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Abstract: Exposing city information to dynamic, distributed, powerful, scalable, and user-friendly

big data systems is expected to enable the implementation of a wide range of new opportunities;

however, the size, heterogeneity and geographical dispersion of data often makes it difficult to

combine, analyze and consume them in a single system. In the context of the H2020 CLASS

project, we describe an innovative framework aiming to facilitate the design of advanced big-data

analytics workflows. The proposal covers the whole compute continuum, from edge to cloud, and

relies on a well-organized distributed infrastructure exploiting: a) edge solutions with advanced

computer vision technologies enabling the real-time generation of “rich” data from a vast array of

sensor types; b) cloud data management techniques offering efficient storage, real-time querying

and updating of the high-frequency incoming data at different granularity levels. We specifically

focus on obstacle detection and tracking for edge processing, and consider a traffic density moni-

toring application, with hierarchical data aggregation features for cloud processing; the discussed

techniques will constitute the groundwork enabling many further services. The tests are performed

on the real use-case of the Modena Automotive Smart Area (MASA).
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1 Introduction

In the context of smart cities, the use of combined data-in-motion and data-at-rest anal-
ysis provides efficient methods to exploit the massive amount of data generated from
heterogeneous and geographically distributed sources including pedestrians, traffic, (au-
tonomous) connected vehicles, city infrastructures, buildings, IoT devices, etc. Certainly,
exposing city information to a dynamic, distributed, powerful, scalable, and user-friendly
big data system is expected to enable the implementation of a wide range of new services
and opportunities provided by analytics tools. Indeed, the potential of exploiting big data
technologies to improve and define new smart city services has been shown, at least at
the conceptual level, in several recent research works [Neilson et al., 2019, Honarvar
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and Sami, 2019, De Gennaro et al., 2016, Kim et al., 2020]. However, there exist several
challenges, not only related to the size and heterogeneity of data but also to its geograph-
ical dispersion, making it difficult to be properly and efficiently combined, analyzed,
and consumed by a single system.

The CLASS project [cla, 2020], funded by the European Union’s Horizon 2020
Programme1 and in which context the research presented in this paper is performed,
faces these challenges and proposes a novel software framework that aims to facilitate
the design of advanced big-data analytics workflows, incorporating data-in-motion and
data-at-rest analytics methods for efficiently collecting, storing and processing vast
amounts of geographically-distributed data sources.

Differently frommany other proposals, selectively focusing on either edge computing
or cloud computing techniques, the CLASS software stack covers the whole compute
continuum, from edge to cloud, and relies on a well-organized distributed infrastructure.
The University of Modena and Reggio Emilia is one of the partners of the CLASS
consortium, in charge of the edge software stack, with edges being both pole-mounted
cameras and smart (or connected) vehicles.

In this paper we describe the software foundations of the innovative framework,
involving different interdisciplinary aspects of scientific research, from cloud data man-
agement and analysis to high-performance edge computing and machine learning, first
of all detailing its overall architecture and then focusing on its two main parts:

– edge computing solutions exploiting advanced computer vision technologies and
enabling the real-time generation of “rich” data at the sensor level, supporting a vast
array of sensor types including fixed smart cameras and smart vehicles equipped
with cameras, GPSs, LiDARs and radars;

– cloud data management techniques offering efficient storage of the high-frequency
incoming data at different granularity levels, together with its real-time querying
and updating.

In our discussion we specifically analyze the issue of obstacle detection and track-
ing for edge processing, and consider a traffic density monitoring application, with
hierarchical data aggregation features for cloud processing; the discussed techniques
will also constitute the groundwork enabling many further services, including traffic
prediction, smart parking, air pollution estimation, and so on. The adopted real use-case
is the Modena Automotive Smart Area (MASA), a 1 Km2 area in the city of Modena
(Italy), equipped with our sensing, communication, and computation infrastructure, on
whose data we also report on the efficiency side with a number of tests.

To the best of our knowledge, this is the first time a software framework of this
kind tackles the capabilities of powerful edge devices instead of simpler IoT sensors and
processes the metadata in the cloud with real-time constraints. This frees cloud resources
and allows to provide more enriched services that can be easily implemented from the
gathered metadata.

The rest of the paper is organized as follows: after discussing related works (Section
2), we give an overview of the framework (Section 3) and then discuss in detail the
edge- (Section 4) and cloud-processing (Section 5) techniques. Finally, we report on the
performed tests (Section 6) and conclude the paper (Section 7).

1 H2020 Grant Agreement: 780622
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2 Related works

The framework presented in this paper involves different interdisciplinary aspects of
scientific research, from cloud data management and analysis to high-performance edge
computing and machine learning, all applied to a smart city context. In current best
practices, we typically find these elements in separate research works or in different
application scenarios. We start this related work analysis by considering (cloud) data
management (Section 2.1) and IoT / edge computing proposals (Section 2.2) in similar
smart city scenarios; then, we will continue our analysis from a technological point of
view considering the state of the art of big data programming models (Section 2.3) and
machine learning (Section 2.4).

2.1 (Big) Data management proposals in a smart city context

The potential of exploiting and managing Big Data to improve and define new smart
city services has been shown, at least at the conceptual level, in several recent research
works [Neilson et al., 2019, Honarvar and Sami, 2019, De Gennaro et al., 2016, Kim
et al., 2020]. For instance, the survey [Neilson et al., 2019] discusses several proposals
in the transportation systems domain, which is one of the most demanding and common
scenarios in a smart city setting. One example is the work [Serrano et al., 2016], where the
authors present a study of how cloud-computing and big-data management technologies
can assist decision-making in this context. While there are several works showing the
benefits of big data information extraction / analysis, in many cases the focus is mainly
on the specific application and on the analysis of the possible benefits rather than on
presenting actual data management solutions / architectures: one example is the paper
[Honarvar and Sami, 2019], demonstrating very promising tests on an air pollution
prediction scenario, where however the data collection and management aspect is not
explicitly presented.

Among the works focusing on cloud data management / analytics, some of them
propose architectures for offline-only data analysis, while others are devoted to pure
real-time management. For instance, the work [De Gennaro et al., 2016] is an example
of the first type of works, a promising data processing platform enabling the analysis of
large datasets of GPS data for policy assessment; the data used for analysis are previously
collected and the focus is not on their real-time storage and updating. Instead, the work
[Kim et al., 2020] is a proposal of a management system working on real-time data in an
energy saving scenario: in such kind of works the accent is on the managament of (very)
recent data in real-time, while past data are typically not of interest. This is in line with
what presented in pioneering works demonstrating the use of Data Stream Management
Systems (DSMSs) in specific real-world contexts, including a real-time route planner
in Lucerne [Özal et al., 2011] or a real-time traffic information management system
in Stockholm [Biem et al., 2010]. In these systems, data is stored in the main memory
only, and it is kept there as long as it is needed to solve the continuous requests that
are currently in execution; then, data flows out of the system. This is not in line with
the context envisioned in this paper and in the CLASS project for the development of
a complex smart city framework, where real-time data must be retained beyond their
real-time processing to offer extended knowledge for various service purposes.

One proposal offering data processing features both for real-time and historical data
management is [Carafoli et al., 2016], which was based on previous data management
experiences in actual smart city scenarios [Carafoli et al., 2012, Carafoli et al., 2013];
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however, such work is not based on modern bigData/noSQL technologies and its com-
pletely centralized architecture makes it not adequate to efficiently support the wide
range of services needed in a smart city.

From a cloud/edge computing perspective, we notice that a consistent part of the
works in the smart city scenario focus primarily on one of these two complementary
aspects. This is true for instance for the above discussed works, which do not present
specific solutions in the IoT / edge computing context integrated with the proposed
frameworks. Conversely, there are also many works solely focusing on IoT / edge
computing aspects (they will be analyzed in the next section).

Instead, the framework proposed in this paper provides a combination of: a) edge
computing solutions exploiting advanced computer vision technologies and enabling
the real-time generation of “rich” data at the sensor level; b) cloud data management
techniques offering efficient storage of incoming data at different granularity levels
together with its real-time querying and updating. In this way, the framework enables
cloud data management services which are both easy to implement, powerful (aiming at
real-time processing of incoming data but also at full past data storage and availability)
and with promising scalability performances, especially w.r.t. other architectures not
exploiting cloud/edge hybrid computation.

2.2 IoT applications in a smart city context

In the context of smart cities, there are several works that consider the use of Internet of
Things (IoT) sensors, together with edge computing techniques, to monitor traffic in the
city areas. The work of Muthanna et al.[Muthanna et al., 2020], Akhter et al. [Akhter
et al., 2019] and Barthelemy et al. [Barthélemy et al., 2019] are certainly relevant to this
paper.

Muthanna et al.[Muthanna et al., 2020] propose a method of recognizing pedestrians
in real-time on edge devices using a Raspberry Pi microcomputer to automate the process
of signaling traffic lights and improve system mobility. The experiment was conducted
to detect pedestrians in an image with the subsequent determination of their location
at a pedestrian crossing. Akhter et al. [Akhter et al., 2019] designed and developed an
IoT enabled intelligent sensor node for smart city applications. The fabricated sensor
nodes count the number of pedestrians, their direction of travel along with some ambient
parameters, such as temperature, humidity, pressure, Carbon di Oxide (CO2), and the
total volatile organic component (TVOC). The monitored data are uploaded to the
Internet server through the Long RangeWideArea Network (LoRaWAN) communication
system. In the infrastructure, there are a total of 74 sensor nodes that have been installed
around Macquarie University and continued working for several months. Barthelemy et
al. [Barthélemy et al., 2019] proposed a sensor-based traffic monitoring system in the
Australian city of Liverpool, with the following requirements: (i) the sensors need to
be able to detect and track pedestrians, vehicles, and cyclists: (ii) the system should be
privacy compliant; (iii) it should leverage existing infrastructures; (iv) scalability and
interoperability of the sensors should be accounted for. The developed prototype has two
core components: (i) an NVIDIA Jetson TX2 and (ii) a Pycom LoPy 4 module handling
the LoRaWAN communications. The sensor performs iteratively 4 steps on average
20 times each second: (i) frame acquisition from an IP camera or a USB webcam; (ii)
detecting the objects of interests in the frame via YOLOv3 [Redmon and Farhadi, 2018];
(iii) tracking the objects by matching the detections with the ones in the previous frame
using SORT [Bewley et al., 2016]; (iv) updating the trajectories of objects already stored
in the device database or creating records for the newly detected objects. In parallel to
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those tasks, the sensor periodically transmits the results from the video processing to the
IoT Core either via LoRaWAN or Ethernet.

Besides covering the aspects addressed by these other works, our proposed solution
fits into a highly developed modular architecture designed to collect and analyze the big
data produced by sensors. Moreover, in our case the sensors can also be very hetero-
geneous. Another important aspect to consider is that, in the majority of the presented
literature, IoT is seen as a pervasive set of smart sensors, but our implementation is
focused on the edge devices, that are more computationally capable and extract complex
metadata from the signals that they process.

2.3 Big Data management and programming models

MapReduce [Dean and Ghemawat, 2008] has been one of the reference frameworks for
writing data-centric parallel applications since the beginning of the big data revolution.
In the most recent years, a large number of next-gen data management proposals have
been proposed to revolutionize data management, offering extensible architectures able
to cope with different kinds of data, including streams and tabular data, and offering
newer and easier kinds of programming interfaces. Such proposals are aimed to provide
complete solutions to real-time processing and batch processing needs, providing high
levels of flexibility in single data management solutions: these include big data processing
engines such as Apache Spark [Zaharia et al., 2016, spa, 2021], big data stores such as
Apache HBase [hba, 2021], stream processing frameworks such as Apache Flink [Apa,
2021, Carbone et al., 2015] and Apache Samza [sam, 2021].

In all these next-generation platforms, functional programming is adopted as the
emerging paradigm [Wu et al., 2017]: functional interfaces facilitate programmers to
write data applications in declarative ways and the computation is treated as a calculation
of functions. Among the next-gen data management solutions, Spark is one of the most
powerful and largely adopted solutions, and is also the one considered in this paper
for cloud data management. Spark provides a set of operators that can be called by the
applications, which internally are optimized to be executed in distributed environments
through the Spark runtime. Spark is an extension and generalization of the MapReduce
paradigm and its popular open-source implementation Apache Hadoop [White, 2012].
The Spark data model is based on finite Resilient Distributed Datasets (RDDs) and is
extended towards streaming (infinite) data by means of the SparkStreaming [Zaharia
et al., 2013] extension. Moreover, further extensions (SparkSQL [Armbrust et al., 2015]
in primis) allow to extend the data and querying model towards the relational world,
including for instance aggregates and joins.

2.4 Machine Learning

There exist multiple libraries or environments for machine learning which are very
popular: Tensorflow [Abadi et al., 2016], PyTorch [Paszke et al., 2017], to mention a few.
Most of these environments usually provide a Python interface and are easy to use. Some
of these environments support some type of parallelism, like Caffe that runs on Graphic
Processing Units (GPUs), or Tensorflow, which supports data and model parallelism.
Also based in Python, Keras [Gulli and Pal, 2017] is a high-level neural networks API
that was designed to offer a simple and intuitive interface for the users and to enable fast
experimentation. MLlib [Meng et al., 2016] is Spark’s machine learning library, and
like Spark is based on RDD data structure. MLlib is composed of several algorithms for
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classification, regression, collaborative filtering, clustering, and decomposition. Another
popular machine library in Python is Scikit-learn [Pedregosa et al., 2011] which provides
simple and efficient tools for data mining and data analysis. The library is built on top of
the optimized Python libraries NumPy, SciPy, and matplotlib and it is open source under
BSD license. However, only coarse-grain parallelism is supported.

For our purpose, all the previous methods were not compliant with the real-time
constraint imposed by the use cases of the CLASS project, therefore we deployed our
machine learning data analytics tool exploiting CUDA [NVIDIA et al., 2020], cuDNN
[NVIDIA, 2021] and TensorRT [Vanholder, 2016]. In particular, for the neural networks
we employed tkDNN [Verucchi et al., 2020a, Verucchi et al., 2020b] a open-source
Deep Neural Network library built with cuDNN and TensorRT primitives, specifically
thought to work on NVIDIA Jetson Boards, whose main goal is to exploit those boards
as much as possible to obtain the best inference performance. These tools allowed us not
only to exploit GPU for neural network inference, but also to tune the performance of
the network to be faster, even with less precision, on the edge devices that are deployed
in the area.

3 Framework overview

This section describes the overall big-data analytics workflow we present responsible for
managing the different heterogeneous data sources and processing the data incoming
from them, on whose knowledge the different applications of the CLASS use cases are
based.

Figure 1: The proposed framework architecture, including data sources (cameras,

sensors, vehicles), computing (edge, fog and cloud) and communication (antennas,

fiber) infrastructures.

Figure 1 depicts a schematic overview of the underlying physical architecture, com-
posed of several data sources (traditional and smart cameras, pollution and parking
sensors, connected vehicles), a computing infrastructure (edge/fog nodes and the city
cloud) and a communication infrastructure (4G antenna, optical fiber network).
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We will now describe the whole combined big-data analytics workflow (shown
in Figure 2), to let the reader have a complete overview of the proposed framework.
Nevertheless, in the remainder of the paper, we will focus on the implementation of a
fundamental subset of these analytics tasks (the numbers of the list of are used to identify
the tasks, in bold the ones that we focus on):

1. Sensor fusion, responsible for object identification and computation of its position
based on the raw data collected from sensors included in the vehicles;

2. Object detection, responsible for object identification and computation of its position
based on raw data from the cameras of the city;

3. Object tracking, tracks the movement of objects identified with task 2, across
multiple video frames;

4. Data deduplication, identifies and removes objects identified with task 3 by multiple
cameras of the city;

5. Trajectory prediction, predicts the trajectory of vehicles and cyclists identified with
task 3 based on previous tracked positions;

6. Pollution computation, estimates emissions from the drive cycles of vehicles iden-
tified in task 3 based on the emission class (e.g., Euro 1, Euro 2, Euro 3, etc) and
vehicle speed over time;

7. Data aggregation, responsible for aggregating all the information generated in the
previous analytics tasks into the common database;

8. Collision prediction, identifies potential collisions, based on the intersection of the
trajectory predictions of two objects (computed by task 5);

9. Warning Area (WA) generation, obtains all the information included in the database
surrounding a connected vehicle;

10. Alert visualization, visualizes into the connected vehicle the following information:
(i) the potential collision of the connected vehicle with other vehicles within the
WA, and (ii) the available parking slots in the database;

11. Parking counters, computes the available parking slots based on cameras from the
city;

12. Dashboard visualization, responsible for visualizing the information included in
the database;

13. Predictive models, implements the digital traffic signs application on the MatSim
simulator.

The combined big-data analytics workflow is shown as a direct acyclic graph (DAG)
in which nodes represent the analytics tasks described above (the number in the node
identifies the task) and edges represent the data exchange (and so dependencies) among
the different analytics. The workflow includes several data-sources; concretely, three city
cameras and one connected vehicle are considered as input sources, and two connected
vehicles and the city control room are receiving the information. The figure also identifies
where data analytics tasks can be executed, i.e., in the edge/fog, in the cloud, or in both
locations, aiming to efficiently distribute the workload across the compute continuum.
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Figure 2: CLASS combined big-data analytics workflow when considering multiple

data-sources. The non-dashed orange boxes are highlighting the contribution of Section

4 while the green ones the contribution in Section 5

4 Edge processing: object detection and tracking

From cameras located in the streets, objects can be detected, classified, and tracked.
All the cameras belonging to the infrastructure are supposed to perform those tasks in
real-time and send the extrapolated information to a data aggregator. This aggregator
will then de-duplicate repeated information and send messages to the connected cars,
which will receive only objects that are relevant to their surroundings.

Geo-localization. To perform the above operations, it is necessary to know the real-
world position of each object detected from the cameras. To do so, an extrinsic calibration
of each camera in the MASA has been performed, in order to have a mapping for each
pixel in the camera frame to its GPS position on a geo-referenced map.

Real-time requirements. Data is constantly being produced and processed and it
is extremely important to guarantee that the results are meaningful by the time they
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are computed. This is especially relevant for the Obstacle Detection and Tracking use
case since alerts must raise within a time interval that is useful for the driver to react.
A reasonable metric, considered in the scope of the CLASS project, is to get updated
results at a rate between 10 and 100 milliseconds. Assuming that the maximum speed of
a vehicle within the city is 60 km/h, vehicles will advance between 0.17 and 1.7 meters.
This level of granularity is enough to implement the proposed use-cases.

4.1 Flow of the application

(a) Original frame. (b) Undistorted frame.

(c) Object detection. (d) Object tracking.

Figure 3: Results on various steps of the application: starting from the original frame

(a), undistortion is applied (b), then objects are detected (c) and tracked (d).

We have implemented an application called class-edge and we have released the
code open source2.

class-edge takes in input N_streams streams and for each of them perform four
main steps:

– First, frames are retrieved via the Real-Time Streaming Protocol (RTSP). Given that
the image is taken from a camera, it is very likely that it is affected by distortion. To
correct that, undistortion, based on the intrinsic calibration of the camera, is applied.
Figure 3a shows an original frame while Figure 3b shows the output of undistortion.

– Object detection is then performed on the undistorted image. For this projects we
picked the tkDNN implementation of Yolov4 [Bochkovskiy et al., 2020]. This task

2 https://github.com/mive93/class-edge

https://github.com/mive93/class-edge
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is divided into three parts, i.e., (i) pre-processing to convert the image in the NN
input, (ii) NN inference, (iii) post-processing to convert the output of a NN into
bounding boxes (BBs). An example is given by Figure 3c.

– The detection gives in output a list of BBs. For each of them, a single point is picked
to represent the whole object, namely the center of the bottom side of the BB. This
pixel is converted first, into a GPS position, and then in meters. This is the format
required from the next step: the tracker. Indeed, to track and predict the position of
the detected objects an Extended Kalman Filter (EKF) [Kalman, 1960] on the real-
world position of the object has been applied. Objects between frames are matched
together only if the class corresponds and their distance is under a user-defined
threshold. Tracking is not only used to have a more robust detection, but also to have
a history of the objects. The idea of history is given by the lines in Figure 3d.

– Finally the information can be sent both to the data aggregator, in an anonymized
form, and to the optional viewer.

4.2 Implementation details

S E

str1

str2

und1 pre1 inf1 pos1 tck1 msg1

und2 pre2 inf2 pos2 tck2 msg2

show

Figure 4: class-edge represented as a HC-DAG composed of 5 threads (top to bottom):

retrieve stream 1 and 2, process stream 1 and 2, visualize (optional).

The whole application is reported as a directed acyclic graph in Figure 4. It is actually
composed of 5 threads: 2 threads, one for stream, that retrieve the stream ad store the
image (str1|2); 2 threads that execute the flow of undistortion (und1|2), detection (pre1|2,
inf1|2, pos1|2), tracking (tck1|2) and message sending (msg1|2); and an optional thread
for visualization purposes (show).
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The reason behind this split is to improve the end-to-end latency of the application,
which should not exceed 100ms. Indeed, the first bottleneck of this application is to
retrieve and read the frame from the stream, especially because the minimum resolution
of the considered stream in our infrastructure is HD (1920x1080). The second bottleneck
is the complete undistort-detect-track-send flow. Having these two operations in sequence
can lead to work on very old data, while separating them improves the performance of
the system (see also the experimental evaluation in Section 6).

We want to stress that the real-time requirement for the use case depicted here are
not obtainable with extra-low power computing platform such as typical IoT devices,
since the need to elaborate the video streams requires both computer vision and neural
network computation capabilities.

5 Cloud data management: data aggregation and querying

Cloud data management enables the real-time processing of incoming data to allow its
fast querying and visualization. The novel hybrid cloud/edge architecture of the CLASS
framework provides the foundation to design and implement a data management layer
which has a number of peculiarities w.r.t. typical (big) data management proposals in
the smart city context:

– the ingested data go beyond raw data which is typically available from standard
sensors, since they have already been elaborated in the edge in real-time: in this way,
data processing can seamlessly take in input data coming from heterogeneous sources,
enriched with high-level information (e.g., type of detected objects, coordinate of
objects, etc.);

– starting from the above privileged standpoint and exploiting big data technologies,
the framework enables cloud data management services which are both easy to
implement and powerful. In particular, in this section we discuss a traffic monitoring
service enabling its density computation and visualization at different granularities
and for different vehicle types (which are not usually considered variables in similar
systems);

– the aim is at real-time processing of incoming data but also at full past data storage
and availability, differently from many proposals focusing either on offline-only
[De Gennaro et al., 2016] or real-time recent-data-only [Kim et al., 2020, Biem
et al., 2010] data analysis;

– scalability performances are promising, especially w.r.t. other architectures not
exploiting cloud/edge (in Section 6.2 we show that processing an hour of data is
done in 15 minutes on a very standard PC hardware).

5.1 General overview

On average (see Figure 5), every hour, the cameras and cars in the MASA produce 15
million records. Incoming data is in the form shown in Figure 6, where vehicle_type
denotes the type of the identified object. Typical values are 1 for bicycles, 5 for buses, 6
for cars, 13 for motorbikes, and 14 for pedestrians, following the COCO dataset [Chen
et al., 2015] indexes for detected objects.

Data processing is mainly performed in Spark and its goals are the following:
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Stream data processing
and aggregation

Distributed file system

Data visualization

Reverse Geocoding

Figure 5: Data processing flow overview: incoming data from the MASA infrastructure

(left) are processed, aggregated and stored in Spark (center), then data visualization is

applied (right).

timestamp vehicle_type yaw speed latitude longitude 

1542626100013 6 170.00 13.00 44.656635284 10.934630394 

1542626100013 6 0.00 0.00 44.686763763 10.959928513  
1542626100013 6 254.00 2.00 44.655197144 10.934746742  

 

Figure 6: Example of input data: from left to right, time stamp, vehicle type (’6’ stands

for car), yaw, speed and coordinates of each detected object.

1. Store the full raw data stream, as received in real-time, on a suitable data structure;
this allows us to always have the full data available for future analyses but also to
immediately process it to enable subsequent tasks;

2. Always in real-time and as a parallel operation, perform reverse geocoding so to
spatially aggregate the input data w.r.t. route sections;

3. Perform time aggregation on the reverse geocoded data so to obtain data at different
time granularities: 1 minute, 15 minutes, 1 hour and 1 day.

The final goal is to obtain, for each section of each route, the density (counts) of
the different types of vehicles to the various time aggregates; these will be efficiently
retrieved and passed to the data viewer to allow users to visually explore traffic history
across time, focusing on the desired area, time granularity and vehicle type(s). We
released the code for data aggregation and data visualization open source3 4. The next
sections will give more details on the whole process: reverse geocoding (Section 5.2),
stream data processing and aggregation (Section 5.3) and visualization (Section 5.4).

5.2 Reverse geocoding

Reverse geocoding is the process of converting a coordinate pair to an address. There are
many APIs that allow you to do this, both Online Web APIs (such as Nominatim, Google
API, Yahoo, and OpenStreetMap) and Offine APIs (such as PostGis). The problem with

3 https://github.com/fBarbanti/class-real-time-aggregator.git
4 https://github.com/fBarbanti/class-traffic-monitor.git

https://github.com/fBarbanti/class-real-time-aggregator.git
https://github.com/fBarbanti/class-traffic-monitor.git
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both types of APIs is that they are slow and unsuitable for large amounts of incoming
data. Moreover, standard reverse geocoders typically work by returning the name of the
city (and state) where the input coordinates lay. This is obviously not feasible for our
setting: in particular, we have to: a) operate with a large amount of incoming data; b)
have a finer-grain answer identifying the specific routes (and, inside a given route, the
specific sections) where the input points are located (spatial aggregation of the data).
Therefore, it was necessary to implement an ad-hoc reverse geocoder. First of all, we
created all the required map data, then we built the actual reverse geocoder to work on it.
Map data creation.We started from the geographic data available from OpenStreetMap
(OSM), a collaborative project aimed at creating free-content world maps through the
contribution of a community of users from all over the world. The OSM data model is
represented by elements, which consist of:

– Nodes: they represent specific points defined by latitude and longitude. They are
necessary to define a path;

– Paths: they are an ordered connection of at least 2 and a maximum of 2000 nodes
describing a linear feature (such as a road).

Each element can have several properties, called Tags, which consist of key-value
pairs, and serve to specify the characteristics of the elements. For instance, a “highway”
key is used to identify highways. Other examples of tags are “lanes” (number of lanes),
“bridge” (boolean, true if the path that contains the point “passes under” a bridge),
“lit” (boolean, true if the path is illuminated). The data about the needed region has
been exported and manipulated using QGIS, a well-known open-source geographic
information system. In particular:

– we exported all routes having a “highway” key;

– we defined the section length and subdivided routes into 50 meters long sections.
Through a QGIS feature called “Points along geometry”, it was possible to divide
each line into equidistant points, and show the points on the map (see Figure 7);

– the newly created points inherit all the attributes of the line element on which they
were created: this means that each point in a street has the same id as the street itself.
To uniquely identify each point in a street, a “section_id ” attribute has been added
that contains a unique integer for each route, so each point is identified by the pair
(route_id, section_id);

– by means of the “Add Attributes of Geometry” tool, we added latitude and longitude
to the created points.

Ad-hoc offline reverse geocoder.We implemented our reverse geocoder in Python and
SciPy library. It uses a K-D tree to perform efficient processing of the input and return
the nearest neighbor point available in the map, which is the closest point to the input
coordinates. The K-D tree is a multi-dimensional binary search tree in which each node
indexes a point in k dimensions. Each inner node can be thought to generate a hyperplane
that divides the search space into two parts, called semi spaces. The data structure of the
K-D tree is based on a recursive division of space into rectangular regions called boxes.
As splitting rule, we chose sliding midpoint, where the splitting dimension is the longest
size of the current box, and the splitting value is the midpoint of this side of the box.
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Figure 7: Portion of created map, with equidistant points delimiting route sections

(section length set at 50 meters).

property value 
route_name 'South Canaletto National Road' 

highway secondary 
lanes 1 

bridge 0 
lit 0 

route_id w622677478 
section_id 19 

 

Figure 8: Example of reverse geocoding output for input point coordinates

(44.655410767, 10.934341431). The output corresponds to section 19 of The South

Canaletto National Road, where the input point is located.

Search in the K-D tree exploits the properties of the tree to quickly prune large portions
of search space. In this way, the obtained reverse geocoder can cope well with the large
amount of incoming data (see also the experimental tests Section 6.2). An example of
input/output is shown in Figure 8.

5.3 Stream data processing and aggregation

Due to the high frequency and volume of incoming data, we chose to perform data stream
real-time processing, aggregation and storing employing the Big Data platform Spark.
Spark has become popular and widely used in industry due to its properties of flexibility,
speed, and ease of use. With respect to other popular frameworks such as Hadoop, by
choosing Spark we maintain tolerance and scalability characteristics and, through its
advanced in-memory processing and stream processing features, we target very high
levels of performance.
Full input data storing.We leveraged the structured streaming API to store the whole
incoming data stream within a Streaming Dataframe, so to facilitate later processing.
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Input dataframe

Temporal
aggregation 
(1 minute)

Streaming dataframe 1

Temporal
aggregation 
(15 minutes)

Streaming dataframe 2

Temporal
aggregation 

(1 hour)

Streaming dataframe 3

Temporal
aggregation 

(1 day)

Streaming dataframe 4

Figure 9: Schema of hierarchical aggregation processing: from left to right, 1 minute,

15 minutes, 1 hour and 1 day aggregations.

Structured Streaming is a scalable and fault-tolerant stream processing engine built on
Spark SQL; we chose it since it allows real-time manipulation of the incoming data
stream using the optimizations introduced with Spark SQL, guaranteeing fault tolerance
and data consistency and the ability to query tables as if they were static data (Spark
itself is responsible for updating the results table in the presence of new data). More
specifically, the data is stored in a “Parquet” file format, which is an open-source and
columnar binary file format introduced into the Hadoop ecosystem. This choice enables
less memory consumption than row-based files (such as CSV and JSON) and increased
performance for queries that process large volumes of data.
(Hierarchical) data aggregation. Achieving hierarchical aggregation requires to effi-
ciently generate and store the flow of aggregated data in the 4 desired time granularities.
To do this, we designed a hierarchical aggregation pipeline, which allows us to calcu-
late a new aggregate starting from a finer granularity one: first, the aggregate with the
finest granularity (1 minute) is generated, then this is used to generate the next coarser
granularity aggregate (15 minutes), and so on. This required solving some technical
challenges due to the current limitations of the Spark Streaming implementation: as
reported in Spark’s official documentation, multiple streaming aggregations (i.e., a chain
of aggregations on a streaming DF) are currently not supported on a single dataframe.
To overcome this, we slightly modified the conceptual pipeline: after the computation
of each new granularity, the newly obtained results are dynamically stored in a new
streaming dataframe, which is then read to perform the subsequent aggregation, and so
on (see Figure 9).

Figure 10 shows an example of input data (top part) and its processing after reverse
geocoding / spatial aggregation (center part) and temporal aggregation for granularity
one minute (bottom). In particular, to give a glimpse of the Spark implementation behind
the first step (spatial aggregation), this is the code that is run in order to compute the
“count” and “average_speef” aggregate attributes after having grouped the data of the
starting dataframe “df” on “timestamp”, “route_name” and “section_id”:

query = df
.withWatermark("timestamp", "2 minutes")
.groupBy("timestamp", "route_name", "section_id")
.agg(F.count("*").alias("count"),

F.avg("speed").alias("average_speed"))

After setting a two-minute watermark, the records with the same timestamp, street
name and section of the street are grouped together. Next, the aggregate columns are
created and populated with the number of grouped records and the average of the objects’
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timestamp vehicle_type yaw speed route_ name highway lanes bridge lit route_id  section_id 

1542626100013 5 70.00 40 
South Canaletto National 
Road  secondary 1 0 0 w622677478 20 

1542626100013 6 70.00 32 
South Canaletto National 
Road  secondary 1 0 0 w622677478 20 

1542626100013 6 70.00 34 
South Canaletto National 
Road secondary 1 0 0 w622677478 19 

1542626100044 6 70.00 30 
South Canaletto National 
Road secondary 1 0 0 w622677478 19 

1542626100044 6 70.00 32 
South Canaletto National 
Road  secondary 1 0 0 w622677478 19 

 

Input:  original streaming DataFrame

Output after spatial aggregation
timestamp vehicle_type route_ name section_id count  average_speed 
1542626100013 5 South Canaletto National Road  20 1 40 
1542626100013 6 South Canaletto National Road  19 1 34 
1542626100013 6 South Canaletto National Road  20 1 32 
1542626100044 6 South Canaletto National Road  19 2 31 

 

Window vehicle_type route_name section_id average_count average_speed 
Mon Nov 19 2018 12:15:00 - 
12:16:00 6 

South Canaletto National 
Road 19 1.5 32.5 

Mon Nov 19 2018 12:15:00 - 
12:16:00 6 

South Canaletto National 
Road 20 1 32 

Mon Nov 19 2018 12:15:00 - 
12:16:00 5 

South Canaletto National 
Road  20 1 40 

 

Output after temporal aggregation:

Figure 10: Example of data aggregation processing: starting from the input (top),

spatial (center) and temporal (bottom) aggregations are applied.

speeds. Watermarking is used in order to allow the system to remove intermediate states
from memory after the specified period of time, thus optimizing performance.

5.4 Data visualization

The goal of this phase is to implement a module for the visualization of aggregates
obtained in the previous phases. In fact, we wanted to give the user the possibility to
monitor traffic to the various time aggregates, with the possibility of differentiating
traffic according to the type of vehicle. The viewer is implemented in Python using the
PySpark (for connection to the Spark data node) and Folium (for displaying geospatial
data on an interactive map) libraries.

The interface of the current preliminary prototype of the viewer is shown in Figure
11 After the user has selected the filter options (date, reference object type, and time
granularity), the map is displayed, and the traffic situation is shown. The user is also
able, by scrolling through the provided slider, to monitor traffic during specific hours of
the selected day (also based on the selected granularity).

The visualization is created by reading the previously aggregated data available in
Spark (see the previous section). The first operation is to read the map data containing
information about the routes and their sections. Next, the interactive map is created: the
Spark context is created for reading the parquet files, the data is read and the traffic in
each section is represented as colored dots. The colors of the dots are determined based
on the density of objects in the section. In particular, the traffic evaluation criterion,
that determines when/how it is flowing, derives directly from the traffic flow data made
available by the Emilia-Romagna Region:
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Figure 11: Traffic Viewer interface, including map window (bottom) and parameter

selectors (top).

– < 30: traffic is free flowing (Green);

– >= 30 and <= 50: traffic is free flowing with some slowdown (Orange);

– > 50: traffic is heavy (Red).

6 Experimental evaluation

In this section we report on the experiments we performed for both edge (Section 6.1)
and cloud processing (Section 6.2).

6.1 Edge processing experiments

The experiments on the proposed edge processing techniques (Section 4) have been
carried on an Intel i9-9900KF (@3.60GHz) coupled with an NVIDIA RTX 2080Ti. Two
streams were considered: (i) stream 1 with an image resolution of 1920x1080 and rate of
25 FPS, (ii) stream 2 with image resolution 3072x1728 and rate of 30 FPS. A better idea
of the timing of the five threads and their data exchange is depicted in Figure 12.

Figure 13 reports the minimum, average and maximum execution times of subtask
str1|2 (Figure 4) over 5k frames, split in three further phases: (i)frame acquisition, form
the RTSP stream, (ii) frame resize to a smaller resolution (i.e., 960x540) and frame
copy to a shared buffer. From the chart, two main observations can be made. The first
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stream2

T0 = 40ms

stream1

T0 = 33ms

elaborate2

T1 = 100ms

elaborate1
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visualize

T2 = 33ms

frame
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frame w BBs

frame w BBs

Figure 12: class-edge timing and data exchange details of the threads of class-edge.

Elaborate stands for the undistort-detect-track-send flow.
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Figure 13: Minimum, average and maximum latencies of subtask str1|2 of Figure 4,

split in three further phases: frame acquisition, frame resize and frame copy.

is that the most expensive part is the capture of the stream, which is affected by the
original resolution and it’s higher for stream 2. The second is that, even if in average
str1|2 take between 15 and 20 milliseconds to execute, the same operation can take up to
160 milliseconds. Given these results, we decided to set 1920x1080 as an upper bound
resolution for the RTSP stream, changing the setting directly on the cameras, so that the
maximum execution is always less than 100 milliseconds.

A similar chart for the undistort-detect-track-send flow is reported in Figure 14.
Additionally to the already described phases, the copy of the frame from the shared
buffer and the optional viewer feeding have been profiled. From this chart, we can evince
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Figure 14: Minimum, average and maximum latencies of undistort-detect-track-send

flow.

that still there are some differences in the streams, not related to the resolution but on
the scene itself instead. Stream 1 comes from a camera that points on a roundabout:
it’s a dynamic scenario and even though there are many objects, the trackers don’t last
long. On the other hand, stream 2 comes from a camera that points to a parking lot:
it’s a static view, there are many objects and their trackers are always alive, keeping
their information (with a limited history). For this reason, differences in terms of latency
can be found in the tracking and viewer phases, which are proportional to the stored
trajectories, while the other phases have similar duration. In any case, the total time of
the flow is always less than 100 milliseconds.

6.2 Cloud processing tests

In this section, we report on the efficiency tests we performed on the cloud processing
part of our prototype. In particular, we tested the efficiency of the reverse geocoder and
the overall cloud data processing. The tests were executed on a standard PC system
having an AMD Ryzen 5 3500U CPU and 8 GB RAM.
Reverse geocoder efficiency test. The ad-hoc reverse geocoder’s performance has been
evaluated to have a preliminary idea of its impact on the overall performance. In this
test, we first randomly generated 100 points with coordinates belonging to the MASA;
then, we issued 100 queries and monitored the response times. This whole process has
been repeated for 10 runs. The average results are the following: the ad-hoc geocoder
was able to complete the test in 9.79 ms, showing the satisfying performances that will
be needed for real-time processing of the data. To give a comparative idea of a standard
online reverse geocoder performance (Nominatim), we performed the same test on it.
The performance of Nominatim was of 50.007 seconds, therefore more than 5000 times
the one of our offline implementation.
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Table 1: Application performance: for each processing phase (left), required

percentage of CPU, memory and execution time.

Processing phase CPU (%) Memory (MB) Time

Spatial aggr & rev. geocoding 78.4 1430.20 8 min 12 sec

1 min granul temporal aggr 47.2 985.51 40 sec

15 min granul temporal aggr 41.6 780.69 32 sec

1 hour granul temporal aggr 43.4 528.59 21 sec

Complete processing 73.6 1901.26 14 min 29 sec

Overall cloud data processing test. In this test we evaluated the overall cloud data
processing performance in terms of memory consumption and CPU and processing time.
We considered a data stream containing the input data of one hour of typical traffic and
monitored the memory and CPU consumption of all the pipeline operations, including
individual time aggregations. Table 1 summarizes the performance results, while Figure
15 presents a graph of the entire processing CPU and memory usage.

As expected, the initial processing phase, responsible for reverse geocoding the
incoming data stream and calculating vehicle density for each moment of time (spatial
aggregation), is the most demanding. Most of the resources used by the application are
required at this aggregation stage; then, in the next phases (temporal aggregation), pro-
cessing, memory, and CPU time decrease significantly. At the conclusion of this analysis,
we see that the prototype can quickly process the incoming data stream, completing one
hour of typical input processing in less than 15 minutes of processing (with 70% of CPU
and about 2GB of memory consumption). This shows that thanks to the optimized data
managing techniques, even a very standard PC hardware is more than adequate for full
real-time processing of the generated data.

7 Conclusions

In this paper we described the software foundations of our innovative framework, detail-
ing the overall architecture and then focusing on its two main parts for edge computing
and cloud data management. We considered the real use-case of the Modena Automo-
tive Smart Area (MASA) and specifically analyzed the issues of obstacle detection and
tracking and a traffic density monitoring application with hierarchical data aggregation
features, also discussing the efficiency aspect with a number of tests. Differently from
many state of the art proposals, which focus primarily on one of the two complementary
issues of edge and cloud computing, the presented framework exploits both in order to
manage a variety of heterogeneous sensors and offer data processing features for both
real-time and historical data management. The discussed techniques and architecture
is devised so to constitute the groundwork enabling many further services, from smart
parking to air pollution estimation. Nevertheless, the proposed architecture has some
limitations. The innovation of installing smart edge devices capable of processing videos
in real-time and covering a vast area comes with a considerable economical effort. The
described area covers only a couple of square kilometers in Modena, and extending it
would be a fair expense for the municipality. On the other hand, the cost of the cloud



Cavicchioli R., Martoglia R., Verucchi M.: A Novel Real-Time Edge-Cloud… 23

Figure 15: Overall cloud data processing CPU (red) and memory (blue) performance

test

infrastructure can be reduced, since only the metadata has to be processed with no need
of elaborating the full video streams, therefore requiring less computational capability
on the server side.

In future work, we plan to focus on supporting and testing further innovative services,
also devising and integrating machine learning techniques for enabling real-time forecast
in different smart city contexts (e.g., traffic density as in preliminary work [Martoglia and
Savoia, 2021], free parkings, etc.). The data analytics methods could be easily upgraded
to exploit state of the art approaches to the different tasks, such as Bloom filters for
data deduplication, segmentation networks for better road user detection, visual feature
trackers for enhanced reliability and so on. Another line of research would be applying
the digital twin multilevel approach to the system, to simulate at different levels of
granularity the digital copy of a vehicle, a crossroad or a road block in order to test
different scenarios and the possible behaviour of the road users when facing issues like
accidents, unexpected traffic conditions or closed roads.
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