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Abstract. In recent years, radio-frequency corona igniters have been 
extensively studied for their capability to ensure an effective ignition also 
in lean or diluted mixtures. Corona ignition is volumetric, with streamers 
coming from a star-shaped electrode. During the discharge, many radicals 
and excited species, able to speed up the combustion onset, are generated. 
At the same time, corona igniters are able to release a considerable amount 
of thermal energy inside the combustion chamber. The correct 
determination of such energy is crucial to evaluate the effectiveness of the 
ignition. In this work, corona discharge is experimentally evaluated inside 
an optical vessel. In this apparatus, the released thermal energy is measured 
by means of pressure-based calorimetry, and at the same time the natural 
luminosity of the streamers is recorded with a high-speed camera. The goal 
is to find a relationship between thermal energy release and streamers 
luminosity. Tests are performed using nitrogen as medium, at different 
pressure levels inside the vessel. The peak electrode voltage is varied to 
characterize the igniter behaviour in different operating conditions. The 
results of this work can be used to quantify the corona ignition capabilities 
to involve a wide amount of medium while releasing a high amount of 
thermal energy. A repeatability evaluation of streamer evolution is 
investigated as well.  

1 Introduction  
Internal combustion engines worldwide regulations have become more and more 

stringent, forcing to decrease the amount of pollutant emissions and, at the same time, to 
increase the thermal efficiency [1]. In literature many studies report the efforts to deal with 
these two aspects [2–4]. As for spark ignition (SI) engines, engine research community and 
manufacturers agree in considering a 45% brake thermal efficiency a feasible goal [5], 
ascertained that boosting, lean combustion and high EGR dilution are mandatory. In these 
conditions, the main barrier is represented by ignition, since with conventional spark plugs 
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a robust flame kernel generation is hard to achieve. To improve ignition capability, spark-
based solutions like high-energy discharge or multiple strikes discharge [6] have shown 
their limits, since they have to deal with the reduced sparkplug lifetime [7]. Solutions based 
on the addition of highly-reactive species in the air-fuel mixture, like hydrogen [8], would 
have an excessive impact on fuel infrastructure [9]. Instead, interesting technologies to 
improve the stability of combustion initiation for boosted engines in lean and diluted 
environments are the pre-chamber ignition [10] and the low-temperature plasma ignition 
[11]. Regarding the latter, low-temperature or non-equilibrium plasma is able to enhance 
the combustion not only via thermal effect (the predominant in the spark discharge), but 
also via kinetic and transport effects [11]. Among several low-temperature plasma 
technologies, such as nanosecond-pulsed discharge [12], microwave discharge [13] and 
dielectric-barrier discharge [14], radio-frequency (RF) corona discharge is one of the most 
promising [15]. Several works showed its capability to improve lean or EGR-dilution 
tolerance [8,16]. The quick generation of a considerable amount of excited species, e.g. 
atomic oxygen, during the corona discharge is fundamental to explain the high capability of 
this system to speed up the combustion onset [17]. Calorimetry tests showed also that the 
thermal energy released during the corona discharge can be higher than the one released by 
a conventional spark igniter [18,19]. The corona discharge is based on the generation of 
streamers from a star-shaped electrode fed with RF power at the resonance frequency of the 
igniter [20]. There are evidences that link the released thermal energy, the intensity of 
streamers and the generation of radicals and excited species [21] for non-equilibrium 
plasma igniters, depending on the discharge parameters and on the in-cylinder medium. So 
far, anyway, studies on RF corona igniters have only been aimed at determining the 
combustion effectiveness [22], or the repeatability and the randomness of the streamer 
discharge [23], or the amount of the sole thermal energy [18]. 

This work, instead, reports the efforts to link an energetic information, i.e. the released 
thermal energy obtained via pressure-based calorimetry, and an optical information, i.e. the 
natural luminosity of the streamers during the RF corona discharge. The results of this work 
can be of great interest, since the relationship between thermal energy and streamer light 
could be potentially derived and used in optical engines, where only the discharge 
luminosity can be measured, the pressure-based calorimetry being not feasible. 

2 Experimental Setup and Methods  

2.1 RF corona igniter 

In this work, a Tenneco ACIS (Advanced Corona Ignition System) streamer-type igniter 
is used (Fig. 1 left). It is featured with a star-shaped electrode, composed of 4 nominally 
identical tips, while the engine combustion chamber, in particular the piston, acts as the 
grounded counter-electrode. The igniter is supplied by a dedicated control unit with RF 
power at about 1.04 MHz, corresponding to the resonance frequency of the equivalent RLC 
circuit [20]. The discharge can be managed by calibrating the control unit, as explained in 
details in [18,22]: the driving voltage Vd controls the peak electrode voltage Ve (the 
relationship between them is linear [18]), while the discharge duration Td directly controls 
the time the corona discharge is active. Given the medium pressure, there is a precise Ve 
range for which the corona discharge occurs. The lower limit is the corona inception 
voltage (CIV, according to the nomenclature used in [24]): below the CIV, the discharge 
does not occur. The upper limit is the breakdown voltage (BDV [24]), which implies a 
transition from non-equilibrium plasma streamers to thermal  near-equilibrium plasma, 
typical of spark igniters.  
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This igniter was already tested by our research group in an optical engine 
[8,15,22,23,25] and in another calorimeter [18,19], different from the one used in this work 
since there was no optical access. 

 

 
Fig. 1. Left: RF corona streamers generated in air at atmospheric pressure by a Tenneco ACIS 
streamer-type igniter. Right:  CAD of the vessel and real vessel. Igniter, optical access, housing 
of the pressure sensor and grounded screws are pointed out. 

2.2 Optical calorimeter 

A constant-volume optical vessel in Plexiglas (to ensure low thermal conductivity, 
0.187 W∙m-1∙K-1)  has been designed and realized to perform this experimental campaign. 
The inner volume vch is 65.2 cm3 and the shape is cylindrical. The igniter is installed 
opposite to the optical window, while a piezoelectric sensor is placed in the lateral surface, 
together with grounded needles to direct the streamers (Fig. 1 right).    

The vessel can be filled with gas up to 10 bar absolute of pressure. In this work, pure 
nitrogen from a cylinder (5.0 purity, Linde) at room temperature (293±1 K) is used. Details 
on the pressure control system can be found in the previous calorimetry works [18,19]. The 
discharge inside the vessel is triggered by a TTL signal, 10 Hz frequency, produced by an 
arbitrary wave Generator HP 33120A. The current supplied to the igniter coil is measured 
by a Teledyne LeCroy CP030 current probe (max continuous current input 30 A, accuracy 
±1.5% full scale).  The corona discharge event generates a pressure rise which is detected 
by means of a Kistler 7261 piezoelectric sensor (sensitivity 2200 pC∙bar-1, resolution of 
about 10-5 bar), whose signal is amplified and converted into a proportional voltage signal 
by a Kistler 5011B charge amplifier. All the aforementioned signals are acquired by a fast 
oscilloscope Teledyne LeCroy Wavesurfer 3000 (Fig. 2, left) with a sampling frequency of 
5 MHz, about five times bigger than ACIS supply frequency. For each test point, 100 
consecutive events are recorded and stored.  

A Phantom V710 high-speed camera with a Nikkor 50-mm f/1.4 lens (Fig. 2, left) is 
placed in front of the calorimeter to record the streamer luminosity. A 4-diopters close-up 
lens is placed downstream of the 50-mm lens to improve the spatial resolution by reducing 
the minimum focal distance. In Table 1 the main features of the high-speed camera are 
reported. The camera records greyscale frames (Fig. 2, right), 8-bit depth. With the selected 
framerate and the discharge duration of 300 μs, the streamers are expected to be captured in 
a number of frames between 23 and 24 for each event.  
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Fig. 2. Left: experimental layout. Right: high-speed camera view inside the vessel. Each side 
corresponds to about 25.6 mm. The ACIS 4-tips central electrode is clearly visible.  

Table 1. High-speed camera settings. 

Feature Unit Value 

Image resolution pixel 256x256 

Sampling rate kfps 79 

Exposure time μs 12.16 

Bit depth bit 8 

Spatial resolution μm2/pixel 100 

Temporal resolution @ Td = 300 μs  frames/event 23.7 

Number of consecutive events recorded - 63 

 
The camera sensor is featured with a good sensitivity in the visible range of the 

electromagnetic spectrum, which is found to be adequate for the streamer detection: the 
corona discharge luminosity is related to the first negative system (FNS) of N2

+ (B2Σu
+) at 

about 391 nm [26], mainly in the streamer head, which moreover justifies the violet colour 
of the streamers (Fig. 1 left).  

2.3 Released energy calculation 

An in-house post-processing algorithm in Matlab allows to determine the thermal 
energy released by the corona discharge events. The pressure signal is filtered with a 2 kHz 
low-pass filter to reduce the noise contribution [27]. The pressure difference Δpch due to the 
300 μs discharge is directly proportional to the released thermal energy Er, in agreement 
with the first law of thermodynamics by assuming the vessel adiabaticity [28]: 

Er = (γ-1)-1∙vch∙ Δpch                                                                     (1) 

where γ is the specific heat ratio and vch is the calorimeter chamber volume. This 
relationship can be considered as valid only for few milliseconds after the end of the 
discharge [18]. Details on the workflow to obtain Er from raw pressure signals are reported 
in [18,19]. Er is analysed for all the 100 consecutive strikes recorded at each operating point 
tested. 
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2.4 Streamer luminosity calculation 

For each test point, 63 consecutive corona events are recorded by the high-speed camera 
in a movie file whose format is the proprietary “.cine”. A common trigger allows to match 
pressure rise and streamer evolution. Each “cine” file is composed of 35 frames: the first 10 
are stored to characterize the background level, since no discharge event occurs on them; 
the following 24 refer to the discharge, while the last frame is used to confirm the corona 
end.  

A postprocessing procedure developed via in-house Matlab scripts allows to compute 
the average grey level LgAvg of the frame. Most of the steps, described in Fig. 3a, are in 
common with a previous optical work aimed at characterizing streamer repeatability in an 
optical engine [23]. The procedure is the following: 

 Background noise characterization: the average grey level value of each pixel in 
the 10 initial frames with no discharge is computed. This allows to obtain a map 
of the average noise in the 256x256 pixel matrix before the discharge.  

 Background removal: for each discharge frame, noise is removed by subtracting, 
pixel-by-pixel, the average background map.  

 Equalization: grey levels are no longer displayed in the 0-255 range (8-bit 
resolution), but only in the 0-100 range. This choice allows to highlight the 
branching structure of the streamers, improving the comprehensibility, and this is 
found to be effective for all the different cases.  

 Filtering: a 2D Gaussian filter with a standard deviation σ = 1 is applied to 
reduce the residual noise. The σ value is a good compromise between noise 
cancellation and boundary conservation.  

 Thresholding: a fixed threshold is applied to binarize the frame, i.e. to convert 
the greyscale image into a black-&-white one. The threshold application is also a 
way to determine if an image contains pixels that are bright enough to consider 
as active the corona discharge: a frame with 0 pixels above the threshold means 
that there are no streamers.  

 Average grey level: only for the frames in which the discharge is present (at least 
one pixel over the threshold), the average grey level of the entire frame 
(LgAvg,Frame) is computed. This value is a measure of the luminous emission of the 
streamer in a period corresponding to the sensor exposure time, so it represents 
the average brightness of the frame. 

This procedure is repeated for all the consecutive frames of the same event. The average 
grey level of a single event (LgAvg,Event) is computed by averaging LgAvg,Frame from frame # 10 
(the last before the start of the event) to frame # 35 (the first for which the corona is 
certainly over).  

The corona discharge being a stochastic event, a certain variability among the 
consecutive events is expected: in Fig. 3b the LgAvg,Frame trend over the discharge for 63 
events of the same series is reported. The behaviour of the consecutive events is globally 
similar, and in the same figure the average grey level evolution over frames is plotted in 
green solid line. From this dataset, the average grey level LgAvg,Series (red dashed line) can be 
computed, together with the corrected-series standard deviation LgStd,Series. Note that, 
ultimately, LgAvg,Series represents the average luminosity produced by an entire series of 
corona events at the same operating conditions (pressure, driving voltage): it can be then 
compared to the energy released by the igniter. 
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Fig. 3.  (a) Image postprocessing workflow to obtain the frame average grey level LgAvg,Frame. (b) 
LgAvg,Frame evolution for all the 63 consecutive events of a test point (black lines), series average frame-
by-frame (green solid line), and the corresponding whole series average level Lg,Avg,Series (red dashed 
line). 

2.5 Test campaign  
Tests are performed in N2 at three different pressure levels (pch = 1, 2 and 3 bar 

absolute) and two different driving voltages (Vd = 16 and 20 V). The latter values 
correspond to a peak electrode voltage Ve of, respectively, about 8.2 and 10.7 kV, 
regardless of the pressure [18]. The corona duration Td is fixed at 300 μs, such as in 
previous calorimetry tests [18]. 300 μs is also an effective value to normally ensure the 
ignition in internal combustion engines [22]. The experimental campaign is composed of 6 
different test points, identified by a name in the form “pch_Vd” so they can be expressed as 
1_16, 1_20, 2_16, 2_20, 3_16 and 3_20. 

3 Results 
In Table 2 the main results of the pressure-based calorimetry can be found. In the 

second and third columns, respectively, the mean thermal energy value (ErAvg) and the 
corrected standard deviation (ErStd) are reported. As expected [18], an ErAvg rising trend with 
voltage at fixed pressure is found. The energy reduction with pressure, instead, is found to 
be strongly dependent on the voltage. In particular, at Vd = 20 V, the energy values at 2 and 
3 bar are very close each other, while from 1 to 2 bar the gap is higher. At Vd = 16 V, 
instead, energy values are more “evenly-distributed” among the 3 pressure levels. This 
denotes a different behaviour of the Er(Vd) relationship with pressure, a phenomenon 
already found in [18]. Er results are close to the ones in [18] with similar pressure and 
similar Vd and Ton, thus confirming the high reproducibility of the measurements. At engine 
relevant pressure levels, higher than the ones tested in this work, Er can reach up to 80 mJ 
[18,19] depending on the discharge parameters. Finally, and just as a comparison, the 
expected thermal energy with a conventional spark plug with a pressure range  of 1-3 bar 
would reach only about 1-2 mJ [19,28].  

The optical results can be found as well in Table 2, fourth and fifth columns. The trend 
of the average values is similar to what found in the energy cases. The standard deviation, 
which turns out to be almost the same for the two techniques, confirms the strong 
correlation between the two phenomena. Ultimately, both thermal energy and discharge 
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brightness rise with voltage and decrease with pressure, coherently with the non-
equilibrium plasma physics in the corresponding range of reduced electric field, the 
discharge key parameter [29]. 

Table 2. Optical calorimeter results 

Series (pch_Vd) ErAvg [mJ] ErStd[mJ] LgAvg,Series [-] LgStd,Series [-] 

1_16 11.4 0.05 10.6 0.06 

1_20 19.4 0.11 19.4 0.10 

2_16 8.1 0.03 7.1 0.05 

2_20 16.2 0.04 12.2 0.06 

3_16 5.9 0.11 4.0 0.14 

3_20 15.9 0.06 8.2 0.05 

4 Discussion 

4.1 Thermal Energy and Luminosity 

 

 
Fig. 4. (a) Relationship between the released thermal energy and the average grey level for each 
corona event. Series are represented in a different way according to pressure (black = 1 bar, blue = 2 
bar, red = 3 bar) and driving voltage (circles = 16 V, crosses = 20 V). Lines that link the series with 
the same pressure are reported in dashed lines only for sake of clarity. (b) 1_20 frame. (c) 3_20 frame.  

In Fig. 4a the distribution of energy and average luminosity for the same corona event is 
reported, for all the series. The 3_16 trend is featured with only few values (only the ones 
with the highest energy), and a focus on them can be found in the next section. 

At a given pressure value, higher amounts of both released energy and streamer 
luminosity are found moving towards high Vd. Anyway, similar values of released energy 
do not imply similar values of luminosity: there are cases with almost the same Er and a 
very different luminous emission (e.g. 2_20 and 3_20) and others with same LgAvg,Series (e.g. 
1_16 and 2_20) but different energy. This because the lines that link the iso-pressure series, 
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featured with positive slope, result to be pressure-dependent: the higher the pressure, the 
lower the slope.  

This can be explained by considering that lower pressure levels result in an increase in 
streamer extent, thickness and branching (Fig. 4b), so that each frame is brighter than the 
corresponding high-pressure one, which is on average more narrow (Fig. 4c). Moreover, in 
several occurrences of the 1_20 series the streamers are found to go beyond the frame area 
(Fig. 4b): this implies that such frames are particularly brighter than the ones in which 
streamers are all confined into the frame area. This is not found in the other series (Fig. 4c). 
A possible countermeasure, i.e. slightly moving away the camera from the vessel, would 
affect the spatial resolution and for this reason we did not change the camera position, 
accepting to underestimate a limited number of occurrences. 

 Ultimately, the pressure level has an influence in the luminous emission, while it does 
not affect the way the pressure-based calorimetry detects Er.  

4.2 Inception voltage case 

 
Fig. 5. Focus on CIV (3_16 series), where also the occurrences with a partial level of energy are 
considered. Red markers: experimental points, black solid line: regression line. 

The 3_16 point is very close to the corona inception conditions. Since the inception process 
is characterized by high stochasticity, the events show off very different energy and 
brightness levels in close proximity to CIV.  In many occurrences the discharge is not able 
to start at all, in other cases it starts later, in other ones not all the 4 electrode tips are 
interested in the generation of the streamers, as already found in [18]. The results for the 
3_16 case in Table 2 and in Fig. 4 refer only to the high-energy occurrences, but, if all the 
occurrences but the zero-energy ones are considered (Fig. 5), a strong linearity between 
LgAvg,Event and Er can be found (the regression line is featured with an r2 of about 98%). 

Finally, note that the experimental points of the CIV tend to distribute not continuously 
but in groups, suggesting the existence of discrete energetic levels, which justifies the 
binning procedure reported in [18]. 

5 Conclusions 
This work reports an analysis based on both imaging and pressure-based calorimetry on 

RF corona discharges generated by a Tenneco streamer-type ACIS igniter. An optical 
vessel has been specifically realized for this work: pressure rise and streamer luminosity of 
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each corona event can be simultaneously acquired. Tests are performed in pure nitrogen at 
three pressure levels (1, 2 and 3 bar absolute) and 2 peak voltage levels at the electrode. 

The main findings are listed in the following: 
 The thermal energy obtained from pressure-based calorimetry is in agreement 

with previous measurements on a different calorimeter. 
 Both thermal energy and discharge brightness rise with an increase of voltage or 

a decrease of medium pressure. This is coherent with the physics of the non-
equilibrium plasma in the corresponding range of reduced electric field. 

 The statistical distribution of streamer luminosity and released energy over the 
same series of events is very similar, confirming that the two phenomena are 
linked. 

 Given the pressure, the event luminosity rises linearly with the released thermal 
energy. This is demonstrated for the 3_16 point, close to the CIV, in which a 
large number of energy levels and brightness levels is found. 

 The linear relationship between event luminosity and thermal energy depends 
also on chamber pressure. A given rise in thermal energy results in a 
corresponding rise in luminosity which is higher at 1 bar than at 3 bar. 

Glossary and nomenclature 
ACIS  advanced corona ignition system 
Avg  average 
BDV  breakdown voltage 
CIV   corona inception voltage 
Er   released thermal energy 
LgAvg   average grey level (of a frame, of an event, of a series) 
Std  corrected-series standard deviation 
Td   corona discharge duration 
Vd   corona driving voltage 
Ve   peak electrode voltage 
Δpch   difference in chamber pressure before and after the corona discharge 
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