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domly divide the dataset into V = 4 parts and classify each fold using the re-
maining three parts as the training set. The estimated overall misclassification
error rate (MER) (defined as the average of the fold-specific MERs.) resulted
in 0.238. Fig. 1 shows the simulated distribution of the posterior probability of
being classified as D. flexuosa for eight randomly selected plants. Classifying
as D. flexuosa every plant with a mean (or median) posterior probability greater
than 0.5, we misclassify two plants (2/8 ≈ 0.238). The range of each subject-
specific posterior probability distribution helps in assessing the classification
uncertainty. For example, the distribution of the posterior probability for plant
6 is very wide and centered close to 0.5, suggesting that its classification could
be unreliable, while the reverse holds for the other plants.
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Figure 1. Boxplots of the posterior probability of being classified as D. flexuosa for 8
randomly selected plants. Colors represent the true label of each plant.
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ABSTRACT: The covariate adjusted glasso is one of the most used estimators for inferring
genetic networks. Despite its diffusion, there are several fields in applied research where
the limits of detection of modern measurement technologies make the use of this estimator
theoretically unfounded, even when the assumption of a multivariate Gaussian distribution is
satisfied. In this paper we propose an extension to censored data.

KEYWORDS: censored data, censored glasso estimator, Gaussian graphical model, glasso
estimator.

1 Introduction
An important aim in genomics is to understand interactions among genes, character-
ized by the regulation and synthesis of proteins under internal and external signals.
These relationships can be represented by a genetic network, i.e., a graph where nodes
represent genes and edges describe the interactions among them. Gaussian graphical
models (GGM, Lauritzen (1996)) have been widely used for reconstructing a genetic
network from expression data. The reason of such diffusion relies on the statistical prop-
erties of the multivariate Gaussian distribution which allow the topological structure of
a network to be related with the non-zero elements of the concentration matrix, i.e., the
inverse of the covariance matrix. Thus, the problem of network inference can be recast
as the problem of estimating a concentration matrix. The covariate adjusted glasso
estimator (Yin & Li, 2011) is a popular method for estimating a sparse concentration
matrix, based on the idea of adding an !1-penalty function to the likelihood function
of the multivariate Gaussian distribution. Despite the widespread literature on the
covariate adjusted glasso estimator, there is a great number of fields in applied research
where the use of the graphical model is theoretically unfounded. For example in some
cases data are left- or right-censored. In this paper we propose an extension of the
covariate adjusted glasso estimator that takes into account the censoring mechanism of
the data explicitly.

2 The covariate adjusted censored Gaussian graphical model
Let YYY = (Y1, . . . ,Yp)! be a p-dimensional random vector. Graphical models allow
to represent the set of conditional independencies among these random variables by
a graph G = {V ,E}, where V is the set of nodes associated to YYY and E ⊆ V ×V
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is the set of ordered pairs, called edges, representing the conditional dependencies
among the p random variables (Lauritzen (1996)). The covariate adjusted Gaussian
graphical model (CGGM) is an extension of the classical GGM based on the assumption
that the conditional distribution of YYY given a q-dimensional vector of predictors, say
XXX = (X1, . . . ,Xq)!, follows a multivariate Gaussian distribution with expected value:
µµµ(βββ) = βββ!xxx, where βββ = (βhk) is a matrix q× p coefficient matrix, and covariance
matrix denoted by Σ = (σhk). Denoting with Θ = (θhk) the concentration matrix, i.e.,
the inverse of the covariance matrix, the conditional density function of YYY can be
written as follows:

φ(yyy | xxx;βββ,Θ) = (2π)−p/2|Θ|1/2 exp[−1/2{yyy−µµµ(βββ)}!Θ{yyy−µµµ(βββ)}]. (1)

As shown in Lauritzen (1996), the off-diagonal elements of the concentration matrix
are the parametric tools relating the pairwise Markov property to the factorization of
the density (1), i.e., two random variables, say Yh and Yk, are conditionally independent
given all the remaining variables if and only if θhk is equal to zero.

As done in Augugliaro et al. (2020), we assume that YYY is a (partially) latent
random vector with density function (1). In order to include the censoring mechanism
inside our framework, let us denote by lll = (l1, . . . , lp)! and uuu = (u1, . . . ,up)!, with
lh < uh for h = 1, . . . , p, the vectors of known left and right censoring values. Thus,
Yh is observed only if it is inside the interval [lh,uh] otherwise it is censored from
below if Yh < lh or censored from above if Yh > uh. Using the approach for missing
data with nonignorable mechanism (Little & Rubin (2002)) we denote the quantity
R(YYY ; lll,uuu), to encode the censoring patterns, such that the hth element of R(YYY ; lll,uuu)
is defined as R(Yh; lh,uh) = I(Yh > uh)− I(Yh < lh), where I(·) denotes the indicator
function. By construction R(YYY ; lll,uuu) is a discrete random vector with support the set
{−1,0,1}p and probability function Pr{R(YYY ; lll,uuu) = rrr}=

∫
Drrr

φ(yyy | xxx;βββ,Θ)dyyy, where
Drrr = {yyy∈Rp : R(yyy; lll,uuu) = rrr}. Given a censoring pattern, we can simplify our notation
by partitioning the set I = {1, . . . , p} into o = {h∈ I : rh = 0},c− = {h∈ I : rh =−1}
and c+ = {h ∈ I : rh = +1} and, in the following of this paper, we shall use the
convention that a vector indexed by a set of indices denotes the corresponding subvector.
As done in Augugliaro et al. (2020), the probability distribution of the observed data,
denoted by ϕ({yyyo,rrr} | xxx;βββ,Θ), can be defined as follows:

ϕ({yyyo,rrr}|xxx;βββ,Θ) =
∫

φ({yyyo,yyyc}|xxx;βββ,Θ)Pr{R(YYY ; lll,uuu) = rrr|YYY = yyy}dyyyc, (2)

where c = c− ∪ c+. Density (2) can be simplified by observing that Pr{R(YYY ; lll,uuu) =
rrr | YYY = yyy} is equal to one if the censoring pattern encoded in rrr is equal to the pattern
observed in yyy, otherwise it is equal to zero, hence ϕ({yyyo,rrr} | xxx;βββ,Θ) can be rewritten
as

ϕ({yyyo,rrr}|xxx;βββ,Θ) =
∫

Dc
φ({yyyo,yyyc}|xxx;βββ,Θ)dyyycI(lllo ≤ yyyo ≤ uuuo), (3)

where Dc = (−∞, lllc−)× (uuuc+ ,+∞). Using density (3), the covariate adjusted censored
Gaussian graphical model (CCGGM) is defined as the set {YYY ,R(YYY ; lll,uuu),ϕ({yyyo,rrr} |
xxx;βββ,Θ),G}, where ϕ({yyyo,rrr}|xxx;βββ,Θ) factorizes according to the undirected graph G .

3 The covariate adjusted censored glasso estimator
Suppose we have a sample of size n independent observations drawn from a CCGGM.
For ease of exposition, we shall assume that lll and uuu are fixed across the n observations.
To simplify our notation the set of indices of the variables observed in the ith observation
is denoted by oi = {h ∈ I : rih = 0}, while c−i = {h ∈ I : rih = −1} and c+i = {h ∈
I : rih =+1} denote the sets of indices associated to the left and right-censored data,
respectively. Denoting by rrri the realization of the random vector R(YYY i; lll,uuu), the ith
observed data is the vector (yyy#ioi

,xxx#i ,rrr
#
i )
#. Using the density function (3), the observed

log-likelihood function can be written as

!(βββ,Θ) =
n

∑
i=1

log
∫

Dci

φ({yyyioi ,yyyici}|xxxi;βββ,Θ)dyyyici =
n

∑
i=1

logϕ({yyyioi ,rrri}|xxxi;βββ,Θ), (4)

where Dci = (−∞, lllc−i
)× (uuuc+i

,+∞) and ci = c−i ∪ c+i . Although inference about the
parameters of this model can be carried out via the maximum likelihood method, the
application of this inferential procedure to real datasets is limited.

We propose to estimate the parameters of the CCGGM by generalizing the approach
proposed in Yin & Li (2011), i.e., by maximizing a new objective function defined
by adding two lasso-type penalty functions to the observed log-likelihood (4). The
resulting estimator, called covariate adjusted censored glasso estimator, is formally
defined as

{β̂ββ
λ
,Θ̂ρ}= arg max

βββ,Θ&0

1
n

n

∑
i=1

logϕ({yyyioi ,rrri}|xxxi;βββ,Θ)−λ∑
h,k

|βhk|−ρ ∑
h '=k

|θhk|, (5)

where λ and ρ are two non-negative tuning parameters. The lasso penalty on βββ
introduces sparsity in β̂ββ

λ
, while the tuning parameter ρ controls the amount of sparsity

in the estimated concentration matrix Θ̂ρ = (θ̂ρ
hk).

4 Simulation study
In this section, we compare our proposed estimator with MissGlasso (Städler &
Bühlmann, 2012), which performs !1-penalized estimation under the assumption that
the censored data are missing at random, and with the covariate adjusted glasso estima-
tor (Yin & Li, 2011), where the empirical covariance matrix is calculated by imputing
the missing values with the censoring values. These estimators are evaluated in terms
of both recovering the structure of the true graph. We use the method implemented
in the R package huge (Zhao et al., 2020), to simulate a sparse concentration matrix
with a random structure for YYY . We set the probability of observing a link between two
nodes to k/p, where p is the number of responses and k is used to control the amount of
sparsity in ΘΘΘ. Moreover, we set the right censoring value to 40 for any variable and the
sample size n to 100. The predictors matrix XXX is sampled from a multivariate gaussian
distribution with zero expected value and sparse covariance matrix simulated as done
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for YYY . Each column of the true matrix of predictors βββ contains only two non-zero
regression coefficients sampled from a uniform distribution on the interval [0.3,0.7].
The values of the intercepts are chosen in such a way that H response variables are
right censored with probability equal to 0.40. The quantities k, p, q and H are chosen
according to the following cases:

• Scenario 1: k = 3, p = 50, q = 10 and H = 25. This setting is used to evaluate
the effects of the number of censored variables on the behavior of the proposed
estimators when n > p.

• Scenario 2: k = 3, p = 150, q = 10 and H = 75. This setting is used to evaluate
the impact of the high dimensionality on the estimators (p > n).

For each scenario, we simulate 50 samples and in each simulation, we compute the
coefficients path using cglasso, MissGlasso, and glasso. Each path is computed using
an equally spaced sequence of ρ and λ-values. Moreover, the precision-recall curves
and the area under the curves (AUCs) are computed for each Scenarios. Table 1 shows
how cglasso gives a better estimate of the concentration and coefficient matrices in
terms of AUCs, for any given value of the tuning parameters. We report only five
evenly spaced values of λ and ρ.

Table 1. Mean area under the curves across the sequence of ρ and λ-values under the specifica-
tion of the two Scenarios (see row blocks). The first column block refers to the concentration
matrix (ΘΘΘ) when λ is fixed and the second refers to the coefficient matrix (βββ) when ρ is fixed. In
the first column (1), (2) and (3) refer to cglasso, MissGlasso and glasso algorithms, respectively.

λ/λmax ρ/ρmax

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

(1) 0.546 0.429 0.139 0.103 0.101 0.844 0.877 0.883 0.882 0.885
(2) 0.239 0.199 0.086 0.073 0.073 0.745 0.764 0.766 0.767 0.768
(3) 0.414 0.218 0.097 0.092 0.091 0.813 0.847 0.864 0.866 0.866

(1) 0.418 0.094 0.037 0.035 0.035 0.794 0.930 0.931 0.929 0.933
(2) 0.329 0.098 0.033 0.031 0.030 0.753 0.830 0.831 0.830 0.831
(3) 0.321 0.040 0.033 0.032 0.031 0.751 0.902 0.906 0.907 0.907
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ABSTRACT: Depth functions have been exploited in supervised learning since years.
Given that the depth of a point is somehow a distribution-free measure of its distance
from the center of a distribution, their use in supervised learning arose naturally and
it has seen a certain degree of success. Particularly, DD-classifers and their exten-
sions have been extensively studied and applied in many applied fields and statistical
settings. What has not been investigated so far is their use within a semi-supervised
learning framework. That is, in case some labeled data are available along with some
unlabeled data within the same training set. A case which arises in many applica-
tions and where it has been proved that combining information from labeled and
unlabeled data can improve the overall performance of a classifier. For this reason,
this work aims at introducing semi-supervised learning techniques in association with
DD-classifiers and at investigating to what extent such technique is able to improve
DD-classifier performances. Performances will be evaluated by means of an extensive
simulation study and illustrated on some real data sets.

KEYWORDS: DD-classifiers, labeled and unlabeled data, supervised learning.
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