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ABSTRACT
We consider an anisotropic (p, 2)-equation, with a parametric and
superlinear reaction term.We show that for all small valuesof theparameter
the problemhas at least five nontrivial smooth solutions, fourwith constant
sign and the fifth nodal (sign-changing). The proofs use tools from critical
point theory, truncation and comparison techniques, and critical groups.
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1. Introduction

Let � ⊆ R
N be a bounded domain with a C2-boundary ∂�. In this paper, we study the following

anisotropic (p, 2)-equation{−�p(z)u(z)−�u(z) = λf (z, u(z)) in �,
u
∣∣∣
∂�

= 0, λ > 0.
(Pλ)

In this problem, the exponent p : � → (1,+∞) is Lipschitz continuous and 2 < p− = min� p. By
�p(z), we denote the variable exponent (anisotropic) p-Laplacian, defined by

�p(z)u = div (|∇u|p(z)−2∇u) for all u ∈ W1,p(z)
0 (�).

The reaction of the problem is parametric, with λ > 0 being the parameter. The function f (z, x) is
measurable in z ∈ �, continuous in x ∈ R. We assume that f (z, ·) is (p+ − 1)-superlinear as x →
±∞ (p+ = max� p) but without satisfying the usual in such cases Ambrosetti-Rabinowitz condition
(the AR-condition for short). Our goal is to prove a multiplicity theorem for problem (Pλ) providing
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sign information for all the solutions produced. Using variational tools from the critical point theory,
togetherwith suitable truncation and comparison techniques and alsoMorseTheory (critical groups),
we show that for all small values of the parameterλ > 0 the problemhas at least five nontrivial smooth
solutions (four of constant sign and the fifth nodal (sign-changing)).

Theorem 1.1: If hypotheses H0,H1 hold, then there exists λ∗ > 0 such that for all λ ∈ (0, λ∗) problem
(Pλ) has at least five nontrivial smooth solutions u0, û ∈ int C+, v0, v̂ ∈ −int C+, y0 ∈ C1

0(�) nodal.

Remark 1.1: The hypothesesH0,H1 and spaces C+,C1
0(�) are defined in the next section. We stress

that the above multiplicity theorem provides sign information for all the solutions.

Anisotropic equations arise in a variety of models of physical processes. We mention the works
of Bahrouni-Rădulescu-Repovš [1] (transonic flow problems), R

◦
užička [2] (electrorheological and

magnetorheological fluids), Zhikov [3] (nonlinear elasticity theory), and Agarwal-Alghamdi-Gala-
Ragusa [4], Ragusa-Tachikawa [5] (double phase problems). Recently there have been some existence
andmultiplicity results for various types of (p, q)-equations with nonstandard growth.We refer to the
works ofGasiński-Papageorgiou [6], Rădulescu-Repovš [7], Rădulescu [8], Papageorgiou-Rădulescu-
Repovš [9], Papageorgiou-Scapellato [10], Papageorgiou-Vetro [11], Zhang-Rădulescu [12]. They
produce at most three nontrivial solutions, but no nodal solutions. We also mention the recent
isotropic works of Li-Rong-Liang [13], Papageorgiou-Vetro-Vetro [14] producing two positive solu-
tions for (p, 2)- and (p, q)-equations, respectively, and the recent work of Papageorgiou-Scapellato
[15] who consider a different class of parametric equations (superlinear perturbations of the standard
eigenvalue problem) and produce seven solutions, all with sign information.

2. Mathematical background – hypotheses

The analysis of problem (Pλ) requires the use of Lebesgue and Sobolev spaceswith variable exponents.
A comprehensive treatment of such spaces can be found in the book of Diening-Hajulehto-Hästö-
R

◦
užička [16].
Given q ∈ C(�), we define

q− = min
�

q and q+ = max
�

q.

Let E1 = {q ∈ C(�) : 1 < q−} and M(�) = {u : � → R measurable} (as usual we identify two
measurable functions which differ only on a Lebesgue null set). Given q ∈ E1, we define the variable
exponent Lebesgue space Lq(z)(�) as follows

Lq(z)(�) =
{
u ∈ M(�) :

∫
�

|u(z)|q(z) dz < ∞
}
.

This vector space is equipped with the so-called ‘Luxemburg norm’ ‖ · ‖q(z) defined by

‖u‖q(z) = inf

[
λ > 0 :

∫
�

∣∣∣∣u(z)λ
∣∣∣∣q(z) dz ≤ 1

]
.

Then Lq(z)(�) becomes a separable, uniformly convex (hence also reflexive) Banach space. The reflex-
ivity of these spaces leads to the reflexivity of the corresponding Sobolev spaces, which we introduce
below. In reflexive Banach spaces bounded sequences have w-convergent subsequences (Eberlein-
Šmulian theorem).We will be using this fact repeatedly. The dual Lq(z)(�)∗ is given by Lq′(z)(�)with
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q′ ∈ E1 defined by q′(z) = q(z)
q(z)−1 for all z ∈ � (that is, 1

q(z) + 1
q′(z) = 1 for all z ∈ �). Also we have

the following version of Hölder’s inequality∫
�

|u(z)h(z)|dz ≤
[
1
q−

+ 1
q′−

]
‖u‖q(z)‖h‖q′(z) for all u ∈ Lq(z)(�), all h ∈ Lq

′(z)(�).

If q1, q2 ∈ E1 and q1(z) ≤ q2(z) for all z ∈ �, then Lq2(z)(�) ↪→ Lq1(z)(�) continuously.
Now that we have variable exponent Lebesgue spaces, we can define variable exponent Sobolev

spaces. So, if q ∈ E1, then we define

W1,q(z)(�) =
{
u ∈ Lq(z)(�) : |∇u| ∈ Lq(z)(�)

}
,

with ∇u being the weak gradient of u. This Sobolev space is equipped with the norm

‖u‖1,q(z) = ‖u‖q(z) + ‖∇u‖q(z) for all u ∈ W1,q(z)(�).

When q ∈ E1 is Lipschitz continuous (that is, q ∈ E1 ∩ C0,1(�)), then we define the Dirichlet
anisotropic Sobolev spaceW1,q(z)

0 (�) by

W1,q(z)
0 (�) = C∞

c (�)
‖·‖1,q(z) .

Both spacesW1,q(z)(�) andW1,q(z)
0 (�) are separable and uniformly convex (hence reflexive) Banach

spaces.
If q ∈ E1, then we define the critical Sobolev exponent corresponding to q(·) by setting

q∗(z) =
⎧⎨⎩

Nq(z)
N − q(z)

if q(z) < N,

+∞ if N ≤ q(z).

Suppose that q, r ∈ C(�), 1 < q−, r+ < N and 1 ≤ r(z) ≤ q∗(z) for all z ∈ � (resp. 1 ≤ r(z) < q∗(z)
for all z ∈ �). Then the anisotropic Sobolev embedding theorem says that

W1,q(z)(�) ↪→ Lr(z)(�) continuously

(resp.W1,q(z)(�) ↪→ Lr(z)(�) compactly).

The same embedding theorem remains true also for W1,q(z)
0 (�) provided q ∈ E1 ∩ C0,1(�). More-

over, in this case the Poincaré inequality is true, namely, we can find ĉ > 0 such that

‖u‖q(z) ≤ ĉ ‖∇u‖q(z) for all u ∈ W1,q(z)
0 (�).

This means that on the anisotropic Sobolev spaceW1,q(z)
0 (�) we can consider the equivalent norm

‖u‖1,q(z) = ‖∇u‖q(z) for all u ∈ W1,q(z)
0 (�).

The following modular function is very helpful in the study of the anisotropic Lebesgue and Sobolev
spaces. So, let q ∈ E1. We define

ρq(u) =
∫
�

|u(z)|q(z) dz for all u ∈ Lq(z)(�).

For u ∈ W1,q(z)(�), we define ρq(∇u) = ρq(|∇u|).
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The modular function ρq(·) and the Luxemburg ‖ · ‖q(z) are closely related.

Proposition 2.1: If q ∈ E1 and {un, u}n∈N ⊆ Lq(z)(�), then

(a) for all λ > 0 we have

‖u‖q(z) = λ if and only if ρq
(u
λ

)
= 1;

(b) ‖u‖q(z) < 1 ⇔ ‖u‖q+
q(z) ≤ ρq(u) ≤ ‖u‖q−

q(z), ‖u‖q(z) > 1 ⇔ ‖u‖q−
q(z) ≤ ρq(u) ≤ ‖u‖q+

q(z);
(c) ‖un‖q(z) → 0 ⇔ ρq(un) → 0;
(d) ‖un‖q(z) → ∞ ⇔ ρq(un) → ∞.

Suppose that q ∈ E1 ∩ C0,1(�). We have

W1,q(z)
0 (�)∗ = W−1,q′(z)(�).

Then we introduce the operator Aq(z) : W
1,q(z)
0 (�) → W−1,q′(z)(�) defined by

〈Aq(z)(u), h〉 =
∫
�

|∇u(z)|q(z)−2(∇u,∇h)RNdz for all u, h ∈ W1,q(z)
0 (�).

The next proposition summarizes the main properties of this operator (see Gasiński-Papageorgiou
[17], Proposition 2.5, and Rădulescu-Repovš [7], p. 40).

Proposition 2.2: If q ∈ E1 ∩ C0,1(�) and Aq(z) : W
1,q(z)
0 (�) → W−1,q′(z)(�) is defined as above,

then Aq(z)(·) is bounded (maps bounded sets to bounded sets), continuous, strictly monotone
(hence also maximal monotone) and of type (S)+ (that is, if un

w−→ u in W1,q(z)
0 (�) and

lim supn→∞〈Aq(z)(un), un − u〉 ≤ 0, then un → u in W1,q(z)
0 (�)).

Given x ∈ R, we set x± = max{±x, 0}. Then for u ∈ W1,q(z)
0 (�), we define u±(z) = u(z)± for all

z ∈ �. We know that

u± ∈ W1,q(z)
0 (�), u = u+ − u−, |u| = u+ + u−.

If u, v : � → R are measurable functions such that u(z) ≤ v(z) for a.a. z ∈ �, then we define
[u, v] = {y ∈ W1,q(z)

0 (�) : u(z) ≤ y(z) ≤ v(z) for a.a. z ∈ �} and [u) = {y ∈ W1,q(z)
0 (�) : u(z) ≤

y(z) for a.a. z ∈ �}.
We write u � v if and only if for every compact K ⊆ �, we have 0 < cK ≤ v(z)− u(z) for a.a.

z ∈ K. Evidently, if u, v ∈ C(�) and u(z) < v(z) for all z ∈ �, then u � v.
Besides the anisotropic Lebesgue and Sobolev spaces, we will also use the ordered Banach

space C1
0(�) = {u ∈ C1(�) : u|∂� = 0}. The positive (order) cone of C1

0(�) is C+ = {u ∈ C1
0(�) :

u(z) ≥ 0 for all z ∈ �}. This cone has a nonempty interior given by

int C+ =
{
u ∈ C+ : u(z) > 0 for all z ∈ �, ∂u

∂n

∣∣∣
∂�
< 0

}
,

with n(·) being the outward unit normal on ∂�.
Suppose X is a Banach space and ϕ ∈ C1(X). We set

Kϕ = {u ∈ X : ϕ′(u) = 0} (the critical set of ϕ).

We say that ϕ(·) satisfies the ‘C-condition’, if it has the following property:
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‘Every sequence {un}n∈N ⊆ X such that

{ϕ(un)}n∈N ⊆ R is bounded, and

(1 + ‖un‖X)ϕ′(un) → 0 in X∗ as n → ∞,

admits a strongly convergent subsequence’.
Given c ∈ R, we set ϕc = {u ∈ X : ϕ(u) ≤ c}.
Suppose Y2 ⊆ Y1 ⊆ X. For every k ∈ N0 = N ∪ {0}, by Hk(Y1,Y2) we denote the kth-singular

homology group with integer coefficients for the pair (Y1,Y2). Let u ∈ Kϕ be isolated and c = ϕ(u).
Then the critical groups of ϕ at u are defined by

Ck(ϕ, u) = Hk(ϕ
c ∩ U,ϕc ∩ U \ {u}) for all k ∈ N0,

whereU is an open neighborhood of u such thatKϕ ∩ ϕc ∩ U = {u}. The excision property of singu-
lar homology implies that this definition is independent of the choice of the isolating neighborhoodU.

In the sequel, for economy in the notation, by ‖ · ‖ we will denote the norm of the Sobolev space
W1,p(z)

0 (�) (p ∈ E1 ∩ C0,1(�)). On account of the Poincaré inequality mentioned earlier, we have

‖u‖ = ‖∇u‖p(z) for all u ∈ W1,p(z)
0 (�).

Now we are ready to introduce our hypotheses on the data of problem (Pλ).
H0: p ∈ C0,1(�) and 2 < p(z) < N for all z ∈ �.
H1: f : �× R → R is a Carathéodory function such that f (z, 0) = 0 for a.a. z ∈ �, and

(i) |f (z, x)| ≤ a(z)[1 + |x|r(z)−1] for a.a. z ∈ �, all x ∈ R, with a ∈ L∞(�), r ∈ C(�) with p(z) <
r(z) < p∗− for all z ∈ �;

(ii) if F(z, x) = ∫ x
0 f (z, s) ds, then

lim
x→±∞

F(z, x)
xp+ = +∞ uniformly for a.a. z ∈ �;

(iii) there exists μ ∈ C(�) such that

μ(z) ∈
(
(r+ − p−)

N
p−

, p∗(z)
)

for all z ∈ �,

0 < η̂0 ≤ lim inf
x→±∞

f (z, x)x − p+F(z, x)
xμ(z)

uniformly for a.a. z ∈ �;

(iv) there exists τ ∈ (1, 2) such that

lim
x→0

f (z, x)
x

= +∞ uniformly for a.a. z ∈ �,

lim
x→0

f (z, x)
|x|τ−2x

= 0 uniformly for a.a. z ∈ �,

0 ≤ lim inf
x→0

τF(z, x)− f (z, x)x
|x|p+ uniformly for a.a. z ∈ �;

(v) for every ρ > 0, there exists ξ̂ρ > 0 such that for a.a. z ∈ �, the function x → f (z, x)+
ξ̂ρ |x|p(z)−2x is nondecreasing on [−ρ, ρ] and for every s> 0, we have 0 < ms ≤ f (z, x)x for
a.a. z ∈ �, all |x| ≥ s.
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Remark 2.1: HypothesesH1 (ii), (iii) imply that for a.a. z ∈ �, f (z, ·) is (p+ − 1)-superlinear. How-
ever, this superlinearity condition on f (z, ·) is not formulated using the AR-condition which is
common in the literature when dealing with superlinear problems (see, for example, Fan-Deng [18],
Theorem 1.3). Instead we use condition H1 (iii) which incorporates in our framework superlinear
nonlinearities with slower growth as x → ±∞, which fail to satisfy the AR-condition. Consider for
example the function

f (z, x) =
{

|x|θ−2x − x if |x| ≤ 1,
|x|p+−2x ln |x| + [|x|p(z)−2 − 1]x if 1 < |x|,

with θ ∈ (1, 2). This function satisfies hypothesesH1, but fails to satisfy theAR-condition.Hypothesis
H1 (iv) implies the presence of a concave term near zero.

3. Constant sign solutions - multiplicity

In this section, we show that forλ > 0 small, problem (Pλ) has solutions of constant sign (positive and
negative solutions). First we look for positive solutions. To this end, we introduce the C1-functional
ϕ+
λ : W1,p(z)

0 (�) → R defined by

ϕ+
λ (u) =

∫
�

1
p(z)

|∇u(z)|p(z) dz + 1
2
‖∇u‖22 − λ

∫
�

F(z, u+) dz for all u ∈ W1,p(z)
0 (�).

Working with ϕ+
λ (·), we can produce multiple positive smooth solutions when λ > 0 is small.

Proposition 3.1: If hypotheses H0, H1 hold, then there exists λ+ > 0 such that for all λ ∈ (0, λ+)
problem (Pλ) has at least two positive solutions u0, û ∈ int C+, u0 �= û.

Proof: On account of hypotheses H1 (i), (iv), we have

F(z, x) ≤ c1[|x|τ + |x|θ ] for a.a. z ∈ �, all x ∈ R, with c1 > 0, p+ < θ < p∗
−. (1)

Then for every u ∈ W1,p(z)
0 (�), we have

ϕ+
λ (u) ≥ 1

p+
ρp(∇u)− λc1[‖u‖ττ + ‖u‖θθ ] (see (1)).

If ‖u‖ ≤ 1, then by Proposition 2.1 and the Poincaré inequality, we have ρp(∇u) ≥ ‖u‖p+ . Also recall
that W1,p(z)

0 (�) ↪→ Lτ (�) and W1,p(z)
0 (�) ↪→ Lθ (�) continuously. Therefore, for u ∈ W1,p(z)

0 (�)

with ‖u‖ ≤ 1, we have

ϕ+
λ (u) ≥ 1

p+
‖u‖p+ − λc2[‖u‖τ + ‖u‖θ ] for some c2 > 0. (2)

Let α ∈ (0, 1
p+−τ ) and consider ‖u‖ = λα with 0 < λ ≤ 1. Then from (2) we have

ϕ+
λ (u) ≥ 1

p+
λαp+ − c2[λ1+ατ + λ1+αθ ]

=
[
1
p+

− c2
(
λ1−α(p+−τ) + λ1+α(θ−p+)

)]
λαp+ . (3)
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The choice of α > 0 and since θ > p+, imply that

ξ(λ) = c2
[
λ1−α(p+−τ) + λ1+α(θ−p+)

]
→ 0+ as λ → 0+.

Hence we can find λ+ ∈ (0, 1] such that

ξ(λ) <
1
p+

for all 0 < λ < λ+.

Then from (3) we see that

ϕ+
λ (u) ≥ mλ > 0 for all ‖u‖ = λα , all λ ∈ (0, λ+). (4)

Let λ̂1(2) > 0 denote the principal eigenvalue of the Dirichlet Laplacian and û1(2) the corresponding
positive, L2-normalized (that is, ‖̂u1(2)‖2 = 1) eigenfunction. We know that û1(2) ∈ intC+ (see for
example, Gasiński-Papageorgiou [19], p. 739). On account of hypothesisH1 (iv), given η > λ̂1(2)

λ
, we

can find δ > 0 such that

F(z, x) ≥ η

2
x2 for a.a. z ∈ �, all |x| ≤ δ. (5)

Since û1(2) ∈ intC+, we can find t ∈ (0, 1) small such that 0 ≤ t̂u1(2)(z) ≤ δ for all z ∈ �. Then

ϕ+
λ (t̂u1(2)) ≤ tp−

p−
ρp(∇û1(2))+ t2

2
[̂λ1(2)− λη]

(see (5) and recall that ‖̂u1(2)‖2 = 1). (6)

Note that ∫
�

[λη − λ̂1(2)]̂u1(2)2 dz > 0.

Therefore from (6), we have

ϕ+
λ (t̂u1(2)) ≤ c3tp− − c4t2 for some c3, c4 > 0.

Since 2 < p− (see hypothesis H0), choosing t ∈ (0, 1) even smaller if necessary, we have

ϕ+
λ (t̂u1(2)) < 0 and ‖t̂u1(2)‖ ≤ λα . (7)

Using the anisotropic Sobolev embedding theorem (see Section 2), we infer that ϕ+
λ (·) is sequentially

weakly lower semicontinuous. The ball Bλα = {u ∈ W1,p(z)
0 (�) : ‖u‖ ≤ λα} is sequentially weakly

compact (recall thatW1,p(z)
0 (�) is a reflexive Banach space and use the Eberlein-Šmulian theorem).

So, by the Weierstrass-Tonelli theorem, we can find u0 ∈ Bλα such that

ϕ+
λ (u0) = min

[
ϕ+
λ (u) : u ∈ Bλα

]
. (8)

From (7) and (8), it follows that

ϕ+
λ (u0) < 0 = ϕ+

λ (0),

⇒ u0 �= 0.

Moreover, from (4) and (8), we infer that

0 < ‖u0‖ < λα . (9)
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From (9) we see that u0 is an interior point in Bλα and a minimizer of ϕ+
λ . Hence

(ϕ+
λ )

′(u0) = 0,

⇒ 〈Ap(z)(u0), h〉 + 〈A2(u0), h〉 = λ

∫
�

f (z, u+
0 )h dz for all h ∈ W1,p(z)

0 (�). (10)

In (10) we choose h = −u−
0 ∈ W1,p(z)

0 (�) and obtain

ρp(∇u−
0 )+ ‖∇u−

0 ‖22 = 0,

⇒ u0 ≥ 0, u0 �= 0.

From (10), we have that u0 is a positive solution of problem (Pλ) with 0 < λ < λ+. From Fan-Zhao
[20, Theorem 4.1] (see also Gasiński-Papageorgiou [6, Proposition 3.1]), we have that u0 ∈ L∞(�).
Then from Tan-Fang [21, Corollary 3.1] (see also Fukagai-Narukawa [22, Lemma 3.3]), we have that
u0 ∈ C+ \ {0}. Finally, the anisotropic maximum principle of Zhang [23] implies that u0 ∈ intC+.

Now let λ ∈ (0, λ+) and consider 0 < γ < λ. From the previous analysis, we know that problem
(Pγ ) has a positive solution uγ ∈ intC+. We will show that we can have

u0 − uγ ∈ intC+. (11)

First we will show that we can have a solution uγ of (Pγ ) such that uγ ≤ u0. To this end let

g+(z, x) =
{
f (z, x+) if x ≤ u0(z),
f (z, u0(z)) if u0(z) < x.

(12)

This is a Carathéodory function. We set G+(z, x) = ∫ x
0 g+(z, s) ds and consider the C1-functional

ψ+
γ : W1,p(z)

0 (�) → R defined by

ψ+
γ (u) =

∫
�

1
p(z)

|∇u(z)|p(z) dz + 1
2
‖∇u‖22 − γ

∫
�

G+(z, u) dz

≥ 1
p+
ρp(∇u)+ 1

2
‖∇u‖22 − γ

∫
�

G+(z, u) dz for all u ∈ W1,p(z)
0 (�).

From Proposition 2.1 and (12), we see that ψ+
γ (·) is coercive. Also, it is sequentially weakly lower

semicontinuous. So, we can find uγ ∈ W1,p(z)
0 (�) such that

ψ+
γ (uγ ) = min

[
ψ+
γ (u) : u ∈ W1,p(z)

0 (�)
]
. (13)

As before, using hypothesisH1 (iv) and choosing t ∈ (0, 1) small so that we also have 0 ≤ t̂u1(2) ≤ u0
(see Papageorgiou-Rădulescu-Repovš [24], Proposition 4.1.22, p. 274 and recall that u0 ∈ intC+), we
will have

ψ+
γ (t̂u1(2)) < 0,

⇒ ψ+
γ (uγ ) < 0 = ψ+

γ (0) (see (13)),

⇒ uγ �= 0.

From (13) we have

(ψ+
γ )

′(uγ ) = 0,
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⇒ 〈Ap(z)(uγ ), h〉 + 〈A2(uγ ), h〉 = γ

∫
�

g+(z, uγ )h dz for all h ∈ W1,p(z)
0 (�). (14)

In (14), we choose h = −u−
γ ∈ W1,p(z)

0 (�) and have

ρp(∇u−
γ )+ ‖∇u−

γ ‖22 = 0,

⇒ uγ ≥ 0, uγ �= 0.

Next in (14) we choose h = (uγ − u0)+ ∈ W1,p(z)
0 (�). We have

〈Ap(z)(uγ ), (uγ − u0)+〉 + 〈A2(uγ ), (uγ − u0)+〉

≤ λ

∫
�

f (z, u0)(uγ − u0)+dz (since γ < λ)

= 〈Ap(z)(u0), (uγ − u0)+〉 + 〈A2(u0), (uγ − u0)+〉,
⇒ uγ ≤ u0.

So, we have proved that

uγ ∈ [0, u0], uγ �= 0. (15)

As before, from the anisotropic regularity theory and the anisotropic maximum principle, imply that
uγ ∈ intC+. So, we have produced a solution uγ ∈ intC+ of (Pγ ) such that uγ ≤ u0 (see (15)).

Now, let ρ = ‖u0‖∞ and let ξ̂ρ > 0 be as postulated by hypothesisH1 (v). We have

−�p(z)uγ −�uγ + γ ξ̂ρu
p(z)−1
γ

= γ
[
f (z, uγ )+ ξ̂ρu

p(z)−1
γ

]
≤ γ

[
f (z, u0)+ ξ̂ρu

p(z)−1
0

]
(see (15) and hypothesis H1 (v))

= λf (z, u0)+ γ ξ̂ρu
p(z)−1
0 − (λ− γ )f (z, u0)

≤ −�p(z)u0 −�u0 + γ ξ̂ρu
p(z)−1
0 (since γ < λ). (16)

Recall that u0 ∈ intC+. So, on account of hypothesis H1 (v), we have

0 � (λ− γ )f (·, u0(·)).
Then from (16) and Proposition 2.4 of Papageorgiou-Rădulescu-Repovš [9], we infer that (11) is true.

Using uγ ∈ intC+, we introduce the following truncation of f (z, ·)

k+(z, x) =
{
f (z, uγ (z)) if x ≤ uγ (z),
f (z, x) if uγ (z) < x.

(17)

We set K+(z, x) = ∫ x
0 k+(z, s) ds and consider the C1-functional ϕ̂+

λ : W1,p(z)
0 (�) → R defined by

ϕ̂+
λ (u) =

∫
�

1
p(z)

|∇u(z)|p(z) dz + 1
2
‖∇u‖22 − λ

∫
�

K+(z, u) dz for all u ∈ W1,p(z)
0 (�).

From (17), we see that

ϕ+
λ

∣∣∣
[uγ )

= ϕ̂+
λ

∣∣∣
[uγ )

+ β̂λ with β̂λ ∈ R. (18)
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From the first part of the proof, we know that u0 ∈ intC+ is a local minimizer of ϕ+
λ . Then (11)

and (18) imply that

u0 is a local C1
0(�)-minimizer of ϕ̂+

λ (·),
⇒ u0 is a localW

1,p(z)
0 (�)-minimizer of ϕ̂+

λ (·) (19)

(see Tan-Fang [21], Theorem 3.2 andGasiński-Papageorgiou [6], Proposition 3.3). Using (17), we can
easily check that

Kϕ̂+
λ

⊆ [uγ ) ∩ intC+. (20)

This implies that we may assume that

Kϕ̂+
λ
is finite (21)

(otherwise we already have a whole sequence of distinct positive smooth solutions of (Pλ) and so we
are done). Then (21), (19) and Theorem 5.7.6, p. 449, of Papageorgiou-Rădulescu-Repovš [24], imply
that we can find ρ ∈ (0, 1) small such that

ϕ̂+
λ (u0) < inf

[
ϕ̂+
λ (u) : ‖u − u0‖ = ρ

] = m+
λ . (22)

If u ∈ intC+, then from hypothesis H1 (ii) we have

ϕ̂+
λ (tu) → −∞ as t → +∞. (23)

Moreover, (18) and Proposition 4.1 of Gasiński-Papageorgiou [6], implies that

ϕ̂+
λ (·) satisfies the C-condition (see hypothesis H1 (iii)). (24)

From (22)–(24), we see that we can use the mountain pass theorem and obtain û ∈ W1,p(z)
0 (�) such

that {̂
u ∈ Kϕ̂+

λ
⊆ [uγ ) ∩ intC+ (see (20)),

ϕ̂+
λ (u0) < m+

λ ≤ ϕ̂+
λ (̂u) (see (22)).

(25)

From (25) and (17), it follows that û ∈ intC+ is a positive solution of problem (Pλ) (λ ∈ (0, λ+)),
û �= u0. �

In a similar fashion, we can generate two negative smooth solutions when λ > 0 is small. In this
case, we start with the C1-functional ϕ−

λ : W1,p(z)
0 (�) → R defined by

ϕ−
λ (u) =

∫
�

1
p(z)

|∇u(z)|p(z) dz + 1
2
‖∇u‖22 − λ

∫
�

F(z,−u−) dz for all u ∈ W1,p(z)
0 (�).

Using this functional and reasoning as in the ‘positive’ case, we have the following multiplicity result.

Proposition 3.2: If hypotheses H0, H1 hold, then there exists λ− > 0 such that for all λ ∈ (0, λ−)
problem (Pλ) has at least two negative solutions v0, v̂ ∈ −int C+, v0 �= v̂.
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4. Extremal constant sign solutions

Let S+
λ be the set of positive solutions of (Pλ) and S−

λ be the set of negative solutions of (Pλ). We know
that:

∅ �= S+
λ ⊆ intC+ for all λ ∈ (0, λ+) (see Proposition 3.1),

∅ �= S−
λ ⊆ −intC+ for all λ ∈ (0, λ−) (see Proposition 3.2).

In this section, we show that S+
λ has a smallest element uλ ∈ intC+, that is, uλ ≤ u for all u ∈ S+

λ and
S−
λ has a biggest element vλ ∈ −intC+, that is, v ≤ vλ for all v ∈ S−

λ . We call uλ and vλ the ‘extremal’
constant sign solutions of (Pλ). In Section 5 these solutions will be used to produce a nodal (sign-
changing) solution of (Pλ). Indeed, if we can produce a nontrivial solution of (Pλ) in the order interval
[vλ, uλ] distinct from uλ and vλ, on account of the extremality of uλ and vλ, this solutionwill be nodal.

To produce the extremal constant sign solutions, we need some preparation. Let λ ∈ (0, λ+) and
let η > λ̂1(2)

λ
. On account of hypotheses H1 (i), (iv), we can find c5 > 0 such that

f (z, x)x ≥ ηx2 − c5|x|r+ for a.a. z ∈ �, all x ∈ R. (26)

This unilateral growth restriction on f (z, ·), leads to the following auxiliary anisotropic (p, 2)-problem{−�p(z)u(z)−�u(z) = λ
[
ηu(z)− c5|u(z)|r+−2u(z)

]
in�,

u
∣∣∣
∂�

= 0, λ > 0, u > 0.
(Qλ)

For this problem, we have the following result

Proposition 4.1: If hypotheses H0 hold, then for every λ > 0 problem (Qλ) has a unique positive
solution u∗

λ ∈ int C+, and since problem (Qλ) is odd, v∗
λ = −u∗

λ ∈ −int C+ is the unique negative
solution.

Proof: Consider the C1-functional σ+
λ : W1,p(z)

0 (�) → R defined by

σ+
λ (u) =

∫
�

1
p(z)

|∇u(z)|p(z) dz + 1
2
‖∇u‖22 + λc5

r+
‖u+‖r+r+ − λ

2
η‖u+‖22

≥ 1
p+
ρp(∇u)+ 1

2
‖∇u‖22 + λc5

r+
‖u+‖r+r+ − λ

2
η‖u+‖22 for all u ∈ W1,p(z)

0 (�).

Since p− > 2, from this last inequality, we infer that σ+
λ (·) is coercive. Also, it is sequentially weakly

lower semicontinuous. So, we can find u∗
λ ∈ W1,p(z)

0 (�) such that

σ+
λ (u

∗
λ) = min

[
σ+
λ (u) : u ∈ W1,p(z)

0 (�)
]
. (27)

Let t ∈ (0, 1). We have

σ+
λ (t̂u1(2)) ≤ tp−

p−
ρp(∇û1(2))+ t2

2

[∫
�

λ̂1(2)− λη

]
û1(2)2dz + λtr+

r+
‖̂u1(2)‖r+r+ .

From the choice of η, we see that

β0 =
∫
�

(λη − λ̂1(2))̂u1(2)2dz > 0.
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Therefore, we can write that

σ+
λ (t̂u1(2)) ≤ c6tp− − c7t2 for some c6, c7 > 0 (recall that p− < r+).

Since 2 < p−, taking t ∈ (0, 1) even smaller if necessary, we have

σ+
λ (t̂u1(2)) < 0,

⇒ σ+
λ (u

∗
λ) < 0 = σ+

λ (0) (see (27)),

⇒ u∗
λ �= 0.

From (27) we have

(σ+
λ )

′(u∗
λ) = 0,

⇒ 〈Ap(z)(u∗
λ), h〉 + 〈A2(u∗

λ), h〉 = λ

∫
�

[
η(u∗

λ)
+ − c5((u∗

λ)
+)r+−1] h dz

for all h ∈ W1,p(z)
0 (�). (28)

In (28), we choose h = −(u∗
λ)

− ∈ W1,p(z)
0 (�) and obtain

ρp(∇(u∗
λ)

−)+ ‖∇(u∗
λ)

−‖22 = 0,

⇒ u∗
λ ≥ 0, u∗

λ �= 0.

Then from (27), we see that u∗
λ is a positive solution of (Qλ). As before (see the proof of Proposi-

tion 3.1), the anisotropic regularity theory and the anisotropic maximum principle, imply that

u∗
λ ∈ intC+.

Next we show the uniqueness of this positive solution. To this end, we consider the integral functional
j : L1(�) → R = R ∪ {+∞} defined by

j(u) =
{∫

�
1

p(z) |∇u1/2|p(z) dz + 1
2‖∇u1/2‖22 if u ≥ 0, u1/2 ∈ W1,p(z)

0 (�),
+∞ otherwise.

From Theorem 2.2 Takác̆-Giacomoni [25], we know that j(·) is convex. Let dom j = {u ∈ L1(�) :
j(u) < ∞} (the effective domain of j(·)) and suppose û∗

λ is another positive solution of (Qλ). Again
we have that û∗

λ ∈ intC+. Hence using Proposition 4.1.22, p. 274, of Papageorgiou-Rădulescu-Repovš
[24], we have

û∗
λ

u∗
λ

∈ L∞(�) and
u∗
λ

û∗
λ

∈ L∞(�).

Let h = (u∗
λ)

2 − (̂u∗
λ)

2. Then for |t| < 1 small, we have

(u∗
λ)

2 + th ∈ dom j, (̂u∗
λ)

2 + th ∈ dom j.

Thus the convexity of j(·) implies the Gateaux differentiability of j(·) at (u∗
λ)

2 and at (̂u∗
λ)

2 in the
direction h. Moreover, a direct calculation using Green’s identity (see also [25], Theorem 2.5), gives

j′((u∗
λ)

2)(h) = 1
2

∫
�

−�p(z)u∗
λ −�u∗

λ

u∗
λ

h dz
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= λ

2

∫
�

[η − c5(u∗
λ)

r+−2]h dz,

j′((̂u∗
λ)

2)(h) = 1
2

∫
�

−�p(z)̂u∗
λ −�û∗

λ

û∗
λ

h dz

= λ

2

∫
�

[η − c5(̂u∗
λ)

r+−2]h dz.

The convexity of j(·) implies the monotonicity of j′(·). Hence

0 ≤ c5
∫
�

[
(̂u∗
λ)

r+−2 − (u∗
λ)

r+−2] ((u∗
λ)

2 − (̂u∗
λ)

2) dz ≤ 0,

⇒ u∗
λ = û∗

λ.

This proves the uniqueness of the positive solution u∗
λ ∈ intC+ of (Qλ). Since the equation is odd, it

follows that v∗
λ = −u∗

λ ∈ −intC+ is the unique negative solution of (Qλ), λ > 0. �

The solution u∗
λ (resp. v

∗
λ), will provide a lower bound (resp. an upper bound) for the solution set

S+
λ (resp. S−

λ ). These bounds are important in generating the extremal constant sign solutions.

Proposition 4.2: If hypotheses H0, H1 hold, then u∗
λ ≤ u for all u ∈ S+

λ and v ≤ v∗
λ for all v ∈ S−

λ .

Proof: Let u ∈ S+
λ ⊆ intC+ and consider the Carathéodory function e : �× R → R defined by

e(z, x) =
{
ηx+ − c5(x+)r+−1 if x ≤ u(z),
ηu(z)− c5u(z)r+−1 if u(z) < x.

(29)

We set E(z, x) = ∫ x
0 e(z, s) ds and consider the C1-functional σ̂+

λ : W1,p(z)
0 (�) → R defined by

σ̂+
λ (u) =

∫
�

1
p(z)

|∇u(z)|p(z) dz + 1
2
‖∇u‖22 − λ

∫
�

E(z, u) dz

≥ 1
p+
ρp(∇u)+ 1

2
‖∇u‖22 − c8 for some c8 > 0 (see (29)), all u ∈ W1,p(z)

0 (�).

It follows that σ̂+
λ (·) is coercive. Also, it is sequentially weakly lower semicontinuous. So, we can find

ũ∗
λ ∈ W1,p(z)

0 (�) such that

σ̂+
λ (̃u

∗
λ) = min

[
σ̂+
λ (u) : u ∈ W1,p(z)

0 (�)
]
. (30)

As before (see the proof of Proposition 4.1), for t ∈ (0, 1) small, we will have

0 ≤ t̂u1(2) ≤ u and σ̂+
λ (t̂u1(2)) < 0

(recall that u ∈ intC+, see (29) and recall 2 < p− < r+)

⇒ σ̂+
λ (̃u

∗
λ) < 0 = σ̂+

λ (0) (see (30)),

⇒ ũ∗
λ �= 0.

From (30), we have

(̂σ+
λ )

′(̃u∗
λ) = 0,
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⇒ 〈Ap(z)(̃u∗
λ), h〉 + 〈A2(̃u∗

λ), h〉 = λ

∫
�

e(z, ũ∗
λ)h dz for all h ∈ W1,p(z)

0 (�). (31)

In (31), first we choose h = −(̃u∗
λ)

− ∈ W1,p(z)
0 (�). We obtain

ρp(∇ (̃u∗
λ)

−)+ ‖∇ (̃u∗
λ)

−‖22 = 0 (see (29)),

⇒ ũ∗
λ ≥ 0, ũ∗

λ �= 0.

Next in (31), we choose h = (̃u∗
λ − u)+ ∈ W1,p(z)

0 (�). We have

Ap(z)(̃u∗
λ), (̃u

∗
λ − u)+〉 + 〈A2(̃u∗

λ), (̃u
∗
λ − u)+〉

= λ

∫
�

[
ηu − c5ur+−1] (̃u∗

λ − u)+dz (see (29))

≤ λ

∫
�

f (z, u)(̃u∗
λ − u)+dz (see (26))

= Ap(z)(u), (̃u∗
λ − u)+〉 + 〈A2(u), (̃u∗

λ − u)+〉,
⇒ ũ∗

λ ≤ u.

So, we have proved that

ũ∗
λ ∈ [0, u], ũ∗

λ �= 0. (32)

From (32), (29) and (31), we see that ũ∗
λ is a positive solution of (Qλ). Then Proposition 4.1 implies

that

ũ∗
λ = u∗

λ,

⇒ u∗
λ ≤ u for all u ∈ S+

λ .

Similarly we show that v ≤ ṽ∗
λ for all v ∈ S−

λ . �

Now we are ready to produce the extremal constant sign solutions for problem (Pλ). Let λ∗ =
min{λ+, λ−}.

Proposition 4.3: If hypotheses H0, H1 hold and λ ∈ (0, λ∗), then problem (Pλ) has a smallest positive
solution uλ ∈ S+

λ ⊆ int C+ and a biggest negative solution vλ ∈ S−
λ ⊆ −int C+.

Proof: From Papageorgiou-Rădulescu-Repovš [26] (see the proof of Proposition 4.3), we have that
S+
λ is downward directed (that is, if u1, u2 ∈ S+

λ , then we can find u ∈ S+
λ such that u ≤ u1, u ≤ u2).

Therefore using Lemma 3.10, p. 178, of Hu-Papageorgiou [17], we can find {un}n∈N ⊆ S+
λ decreasing

such that

inf S+
λ = inf

n∈N

un.

We have

〈Ap(z)(un), h〉 + 〈A2(un), h〉 = λ

∫
�

f (z, un)h dz

for all h ∈ W1,p(z)
0 (�), all n ∈ N, (33)

u∗
λ ≤ un ≤ u1 for all n ∈ N. (34)
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In (33) we choose h = un ∈ W1,p(z)
0 (�) and obtain

ρp(∇un)+ ‖∇un‖22 = λ

∫
�

f (z, un)un dz for all n ∈ N. (35)

From (34), (35) and hypothesis H1 (i), we infer that

{un}n∈N ⊆ W1,p(z)
0 (�) is bounded.

So, we may assume that

un
w−→ uλ inW1,p(z)

0 (�) and un → uλ in Lr(z)(�). (36)

In (33) we choose h = un − uλ ∈ W1,p(z)
0 (�), pass to the limit as n → ∞ and use (36). We obtain

lim
n→∞

[〈Ap(z)(un), un − uλ〉 + 〈A2(un), un − uλ〉
] = 0,

⇒ lim sup
n→∞

[〈Ap(z)(un), un − uλ〉 + 〈A2(uλ), un − uλ〉
] ≤ 0,

(from the monotonicity of A2(·)),
⇒ lim sup

n→∞
〈Ap(z)(un), un − uλ〉 ≤ 0 (see (36)),

⇒ un → uλ inW1,p(z)
0 (�) (see Proposition 2.2). (37)

Therefore, if in (33), we pass to the limit as n → ∞ and use (37), we obtain

〈Ap(z)(uλ), h〉 + 〈A2(uλ), h〉 = λ

∫
�

f (z, uλ)h dz for all h ∈ W1,p(z)
0 (�),

u∗
λ ≤ uλ,

⇒ uλ ∈ S+
λ and uλ = inf S+

λ .

For the negative solutions, we know that S−
λ is upward directed (that is, if v1, v2 ∈ S−

λ , then we can
find v ∈ S−

λ such that v1 ≤ v, v2 ≤ v). Reasoning as above, we produce vλ ∈ S−
λ ⊆ −intC+ such that

v ≤ vλ for all v ∈ S−
λ . �

5. Nodal solutions

In this section using the extremal constant sign solutions and following the approach outlined in
the beginning of Section 4, we will produce a nodal (sign-changing) solution for problem (Pλ), λ ∈
(0, λ∗).

Let uλ ∈ intC+ and vλ ∈ −intC+ be the two extremal constant sign solutions produced in
Proposition 4.3. We introduce the Carathéodory function f : �× R → R defined by

f (z, x) =

⎧⎪⎨⎪⎩
f (z, vλ(z)) if x < vλ(z),
f (z, x) if vλ(z) ≤ x ≤ uλ(z),
f (z, uλ(z)) if uλ(z) < x.

(38)

We also consider the positive and negative truncations of f (z, ·), namely, the Carathéodory functions

f±(z, x) = f (z,±x±). (39)
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We set F(z, x) = ∫ x
0 f (z, s) ds and F±(z, x) = ∫ x

0 f±(z, s) ds, and then introduce the C1-functionals
ϕλ,ϕ

±
λ : W1,p(z)

0 (�) → R defined by

ϕλ(u) =
∫
�

1
p(z)

|∇u(z)|p(z)dz + 1
2
‖∇u‖22 − λ

∫
�

F(z, u) dz,

ϕ±
λ (u) =

∫
�

1
p(z)

|∇u(z)|p(z)dz + 1
2
‖∇u‖22 − λ

∫
�

F±(z, u) dz,

for all u ∈ W1,p(z)
0 (�).

Using (38) and (39) and arguing as in the proof of Proposition 4.2, since uλ, vλ are the extremal
constant sign solutions, we obtain the following proposition.

Proposition 5.1: If hypotheses H0, H1 hold and λ ∈ (0, λ∗), then Kϕλ ⊆ [vλ, uλ] ∩ C1
0(�), Kϕ+

λ
=

{0, uλ}, Kϕ−
λ

= {0, vλ}.

The next result will allow the use of the mountain pass theorem.

Proposition 5.2: If hypotheses H0, H1 hold and λ ∈ (0, λ∗), then the two extremal constant sign
solutions uλ ∈ int C+ and vλ ∈ −int C+ are local minimizers of ϕλ(·).

Proof: From (38), (39) and hypothesis H1 (i), we have∫
�

F(z, u) dz ≤ c̃ for some c̃ > 0, all u ∈ W1,p(z)
0 (�).

Therefore

ϕ+
λ (u) ≥ 1

p+
ρp(∇u)− λ̃c for all u ∈ W1,p(z)

0 (�),

⇒ ϕ+
λ (·) is coercive (see Proposition 2.1).

Also, it is sequentially weakly lower semicontinuous. So, we can find wλ ∈ W1,p(z)
0 (�) such that

ϕ+
λ (wλ) = min

[
ϕ+
λ (u) : u ∈ W1,p(z)

0 (�)
]
< 0 = ϕ+

λ (0)

(see the proof of Proposition 4.2),

⇒ wλ �= 0.

Since wλ ∈ Kϕ+
λ

\ {0}, from Proposition 5.1, we infer that

wλ = uλ ∈ intC+.

But from (38) and (39), it is clear that

ϕλ

∣∣∣
C+

= ϕ+
λ

∣∣∣
C+

.

It follows that

uλ ∈ intC+ is a local C1
0(�)-minimizer of ϕλ(·),
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⇒ uλ ∈ intC+ is a localW1,p(z)
0 (�)-minimizer of ϕλ(·) (see [8,24]).

Similarly using this time ϕ−
λ (·), we show that vλ ∈ −intC+ is a local minimizer of ϕλ(·). �

It is clear from Proposition 5.1, that we may assume that

Kϕλ is finite. (40)

Otherwise, we already have a sequence of distinct smooth nodal solutions of (Pλ) and so we are done.
Also, we may assume that

ϕλ(vλ) ≤ ϕλ(uλ). (41)

The reasoning is similar if the opposite inequality holds.

Proposition 5.3: If hypotheses H0,H1 hold and λ ∈ (0, λ∗), then the problem (Pλ) has a nodal solution
y0 ∈ C1

0(�).

Proof: From (40), (41) and Theorem 5.7.6, p. 449, of Papageorgiou-Rădulescu-Repovš [24], we can
find ρ ∈ (0, 1) small such that

ϕλ(vλ) ≤ ϕλ(uλ) < inf [ϕλ(u) : ‖u − uλ‖ = ρ] = mλ, ‖vλ − uλ‖ > ρ. (42)

Alsoϕλ(·) is coercive (see (38)).Hence Proposition 5.1.15, p. 369, of Papageorgiou-Rădulescu-Repovš
[24], implies that

ϕλ(·) satisfies the C-condition. (43)

Then (42) and (43) permit the use of the mountain pass theorem. So, we can find y0 ∈ W1,p(z)
0 (�)

such that

y0 ∈ Kϕλ ⊆ [vλ, uλ] ∩ C1
0(�), mλ ≤ ϕλ(y0). (44)

From (44), (38) and (42), we infer that

y0 ∈ C1
0(�) is a solution of (Pλ), y0 �∈ {uλ, vλ}.

From Theorem 6.5.8, p. 527, of Papageorgiou-Rădulescu-Repovš [24], we know that

C1(ϕλ, y0) �= 0. (45)

On the other hand, hypothesisH1 (iv) and Proposition 4.2 of Leonardi-Papageorgiou [27] imply that

Ck(ϕλ, 0) = 0 for all k ∈ N0. (46)

Comparing (45) and (46), we conclude that y0 �= 0 and so y0 ∈ C1
0(�) is a nodal solution of (Pλ). �

This also proves Theorem 1.1. �
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