [35]. The study highlight the robustness of the LoRa communication proto-

University of Genoa 143

Chapter 3. LoRa gateway IDS

col versus different level of White Gaussian depending on is the values of LoRa

parameters Bandwidth, Spreading Factor, transmission power and coding rate.

A detailed list of current solutions and open issues of the LoRa and LoRa

network is presented in [36].

The author of [37] propose an IDS for the detection of jamming attacks in a

LoRaWAN network based on the analysis of some property of the Join procedure

affected by the jamming signal. To use this IDS we must have a LoRa end node

always performing a join procedure (every 30 seconds) to be able to detect the

presence of a jammer. They also present the realisation of a reactive jammer

by using the Channel Activity Detection (CAD) mode of LoRa RF transceiver

SX1271. The CAD is used for preamble detection of LoRa preamble. The detection

of a valid preamble is used to switch On the jamming signal to interfere with the

data transmission in LoRaWAN. In [38] the same approach is used to detect the

presence of a Wireless Power Transfer (WPT) near the LoRa end node. This

can be done because the WPT signal causes the same effect of a jamming on the

RSSI. The RSSI is used to generate the random number used as random number

(Nonce) in the Join procedure. The detection used by these two papers [37] and

[38] identifies the presence of a jammer or WPT monitoring the randomness of the

random number used as Nonce in the join procedure. An experimental evaluation

of the jamming threat in LoRaWAN is presented [39]. The writers use normal

LoRa Commercial off-the-shelf (COTS) as jammer device. In [40] is present a deep

analysis of LoRaWAN physical layer jamming using chirp signals. The authors also

present a countermeasure able to separate jamming chirp from legitimate chirp

signals and correctly decode the packet.

University of Genoa 144

Chapter 3. LoRa gateway IDS

3.12 Conclusion

In this chapter, the idea presented in Chapter 1 has been extended to LoRaWAN

systems. I put under analysis the LoRaWAN network because the packet is en-

crypted and deep packet analysis is impossible to do without knowing the secret

encryption keys, so an approach based on statistical features is the only feasible

way to build an IDS.

The idea born from the analysis of SDN-SF-IDS latency done at the end of the

first chapter can be applied to characterise some properties of the radio channels

used to transmit LoRa packets or features intrinsic to the transmission sequences

logic used by an IoT application. These property can be used to characterise the

normal operation state of a LoRa network trying to detect anomalies related to

specific type of malicious attacks.

In my experimental setup, I realised a scenario of temperature monitoring

for smart agriculture or something similar use cases. The IoT application logic

expects to receive the environmental temperature from the LoRa end node every

30 seconds. When the radio channel is in a normal state, the number of packets

sent and received in 5 minutes is constant. This packet rate or the packet inter-

arrival time can change in case of LoRa end node hardware problems (battery

exhausted, hardware fault) or problem on the radio channel (signal collisions,

jamming attack, etc). Also features strictly related on the quality of the radio

communication channel (RSSI or SNR) can be useful to detect problems related

to the radio media. These two features have been used together to realise the

LoRa IDS able to detect a radio jamming. This is detected as an anomaly (novel

data) by a correctly trained LOF algorithm.

Differences can arise also when a new device enter the system or when an

already seen device changes its throughput. The quality of the training dataset is

crucial to minimise the false anomalies. Otherwise, the presence of a valid traffic

University of Genoa 145

Chapter 3. LoRa gateway IDS

not present on the training dataset can be detected as outlier.

The reactive jammer needs to process received signals and react in real-time as

soon as possible to be able to disrupt also some parts of the LoRa preamble. This

greatly increases the probability of completely jam the transmission because the

gateway is not able to detect a valid preamble anymore. To be able to detect and

start to jam as soon as possible, the reaction delay of the jammer prototype must be

kept as small as possible. Otherwise, the time passed between the signal detection

and the start of the jamming can be longer than the LoRa signal preamble. The

jammer still working thanks to a strong corruption of the physical header and

payload symbols. The CRC used in LoRa is not able to correct the decoding

errors when the number of corrupted symbols is high. These reaction time is a

sum of latencies generated by different causes. It depends from the size of the SDR

acquisition buffer and sampling rate, the time needed to transfer the samples on

USB bus, the DSP operations used to detect the presence of a signal and to create

the jamming signal, the copy of sample in computer memory between different

GNU Radio blocks, the kernel scheduling and so on. The jamming prototype

implemented on a personal computer with Intel i5 CPU and 16GB of RAM is able

to reach good jamming performance but the CPU load is high.

3.13 Future work

During this research, I collected both normal traffic and traffic under attack and

uses novelty detection ML algorithms to detect abnormal situations.

The feature analysis can be extended and investigated in different directions.

Comparing the LoRa forward protocol RTT with the delay of other network con-

nections, it would be possible to discriminate between network congestion, local

system overloads or other possibility. Sudden changes of datarate can be related

University of Genoa 146

Chapter 3. LoRa gateway IDS

to an unauthorised upgraded of the firmware.

The presence of a deceptive jammer15 can be detect through an increase of the

received LoRa end node messages.

The presence of a reactive jammer16 or shot noise-based intelligent jammer17

can be detected through an increase of the Physical CRC errors. The presence of

one constant jammer can be detected by a SDR analysing the Power Spectrum of

the LoRa frequencies.

This jamming algorithm can be implemented inside the SDR card giving un-

expected reaction speed, but the required skill can be really high.

15constantly transmitting illegitimate packets in order to keep the channel busy
16acting only when a LoRa packet is transmitted
17transmits repeated impulses to corrupt the CRC used by packets, so that they are discarded

by the Gateway

University of Genoa 147

Chapter 4

Conclusions

Time-based properties related to repetitive and stable operation done by a digital

system can be used to detect anomalies. Any difference on expected values of these

time-based property can be due to changes in the software, to hardware problems

or to malicious attacks.

In the first chapter, I measured the ∆TT OT latency added by the SDN-SF-IDS

to the analized network packet. These timings can be seen under another point

of view. It is possible to analize the SDN-SF-IDS latency to separate the network

packet in two groups: packets with delay under 20 ms and packets with delays

over 20 ms.

The majority of packets takes a short time to pass through the SDN-SF-IDS

system, falling into the first group. These packets consist of all network packets

except the first packet of each new TCP or UDP flow detected by the SDN-SF-IDS.

All first packets of the new TCP or UDP flows fall in the second group, because

the number of operations performed before forwarding these packets is so greater

than the operations normally performed by the SDN-SF-IDS system, that it is not

possible for the two groups to overlap.

The gap between these two groups is higher than the fluctuations of ∆TT OT

148

Chapter 4. Conclusions

delays related to normal OS operation.

An overload of the OS during the forwarding of a packet of the first group

can add enough delay to enter in the second group. Thanks to the current high

computational resources of personal computer, these OS overloads are rare and

can be ignored.

In the second chapter, this idea has been extended to LoRaWAN systems.

I analysed a LoRaWAN network, one of the most used LPWAN solutions. My

interest is mainly due to the fact that the packet is encrypted and deep packet

analysis is impossible to do without knowing the secret encryption keys. An ap-

proach based on statistical features is the only feasible way to build an IDS. The

idea born from the analysis of SDN-SF-IDS latency done at the end of the first

chapter can be applied to characterize some properties of the radio channels used

to transmit LoRa packet or property intrinsic to the transmission sequences logic

used by an IoT application. These property can be used to characterize the normal

operation state of a LoRa network trying to detect anomalies related to specific

type of malicious attacks.

In my experimental setup, I realized a scenario of temperature monitoring.

The employed LoRa end nodes send environmental temperature every 30 seconds.

When the radio channel is in a normal state, the number of packets sent and

received in 5 minutes is constant. This packet rate or the packet inter-arrival

time can change in case of LoRa end node hardware problems (battery exhausted,

hardware fault) or problem on the radio channel (signal collisions, jamming attack,

etc). Also feature strictly related on the quality of the radio communication chan-

nel (RSSI or SNR) can be usefull to detect problems related to the radio media.

These two features have been used together to realize the presented LoRa IDS able

to detect a radio jamming. Radio jamming is detected as an anomaly (novel data)

by a correctly trained LOF algorithm.

University of Genoa 149

Chapter 4. Conclusions

Differences can arise also when a new device enters the system or when an

already seen device changes its throughput. The quality of the training dataset is

crucial to minimize the false anomalies. Otherwise, the presence of a valid traffic

not present on the training dataset can be detected as outlier.

4.1 Future Work

This idea of characterizing the normal state of a digital system can be extended

to any type of system with known or unknown internal logic. Features based on

packet rate or delay can be used to detect reactive jamming and signal collision.

An unauthorized change in a firmware of an industrial system can lead to changes

in the behaviour of the system itself.

For example, when the use of the system CPU unexpectedly increases, it can

lead to higher temperature in the system case, and a different number of operations

performed within a firmware procedure can change the execution times or the du-

ration of the system calls. These properties can be measured passively or actively

also for systems and protocols based on proprietary solutions. All these parame-

ters can be monitored through novelty detection or anomaly detection algorithms

in order to detect any unexpected change as an anomaly.

University of Genoa 150

Bibliography

[1] F. Bigotto, L. Boero, M. Marchese, and S. Zappatore, “Statistical fingerprint-

based ids in sdn architecture,” in SummerSim-SPECTS - Society for Modeling

& Simulation International (SCS), Bordeaux, FR, France, Jul. 2018.

[2] L. Boero, M. Cello, M. Marchese, E. Mariconti, T. Naqash, and S. Zappa-

tore, “Statistical fingerprint-based intrusion detection system (sf-ids),” Inter-

national Journal of Communication Systems, vol. 30, no. 10, 2016.

[3] S. Seeber, L. Stiemert, and G. D. Rodosek, “Towards an sdn-enabled ids

environment,” in 2015 IEEE Conference on Communications and Network

Security (CNS), 2015, pp. 751–752.

[4] S. Seeber and G. D. Rodosek, “Towards an adaptive and effective ids using

openflow,” in AIMS, 2015.

[5] P. Mishra, V. Varadharajan, U. Tupakula, and E. S. Pilli, “A detailed in-

vestigation and analysis of using machine learning techniques for intrusion

detection,” IEEE Communications Surveys Tutorials, vol. 21, no. 1, pp. 686–

728, Firstquarter 2019.

[6] L. N. Tidjon, M. Frappier, and A. Mammar, “Intrusion detection systems: A

cross-domain overview,” IEEE Communications Surveys Tutorials, pp. 1–1,

2019.

151

BIBLIOGRAPHY

[7] Y. Chi, T. Jiang, X. Li, and C. Gao, “Design and implementation of cloud

platform intrusion prevention system based on sdn,” in 2017 IEEE 2nd In-

ternational Conference on Big Data Analysis (ICBDA), 2017, pp. 847–852.

[8] A. M. Quingueni and N. Kitsuwan, “Reduction of traffic between switches and

ids for prevention of dos attack in sdn,” in 2019 19th International Symposium

on Communications and Information Technologies (ISCIT), 2019, pp. 277–

281.

[9] H. Hendrawan, P. Sukarno, and M. A. Nugroho, “Quality of service (qos) com-

parison analysis of snort ids and bro ids application in software define network

(sdn) architecture,” in 2019 7th International Conference on Information and

Communication Technology (ICoICT), 2019, pp. 1–7.

[10] N. Sultana, N. K. Chilamkurti, W. Peng, and R. Alhadad, “Survey on sdn

based network intrusion detection system using machine learning approaches,”

Peer-to-Peer Networking and Applications, vol. 12, pp. 493–501, 2019.

[11] D. P and M. S. K, “Comparative study on ids using machine learning ap-

proaches for software defined networks,” International Journal of Intelligent

Enterprise, 2019.

[12] Y. Li, X. Guo, X. Pang, B. Peng, X. Li, and P. Zhang, “Performance analysis

of floodlight and ryu sdn controllers under mininet simulator,” 2020 IEEE/-

CIC International Conference on Communications in China (ICCC Work-

shops), pp. 85–90, 2020.

[13] M. Paliwal, D. Shrimankar, and O. Tembhurne, “Controllers in sdn: A review

report,” IEEE Access, vol. 6, pp. 36 256–36 270, 2018.

[14] J. Xie, D. Guo, X. Li, Y. Shen, and X. Jiang, “Cutting long-tail latency of

University of Genoa 152

BIBLIOGRAPHY

routing response in software defined networks,” IEEE Journal on Selected

Areas in Communications, vol. 36, no. 3, pp. 384–396, March 2018.

[15] M. A. Albahar, “Recurrent neural network model based on a new regu-

larization technique for real-time intrusion detection in sdn environments,”

Security and Communication Networks, vol. 2019, p. 8939041, Nov 2019.

[Online]. Available: https://doi.org/10.1155/2019/8939041

[16] T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and M. Ghogho, “Deep

recurrent neural network for intrusion detection in sdn-based networks,” in

2018 4th IEEE Conference on Network Softwarization and Workshops (Net-

Soft), 2018, pp. 202–206.

[17] D.-M. Ngo, C. Pham-Quoc, and T. N. Thinh, “Heterogeneous hardware-based

network intrusion detection system with multiple approaches for sdn,” Mobile

Networks and Applications, vol. 25, pp. 1178–1192, 2020.

[18] C. Hong, K. Lee, J. Hwang, H. Park, and C. Yoo, “Kafe: Can os kernels

forward packets fast enough for software routers?” IEEE/ACM Transactions

on Networking, vol. 26, no. 6, pp. 2734–2747, Dec 2018.

[19] S. Sharma, “Substation communication with iec 61850 and application

examples,” Dec. 2016, page 18. [Online]. Available: https://web.archive.or

g/web/20180218233431/http://www04.abb.com/global/seitp/seitp202.nsf/

0/4d1c836b9e7fdb67c12580870047d7c8/$file/1.Chile_+ABB+_Substatio+c

ommunication+with+IEC+61850+and+application+examples.pdf

[20] V. Sushil Joshi, ABB Ltd, “Utilization of goose in mv substation,” in 16th

national power systems conference, Hyderabad, IN, India, Dec. 2010, table II.

[Online]. Available: http://www.iitk.ac.in/npsc/Papers/NPSC2010/6114.pdf

University of Genoa 153

https://doi.org/10.1155/2019/8939041
https://web.archive.org/web/20180218233431/http://www04.abb.com/global/seitp/seitp202.nsf/0/4d1c836b9e7fdb67c12580870047d7c8/$file/1.Chile_+ABB+_Substatio+communication+with+IEC+61850+and+application+examples.pdf
https://web.archive.org/web/20180218233431/http://www04.abb.com/global/seitp/seitp202.nsf/0/4d1c836b9e7fdb67c12580870047d7c8/$file/1.Chile_+ABB+_Substatio+communication+with+IEC+61850+and+application+examples.pdf
https://web.archive.org/web/20180218233431/http://www04.abb.com/global/seitp/seitp202.nsf/0/4d1c836b9e7fdb67c12580870047d7c8/$file/1.Chile_+ABB+_Substatio+communication+with+IEC+61850+and+application+examples.pdf
https://web.archive.org/web/20180218233431/http://www04.abb.com/global/seitp/seitp202.nsf/0/4d1c836b9e7fdb67c12580870047d7c8/$file/1.Chile_+ABB+_Substatio+communication+with+IEC+61850+and+application+examples.pdf
http://www.iitk.ac.in/npsc/Papers/NPSC2010/6114.pdf

BIBLIOGRAPHY

[21] S. Chelluri, “Iec 61850 ... the electrical scada standard and integration with

ddcmis,” 2015, page 37. [Online]. Available: https://nebula.wsimg.com/a49

e00efad15d7b63f58b0ff8bd94956?AccessKeyId=1C24E49FE84FF4D32384&d

isposition=0&alloworigin=1

[22] B. Schölkopf, J. Platt, J. Shawe-Taylor, A. Smola, and R. Williamson, “Es-

timating support of a high-dimensional distribution,” Neural Computation,

vol. 13, pp. 1443–1471, 07 2001.

[23] F. T. Liu, K. Ting, and Z.-H. Zhou, “Isolation forest,” in Isolation Forest, 01

2009, pp. 413 – 422.

[24] L. E. Marquez, A. Osorio, M. Calle, J. C. Velez, A. Serrano, and J. E. Candelo-

Becerra, “On the Use of LoRaWAN in Smart Cities: A Study With Blocking

Interference,” IEEE Internet of Things Journal, vol. 7, no. 4, pp. 2806–2815,

2020.

[25] F. Adelantado, X. Vilajosana, P. Tuset-Peiro, B. Martinez, J. Melia-Segui, and

T. Watteyne, “Understanding the limits of lorawan,” IEEE Communications

Magazine, vol. 55, no. 9, pp. 34–40, 2017.

[26] D. Bankov, E. Khorov, and A. Lyakhov, “On the limits of lorawan channel

access,” in 2016 International Conference on Engineering and Telecommuni-

cation (EnT), 2016, pp. 10–14.

[27] L. Beltramelli, A. Mahmood, M. Gidlund, P. Österberg, and U. Jennehag, “In-

terference modelling in a multi-cell lora system,” in 2018 14th International

Conference on Wireless and Mobile Computing, Networking and Communi-

cations (WiMob), 2018, pp. 1–8.

[28] G. Ferre, “Collision and packet loss analysis in a lorawan network,” in 2017

University of Genoa 154

https://nebula.wsimg.com/a49e00efad15d7b63f58b0ff8bd94956?AccessKeyId=1C24E49FE84FF4D32384&disposition=0&alloworigin=1
https://nebula.wsimg.com/a49e00efad15d7b63f58b0ff8bd94956?AccessKeyId=1C24E49FE84FF4D32384&disposition=0&alloworigin=1
https://nebula.wsimg.com/a49e00efad15d7b63f58b0ff8bd94956?AccessKeyId=1C24E49FE84FF4D32384&disposition=0&alloworigin=1

BIBLIOGRAPHY

25th European Signal Processing Conference (EUSIPCO), 2017, pp. 2586–

2590.

[29] W. Xu, W. Trappe, Y. Zhang, and T. Wood, “The feasibility of launching

and detecting jamming attacks in wireless networks,” in The Feasibility of

Launching and Detecting Jamming Attacks in Wireless Networks, 05 2005.

[30] A. Mpitziopoulos, D. Gavalas, C. Konstantopoulos, and G. Pantziou, “A sur-

vey on jamming attacks and countermeasures in wsns,” Communications Sur-

veys & Tutorials, IEEE, vol. 11, pp. 42 – 56, 01 2009.

[31] K. Pelechrinis, M. Iliofotou, and S. Krishnamurthy, “Denial of service attacks

in wireless networks: The case of jammers,” Communications Surveys & Tu-

torials, IEEE, vol. 13, pp. 245 – 257, 06 2011.

[32] E. Aras, G. S. Ramachandran, P. Lawrence, and D. Hughes, “Exploring the

security vulnerabilities of lora,” in 2017 3rd IEEE International Conference

on Cybernetics (CYBCONF), 2017, pp. 1–6.

[33] I. Butun, N. S. A. Pereira, and M. Gidlund, “Analysis of lorawan v1.1 se-

curity: research paper,” Proceedings of the 4th ACM MobiHoc Workshop on

Experiences with the Design and Implementation of Smart Objects, 2018.

[34] P. V. Wadatkar, B. S. Chaudhari, and M. Zennaro, “Impact of interference on

lorawan link performance,” in 2019 5th International Conference On Comput-

ing, Communication, Control And Automation (ICCUBEA), 2019, pp. 1–5.

[35] L. Angrisani, P. Arpaia, F. Bonavolontà, M. Conti, and A. Liccardo, “Lora

protocol performance assessment in critical noise conditions,” 2017 IEEE 3rd

International Forum on Research and Technologies for Society and Industry

(RTSI), pp. 1–5, 2017.

University of Genoa 155

BIBLIOGRAPHY

[36] J. P. Shanmuga Sundaram, W. Du, and Z. Zhao, “A survey on lora network-

ing: Research problems, current solutions, and open issues,” IEEE Commu-

nications Surveys Tutorials, vol. 22, no. 1, pp. 371–388, 2020.

[37] S. M. Danish, A. Nasir, H. K. Qureshi, A. B. Ashfaq, S. Mumtaz, and J. Ro-

driguez, “Network intrusion detection system for jamming attack in lorawan

join procedure,” in 2018 IEEE International Conference on Communications

(ICC), 2018, pp. 1–6.

[38] S. M. Danish, H. K. Qureshi, and S. Jangsher, “Jamming attack analysis of

wireless power transfer on lorawan join procedure,” in 2018 IEEE Globecom

Workshops (GC Wkshps), 2018, pp. 1–6.

[39] C.-Y. Huang, C.-W. Lin, R.-G. Cheng, S. J. Yang, and S.-T. Sheu, “Ex-

perimental evaluation of jamming threat in lorawan,” in 2019 IEEE 89th

Vehicular Technology Conference (VTC2019-Spring), 2019, pp. 1–6.

[40] N. Hou, X. Xia, and Y. Zheng, “Jamming of lora phy and countermeasure,”

in IEEE INFOCOM 2021 - IEEE Conference on Computer Communications,

2021, pp. 1–10.

University of Genoa 156

	Abstract
	List of Figures
	List of Tables
	List of listings
	List of acronyms
	List of special terms
	Introduction
	Analysis of delay added by an IDS
	Introduction
	Intrusion Detection System
	State of the art IDS and SDN
	Creation of the prototype SDN-SF-IDS
	Description of the implemented SDN-SF-IDS infrastructure
	Delays introduced on the network monitored by SDN-SF-IDS
	Minimize delays
	Auxiliary scripts to support experiments
	Final prototypes
	Delay measurement TTOT
	Method of measurement
	Loading data
	Measurement graphs
	System A2B5 (hardware SDN switch)
	Measurements of packet forwarding delay SDN software B4 switch in bridge mode
	System delay measurements A2B4

	Conclusions
	Future work

	LoRa gateway IDS
	Introduction
	IoT infrastructure and LoRaWAN
	LoRa packet forwarder analysis
	LoRa forward protocol
	Upstream protocol
	Downstream protocol
	Information extracted from network packet analysis

	Analysis of captured data
	Monitoring the connection between LoRa Gateway and LoRa Server
	Monitoring the connection between end nodes and LoRa Gateway (and LoRa Server)

	Software Defined Radio and LoRa physical layer
	LoRa signal jamming testbed
	Software Defined Radio useful tools
	LoRa temperature sensing IoT demoboard

	Analysis of features during jamming
	LoRa IDS to detect RF jamming
	Possible industrial applications
	Related work
	Conclusion
	Future work

	Conclusions
	Future Work

