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Abstract: Modified halloysite nanotubes (HNTs-Cl) were synthesized by a coupling reaction with
(3-chloropropyl) trimethoxysilane (CPTMS). The incorporation of chloro-silane onto HNTs surface
creates HNTs-Cl, which has great chemical activity and is considered a good candidate as an active
site that reacts with other active molecules in order to create new materials with great applications in
chemical engineering and nanotechnology. The value of this work lies in the fact that improving the
degree of grafting of chloro-silane onto the HNT’s surface has been accomplished by incorporation
of HNTs with CPTMS under different experimental conditions. Many parameters, such as the
dispersing media, the molar ratio of HNTs/CPTMS/H;O0, refluxing time, and the type of catalyst
were studied. The greatest degree of grafting was accomplished by using toluene as a medium for the
grafting process, with a molar ratio of HNTs/CPTMS/H;0 of 1:1:3, and a refluxing time of 4 h. The
addition of 7.169 mmol of triethylamine (Et3N) and 25.97 mmol of ammonium hydroxide (NH;OH)
led to an increase in the degree of grafting of CPTMS onto the HNT’s surface.

Keywords: grafting; halloysite nanotubes; CPTMS

1. Introduction

Halloysite is a naturally occurring dioctahedral 1:1 clay mineral that belongs to the
kaolinite group. The unit layer of kaolinite is composed of one SiOy tetrahedral layer and
one AlO,(OH)4 octahedral layer. The chemical formula of the unitary cell for halloysite
differs from kaolinite by its water content in the interlayer spaces [1,2]. It is composed
of hollow cylinders that are formed by multiple rolled layers [3]. Halloysite has four
types of surface: (i) an internal lumen surface, composed of hydrophilic aluminol (Al-OH)
groups; (ii) an external surface, composed of hydrophobic siloxane (Si-O-5i) groups; (iii)
an interlayer surface that is chemically the same as the internal lumen surface; and (iv) an
edge surface, terminated by (Al-OH) and (Si-OH) groups. On the outer surface of the tube,
the siloxane is located and a negative surface charge density is observed, while on the inner
surface of the tube, the (AlI-OH) groups are responsible for the positive surface charge
density in a relatively high pH range. The net charge of halloysite nanotubes is negative [4].
The typical size of HNTs is: diameter less than 0.1 pm. while the lengths range from 0.5 to
1.2 um depending on the deposit [5,6]. Compared to other tube-shaped materials such as
boron nitride, metal oxide, and carbon nanotubes, halloysite gains attention as an attractive
and appropriate material for nanotechnology applications because of its nature and its
availability [4,7-13]. Halloysite mineral surfaces can be altered using different methods, i.e.,
adsorption, grafting with organic compounds, and ion exchange using inorganic/ organic
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cations [14-18]. One of these methods that can be used to modify the halloysite nanotube
surface is the grafting of silane, improving HNTs’ clay dispersion in polymeric, fluidic
materials [18,19]. It is worth noting that halloysite nanotubes have garnered great interest as
polymeric fillers due to their reinforcing ability, but also due to the possibility of controlled
release of active ingredients for packaging applications and drug delivery [20-23]. The
silanization route is performed via the reaction of organosilane with the hydroxyl groups
of nanotubes to create the siloxane bonds.

In our previous work, the conditions for the grafting process were studied in detail.
In those papers, three types of silanes: (3-mercaptopropyl) trimethoxy silane, (3-glycidyl
oxypropyl) trimethoxy silane, and (3-aminopropyl) triethoxy silane were grafted onto the
HNT surface and the degree of grafting was 99.8, 93.3, and 22.4%, respectively [24,25].
The literature reports on other silica (SiO,)-based mesoporous materials and their surface
modification as a strategic aspect for the compatibilization with polymeric matrices [26-28].

The present work is focused on grafting of (3-chloropropyl) trimethoxy silane on the
halloysite nanotube surface using different experimental conditions that aim to achieve
the best degree of functionalization. This route of functionalization is of great benefit
to improve HNTs” dispersion characteristics as filler, and interaction with hydrophobic
polymers. Successful organomodification strongly depends on the reaction conditions, i.e.,
solvent polarity, number of moles of silane, amount of water that can be inserted into the
reaction media, and catalyst.

2. Materials and Methods
2.1. The Materials

The halloysite nanotubes are a Sigma-Aldrich product (St. Louis, MO, USA). (3-
Chloropropyl) trimethoxy silane (CPTMS) is an Alfa Aesar product (Tianjin, China). Tri-
ethylamine (Et3N), tetra-ethoxy titanium (EtO)4Ti, and ammonium hydroxide (NH;OH)
were obtained from Alfa Aesar (China). All the solvents that were used in this work were
of analytical grade and were used as received.

2.2. Methods

The halloysite nanotubes were treated with (3-chloropropyl) trimethoxysilane (CPTMS)
in toluene, tetrahydrofuran (THF), ethanol, n-hexane, and 1,4 dioxane for 4 h under reflux
conditions. The effect of the catalyst (triethylamine, urea, tetra-ethoxy titanium, and am-
monia solution) on the proceeding of the reaction was evaluated, and moistening of the
reaction media was tested as mentioned in Table 1. The obtained material was washed
several times with acetone followed by ethanol and dried in an oven at 60 °C for 12 h. The
reaction scheme is provided in Figure 1.
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Figure 1. The synthetic route that was used during the grafting of CPTMS onto the HNT surface.
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Table 1. The different parameters which were used for the grafting process and the results obtained from elemental analysis.

Molar Ratio o Refluxin Content, % Degree of
(HNTs/CPTMS/ H,0) Solvent Catalyst T°C ime (h) C pu  Grafting (%)
1:1:0 20 mL toluene 110 4 217  1.83 24.29
1:1.33:0 20 mL THF 66 4 1.20 1.63 11
1:1:3 20 mL toluene 110 4 326 222 36.5
1:1:0 20 mL ethanol 79 4 096 1.53 10.75
1:1.33:0 5 mL toluene 110 4 140 1.90 12.84
1:1:0 20 mL toluene 110 35 201 1.86 225
1:1:0 20 mL toluene 110 48 1.89 197 21.16
1:2:0 20 mL toluene 110 4 241 2.03 17.13
1:2:0 17 mL toluene 110 48 298 1.95 21.19
1:1:3 20 mL toluene 0.5 mL EtzN 110 7 431 285 48.26
1:1:3 20 mL toluene 0.2 g urea 110 4 6.63 297 27.77
1:1.33:0 20 mL n-hexane 1 mL EtzN 69 4 3.69 214 33.83
1:1.33:0 20 mL 1,4 dioxane 1 mL EtsN 100 4 2.655 2.175 24.34
1:1.33:0 20 mL n-hexane 69 4 1.67 196 15.320
1:1.33:0 20 mL 1,4 dioxane 100 4 1.56 1.86 14.3
1:1:3 20 mL toluene 0.5 mL EtsN 110 4 484 222 54.19
1:1:3 40 mL toluene 0.5mL EtzN 110 4 455 213 50.95
1:1:3 20 mL toluene O'SHIELI\]?IEE)}L_IO'S 110 4 726 255 81.35
1:1:0 20 mL toluene 3drops (EtO)4Ti 110 4 317 21 35.49
1:1:3 20 mL toluene 0.5 mL EtzN + 0.138 110 4 452 224 50.67

mL NH,OH

2.3. Characterization of HNTs-CPTMS

An elemental analyzer, Perkin Elmer PE 2400 (Perkin Elmer, Waltham, MA, USA),
was used to perform elemental analysis of carbon and hydrogen (EA) of the grafted HNT
samples which were altered by (3-chloropropyl) trimethoxy silane. The degree of grafting
(DG) of HNTs-CPTMS samples were obtained using Equation (1) [20,21]:

carbon (%) obtained from EA

DG = 1
¢ carbon content (% )theoretically @
and the carbon content (%) theoretically can be computed by using Equation (2):
carbon content (%)theoretically — No. of carbon atoms in CPTMS * No. of moles of CPTMS 12 o)

No.of gof HNTs + No.of gof CPTMS — No. of g of alcohol eliminated

The confirmation of the grafting of (3-chloropropyl) trimethoxy silane onto the hal-
loysite nanotube surface was done by characterization of the obtained material using
Fourier transform infrared (FT-IR) spectra. Compact FT-IR Spectrometer: ALPHA II (Man-
ufacturer Bruker Optics) was used for FT-IR measurements in the wavenumber range
(4500-500) cm~! by considering 24 scans, and each scan was 30 s. Thermogravimetric
analysis (TGA) was done by a Mettler Toledo device (Columbus, OH, USA) for the un-
modified halloysite nanotubes and the greatest modified sample (HNTs-CPTMS). The
mass of the sample was measured against time during the temperature changes from 27 to
1000 °C with a heating rate of 30 °C min~! under a nitrogen flow of 60 mL/min. Scanning
electron microscope (SEM) images were obtained by using a Carl Zeiss EVO LS 10 Device
(Manufacturer: Carl Zeiss NTS, Jena, Germany). It was used to study the morphology
of unmodified halloysite nanotubes and the greatest modified sample (HNTs-CPTMS).
Carbon tape was used to reduce charging effects. Minimal electron dose was used (3 kV)
and the sample distance was 5.1 mm.
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3. Results and Discussion

In principle, halloysite has four distinguished surfaces: (i) an internal lumen surface,
composed of hydrophilic aluminol (AI-OH) groups; (ii) an external surface, composed
of hydrophobic siloxane (5i-O-Si) groups; (iii) an interlayer surface that is chemically
the same as the internal lumen surface; and (iv) edge surfaces, terminated by Al-OH
and Si-OH groups. These Si-OH groups can condense with the surface hydroxyl groups
of inorganic materials by eliminating water molecules under proper conditions. In the
current work, the expected mechanism for the grafting is a two-step process: first, the
hydrolysis of methoxy groups of CPTMS to form intermediate species; second, the creation
of siloxane bonds as described in Figure 1. Similar mechanisms were reported for the
reaction of silanes with silica gel [29]. In the following, the effect of reaction conditions on
the modification efficacy are highlighted.

3.1. Effect of Solvent

Choosing the appropriate solvent is of great importance for the silanization of hal-
loysite nanotubes using (3-chloropropyl) trimethoxy silane due to the effect of solvent on
both the rate and thermodynamic route of the chemical modification process. The solvent
can act as a source of protons or act as a base. Moreover, the solvation of the reactant can be
also considered. In the present work, many solvents have been tested for the silanization
of halloysite nanotubes using (3-chloropropyl) trimethoxy silane, such as ethanol, toluene,
tetrahydrofuran, 1,4-dioxane, and n-hexane. The nature of these solvents affects the graft-
ing degree of CPTMS onto the HNT surface as mentioned in Table 1. The degree of grafting
of CPTMS onto HNTs using ethanol, toluene, tetrahydrofuran, 1,4-dioxane, and n-hexane
was 10.75, 24.29, 11, 14.3, and 15.32%, respectively. Relying on the data obtained from
elemental analysis, it was found that toluene is the most effective solvent for the grafting
of (3-chloropropyl) trimethoxy silane onto the HNT surface [18,30].

3.2. Effect of HNTs:CPTMS:H,O Molar Ratio

Even though an increasing concentration of reactants results in enhancing the chance
of collisions between the reactant molecules, hence speeding the rate of reaction, increasing
the number of moles of CPTMS results in decreasing the degree of grafting of CPTMS
onto the HNT surface. This observation has no clear explanation [31-34]. The molar ratio
HNTs/CPTMS/H;0 has been varied: 1:1:0, 1:2:0, 1:1.33:0, and 1:1:3. According to the data
obtained from elemental analysis, the greatest degree of grafting was achieved by using
the molar ratio 1:1:3. As reported in our recent work, the effect of HNT/silane molar ratio
on silanization of HNTs using (3-aminopropyl) triethoxy silane and (3-mercaptopropyl)
trimethoxy silane was studied, and the results reveal that the degree of grafting of silane
onto the HNT surface decreased as the number of moles of silane increased [2,18,35]. In
the present work, it was found that for a HNTs:CPTMS:H,O molar ratio equal to 1:1:3, a
larger degree of grafting is obtained (Table 1).

3.3. Effect of Catalyst on Silanization of HNTs Using CPTMS

A catalyst can alter the rate of a chemical reaction and remain chemically unchanged,
because it works only to reduce the energy of the rate-limiting transition state. It has no
effect on the quantity of the product formed. Urea, triethylamine, ammonium hydroxide,
and tetra-ethoxy titanium have been used to increase the rate of grafting CPTMS onto the
HNT surface. The addition of 0.5 mL EtzN + 0.5 mL NH4OH as catalysts enhances the
condensation reaction between silane molecules and the hydroxyl groups on the surface of
the halloysite mineral. This is explained by relying on the fact that both NH4OH and EtzN
act as Bronsted bases, which enhances the proton transfer mechanism. This can be clearly
noticed from the enhancement of the degree of grafting, as shown in Table 1.
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3.4. Effect of Time

The effect of time on the degree of grafting of CPTMS onto halloysite nanotubes’
surface has been discussed, and the data are reported in Table 1. The time was changed
to be equal to 4, 35, and 48 h. The results of elemental analysis show that the degree of
grafting decreased as the reaction time increased and the loss of the degree of grafting was
not significant. The degree of grafting decreased according to the following order: 24.29,
22.5, and 21.16% for 4, 35, and 48 h, respectively.

3.5. Effect of the Volume of Toluene

Toluene was chosen as the best solvent according to the data of the elemental analysis.
The volume of toluene changed from 20 to 40 mL and the degree of grafting was calculated.
The results show a decrement in grafting degree from 54.19 to 50.95 % for utilization of 20
and 40 mL of toluene, respectively.

3.6. Characterization of the Sample Which Has the Greatest Degree of Grafting Using CPTMS

The sample which had the highest degree of grafting using CPTMS was distinguished
by using FT-IR measurements (Figure 2), TGA (Figure 3), SEM (Figure 4) analysis, and
elemental analysis for C and H (Table 1). The FT-IR measurements for unmodified and
modified HNTs show the two sharp bands at 3680 and 3618 cm ™! for HNT that represent
the hydroxyl group, (O-H) stretching vibrations. The band at 1652 cm ™! for unmodified
HNT represents the deformation of (O-H) stretching of intercalated water, as shown in
Figure 2 [36]. The new band that appears at 2925 cm ™! for modified HNT represents the
CHp,, stretching vibration, and this confirms the creation of siloxane bonds. The presence
of CH; groups confirms the coating of HNTs by CPTMS molecules. The TGA results
of unmodified HNT shows the main mass loss at 400—500 °C, as is reported for the
dehydration of hydroxyl groups that are located on the HNT surface [37]. The modified
HNT shows an additional mass loss step between 300 and 450 °C, indicating the presence
of the organic moieties on the HNT surface as shown in Figure 3. Finally, the SEM
morphologies confirmed that the surface modification and reaction conditions did not alter
the tubular shape of the halloysite nanotubes, and the halloysite tubes are coated with
CPTMS with noticeable sticking together of species (Figure 4).

Unmodified HNT
Modified HNT
1.00 s
0.95 +
-~
§
= 0.90 4
0.85
0.80 T T T E T E T E T g T Y ) g 1
4500 4000 3500 3000 2500 2000 1500 1000 500

Wave number{cm‘l )

Figure 2. FT-IR spectra of unmodified HNT and modified HNT sample.
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Figure 3. TGA curves of unmodified HNT and modified HNT sample (a) and DTG curves of unmodified HNT and modified
HNT sample (b).
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Figure 4. SEM image of unmodified HNT (a) and modified HNT sample (b).

4. Conclusions

(3-chloropropyl) trimethoxy silane was grafted onto the halloysite nanotube surface
using a variety of solvents, and toluene was chosen as the best solvent for the silanization
process. The amount of silane was varied and the best molar ratio of HNTs/CPTMS/H,0O
was 1:1:3. It was found that adding small quantities of tri-ethyl amine and ammonia
solution led to the enhancement of the degree of grafting of CPTMS onto the HNT surface.
The samples with the best grafting yield were characterized and the obtained hybrid

material showed that the halloysite tubes were coated with CPTMS, with noticeable sticking
of nanotubes.

Author Contributions: Conceptualization, G.L., E.G.K,, and A M.A E.-S,; investigation, A.V.P, D.PT,,
and D.O.A.; data curation, AM.AE.-S. and G.C.; writing—original draft preparation, G.C. and
A M.A E.-S,; writing—review and editing, G.L. and G.C.; funding acquisition, G.L. and E.G.K. All
authors have read and agreed to the published version of the manuscript.



Appl. Sci. 2021, 11, 5534 70f8

Funding: This research was funded by Program 211 of the Government of the Russian Federation
No. 02.A03.21.0006, RFBR grants 17-03-00641 and 18-29-12129 mk, the State Task from the Ministry
of the Education and Science of the Russian Federation No. 4.9514.2017/8.9.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Joussein, E.; Petit, S.; Churchman, J.; Theng, B.; Righi, D.; Delvaux, B. Halloysite clay minerals—a review. Clay Min. 2005, 40,
383-426. [CrossRef]

2. Osipova, V.A,; Pestov, A.V.; Mekhaev, A.V.; Abu El-Soad, A.M.; Tambasova, D.P.; Antonov, D.O.; Kovaleva, E.G. Functionalization
of Halloysite by 3-Aminopropyltriethoxysilane in Various Solvents. Pet. Chem. 2020, 60, 597—-600. [CrossRef]

3. Szczepanik, B. Photocatalytic degradation of organic contaminants over clay-TiO2 nanocomposites: A review. Appl Clay Sci. 2017,
141, 227-239. [CrossRef]

4. Lazzara, G.; Cavallaro, G.; Panchal, A.; Fakhrullin, R.; Stavitskaya, A.; Vinokurov, V.; Lvov, Y. An assembly of organic-inorganic
composites using halloysite clay nanotubes. Curr. Opin. Colloid Interface Sci. 2018, 35, 42-50. [CrossRef]

5. Cavallaro, G.; Chiappisi, L.; Pasbakhsh, P.; Gradzielski, M.; Lazzara, G. A structural comparison of halloysite nanotubes of
different origin by Small-Angle Neutron Scattering (SANS, and Electric Birefringence. Appl. Clay Sci. 2018, 160, 71-80. [CrossRef]

6.  Pasbakhsh, P; Churchman, G.J.; Keeling, J.L. Characterisation of properties of various halloysites relevant to their use as
nanotubes and microfibre fillers. Appl. Clay Sci. 2013, 74, 47-57. [CrossRef]

7. Sadjadi, S. Halloysite-based hybrids/composites in catalysis. Appl. Clay Sci. 2020, 189, 105537. [CrossRef]

8. Bertolino, V.; Cavallaro, G.; Milioto, S.; Lazzara, G. Polysaccharides/Halloysite nanotubes for smart bionanocomposite materials.
Carbohydr. Polym. 2020, 245, 116502. [CrossRef] [PubMed]

9. Cavallaro, G.; Milioto, S.; Lazzara, G. Halloysite Nanotubes: Interfacial Properties and Applications in Cultural Heritage.
Langmuir 2020, 36, 3677-3689. [CrossRef]

10. Lvov, Y;; Panchal, A.; Fu, Y.; Fakhrullin, R.; Kryuchkova, M.; Batasheva, S.; Stavitskaya, A.; Glotov, A.; Vinokurov, V. Interfacial
Self-Assembly in Halloysite Nanotube Composites. Langmuir 2019, 35, 8646-8657. [CrossRef]

11.  Lvov, YM,; DeVilliers, M.M.; Fakhrullin, R.F. The application of halloysite tubule nanoclay in drug delivery. Expert Opin. Drug
Deliv. 2016, 13, 977-986. [CrossRef]

12.  Cavallaro, G.; Milioto, S.; Parisi, F; Lazzara, G. Halloysite Nanotubes Loaded with Calcium Hydroxide: Alkaline Fillers for the
Deacidification of Waterlogged Archeological Woods. ACS Appl. Mater. Interfaces 2018, 10, 27355-27364. [CrossRef]

13. Lisuzzo, L.; Hueckel, T.; Cavallaro, G.; Sacanna, S.; Lazzara, G. Pickering Emulsions Based on Wax and Halloysite Nanotubes:
An Ecofriendly Protocol for the Treatment of Archeological Woods. ACS Appl. Mater. Interfaces 2021, 13, 1651-1661. [CrossRef]
[PubMed]

14.  Guo, B.; Liu, X.; Zhou, W.Y;; Lei, Y.; Jia, D. Adsorption of ionic liquid onto halloysite nanotubes: Mechanism and reinforcement of
the modified clay to rubber. . Macromol. Sci. Part B 2010, 49, 1029-1043. [CrossRef]

15. Wang, J.; Sun, K.; Hao, W.; Du, Y.; Pan, C. Structure and properties research on montmorillonite modified by flame-retardant
dendrimer. Appl. Clay Sci. 2014, 90, 109-121. [CrossRef]

16. Liu, M.; Wu, C; Jiao, Y.; Xiong, S.; Zhou, C. Chitosan-halloysite nanotubes nanocomposite scaffolds for tissue engineering. J.
Mater. Chem. B 2013, 1, 2078-2089. [CrossRef] [PubMed]

17. Cavallaro, G.; Milioto, S.; Konnova, S.; Fakhrullina, G.; Akhatova, F.; Lazzara, G.; Fakhrullin, R.; Lvov, Y. Halloysite/Keratin
Nanocomposite for Human Hair Photoprotection Coating. ACS Appl. Mater. Interfaces 2020, 12, 24348-24362. [CrossRef]

18. El-Soad, AM.A.; Abd El-Magied, M.O.; Atrees, M.S.; Kovaleva, E.G.; Lazzara, G. Synthesis and characterization of modified
sulfonated chitosan for beryllium recovery. Int. ]. Biol. Macromol. 2019, 139, 153-160. [CrossRef] [PubMed]

19. Haijiao, K.; Xiaorong, L.; Shifeng, Z.; Jianzhang, L. Functionalization of halloysite nanotubes (HNTs) via mussel-inspired surface
modification and silane grafting for HNTs/soy protein isolate nanocomposite film preparation. RSC Adv. 2017, 7, 24140-24148.

20. Lisuzzo, L.; Caruso, M.R.; Cavallaro, G.; Milioto, S.; Lazzara, G. Hydroxypropyl Cellulose Films Filled with Halloysite Nan-
otubes/Wax Hybrid Microspheres. Ind. Eng. Chem. Res. 2021, 60, 1656-1665. [CrossRef]

21. Lisuzzo, L.; Cavallaro, G.; Milioto, S.; Lazzara, G. Effects of Halloysite Content on the Thermo-Mechanical Performances of
Composite Bioplastics. Appl. Clay Sci. 2020, 185, 105416. [CrossRef]

22. Govindasamy, K.; Dahlan, N.A ; Janarthanan, P.; Goh, K.L.; Chai, S.-P.; Pasbakhsh, P. Electrospun Chitosan/Polyethylene-Oxide
(PEO)/Halloysites (HAL) Membranes for Bone Regeneration Applications. Appl. Clay Sci. 2020, 190, 105601. [CrossRef]

23. Gorrasi, G.; Bugatti, V.; Ussia, M.; Mendichi, R.; Zampino, D.; Puglisi, C.; Carroccio, S.C. Halloysite Nanotubes and Thymol as
Photo Protectors of Biobased Polyamide 11. Polym. Degrad. Stab. 2018, 152, 43-51. [CrossRef]

24. Abu El-Soad, A.M,; Pestov, A.V.; Tambasova, D.P.; Osipova, V.A.; Martemyanov, N.A.; Cavallaro, G.; Kovaleva, E.G.; Lazzara,

G. Insights into grafting of (3-Mercaptopropyl) trimethoxy silane on halloysite nanotubes surface. J. Organomet. Chem. 2020,
915, 121224. [CrossRef]


http://doi.org/10.1180/0009855054040180
http://doi.org/10.1134/S0965544120050072
http://doi.org/10.1016/j.clay.2017.02.029
http://doi.org/10.1016/j.cocis.2018.01.002
http://doi.org/10.1016/j.clay.2017.12.044
http://doi.org/10.1016/j.clay.2012.06.014
http://doi.org/10.1016/j.clay.2020.105537
http://doi.org/10.1016/j.carbpol.2020.116502
http://www.ncbi.nlm.nih.gov/pubmed/32718613
http://doi.org/10.1021/acs.langmuir.0c00573
http://doi.org/10.1021/acs.langmuir.8b04313
http://doi.org/10.1517/17425247.2016.1169271
http://doi.org/10.1021/acsami.8b09416
http://doi.org/10.1021/acsami.0c20443
http://www.ncbi.nlm.nih.gov/pubmed/33379868
http://doi.org/10.1080/00222341003609823
http://doi.org/10.1016/j.clay.2014.01.001
http://doi.org/10.1039/c3tb20084a
http://www.ncbi.nlm.nih.gov/pubmed/32260898
http://doi.org/10.1021/acsami.0c05252
http://doi.org/10.1016/j.ijbiomac.2019.07.162
http://www.ncbi.nlm.nih.gov/pubmed/31356952
http://doi.org/10.1021/acs.iecr.0c05148
http://doi.org/10.1016/j.clay.2019.105416
http://doi.org/10.1016/j.clay.2020.105601
http://doi.org/10.1016/j.polymdegradstab.2018.03.015
http://doi.org/10.1016/j.jorganchem.2020.121224

Appl. Sci. 2021, 11, 5534 80f 8

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Abu El-Soad, A.M.; Lazzara, G.; Pestov, A.V,; Cavallaro, G.; Martemyanov, N.A.; Kovaleva, E.G. Effect of Polarity of Solvent on
Silanization of Halloysite Nanoclay Using (3-Glycidyloxy propyl, Trimethoxy Silane. J. Inorg. Organomet. Polym. Mater. 2021, 31,
2569-2578. [CrossRef]

Miricioiu, M.G.; Iacob, C.; Nechifor, G.; Niculescu, V.-C. High Selective Mixed Membranes Based on Mesoporous MCM-41 and
MCM-41-NHj; Particles in a Polysulfone Matrix. Front. Chem. 2019, 7, 332. [CrossRef] [PubMed]

Niculescu, V.; Miricioiu, M.; Geana, E.-I.; Ionete, R.-E.; Paun, N.; Parvulescu, V. Silica Mesoporous Materials—An Efficient Sorbent
for Wine Polyphenols Separation. Rev. Chim. 2019, 70, 1513-1517. [CrossRef]

Blanco, I.; Cicala, G.; Tosto, C.; Bottino, F.A. Kinetic Study of the Thermal and Thermo-Oxidative Degradations of Polystyrene
Reinforced with Multiple-Cages POSS. Polymers 2020, 12, 2742. [CrossRef]

Gauthier, S.; Aimé, ].P; Bouhacina, T.; Attias, A.J.; Desbat, B. Study of Grafted Silane Molecules on Silica Surface with an Atomic
Force Microscope. Langmuir 1996, 12, 5126-5137. [CrossRef]

Pereira, C.; Patricio, S.; Silva, A.R.; Magalhaes, A.L.; Carvalho, A.P; Pires, ].; Freire, C. Copper acetylacetonate anchored onto
amine-functionalised clays. J. Colloid Interface Sci. 2007, 316, 570-579. [CrossRef]

Xue, A.; Zhou, S.; Zhao, Y.; Lu, X.; Han, P. Effective NH;-grafting on attapulgite surfaces for adsorption of reactive dyes. J. Hazard.
Mater. 2011, 194, 7-14. [CrossRef] [PubMed]

Javadian, H.; Koutenaei, B.B.; Shekarian, E.; Sorkhrodi, F.Z.; Khatti, R.; Toosi, M. Application of functionalized nano HMS type
mesoporous silica with N-(2-aminoethyl)-3-aminopropyl methyldimethoxysilane as a suitable adsorbent for removal of Pb (II)
from aqueous media and industrial wastewater. J. Saudi Chem. Soc. 2017, 21, S219-5230. [CrossRef]

Zhang, L.; Yu, C.; Zhao, W.; Hua, Z.; Chen, H.; Li, L.; Shi, J. Preparation of multi-amine-grafted mesoporous silicas and their
application to heavy metal ions adsorption. J. Non-Cryst. Solids. 2007, 353, 4055-4061. [CrossRef]

Hernandez-Morales, V.; Nava, R.; Acosta-Silva, Y.J.; Maclas-Sanchez, S.A.; Pérez-Bueno, J.J.; Pawelec, B. Adsorption of lead (II)
on SBA-15 mesoporous molecular sieve functionalized with -NH 2 groups. Microporous Mesoporous Mater. 2012, 160, 133-142.
[CrossRef]

Carli, L.N.; Daitx, T.S.; Soares, G.V.; Crespo, ]J.S.; Mauler, R.S. The effects of silane coupling agents on the properties of
PHBV /halloysite nanocomposites. Appl. Clay Sci. 2014, 87, 311-319. [CrossRef]

Yuan, P; Southon, P.D.; Liu, Z.; Green, M.E.R.; Hook, ] M.; Antill, S.J.; Kepert, C.J. Functionalization of Halloysite Clay Nanotubes
by Grafting with y-Aminopropyltriethoxysilane. J. Phys. Chem. C 2008, 112, 15742-15751. [CrossRef]

Duce, C.; Ciprioti, S.V.; Ghezzi, L.; lerardi, V.; Tine, M. Thermal Behavior Study of Pristine and Modified Halloysite Nanotubes. J.
Therm. Anal. Calorim. 2015, 121, 1011-1019. [CrossRef]


http://doi.org/10.1007/s10904-020-01868-0
http://doi.org/10.3389/fchem.2019.00332
http://www.ncbi.nlm.nih.gov/pubmed/31263688
http://doi.org/10.37358/RC.19.5.7161
http://doi.org/10.3390/polym12112742
http://doi.org/10.1021/la951098b
http://doi.org/10.1016/j.jcis.2007.07.053
http://doi.org/10.1016/j.jhazmat.2011.06.018
http://www.ncbi.nlm.nih.gov/pubmed/21959185
http://doi.org/10.1016/j.jscs.2014.01.007
http://doi.org/10.1016/j.jnoncrysol.2007.06.018
http://doi.org/10.1016/j.micromeso.2012.05.004
http://doi.org/10.1016/j.clay.2013.11.032
http://doi.org/10.1021/jp805657t
http://doi.org/10.1007/s10973-015-4741-7

	Introduction 
	Materials and Methods 
	The Materials 
	Methods 
	Characterization of HNTs-CPTMS 

	Results and Discussion 
	Effect of Solvent 
	Effect of HNTs:CPTMS:H2O Molar Ratio 
	Effect of Catalyst on Silanization of HNTs Using CPTMS 
	Effect of Time 
	Effect of the Volume of Toluene 
	Characterization of the Sample Which Has the Greatest Degree of Grafting Using CPTMS 

	Conclusions 
	References

