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Abstract: Petrochemical companies aim at assessing final product quality in real time, in order to 

rapidly deal with possible plant faults and to reduce chemical wastes and staff effort resulting from 

the many laboratory analyses performed every day. In order to answer these needs, the main pur-

pose of the current work is to explore the feasibility of multiblock regression methods to build real-

time monitoring models for the prediction of two quality properties of Acrylonitrile-Butadiene-Sty-

rene (ABS) by fusing near-infrared (NIR) and process sensors data. Data come from a production 

plant, which operates continuously, and where four NIR probes are installed on-line, in addition to 

standard process sensors. Multiblock-PLS (MB-PLS) and Response-Oriented Sequential Alternation 

(ROSA) methods were here utilized to assess which of such sensors and plant areas were the most 

relevant for the quality parameters prediction. Several prediction models were constructed exploit-

ing measurements provided by sensors active at different ABS production process stages. Both 

methods provided good prediction performances and permitted identification of the most relevant 

data blocks for the quality parameters’ prediction. Moreover, models built without considering re-

cordings from the final stage of the process yielded prediction errors comparable to those involving 

all available data blocks. Thus, in principle, allowing final ABS quality to be estimated in real-time 

before the end of the process itself. 

Keywords: Acrylonitrile-Butadiene-Styrene; low-level data fusion; multiblock-partial least squares 

(MB-PLS); multivariate statistical process control; polymer production; quality prediction; real-time 

monitoring; response-oriented sequential alternation (ROSA) 

 

1. Introduction 

Nowadays, in several different domains like precision agriculture as well as phar-

maceutical, food and chemical manufacturing, it is very common to utilize many analyti-

cal sensors to comprehensively characterize complex systems under study and to monitor 

processes while they evolve over time [1]. Analyzing the data yielded by such sensors by 

means of appropriate statistical tools is challenging but crucial in order to obtain mean-

ingful physico-chemical information and design efficient production monitoring and con-

trol schemes. In particular, in industrial applications, a relevant issue is how to integrate 

or fuse the data resulting from sensors of different nature, potentially installed at different 

locations in the plant and in real time. 
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Multivariate Statistical Process Control (MSPC) is a well-established tool to accom-

plish real time monitoring and control of industrial production, in particular Latent Vari-

ables-Based MSPC (LV-MSPC) [2–7]. Most LV-MSPC relies on so-called engineering pro-

cess variables [8], i.e., measured by on-line sensors controlling machinery settings (such 

as flow-meters, temperature and pressure probes, etc.) to build reference multivariate 

models for normal operating conditions (NOC), which are afterwards used to derive mul-

tivariate control charts and/or predicting quality attributes of finite product. More re-

cently, thanks to technological developments, spectroscopic probes, especially near-infra-

red (NIR) ones, are extensively exploited [6,7,9–13] to monitor process evolution, or, in 

other words, to determine intermediate and final product quality parameters. Many stud-

ies in literature report on these aspects. Their results mainly refer to pilot scale plants 

[9,11,12,14] as well as to batch types of processes and seldom are engineering process var-

iables and NIR measurements combined for constructing LV-MSPC models [6,10,14,15]. 

Fusing spectra with engineering variables is not a trivial task. However, process mon-

itoring and control can greatly benefit from fusing these diverse data types, since, in this 

way, chemical composition-related information and physical and mechanical behav-

ior/properties can be integrated. 

This work focuses on a continuous styrenic polymer production process [16], moni-

tored by means of NIR probes installed on-line in a production plant, as well as by stand-

ard process sensors. The main aim is to build real-time monitoring models to predict two 

of the main quality attributes of the final polymeric product by fusing NIR and process 

sensors’ data. A preliminary feasibility study was recently conducted by the authors at 

the pilot-plant level [14]. 

Two aspects are particularly relevant for industry: (i) the possibility of estimating in 

real time the quality of a finite product, thus reducing the operational time and the amount 

of chemicals commonly required for laboratory off-line assessments by reference meth-

ods; and (ii) to reach the anticipated assessment of departure from desired quality before 

the end of production itself, in order to plan possible early modifications of the operating 

settings. 

To this end, we investigated the application of multiblock chemometric methods [17–

25] which are suitable to accomplish data fusion at low-level [26,27] and might bring in-

teresting advantages with respect to alternative mid-level and high-level data integration 

strategies [26] especially in terms of model training, maintenance and interpretability. In 

fact, original variables are directly used without any compression steps, and it is possible 

to assess the salience of each block/type of sensors in the model, i.e., inspecting their de-

gree of uniqueness or redundancy. 

In particular, we compared a well-established multiblock MSPC approach, such as 

MultiBlock Partial Least Squares (MB-PLS) regression [21], with Response-Oriented Se-

quential Alternation (ROSA) [22]. The distinctive features of ROSA, which is also based 

on PLS regression [28,29], are: (i) to be invariant to block scaling and not to be affected by 

the spurious bias resulting from the combination of data blocks of different size (similarly 

to sequential orthogonal PLS (SO-PLS) [20]); and (ii) to be computationally efficient and 

capable of dealing with any number of blocks, also a very high number (differently from 

SO-PLS). 

We tested models constructed on measurements yielded by sensors that were active 

at all different process stages (up to the process production end), as well as models where 

measurements from the last stage were excluded. This was in order to evaluate if polymer 

quality could be forecasted prior to the end of production. The results achieved, by both 

MB-PLS and ROSA, show satisfactory predictive performance for the determination of the 

two quality parameters investigated. At the same time, the most relevant data blocks were 

assessed. 
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2. Materials and Methods 

2.1. Process Description 

Data presented in the current work were collected on-line in an Acrylonitrile-Sty-

rene-Butadiene (ABS) industrial production plant (full scale) operating in continuous pro-

cess, owned by Versalis (ENI group). For the sake of simplicity, the plant can be regarded 

as divided into five different areas: (i) pre-poly/mixer, where the three precursor mono-

mers (acrylonitrile, styrene and butadiene) are mixed together; (ii) reaction point A; (iii) 

reaction point B; (iv) reaction point C; and (v) devolatilizer/cut zone, where the finite prod-

uct is cut. Throughout all these areas seventy process sensors (PS), which measure tem-

peratures, pressures, flow rates and motor speed, and four NIR probes are installed. The 

NIR probes are placed in four specific and crucial areas of the production plant: one where 

dissolution of butadiene in styrene occurs, before the addition of acrylonitrile; one in the 

pipe for the recovery of condensed reagents; one between the first and the second reaction 

points; and one at the very end of the process, just before the cut zone. Overall, both PS 

and NIR probes record data/spectra with a frequency of about one minute. In this study, 

data registered from January 2020 to May 2021 were analyzed, even if not all the data 

recorded during this period were considered in model building, due to production pauses 

and deviations from the operative conditions relevant for the current study. 

2.2. Reference Analysis 

Two different parameters have been considered for the evaluation of ABS quality. 

Nonetheless, because of confidential agreement restrictions with the company, their ac-

tual names will not be disclosed, but they will be referred to as Property 1 and Property 

2. Properties 1 and 2 are assessed off-line by collecting ABS samples, i.e., final product, 

two (Property 1) and three (Property 2) times per day. Property 1 is related to ABS com-

position, i.e., the percentage of a certain chemical compound in the final product. On the 

other hand, Property 2 gives information about physical features of the product and the 

values of the related reference analysis are expressed in grams. In the period covered by 

this study 597 and 904 laboratory tests (homogeneously distributed all over the time pe-

riod) were carried out to determine Property 1 and Property 2, respectively. Property 1 

values ranged from 20 to 21.8%; Property 2 values ranged from 3.9 to 6.1 g. 

2.3. NIR Spectroscopy 

A Matrix FT-NIR spectrometer (Bruker Optics, Milan, Italy) was used to acquire spec-

tra in the four different acquisition sites. The instrument was equipped with optical fibers 

(length: 100 m, diameter: 600 μm), whose probes (HT immersion probe, Drawing-no. 

661.2350_1, Hellma GmbH and Co. KG, Müllheim, Germany) were directly connected to 

the four different acquisition sites located on the process pipe. Spectra were collected in 

transmission mode over the 12,500–4000 cm−1 spectral range, with a nominal resolution of 

4 cm−1 (64 scans per sample). 

2.4. Data Analysis 

2.4.1. Data Block and Multiblock Arrangement 

The ensemble of collected data was arranged into nine distinct data blocks, according 

to the data type and the acquisition area along the process: on the one hand, PS measure-

ments were gathered in five blocks, one per every area of the plant (see also Section 2.1); 

on the other hand, NIR spectra were arranged into four blocks, each corresponding to an 

individual optical probe. In Table 1, the names and abbreviations (which will be hereafter 

used) of all the blocks are shown, together with their size and the location along the plant. 

This is also an indication of how they are ranked in time, being a continuous process  
  



Sensors 2022, 22, 1436 4 of 15 
 

 

Table 1. Data block description. 

Block Full Name 
Block Abbreviated 

Name 
Data Type No. of Variables 1 Order 

NIR dissolution NIR-diss NIR Spectra 390 1 

Prepoli/Mixer Prep/mix PS 7 2 

NIR condensation NIR-cond NIR Spectra 390 3 

Reaction Point A RP-A PS 15 4 

NIR Reaction Point A NIR-RP-A NIR Spectra 390 5 

Reaction Point B RP-B PS 10 6 

Reaction Point C RP-C PS 8 7 

Devolatilizer/cut zone Devo/cut PS 30 8 

NIR cut zone NIR-cut NIR Spectra 390 9 
1 For NIR data blocks, the number of variables is equal to the spectra wave numbers, whereas for 

PS data blocks it is equal to the number of PS present in the respective plant area. The column “Or-

der” highlights how the process evolves chronologically. 

For both multiblock approaches, the data blocks were assembled considering the 

chronological progression of the ABS production process and, therefore, based on the lo-

cation of the different sensors along the production line. In other words, each data point 

present in the datasets refers to information collected at different times, but it is correctly 

matched to the same processed material (i.e., data are synchronized). 

Figure 1 displays a schematic representation of the low-level data fusion strategy 

adopted. 

 

Figure 1. Schematic representation of the low-level data fusion approach resorted to in this study. 

Values in brackets indicate the chronological order of the data blocks. 

2.4.2. Preprocessing 

Individual block preprocessing 

Prior to the multiblock modeling phase, each data set was preprocessed individually. 

In particular, variables in each PS data block were scaled to unit variance (different in 

nature and scales) whereas spectra, in each NIR data block, were baseline-corrected by 

using automatic weighted least squares [30]. Moreover, only the spectral range from 6500 

to 5000 cm−1 (the sole one exhibiting spectral bands ascribable to either reactants or prod-

ucts) was taken into account for subsequent model training. Figure 2 shows the effect of 

the baseline correction executed on the NIR spectra of the NIR-RP-A data block. 

Multiblock preprocessing 

After the individual preprocessing of the single blocks, each data set was scaled to 

unit block variance (including column mean-centering) prior to MB-PLS [21]. In fact, MB-
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PLS operates directly on row-wise concatenated data blocks and a fair block contribution 

has to be assured. 

Concerning ROSA, the individual pre-processed blocks were just mean-centered 

since such a method treats one block at a time, as it will be detailed in the following sec-

tions. 

 

Figure 2. Spectra collected at NIR-RP-A, data block before (a) and after (b) baseline correction using 

automatic weighted least square method. 

2.4.3. MB-PLS 

We exploited here the MB-PLS implementation originally proposed by Westerhuis 

and Coenegracht [31] which can be looked at as standard PLS with appropriate block scal-

ing steps as described in [21]. Thus, MB-PLS is an extension of the classical PLS regression 

[28] for applications involving different data blocks that share the same number of rows 

(observations), relating to the data matrix X, resulting from the row-wise concatenation of 

N different data blocks (Equation (1)): 

X = [X1, X2, …, XN] (1) 

to the response(s) of interest. 

This method provides global (also called super-) scores, weights, loadings and regres-

sion coefficients, as well as local (also called block-) scores and weights for each data block, 

as it is shown in Equations (2)–(5): 

wb = XTb * u/uTu (2) 

tb = (Xb * wb)/√nb (3) 

w = TT * u/uTu (4) 

t = T * w/wTw (5) 

where nb is the number of variables in a given block, tb and wb are the local scores and 

weights, respectively, whereas t and w are the global (super) scores and weights. T is 

yielded by the concatenation of all tb. 

This way, it is possible to assess the contribution of each data block (analyzing wb for 

the prediction of the response variable/s y/Y, improving the process understanding). 

2.4.4. ROSA 

Response-Oriented Sequential Alternation (ROSA) is a multiblock regression method 

proposed by Liland et al. [22] that is also based on PLS regression. Different from MB-PLS, 

in that ROSA is a sequential algorithm, similar to, e.g., SO-PLS [20], which renders the 

method invariant with respect to block-scaling (blocks are just mean centered), as well as 
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to block ordering, differently from SO-PLS. These features allow dealing with a large 

number of blocks of different dimensions. 

Moreover, ROSA exhibits a high computational efficiency, as it does not require the 

iterative convergence of an optimization criterion, and because only the response is de-

flated, not all the blocks. In fact, each PLS component is selected from a single block, pick-

ing among the various covariance-maximizing candidate components, estimated from 

each data block, the one returning the smallest prediction residuals. Successive compo-

nents are constrained to be orthogonal to the subspace spanned by the previously winning 

components. Thus, scores’ and loadings’ orthogonality is ensured. 

The ROSA algorithm for a single response variable, y, is summarized in the following 

equations: 

wb = XbT *y (6) 

tb = Xb * wb (7) 

rb = y − tb tbTy (8) 

where Xb is a single data block, while wb, tb and rb are block weights, scores and residuals, 

respectively. The first component is selected as the one computed from the bth-block yield-

ing the smallest residuals (rb), and t1 are taken to be equal to tb of the winning block. The 

corresponding weights and scores are normalized (and also orthogonalized with respect 

to the preceding components from the second component on). The y-loadings are finally 

estimated as: 

qa = yT ta (9) 

where ta are the scores previously selected for the ath LV. 

X-loadings (P) and PLS regression coefficients (b) (and possibly a constant term b0) 

can be estimated according to the Equations (10)–(12), after selecting the number of opti-

mal LVs and collecting the corresponding scores, weights, y-loadings in matrix array T, 

W and Q. 

P = XT T (10) 

b = W(PTW)−1Q (11) 

b0 = ym − xm * b (12) 

where ym is the mean of y and xm is a vector with the mean for each variable of X. 

Thus, each selected LV in ROSA encodes information proceeding only from the win-

ning bth-block (the one achieving smallest residuals according to Equation (8)), and all LVs 

are orthogonal. It is important to notice that all blocks are always candidates at each algo-

rithmic step. Therefore, consecutive LVs can depict information from the same block pre-

viously selected, or from a different one. 

2.4.5. Multiblock Models Building 

With the aim of developing predictive models for the two parameters taken into ac-

count in this study and assessing which are the most important data blocks for their esti-

mation, both MB-PLS and ROSA were investigated. 

All the available data were split into calibration and validation sets for both Property 

1 and Property 2. In order to assess models’ performance in a scenario mimicking a real-

time application, the calibration sets comprised data collected during the year 2020 (~70% 

of total data), whereas the validation sets comprised data collected in 2021. Clearly, only 

samples, i.e., time points, for which the offline reference measurement were available 

were taken into account. 
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The two optimized best-performing models were finally utilized for assessing the 

values of Property 1 and 2 at time points where no reference data were acquired, in order 

to check whether the resulting estimations spanned a similar properties values range with 

respect to close time points. 

In order to establish the complexity, i.e., number of PLS components, of each model, 

venetian blinds cross-validation with ten cancellation groups for Property 1 and four can-

cellation groups for Property 2 was resorted to. Model reliability was determined in terms 

of both root mean square error in cross-validation (RMSECV) and root mean square error 

in prediction (RMSEP). 

Data blocks were preprocessed as described in Section 2.4.2. 

For both MB-PLS and ROSA, the contribution of each block and block variables in 

the final predictive model was assessed by investigating the PLS regression coefficients 

and Variable Importance in Prediction (VIP) [32,33]. PLS block-weights were also in-

spected but, for the sake of brevity, the related figures are not reported, as the provided 

information was similar to that obtained by regression coefficients. 

2.5. Software 

All the chemometric analyses were performed using routines and toolboxes imple-

mented in the MATLAB environment (the Mathworks Inc., Natick, MA, USA). 

MB-PLS has been calculated through the PLS-Toolbox version 8.9 (Eigenvector Re-

search Inc., Wenatchee, WA, United States). 

ROSA (with options for venetian blind cross-validation, VIP calculation and valida-

tion sample response prediction) was implemented by the authors based on the MATLAB 

code provided in ref. [22]. 

3. Results 

3.1. Property 1 Prediction 

When all the available data blocks (PS and NIR measurements for all plant areas) 

were simultaneously modelled ROSA resulted to be the most performant method for the 

prediction of Property 1, yielding a RMSEP of 0.14%. On the other hand, MB-PLS returned 

a RMSEP value of 0.2%. This difference, however, is not substantial. The results are shown 

in Table 2 and Figure 3. ROSA selected only three of the nine blocks under study, two of 

which, Devo/cut and NIR-cut, relate to the last stage of the process, where the polymeri-

zation is over and the product is ready to be cut. Furthermore, among the 13 latent varia-

bles selected through the cross-validation procedure (aimed at minimizing RMSECV), 

eight were calculated from the NIR-cut block, which highlights a crucial relevance of the 

final NIR sensor, in this case, for the quality prediction. Figure 3a shows how the predic-

tions for the objects of the validation set are homogeneously distributed within the ex-

pected range of the quality parameter concerned. In Figure 3b–d the PLS regression coef-

ficients associated to the three blocks selected by ROSA are represented (the red stars de-

note variables/spectral regions whose VIP scores were higher than one). In the RP-A data 

block (selected only one time out of 13) only three temperature sensors were found rele-

vant for Property 1 prediction, whereas in Devo/cut and NIR-cut data blocks all the sen-

sors and nearly all the spectral regions sampled were somewhat important. In Figure 3d 

it is evident that the largest (in absolute value) regression coefficients are those corre-

sponding to bands centered at 5900 cm−1 and 5250 cm−1 that can be ascribed to the investi-

gated ABS compound. 

Table 2. Results yielded by MB-PLS and ROSA for the prediction of Property 1. 

Model ID Blocks Entering the Model LVs RMSEC (%) RMSECV (%) RMSEP (%) 

MB PLS all All 11 0.12 0.16 0.20 

MB PLS no cut zone 1 to 7 11 0.13 0.17 0.23 

MB PLS only PS 2–4–6–7–8 11 0.24 0.26 0.38 

MB PLS only NIR 1–3–5–9 10 0.13 0.15 0.22 
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MB PLS only NIR no cut zone 1–3–5 8 0.14 0.15 0.22 

ROSA all 1 4(1)–8(4)–9(8) 13 0.11 0.14 0.13 

ROSA no cut zone 3(6)–4(1)–5(3)–6(2) 12 0.15 0.18 0.2 

ROSA only PS 2(1)–4(6)–7(3) 10 0.23 0.25 0.31 

ROSA only NIR 9(8) 8 0.12 0.13 0.14 

ROSA only NIR no cut zone 3(12)–5(2) 14 0.16 0.18 0.19 
1 the values in brackets indicate the number of times a certain block was selected by the ROSA 

algorithm. 

 

Figure 3. ROSA results for Property 1 prediction (all data blocks were modelled simultaneously). 

Predicted vs. measured value plot (a); regression coefficients for the RP-A (b); Devo/cut (c); and NIR 

cut (d) data blocks. Red stars indicate variables having VIP scores higher than one. 

Although such results might already be considered relatively satisfactory from a pre-

dictive point of view, two additional aspects would be worth investigating: i) whether 

reasonably good quality prediction of Property 1 values could be obtained before the 

product is cut (i.e., without relying on sensors installed within the cut area); and ii) 

whether the exclusive use of spectral sensors or process sensors could be sufficient for a 

reliable estimation of this quality index. To this end, in addition to the dataset containing 

all the blocks, MB-PLS and ROSA models were calculated using fused datasets compris-

ing only the blocks before the cut zone, only PS data and only NIR data (both including 

and excluding the spectra contained in the NIR-cut block), respectively. 

Table 2 reports the results of all the computed multiblock prediction models related 

to Property 1. It is possible to observe that prediction errors resulting from ROSA are sys-

tematically lower than the one obtained by means of MB-PLS. It is also clear how NIR data 

are far more important for the prediction of Property 1 than PS data. In fact, when ROSA 

is run on both block types, components from NIR data sets are more often selected than 

those computed from PS data sets. Moreover, in MB-PLS models, variables related to NIR 

blocks are always relevant for Property 1 prediction. In addition, the RMSEP of models 

that are calculated using only NIR data is comparable to that of models using both PS and 

NIR data, while using only PS data blocks results in a significant increase of the prediction 

error in calibration, cross-validation and external validation. This is somehow expected, 

as Property 1 is linked to ABS chemical composition and, therefore, an analytical tech-

nique like NIR spectroscopy is definitely more suitable for its determination than more 
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standard engineering PS probes, which only indirectly reflect how fluctuations in the pro-

cess operating conditions may affect the polymer characteristics. 

Since ROSA models always selected components estimated from the blocks located 

on the plant cut area, i.e., blocks eight and nine, we also decided to calibrate ROSA models 

(using both PS and NIR data and only NIR data) excluding completely such blocks from 

the computational procedure (see ‘ROSA no cut zone’ and ‘ROSA only NIR no cut zone’ 

in Table 2, respectively). In both cases, RMSEP values for models not including the cut 

area, were found higher, yet acceptable by process operators. This clearly makes it possi-

ble to retrieve reasonable Property 1 value estimate before the completion of the ABS pro-

duction process. Moreover, similar prediction errors were obtained by using only NIR 

blocks or when combining NIR and PS blocks. Hence, two possible pathways can be en-

visioned for the real-time prediction and control of Property 1: (i) resorting to both data 

types and getting a clearer idea of the important process areas/sensors all along the pro-

duction plant; or (ii) just exploiting NIR spectra for more efficient data management and 

to deal with less noisy data. 

In order to evaluate the role of all types of sensors, Figure 4 displays the results 

yielded by the ‘ROSA no cut zone’ model. It is worth mentioning that half of the blocks 

selected by the ROSA algorithm relate to the reaction points A and B, whereas the other 

half to the NIR-cond data block, whose respective probe is right before these reaction 

points. Looking at the order (not reported for the sake of brevity) in which blocks were 

selected by ROSA, it can be observed how the winning blocks for the first five latent var-

iables were RP-B (picked only one time) and NIR-RP-A (picked four times). For the re-

maining model dimensions, NIR-cond was selected six times in a row, while RP-A and 

RP-B one each. Details about the selection order are useful to assess which blocks, i.e., 

areas of the plant, encode the most important information for the prediction of the inves-

tigated quality parameter. 

Figure 4b,d show the regression coefficients for the two aforementioned NIR blocks, 

with NIR-RP-A exhibiting a larger number of spectral variables characterized by VIP 

scores higher than one, especially in the region between 5400 cm−1 and 5250 cm−1, that are 

ascribable to the stretching of a functional group of one of the three precursor compounds 

on which Property 1 directly depends. Conversely, in Figure 4c,e the regression coeffi-

cients for the PS data blocks are graphed: the most significant variables, according to their 

respective VIP values, are almost all related to temperature and motor speed sensors in-

stalled in different subzones of the reaction points A and B. 
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Figure 4. ROSA results for Property 1 prediction (‘ROSA no cut zone’ model). Predicted vs. meas-

ured value plot (a); regression coefficient for NIR cond (b); RP A (c); NIR RP A (d); and RP B (e) data 

blocks. Red stars indicate variables having VIP scores higher than one. 

3.2. Property 2 Prediction 

The same model building strategy described before was finally followed for the pre-

diction of Property 2. Table 3 reports the results obtained by means of both MB-PLS and 

ROSA. ROSA, when all the available data blocks were simultaneously modelled, did not 

select any cut area block, therefore the ‘ROSA no cut zone’ model was not trained in this 

case. 

Table 3. Results yielded by MB-PLS and ROSA for the prediction of Property 2. 

Model ID 
Blocks Entering the 

Model 
LVs RMSEC (g) RMSECV (g) RMSEP (g) 

MB PLS all All 10 0.25 0.27 0.34 

MB PLS no cut zone 1 to 7 8 0.27 0.29 0.37 

MB PLS only PS 2–4–6–7–8 9 0.27 0.29 0.35 

MB PLS only NIR 1–3–5–9 7 0.34 0.34 0.48 

MB PLS only NIR no cut 

zone 
1–3–5 6 0.36 0.37 0.5 

ROSA all 1 2(1)–4(1)–5(1)–6(1) 4 0.32 0.33 0.46 

ROSA only PS 2(1)–4(1)–6(1) 3 0.32 0.33 0.45 
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ROSA only NIR 5(6)–9(3) 9 0.33 0.34 0.52 

ROSA only NIR no cut 

zone 
5(8) 8 0.33 0.34 0.52 

1 The values in brackets indicate the number of times a certain block was selected by the ROSA 

algorithm. 

MB-PLS models calibrated by using (i) all the data blocks or (ii) only PS data returned 

the most satisfactory results, contrary to the results obtained for Property 1. In fact, the 

influence NIR spectra have on the estimation of Property 2 prediction is not predominant, 

except for the NIR-RP-A block, which was selected many times by the ROSA algorithm 

and whose variables always showed VIP scores higher than one in MB-PLS. These results 

can be interpreted in the light of the fact that Property 2 is not linked to the chemical 

composition of ABS but evaluates the performance of the finite product as determined by 

mechanical/physical tests. Subsequently, it is undoubtedly more affected by variability 

occurring in the processing steps,  and can change significantly even if the aforementioned 

chemical composition does not change. RMSEP increased up to 0.52 g when no PS block 

was considered. However, for models built without PS data, MB-PLS achieved a slightly 

better performance than ROSA (0.48–0.5 g vs. 0.52 g). These results suggested how the 

exclusive use of NIR sensors is not sufficient for a reliable estimation of Property 2. 

Overall, MB-PLS showed a better prediction performance for Property 2. The best 

results were obtained by the ‘MB PLS all’ model (RMSEP = 0.34 g), even though ‘MB PLS 

no cut zone’ and ‘MB PLS only PS’ provided similar results. 

In Figure 5 is where the predicted vs. measured value plot resulting from the ‘MB-

PLS all’ model is shown. By inspecting the corresponding residuals plot (not shown for 

the sake of brevity) it can be observed that, on average, the 2021 production campaign 

(validation set), yielded lower values of Property 2 than that conducted in 2020 (calibra-

tion set). This deviation explains the relatively high difference between RMSEP and 

RMSEC and RMSECV. However, the presence of a reasonable amount of validation sam-

ples in the whole calibration range was guaranteed and the company deemed the predic-

tion error acceptable for routine monitoring. 

 

Figure 5. Predicted vs. measured value plot resulting from the ‘MB-PLS all’ model. 

In Figure 6 the ‘MB-PLS all’ model regression coefficients are reported. All PS were 

found to be important for the prediction of Property 2 based on their VIP scores values. 

For what concerns the NIR blocks regression coefficients, the NIR-RP-A is confirmed to 
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be the block with the largest number of highly predictive spectral regions, which are 

mainly related to the three precursors monomers of ABS. For the other NIR blocks, rele-

vant regions of interest were found in correspondence of the absorption bands centered 

at 5900 cm−1 and 6100 cm−1, respectively. 

 

Figure 6. Regression coefficients resulting from the ‘MB-PLS all’ model for each data block the letters 

(a–i) refer to the different block whose name is reported on top. Red stars indicate variables exhib-

iting VIP scores higher than one. 

3.3. Real-Time Predictions 

Finally, Figure 7 illustrates the predicted values of Property 1 obtained through the 

ROSA model constructed on all data blocks (Table 2, row 1) for the time points for which 

reference response measurements were not acquired. 

 

Figure 7. Real time predictions of Property 1 (i.e., time evolution of the measured and predicted 

values). The predictions were obtained by means of the ‘ROSA all’ model. Legend: black circles—

calibration set measured values; green circles—calibration set predicted values; blue squares—val-

idation set measured values; red squares—validation set predicted values; magenta dots—pre-

dicted values related to time points for which no reference response measurements were available. 

For ease of visualization only every 2 h predictions during the considered time period are shown. 
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These predicted values span a range very similar to that covered within both the cal-

ibration and the validation set. A few slight deviations were observed, interestingly right 

after specific shut-down time periods: such deviations may, in fact, arise from the fact that 

many industrial processes (including polymerization processes) take a certain time to re-

adapt to NOC conditions after particular external interventions (e.g., cleaning, mainte-

nance, etc.). 

Similar results were obtained for real-time predictions with the model ‘MB-PLS no 

cut zone’ for Property 2, as shown in Figure 8. 

 

Figure 8. Real time predictions of Property 2 (i.e., time evolution of the measured and predicted 

values). The predictions were obtained by means of the ‘MB PLS no cut zone’ model. Legend: black 

circles—calibration set measured values; green circles—calibration set predicted values; blue 

squares—validation set measured values; red squares—validation set predicted values; magenta 

dots—predicted values related to time points for which no reference response measurements were 

available. For ease of visualization only every 2 h predictions during the considered time period are 

shown. 

4. Conclusions 

This work demonstrated how multiblock approaches could be used for the construc-

tion of reliable and robust real-time monitoring models for the on-line prediction of in-

dustrial quality parameters of ABS. In fact, the data partition in different blocks and the 

low-level data fusion strategy adopted here permitted to improve ABS production process 

understanding, enabling the assessment of the most crucial plant areas and the relevant 

sensors for the prediction of such specific parameters. Moreover, the application of these 

approaches is essential when two or more different analytical platforms of different na-

ture, like the NIR spectrometer and more standard engineering process sensors, are sim-

ultaneously used to control any generic production process. 

More specifically, in this article, both MB-PLS and ROSA allowed performant pre-

dictive models to be constructed for the two properties under study (i.e., Property 1 and 

2). In particular, for the prediction of Property 1, ROSA resulted in a lower RMSEP com-

pared to MB-PLS, highlighting the importance of NIR data over process sensor data when 

a chemical composition-related quality index is to be estimated. On the other hand, Prop-

erty 2 was more efficiently predicted by a MB-PLS method, which pointed out a higher 

relevance of process sensors compared to NIR data when, instead, physical features need 

to be assessed. 

Furthermore, models computed without taking into account measurements related 

to the final area of the plant (cut zone) provided comparable prediction errors with respect 

to the best models built on all the ensemble of available data. This is of great industrial 
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interest, since, in principle, ABS quality could be determined before its production is com-

pleted, which might allow possible modifications of the plant settings and/or changes in 

the operating conditions to be planned in advance and with reduced costs. 

In conclusion, these approaches could help in: (i) accelerating decision making and 

troubleshooting; (ii) reducing the amount of chemical waste generated in full-scale plants; 

(iii) decreasing the number of off-line laboratory tests required for quality control; and (iv) 

facilitating any type of operation along the production line as well as possible fault detec-

tion and diagnosis. 
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