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Abstract: In the frame of the pre-conceptual design activities of the DEMO work package DIV-1
“Divertor Cassette Design and Integration” of the EUROfusion program, a mock-up of the divertor
outer vertical target (OVT) was built, mainly in order to: (i) demonstrate the technical feasibility of
manufacturing procedures; (ii) verify the hydraulic design and its capability to ensure a uniform and
proper cooling for the plasma facing units (PFUs) with an acceptable pressure drop; and (iii) exper-
imentally validate the computational fluid-dynamic (CFD) model developed by the University of
Palermo. In this context, a research campaign was jointly carried out by the University of Palermo and
ENEA to experimentally and theoretically assess the hydraulic performances of the OVT mock-up,
paying particular attention to the coolant distribution among the PFUs and the total pressure drop
across the inlet and outlet sections of the mock-up. The paper presents the results of the steady-state
hydraulic experimental test campaign performed at ENEA Brasimone Research Center as well as
the relevant numerical analyses performed at the Department of Engineering at the University of
Palermo. The test facility, the experimental apparatus, the test matrix and the experimental results, as
well as the theoretical model, its assumptions, and the analyses outcomes are herewith reported and
critically discussed.

Keywords: DEMO; divertor; plasma facing components; thermal hydraulics

1. Introduction

The pursuit of fusion power is propelled by a call for sustainable and foreseeable
low-carbon sources of energy due to the increasing global electricity needs. In this context,
Europe has conceived a roadmap [1] that ensures a clear and organized path for proof
of commercial electric power production from nuclear fusion facilities, at a reasonable
timescale [2]. As an essential element of the European roadmap to the realization of fusion
electricity, Europe is leading the design of a DEMO plant, which will be the final pivotal
step towards harnessing fusion power after ITER [1].

The DEMO plant is expected to run in the middle of the century, with the main
objectives of demonstrating the production of few hundred MWs of net electrical energy,
operating with a closed-tritium fuel cycle and maintenance systems capable of achieving
acceptable plant availability [3]. The DEMO design and R&D activities in Europe will
surely profit from the experiences gained from the design, construction, and operation of
ITER. Nevertheless, there are still physics, materials, and engineering challenges that need
to be addressed [3].
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Among them, the European roadmap to the realization of fusion electricity has defined
reliable power exhausting as one of the most decisive missions. The power necessary to
maintain plasma at high temperatures has to be exhausted. Heat-exhaust systems have to
endure the large heat and particle fluxes of a fusion power plant while ensuring the highest
possible performance from the core plasma [1]. The divertor is the fundamental in-vessel
component in accomplishing this mission. Being devoted to power exhaust and impurity
removal via guided plasma exhaust, the feasibility of fusion power generation depends,
to a large extent, on the heat load that can be tolerated by the divertor under normal and
off-normal conditions [3].

According to its latest concept, the DEMO divertor is articulated in 48 toroidal assem-
blies. Each assembly is composed of a cassette body, endowed with a shielding liner, two
reflector plates, and two plasma facing components (PFCs), namely an inner vertical target
(IVT) and an outer vertical target (OVT) [4]. In the IVT and OVT, there are the plasma
facing units (PFUs). These crucial components, adopted to sustain the high superficial
thermal loads, are high velocity water cooled tubes, equipped with swirl tapes to increase
their heat transfer capabilities. Figure 1 shows the model of the entire divertor assembly.

Figure 1. The DEMO divertor assembly.

Given this background, in the frame of the activities of the DEMO work package
DIV-1 “Divertor Cassette Design and Integration”, of the EUROfusion program aimed at
developing a holistic divertor design concept [5], a mock-up of the OVT [6] of the DEMO
divertor was built by the ENEA research group, mainly in order to:

• Demonstrate the technical feasibility of manufacturing procedures, focusing the at-
tention on the joining/welding techniques, and optimizing costs of each component
applying standard practices;

• Experimentally characterize the hydraulic behavior of the plasma facing components;
• Validate the computational fluid-dynamic (CFD) model developed at the University

of Palermo against experimental data.

In this context, a research campaign was jointly carried out by the University of
Palermo and ENEA to experimentally and theoretically assess the hydraulic performances
of the OVT mock-up, paying particular attention to the coolant distribution among the
PFUs and the total pressure drop across the inlet and outlet sections of the mock-up. Both
the experimental and the theoretical–numerical campaigns will be extensively described in
the following.

In particular, Section 2 is devoted to the description of the experimental test campaign
carried out at ENEA Brasimone Labs, providing a brief overview of the CEF1 (Circuito per
Esperienze di Fluidodinamica 1) water facility as well as of the OVT full-scale prototype
and instrumentation. The attention is then focused on the obtained results, mainly in terms
of pressure drops and mass flow rate distribution in the plasma facing cooling tube array.
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On the other hand, Section 3 reports the comprehensive validation activity of the 3D
CFD calculations carried out at the University of Palermo, based on the data obtained by
the ENEA Brasimone Team from the experimental campaign on the OVT mock-up cooling
circuit. The computational campaign was performed following a theoretical–numerical
approach based on the finite volume method and adopting the well-known ANSYS CFX
2020 R2 commercial CFD code [7].

2. Experimental Test Campaign

In 2020, after the partial upgrade of the experimental hall at ENEA Brasimone lab-
oratories, the complete design and realization of a new test section data and acquisition
system and the installation of the OVT mock-up, the experimental test campaign was
started by means of the CEF1 water loop, according to the test matrix drafted in [6]. The
CEF1 water loop consists of a heat exchanger and two centrifugal pumps, which can be
operated in series or in parallel, the test section, and the return line to the pressurized
tank [6], as shown in Figure 2.

Figure 2. Simplified scheme of the CEF1 facility.

The OVT mock-up main components are the plasma facing channels, consisting of
39 tubes in CuCrZr equipped with internal helical swirl tape made of copper, the in-
let/outlet manifolds made of AISI-316L steel, the inlet diffuser made of AISI-316L, the out-
let header made of AISI-316L, the transition CuCrZr/AISI-316L tubes, i.e., the connec-
tion between the CuCrZr plasma facing tubes and AISI-316L manifolds/diffuser, and the
supporting system [6]. Figure 3 shows the CAD model of OVT mock-up and its
main components.
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Figure 3. CAD model of the OVT mock-up (left), diffuser (top right), PFU channel (bottom right).

Even if small differences are present in the diffuser and the horizontal headers, mainly
due to manufacturing constraints, the OVT cooling circuit exhibits the same structure as the
corresponding DEMO divertor OVT [6]. Logically, the tungsten tiles and the copper inter-
layer were not considered because they were irrelevant for the planned test campaign [6].

Furthermore, certified and calibrated instrumentation was installed in the mock-
up and used during the tests. It was mainly composed of two K-type thermocouples,
measuring water temperatures at the inlet and outlet manifolds with a precision of ±1 ◦C,
a differential pressure transmitter measuring the mock-up total pressure drop with a
precision of ±0.001 bar, and a pressure transmitter at the inlet section with a precision of
±0.012 bar. The positions of the thermocouples and of the differential pressure transmitter
are shown in Figure 4.

Figure 4. Detail of the thermocouples and of the differential pressure transmitter.

In addition, a new ultrasonic flow meter FLEXIM F601 [8] was acquired to measure
coolant mass flow rates inside each of the 39 plasma facing tubes and it was placed
downstream of the swirl tape location [6]. Figure 5 shows two pictures of the ultrasonic
flow meter sensor installation on the upper part of the tube where the water flow is not
disturbed, because it is far enough from the swirl tape, and the measurements are stable
and reliable.
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Figure 5. Ultrasonic flow meter measurements on the first OVT plasma facing cooling tubes.

The prototype mechanically connected to the water loop, instrumented, and ready for
the test campaign is shown in Figure 6.

Figure 6. DEMO divertor OVT prototype installed into the CEF1 building.

Steady-State Tests

As for previous test campaigns performed on the ITER divertor cassette full-scale
prototype [9], steady-state tests were carried out in order to determine the hydraulic
characteristic function of the OVT mock-up cooling circuit, representing the functional
dependence of the total pressure drop along the component, ∆ptot, on the corresponding
mass flow rate, G, and at a given coolant temperature, T. In particular, tests at four different
temperatures (20, 40, 70, and 100 ◦C) were performed, and for each temperature, five mass
flow rate points were acquired from ≈15 kg/s to ≈35 kg/s, while inlet pressure ranged
from ≈2 bar to ≈13 bar.

Table 1 summarizes the mock-up total pressure drops measured at different temper-
atures and mass flow rates. The pressure drop values were averaged over 240 s of data
acquisition, in which the mass flow rate, as well as the temperature of the water loop, were
kept constant, in order to make sure that quasi steady-state conditions were reached inside
the experimental test section. Quasi steady-state conditions were typically reached in a
few minutes.
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Table 1. Summary of experimental steady-state results.

T G ∆pExp
[◦C] [kg/s] [bar]

20

12.438 ± 0.191 0.510 ± 0.015
20.223 ± 0.202 1.268 ± 0.013
25.169 ± 0.188 1.845 ± 0.013
30.087 ± 0.152 2.567 ± 0.041
35.041 ± 0.186 3.393 ± 0.058

40

14.513 ± 0.073 0.650 ± 0.006
22.560 ± 0.113 1.514 ± 0.059
25.035 ± 0.125 1.821 ± 0.022
30.135 ± 0.151 2.535 ± 0.040
34.912 ± 0.175 3.325 ± 0.061

70

15.146 ± 0.076 0.665 ± 0.007
20.346 ± 0.102 1.162 ± 0.014
25.521 ± 0.134 1.770 ± 0.026
30.282 ± 0.152 2.419 ± 0.044
34.984 ± 0.175 3.212 ± 0.064

100

13.087 ± 0.066 0.498 ± 0.007
19.705 ± 0.099 1.061 ± 0.023
25.505 ± 0.128 1.723 ± 0.027
30.221 ± 0.151 2.384 ± 0.049
34.974 ± 0.182 3.126 ± 0.062

Afterwards, at each considered temperature, the hydraulic characteristic functions
were derived by best fitting these results with the following analytical form:

∆ptot(G) = αGβ (1)

where α and β are coefficients whose best-fitting values αExp and βExp, in SI units, are listed
in Table 2.

The overall OVT prototype pressure drop obtained by extrapolating at the reference
mass flow rate of 54.95 kg/s, ∆pExp, is reported in Table 2 for each coolant temperature
investigated. As it can be observed, they are close to their expected design value of
7.403 bar.

Table 2. OVT extrapolated pressure drops for the different test temperatures at the reference mass
flow rate of 54.95 kg/s.

T αExp βExp ∆pExp
[◦C] [bar/(kg/s)β] [-] [bar]

20 5.20 × 10−3 1.8253 7.798
40 4.60 × 10−3 1.8520 7.864
70 4.10 × 10−3 1.8728 7.437

100 4.00 × 10−3 1.8720 7.232

In parallel, the flow distributions among the plasma facing channels were experimen-
tally determined by using the ultrasonic flow-meter FLEXIM F601. This detector uses an
acoustic signal with ultrasonic frequency, which is sent and received through the liquid
and measured by a pair of sensors properly placed on the pipe. The time needed for the
acoustic signal to cross the liquid back and forth is directly proportional to the speed of the
liquid and, hence, to its flow rate. The coolant mass flow rate was measured within each
plasma facing tube only once quasi steady-state conditions were reached.

As shown in Figure 7, the mass flow rate distribution among the plasma facing
channels is quite uniform and within the ±10% of its average value, corresponding to
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maximum axial velocity values in the order of ≈9 m/s at the highest considered mass
flow rate.

Figure 7. Ultrasonic flow meter measurements on 39 OVT plasma facing tubes at 70 ◦C (raw data,
passed to the numerical simulation team).

3. OVT Mock-Up Cooling Circuit CFD Analysis

One of the main purposes behind the fabrication of the OVT mock-up was the exper-
imental validation of the CFD models developed at the University of Palermo, in order
to verify the computationally predicted hydraulic performances. Within this framework,
a comprehensive validation activity of the 3D CFD calculations was carried out at the
University of Palermo, based on the data obtained at the ENEA Brasimone Labs from the
experimental campaign on the OVT mock-up cooling circuit. The computational campaign
was performed following a theoretical–numerical approach based on the finite volume
method and adopting the well-known ANSYS CFX 2020 R2 commercial CFD code [7].

In particular, in the first phase, a grid independence study was carried out, in order to
quantify the discretization errors and to ensure numerical predictions in the asymptotic
range of convergence.

Then, computational results were compared to the experimental outcomes, specifically
in terms of coolant water velocity distribution in the entire PFU cooling tube array and
total pressure drop of the mock-up cooling circuits.

Furthermore, a parametric analysis campaign was performed to evaluate how the
uncertainties on the equivalent sand grain wall roughness may affect both total pressure
drop and mass flow rate distribution among PFU channels.

It is worth mentioning how the mesh independence study and the uncertainty assess-
ment on the equivalent sand grain wall roughness were performed to provide a measure
of the degree of confidence on the outcomes of the numerical campaign.

Results obtained are herewith reported and critically discussed, together with the
main assumptions, models, and boundary conditions (BCs).

3.1. Model Setup

To perform a validation campaign on the methodologies adopted for CFD simulation,
steady-state isothermal CFD analyses were carried out on the OVT mock-up cooling circuit,
whose geometry is reported in Figure 8, considering the assumptions and BCs reported in
Tables 3 and 4.

With regard to Table 3, it is worth highlighting that the k-ω based SST model was
adopted because it gives an accurate description of the near-wall region [7], especially in
the case of flow separation. It is a hybrid model that uses a transformation of the k–ε model
into a k–ω model in the near-wall region and the standard k–ε model in the fully turbulent
region far from the wall. Moreover, this model uses the automatic wall treatment that
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automatically switches from wall-functions to a low-Re near-wall formulation as the mesh
is refined. The accuracy and the flexibility of the k-ω based SST model makes it suited for
the analysis of very complex domains where a wide range of Reynolds numbers may be
encountered and flow separation may occur. For further information, the interested reader
is addressed to the code documentation [7].

Figure 8. OVT mock-up cooling circuit calculation domain.

Among the wide range of operative conditions tested on the OVT mock-up cooling
circuit at ENEA Brasimone Labs, attention was placed on the experimental tests performed
at ≈20 ◦C inlet temperature (see Table 4). Under the selected operating conditions, the flow
field inside the PFU channels was characterized by values of the Reynolds Re numbers
(calculated according to the definition given in [10]), ranging between 3×104 and 1×105,
resulting in a fully turbulent flow. Similar results in terms of Re were obtained for the
manifold pipes.

Table 3. Summary of OVT mock-up CFD analysis setup.

Reference Conditions

Analysis type Steady-state isothermal
Material library Water IAPWS IF97 [11]
Turbulence model k-ω SST [7]
Differencing scheme High-resolution [7]
Boundary layer modeling Automatic wall functions [7]
PFU channels absolute wall roughness 2 µm
ST absolute wall roughness 2 µm
Other regions absolute wall roughness 15 µm
Inlet BC (temperature/pressure) Variable according to Table 4Outlet BC (mass flow rate)



Energies 2021, 14, 8086 9 of 17

Table 4. List of selected experimental tests.

Test # pin G Tin
[-] [bar] [kg/s] [◦C]

1 1.42 12.27 17.85
2 3.92 21.27 20.38
3 5.93 25.29 21.61
4 8.73 30.09 24.06
5 12.09 35.05 25.33

3.2. Mesh Independence Studies

To evaluate and minimize the discretization error related to the CFD simulations,
a grid independence study was preliminarily performed and the mesh-related error was
assessed by adopting the well-established grid convergence index (GCI), both according
to its original derivation, presented in [12], and considering the least-squares (LS) error
estimation described in [13].

Four different increasingly refined meshes were considered, whose details are sum-
marized in Table 5. These meshes were created with mixed tetrahedral and prism elements
(see Figure 9), maintaining unchanged both the total number of layers and the first layer
thickness, and adapting the layer growth rate to have a smooth transition between the
bulk mesh and the last prism layer. Despite the limitations imposed by the adoption of
tetra elements, the meshes were created with the aim of obtaining computational grids
as similar as possible, in compliance with the requirements of ANSYS CFX, in terms of
element quality. With regard to Table 5, it is worth highlighting how the average mesh
quality metrics are within the acceptable ranges prescribed in [7], and less than 1% of the
overall number of cells is characterized by poor metrics. As a consequence, mesh quality is
not expected to significantly influence the results.

Figure 9. Finest mesh adopted for OVT mock-up cooling circuit CFD analyses.
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Table 5. Adopted mesh parameters and quality metrics.

Mesh #1 Mesh #2 Mesh #3 Mesh #4

Element size OVT/PFUs [mm] 10.4/1.3 8.0/1.0 6.15/0.77 4.73/0.59
First layer thickness [µm] 20
Surface with y+<10 at Test #5 [%] ≈80
Number of layers [-] 12
Layer growth rate OVT/PFUs [-] 1.68/1.42 1.65/1.39 1.61/1.36 1.58/1.33
Number of nodes [-] 1.42 × 107 2.09 × 107 3.22 × 107 4.15 × 107

Number of elements [-] 2.05 × 107 2.78 × 107 4.03 × 107 5.14 × 107

Node density [m−3] 3.25 × 108 4.81 × 108 7.40 × 108 9.53 × 108

Orthogonality Factor (average/min) 0.59/0.01 0.61/0.01 0.67/0.01 0.72/0.01
Expansion factor (average/max) 2/617 2/607 2/299 2/258
Aspect ratio (average/max) 38/1830 29/1415 19/1582 17/1077

Additionally, the first layer thickness was selected sufficiently small to have the highest
y+ values in the order of the unity, to capture the entire boundary layer profile. Some
details of the resulting finest mesh (Mesh #4) are depicted in Figure 9.

All analyses were run until all residuals reached the iteration convergence control
criterion of 10−4 and a second-order accurate numerical scheme was adopted, as suggested
by [14].

On the other hand, the figure of merit (FoM) monitored and collected to assess the
grid convergence is the total pressure drop between inlet and outlet sections of the OVT
mock-up cooling circuit. The obtained results are summarized in Table 6.

Table 6. Outlook of the results obtained with the different meshes.

G [kg/s]
∆pNum [bar]

Mesh #1 Mesh #2 Mesh #3 Mesh #4

12.27 0.500 0.475 0.462 0.460
21.27 1.394 1.335 1.303 1.296
25.29 1.935 1.851 1.816 1.812
30.09 2.687 2.575 2.509 2.509
35.05 3.597 3.454 3.367 3.358

Starting from the results reported in Table 6, the GCI together with the asymptotic
values obtained with the generalized Richardson extrapolation (that will be referred to
simply as asymptotic values in the following) were calculated by adopting the procedure
described in [12]. In particular, given a general monitored quantity φ, it can be related to
the average mesh size by the following equation:

φi = φ0 + αhρ
i , (2)

where φi is the measured value obtained with a selected mesh of average linear size hi,
φ0 is the estimate of the asymptotic value, α is a constant and ρ is the observed order of
convergence. Given the results obtained with a set of three meshes, it is then possible to
obtain, by proper interpolation, the values of φ0, α and ρ.

The GCI can therefore be calculated for the selected i-th grid, as follows

GCIi = Fs

∣∣∣∣φi − φ0

φi

∣∣∣∣ = Fs

∣∣∣∣ α

φi

∣∣∣∣hρ
i , (3)

where Fs can be interpreted as a safety factor, conservatively chosen here equal to 3.
It is important to remark that the observed order of convergence should be within

the acceptable range for a second-order accurate numerical method. A value greater than
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this formal order of convergence is likely to cause too small error estimates [13], as can be
easily deduced from Equation (3), being hi � 1.

The outcomes of the analyses showed good monotonically convergent behavior,
with the highest GCI calculated according to [12] being ≈1.5%, suggesting results close to
their asymptotic values. Moreover, an observed order of convergence ρ within the range
8–50 was calculated, clearly outside the above-mentioned suitable limits, and possibly
related to noisy results. The procedure described in [13] was therefore considered, with the
aim to estimate more conservative and realistic GCI values by obtaining a better estimate
of ρ. This can be accomplished since this method evaluates the parameters φ0, α and
ρ of Equation (2) in an LS sense, performing a best-fitting of the results obtained; thus,
limiting the effects of scattered data. In case unduly high or low ρ-values are calculated, this
method prescribes that a best-fitting with both linear and quadratic functions is performed.
The results obtained by adopting this approach are summarized as follows:

• The observed convergence order ranges between 7.80 and 10.43, lower than the results
obtained with the classical GCI formulation, yet outside the prescribed limits;

• GCI values calculated adopting the parameters obtained with the LS approach result
between 1 and 2.7% for all of the considered mass flow rates, and are characterized by
a lower spread compared to the outcomes of the original GCI formulation;

• The prescribed best-fittings with linear and quadratic functions resulted in unrealistic
and underestimated asymptotic values, not compatible with the experimental results
and, consequently, in excessively high GCI values.

Therefore, the outcomes of these latter fittings were discarded, and it can be reasonably
argued from the results obtained shown that an observed order of convergence of ≈8
realistically characterizes the examined problem. To further confirm this assumption,
an additional fine mesh of approximately 108 elements was tested and, due to the huge
computational time required, only one simulation, the one with the lowest mass flow rate,
was considered. The results obtained (see Figure 10) prove that the calculated observed
order of convergence can be reliably adopted to realistically estimate the GCI, resulting in
the additional tested mesh well-predicted by the LS fitting.

Figure 10. Grid independence results obtained for a mass flow rate of 12.27 kg/s.

The outcomes of the entire mesh independence analysis are summarized in Table 7,
while the relative errors with respect to the pertaining asymptotic values are reported in
Figure 11. As a closing remark, it can be safely and conservatively stated that the results
obtained with Mesh #4 are characterized by a small discretization error, which can be
reasonably considered below 3%.
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Figure 11. Relative error with respect to the LS asymptotic values.

Table 7. Overview of the grid independence studies.

G [kg/s]

Original GCI Formulation LS GCI Formulation

Asymptotic
ρ GCI [%] Asymptotic

ρ GCI [%]Values Values

12.27 0.458 9.43 1.31 0.456 8.53 2.18
21.27 1.289 8.54 1.52 1.285 7.80 2.40
25.29 1.809 12.31 0.42 1.805 10.43 1.01
30.09 2.509 49.77 0.00 2.489 8.73 2.34
35.05 3.353 13.81 0.38 3.328 7.81 2.67

3.3. Results and Comparison with Experimental Data

The results of the OVT mock-up cooling circuit CFD analysis, considering the previ-
ously selected Mesh #4, are herein reported mainly in terms of coolant total pressure drop
and mass flow rate distribution among PFU channels, and compared with the experimental
data discussed in Section 2.

The coolant total pressure spatial distribution within the OVT mock-up cooling circuit,
the details of the coolant flow velocity field inside the manifolds, and the PFU channels
assessed for the 35.05 kg/s case are shown in Figure 12.

The comparison between the numerical predictions and the outcomes of the exper-
imental campaign in terms of OVT mock-up characteristic curves, i.e., Equation (1), is
reported in Figure 13, with the addition of 10% error bars, so to give an immediate view of
the error, and is summarized in Table 8. From the analysis of the results, it may be argued
that the maximum error on pressure drop estimation occurs at the lowest investigated flow
rate and is equal to −7.22%, showing an overall good agreement between CFD simulations
and experimental data.

Table 8. Total pressure drop comparison and errors.

G ∆pNum ∆pExp ε
[kg/s] [bar] [bar] [%]

12.27 0.460 0.495 −7.22%
21.27 1.296 1.354 −4.32%
25.29 1.812 1.859 −2.56%
30.09 2.509 2.567 −2.26%
35.05 3.358 3.384 −0.77%
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Figure 12. OVT mock-up results at G = 35.05 kg/s. OVT mock-up coolant total pressure field (left);
OVT mock-up coolant flow velocity field (right).

Figure 13. Numerical and experimental characteristic curves of the OVT mock-up cooling circuit.

The comparison between numerical and experimental mass flow rate distributions
among the OVT mock-up PFU channels is reported for test #5 of Table 4 (being the one
with the worst agreement between experimental and numerical outcomes) in Figure 14,
with 5% error bars alongside the key parameters for all of the considered mass flow rates
in Table 9 where, together with the maximum and minimum flow rates measured for the
PFU channels, the standard deviations are reported σ, and the coefficient of variation,
defined as:

CV,G =
σ

Gave
. (4)

Additionally, maximum and average relative errors between experimental and nu-
merical distributions among the OVT mock-up PFU channels are reported in Table 10.
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Figure 14. Comparison of OVT coolant mass flow rate distributions at G = 35.05 kg/s.

Table 9. Comparison of OVT coolant mass flow rate distribution main parameters.

GMax/Gmin σ CV,G
[kg/s] [kg/s] [%]

G = 12.27 kg/s Numerical 0.323/0.303 0.005 1.59
Experimental 0.331/0.229 0.008 2.54

G = 21.27 kg/s Numerical 0.560/ 0.523 0.010 1.83
Experimental 0.578/0.518 0.015 2.75

G = 25.29 kg/s Numerical 0.666/0.622 0.012 1.85
Experimental 0.686/0.617 0.014 2.16

G = 30.09 kg/s Numerical 0.791/0.739 0.015 1.94
Experimental 0.811/0.729 0.021 2.72

G = 35.05 kg/s Numerical 0.921/0.863 0.016 1.78
Experimental 0.955/0.832 0.029 3.23

Table 10. Maximum and average relative errors on mass flow rate distributions among OVT mock-up
PFU channels.

G εMax εave
[kg/s] [%] [%]

12.27 5.90 2.29
21.27 8.22 2.23
25.29 4.35 1.40
30.09 7.63 3.11
35.05 9.36 2.20

From the analysis of the results, it might be argued that experimental data show a
higher spread of flow distribution among PFU channels and a higher degree of asymmetry
with respect to CFD results for all of the cases under investigation. Despite this discrepancy,
the agreement between numerical and experimental results is quite good, and the maximum
error is predicted for the 35.05 kg/s case simulation and is equal to 9.36% for PFU channel
#1, while the average error has a maximum of 3.11% for the 30.09 kg/s case.

3.4. Sensitivity Analysis on the Equivalent Sand-Grain Wall Roughness

One of the major uncertainties in the accurate reproduction of experimental test
conditions is the lack of precise knowledge on the equivalent sand grain wall roughness
values of PFU channels, swirl tapes, and mock-up pipes and manifolds. Since equivalent
sand grain wall roughness may have a strong impact on both total pressure drop and mass
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flow distribution among the PFU channels, a parametric sensitivity analysis campaign was
performed to evaluate how these uncertainties may affect the obtained results, by providing
numerical estimates of the local sensitivity measures S:

S∆ptot ,kj
= 1

∆ptot,0

∂∆ptot
∂kj

∣∣∣
k0

, SCV,G ,kj
=

∂CV,G
∂kj

∣∣∣
k0

, (5)

where k j are referred in turn to PFU channels, swirl tape, and mock-up pipes, and manifolds
surface roughness values. The local derivatives of Equation (5) are taken at the baseline
configuration, considering the surface roughness values of Table 3, referenced as k0 in
Equation (5).

The baseline analyses were performed considering a surface roughness of 2 µm for
both PFU channels and copper swirl tapes. This same value was already adopted for the
thermal hydraulic assessment of the DEMO divertor PFC cooling circuit [15] and similar
values can be found in literature [16,17]. The response of the OVT mock-up cooling circuit
in terms of total pressure drop and mass flow rate distribution among PFU channels was
therefore assessed, considering a small variation of this parameter around the baseline
value. There were two different equivalent sand grain wall roughness values of 1 and 4 µm
(halved and doubled with respect to baseline, respectively), separately for PFU channels
and swirl tapes, with the aim to identify the component responsible for higher deviations
of the results and to quantify their magnitude.

Regarding mock-up pipes and manifolds—the baseline surface roughness of 15 µm
was selected in agreement with the values adopted for the DEMO divertor cassette body
(see, for example, [18]). Since no better estimates of the roughness were available, it was
deemed necessary to test the response of the CFD mock-up cooling circuit to a broader
range of roughness values, and in particular, the two values 1.5 and 150 µm were selected.
All calculations were performed considering Mesh #4 discussed in Section 3.2, and the wall
treatment presented in [19], necessary when the surface roughness was large compared to
the near-wall mesh, was adopted for the 150 µm simulation, thus avoiding grid variations
that would have possibly required an additional mesh independence study.

A summary of the cases investigated, together with the baseline equivalent sand grain
surface roughness vales, is given in Table 11.

Table 11. Absolute Hydraulic Wall Roughness values investigated.

kpipes kST kmanifolds
[µm] [µm] [µm]

Baseline 2 2 15
PFU channels 1–4 2 15

Swirl tapes 2 1–4 15
OVT mock-up pipes and manifolds 2 2 1.5–150

The outcomes of the sensitivity analyses are summarized, for the sake of brevity,
as follows.

• Due to the presence of non-stationary features of the fluid flow, such as the strongly
detached flow inside the inlet manifold clearly visible in Figure 12 (right), an oscillation
of the results is always observed in the simulations. As a consequence, the small
variations in terms of total pressure drop and mass flow distribution among PFU
channels observed by varying the surface roughness are hardly recognized from the
noisy nature of the results. To obtain better estimates of the effects of surface roughness
sensitivity, the outcomes reported in the following were calculated by averaging the
metrics of Equation (5) obtained for the five different mass flow rate cases.

• Varying the PFU channels surface roughness, a variation of total pressure drop be-
tween −0.6% and +1.8% is detected. It results in an average of S∆ptot,kpipes ≈ 0.8%/µm.
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• Varying the swirl tape surface roughness, a variation of total pressure drop between
−0.4% and +0.5% is obtained. An average of S∆ptot,kST

≈ 0.3%/µm, lower than the
sensitivity to PFU channels roughness.

• Varying the OVT mock-up pipes and manifolds surface roughness, an average ≈−2.5%
total pressure drop change is observed with the 1.5 µm equivalent sand grain rough-
ness. The 150 µm case predicted an average 0.4% reduction in total pressure drop
with respect to baseline case. This latter result is mainly related to the different wall
treatment adopted, whose effect should be further investigated. As a consequence, it
is not possible to provide an estimate of the parameter S∆ptot,kmanifolds

.
• No significant change in flow distribution, in terms of coefficient of variation, is

observed modifying the surface roughness of PFU channels, swirl tape, and OVT
mock-up pipes and manifolds, always resulting in a lower spread of the mass flow
rates if compared to the experimental values. In particular, absolute variations within
the range ±0.1% are predicted by the model, resulting in SCV,G,kj ≈ 0.0%/µm.

In summary, the sensitivity analysis showed a limited dependency of the numerical
results on the surface roughness of the various components within the explored range of
values, with deviations mostly lower than 3% of the baseline results. Nonetheless, the OVT
mock-up cooling circuit showed, in particular, a higher sensitivity to the PFU channel
surface roughness that may be related to the higher flow velocities experienced by the fluid
inside the channels, and to the centrifugal force caused by the swirl motion responsible for
higher local velocities close to the pipe walls.

4. Conclusions

In the frame of the pre-conceptual design activities of the DEMO work package
DIV-1 “Divertor Cassette Design and Integration” of the EUROfusion program, a research
campaign was jointly carried out by the University of Palermo and ENEA to experimentally
and theoretically assess the hydraulic performances of a mock-up of the divertor outer
vertical target, paying particular attention to the coolant distribution among the PFUs and
the total pressure drop across the inlet and outlet sections of the mock-up.

The paper presents the results of the steady-state hydraulic experimental test campaign
performed at the ENEA Brasimone Research Center as well as the relevant numerical
analyses performed at the Department of Engineering at the University of Palermo. The test
facility, the experimental apparatus, the test matrix and the experimental results are widely
described and critically discussed together with the theoretical model, its assumptions, and
the analyses outcomes.

In particular, the experimental tests on the OVT prototype showed that the expected
overall pressure drop at the reference mass flow rate of 54.95 kg/s is close to the previously
calculated design value of 7.403 bar for each coolant temperature investigated. Furthermore,
the mass flow rate distribution among the plasma facing channels is sufficiently uniform,
being the maximum variation within the ±10% of the average value.

On the other hand, the theoretical–numerical analysis campaign started from a thor-
ough mesh independence study that allowed selecting a mesh characterized by a small
discretization error, i.e., below 3%. Afterwards, among the wide range of operative con-
ditions tested on the OVT mock-up cooling circuit at ENEA Brasimone Labs, attention
was placed on numerically reproducing the experimental tests performed at ≈20 ◦C inlet
temperature. The results exhibit an overall good agreement with experimental data, being
the maximum error on pressure drop estimation equal to −7.22%. Similar conclusion may
be drawn from the comparison of the coolant flow distributions among PFU channels since
the maximum error is predicted to be 9.36%, while the average error has a maximum of
3.11%. In general, it may be argued that experimental data show a higher spread of flow
distribution among PFU channels and a higher degree of asymmetry, with respect to CFD
results for all of the cases under investigation. Furthermore, the final sensitivity analyses
showed a limited dependency of the numerical results on the surface roughness of the
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various components within the explored range of values, with deviations in the order of a
few percent of the baseline results.
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