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A B S T R A C T   

Calonectris diomedea is a colonial Procellariiform breeding on Mediterranean islands. The stomach oil produced 
during chick rearing is a peculiar trait of this species. The composition of the stomach oil is likely to reflect the 
composition of the prey ingested and might reveal the contaminants uptake with prey becoming a possible tool 
for the marine pollution monitoring. We examined the concentration of 15 trace elements by ICP-MS and direct 
mercury analyser. The principal component analysis revealed a heterogeneous pattern of metal concentration, 
showing a significant separation between samples collected 20 and 70 days after hatching. The data obtained in 
this work give preliminary information on the feeding habits and breeding ecology of Linosa’s colony of Scopoli’s 
shearwater. The trace metals variability found suggest that the stomach oil may have a role as trophic markers to 
understand predator-prey relationships and to have evidence on the accumulation of pollutants in the latter.   

1. Introduction 

Seabirds’ life-history traits are determined by the spatial and tem-
poral variability of food resources in the marine environment (Ricklefs, 
1990). Some species of seabirds nest in rock crevices and burrows under 
rocks or soil (Brooke, 2004; Ramos et al., 1997; Warham, 1990). 

The Scopoli’s shearwater (Calonectris diomedea) is a long-distance 
migrant and colonial Procellariiform breeding on Mediterranean 
islands (Sangster et al., 2012). The second-largest Scopoli’s shearwater 
colony is in Linosa Island (Baccetti et al., 2009). 

The two mates share the incubation (laying only one egg) and chick- 
rearing (Cecere et al., 2013). Apart from the incubation period, Scopoli’s 
shearwaters visit the colony mainly at night to feed their chicks 
(Rubolini et al., 2014). In Atlantic waters, the diet of Cory’s shearwater 
Calonectris borealis, a species close to the Scopoli’s shearwaters (Sangster 
et al., 2012), comprises predominantly epipelagic and mesopelagic fish 
and squid (Thibault et al., 1997) which are capable of accumulating 
pollutants such as trace metals (Anan et al., 2005; Shalini et al., 2020; 
Carravieri et al., 2020). Contaminant uptake varies to some extent 
depending on the variability of the diet, both between individuals and 

across years (Furness and Camphuysen, 1997). Several methods are used 
to investigate the diet of seabirds; these include both the conventional 
sampling of food regurgitation, contents of pellets regurgitated by adults 
and samples offloaded from chicks by “stomach-pumping” (Furness and 
Camphuysen, 1997; Jarman et al., 1996). 

The parents of Scopoli’s shearwater feed their chicks with an oily 
paste obtained from the mechanical rupture of the prey in the proven-
triculus (Clarke and Prince, 1976; Roby and Place, 1997; Wang et al., 
2007). Although quantitative work on trace metals has not been done, 
close resemblances have been noted between the chemical composition 
of Procellariiform stomach oil and their preys (Cheah and Hansen, 1970; 
Wang et al., 2007). 

Given this, the feeding behavior of Scopoli’s shearwater and the 
analysis of stomach oil could be useful tools for the monitoring of heavy 
metal pollution in marine environment (Cherel and Weimerskirch, 
1995; Furness and Camphuysen, 1997). This work aimed at assessing the 
trace elements contents in the stomach oil collected from Scopoli’s 
shearwater chicks of Linosa Island to deepen the possible risks of toxic 
metals accumulation in their chicks and have a possible description of 
the trace metals pollution levels of the study area. 
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2. Materials and methods 

2.1. Sampling plan 

Fieldwork was carried out during the breeding season of 2017 in 
Linosa island (South Mediterranean Sea, Southern Italy, 35◦52′30.2′′N 
12◦52′13.5′′E, Lat. 35.875056, Long. 12.870417) from July to October. 
Nests were monitored since egg laying period. Egg deposition occurred 
between 23 and 27 July. The stomach oil sampling occurred at 20th and 
70th day after deposition for each nest/chick. 

The chick rearing period last about 90 days (Becciu et al., 2011). 
Eight nests were monitored by sighting since the laying and hatching of 
the eggs. The stomach oil was collected from chicks by water off-loading 
technique using a disposable syringe with a silicon vesical catheter at 20 
and 70 days after hatching according to the procedure reported by 
Connan et al. (2005). About 1 ± 0.5 g of stomach oil was collected from 
each chick and stored in 1.5 mL polypropylene microtubes. The stomach 
oil samples collected at day 20 (Fig. 1a) were characterized by a range of 
colours between deep orange and black due to the presence of calcar-
eous fragments, probably attributable to mussel valves. The stomach oil 
samples collected at day 70 showed a range of colours between deep 
yellow and light orange (Fig. 1b). All the samples were transported at 
+4 ◦C to the laboratories and stored at − 20 ◦C until the analysis. The 
analysis was conducted in November 2017. 

2.2. ICP-MS analysis 

Water for trace metals analysis Suprapur® was obtained by Carlo 
Erba Reagents S.r.l. (Cornaredo, Italy). Standard stock solutions (1000 
ppm) of 14 metals (Al, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Sr, Ag, Cd, Sn, Pb) 
and ultrapure nitric acid were provided by Merck (Darmstadt, Ger-
many). Tuning solutions for ICP-MS, capable of covering a wide range of 
masses (Ce, Co, Li, Mg, Tl, and Y 1 μg/l) were purchased from Agilent 
Technologies (Santa Monica, CA, USA). Ultrapure grade carrier gas Ar, 
He, H2 were purchased from SOL S.p.a. (Monza, Mi, Italy). 

The detection of metals was carried out by Inductively Coupled 
Plasma-Mass Spectrometry (ICP-MS). The extraction of the samples was 
performed according to protocols reported before (Cammilleri et al., 
2019b; Lo Dico et al., 2018). Briefly, approximately 1 g of the samples 
was transferred into decontaminated vessels with 3 mL of 60% (V/V) 
ultrapure nitric acid and 5 mL of deionized water. Subsequently, the 
samples were subjected to microwaves digestion by a Multiwave 3000 
digester (Anton Paar, Graz, Austria) with a power ramp of 600 W in 10 
min. Then, a power of 600 W was maintained for 10 min. Finally, the 
vessels were cooled for 15 min. All the analytes were determined using a 
7700x series ICP-MS (Agilent Technologies, Santa Monica, CA, USA). 
The quality protocol included calibration with ≥98% pure standards, 
analysis of certified reference materials (DORM-4, fish protein) and 
duplicate samples. The method was validated by an in-house model 

according to the EC Regulation 657/2002. 

2.3. Hg analysis 

The Hg determination was carried out by a DMA-80 thermal direct 
mercury analyser (Milestone GmbH, Germany). The quality assurance 
protocols included a calibration with ≥98% pure standards and the 
analysis of certified reference materials from proficiency tests (Fapas, 
York, UK). About 0.1 ± 0.001 g of the samples was put onto nickel 
vessels, and introduced to the analyser (Cammilleri et al., 2019a). A 
calibration curve based on five concentration points (from 0.050 to 2 
mg/kg) was carried out. 

2.4. Data collection and statistical analysis 

The results were expressed as mg/kg wet weight (w.w.). All the re-
sults under the limit of quantification (LOQ) of the method were 
considered for the statistical analysis as half of the LOQ values (Helsel, 
2005). 

All the variables were pre-treated before principal component anal-
ysis by Pareto-Scaling (van den Berg et al., 2006). A total of 2 principal 
components were selected after Kaiser–Harris criterion, Cattel Scree test 
and parallel analysis (n.iter = 100) (Kabacoff, 2015). Analytes with 
constant values (Cd and Co) were removed from the dataset. Statistical 
analysis was conducted with R software (3.6.2) using the R packages: 
Rcmdr, Leaflet for R and FactoMiner (Kassambara, 2017). The contri-
bution of the variables was calculated as follow: 

Contrib = [(C1*E1)+ (C2*E2) ]/(E1 +E2) (1)  

where C1-C2 are the contribution of variables and E1-E2 are the eigen-
values of the corresponding PC. 

3. Results 

3.1. Trace metals composition 

The trace metals distributions of the samples examined are shown in 
Fig. 2. At day 20, the mean contents of trace elements followed the order 
Al > Fe > As>Sn > Zn > Ag > Sr > Cu > Se > Pb > Cr > Ni. No 
detectable Cd, Hg, and Mn levels were found. Aluminium was the most 
abundant element, showing a mean of 45.58 ± 14.23 mg/kg and a 
maximum of 67.19 mg/kg, followed by Fe (7.36 ± 8.04 mg/kg). 
Conversely, Pb, Cr, and Ni were the less abundant elements, with mean 
values of 0.052 ± 0.01 mg/kg, 0.04 ± 0.01 mg/kg, and 0.03 ± 0.02 mg/ 
kg, respectively. 

The samples of day 70 were characterized by the presence of Hg and 
Mn, showing mean concentrations of 0.47 ± 0.14 mg/kg and 0.23 ±
0.07 mg/kg, respectively, and a higher amount of Fe (24.22 ± 6.29 mg/ 
kg), becoming the most abundant element. A relevant decrease of Al 

Fig. 1. Stomach oil samples of Scopoli’s shearwater (C. diomedea) collected 20 days (a) and 70 days (b) after hatching. (For interpretation of the references to colour 
in this figure, the reader is referred to the web version of this article.) 
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Fig. 2. Boxplot and distribution plot for each element divided for group (20 and 70 days).  
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contents was found (0.55 ± 0.16 mg/kg), showing mean values eighty 
times lower than samples of day 20. The mean contents of trace elements 
at day 70 followed the order Fe > Zn > Sr > Cu > Hg > Se > Ag > Al >
As>Mn > Ni > Sn > Pb > Cr. Similarly to day 20, no Cd contents were 
found. Pb and Cr were the less abundant elements of day 70 samples, in 
accordance with the samples of day 20, showing mean values of 0.02 ±
0.008 mg/kg and 0.01 ± 0.006 mg/kg, respectively. The Zn contents 
showed an important increase, reaching mean values of 11.78 ± 2.17 
mg/kg, nine times higher than samples of day 20. 

The biplot of the trace elements content are shown in Fig. 3. PC1 
accounts for 97.5% and PC2 for 2.2% (99.7% of total variability). Fe, Al, 
Zn, and Se were the trace elements with the higher influence on both 
PCs. The biplot enhances differences related to the period of collection, 
leading to the formation of two clusters. Trace elements on the right side 
of the biplot such as Al, As, and Sn were positively correlated with PC1, 
contributing to the variability between data groups. Zn, Cu, Se, Sr, and 
Fe were correlated negatively with PC1 and were responsible for the 
position on the left side of samples collected at day 70. Samples collected 
at 20 days were sharing high values of Sn, As, and Al and low values for 
Fe and Zn. Samples collected at 70 days had high values for the variables 
Zn, Fe, Cu, Se, Hg and Sr and low values for the variables Al, As and Sn. 

4. Discussion 

Stomach oil is the results of the mechanical rupture of the prey in the 
proventriculus of Procellariidae with the exception of diving petrels 
(Connan et al., 2005; Wang et al., 2007). The analysis of trace metals 
verified a clear division in terms of composition between stomach oil 

samples of day 20 and day 70. 
The differences in trace metals contents between stomach oil samples 

collected at day 20 and day 70 suggest that Scopoli’s shearwaters of 
Linosa island adopt a targeted strategy for provisioning their chicks, 
probably related to the different nutritional needs during the develop-
ment. Parents can perceive the nutritional status of their chicks and 
adjust their provisioning rates accordingly (Ottosson et al., 1997). 

Copper, zinc, and mercury were the elements that contributed most 
to the differentiation between day 20 and day 70. The higher levels of 
essential metals, such as Cu and Zn in the stomach oil samples of day 70 
could be related to their important role in feather formation and growth 
(Stewart et al., 1996; Voulgaris et al., 2019). Experimental work showed 
that high levels of zinc are needed for feather growth, and zinc defi-
ciency results in a frayed feather condition (Stewart et al., 1996; Voul-
garis et al., 2019). Contrary to day 70, the stomach oil samples of day 20 
are characterized by higher amounts of non-essential elements such as 
Al, As, Sn and Pb which, besides the need for essential metals such as Cu 
and Zn during the pre-flight development phase, could be explained by 
the chick provisioning behavior of Scopoli’s shearwaters and the 
chemical composition of the prey ingested. It was proved that parents 
adopt a dual foraging strategy consisting of short-distance trips carried 
out mainly in the shoreface zone near the colonies and long-distance 
foraging trips offshore (Chaurand and Weimerskirch, 1994; Gran-
adeiro et al., 1998). Scopoli’s shearwater show its highest food delivery 
rates during the first 29 days after hatching (Ramos et al., 2003), sug-
gesting a higher frequency of short trips for chicks provisioning, which 
appears to be more profitable (Schaffner, 1990). This condition leads the 
parents to catch prey predominantly in the intertidal zone. 

Fig. 3. C. diomedea. PC1 vs. PC2 biplot of trace elements content of the stomach oil samples analysed, according to the sampling period (day 20 vs. day 70).  
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The Al and Cr values obtained in the stomach oil samples of day 20, 
together with the absence of mercury contents, showed a high proba-
bility of resemblance with signatures recorded in black mussels; the 
presence of valve fragments in the stomach oil samples seems to confirm 
this assumption (Cammilleri et al., 2019b; Mol and Alakavuk, 2011; 
Ranau et al., 2001). 

Even the arsenic contents found in stomach oil showed a high 
resemblance with signatures recorded in Mediterranean mussels (1.7 to 
3.7 mg/kg; Klarić et al., 2004; Ünlü and Fowler, 1979). 

The Hg, Cu and Zn levels of the stomach oil samples of day 70 
showed a high probability of resemblance with pelagic fish such as horse 
mackerel (Trachurus trachurus) and anchovies (Engraulis encrasicolus) 
(Cammilleri et al., 2019b; Capelli et al., 2004; Türkmen et al., 2008; 
Yaman et al., 2013), in accordance with the experimental study con-
ducted by Sarà (1983), indicating a progressive shift from short trips 
near the colony to long trips involving prey of the pelagic zone. A higher 
concentration of iron was found in samples of day 70, comparable with 
those found in pelagic and mesopelagic fish species of the Mediterranean 
(Canli and Atli, 2003). 

Seabirds are often used for marine environment monitoring (Furness 
and Camphuysen, 1997; Montevecchi, 1993; Camphuysen and Van 
Franeker, 1992). Cadmium and mercury can bioaccumulate the most in 
the long-lived predatory species that exhibit high concentrations of 
these toxic metals. This process is most evident at high latitudes (Bus-
tamante et al., 1998; Dietz, 1998), where the baseline concentrations 
could be higher than in the temperate latitudes. It has been presumed 
that dietary was one of the more discriminant factors for the differences 
in mercury and cadmium concentrations. Cephalopods have been 
determined to be an important vector for transferring cadmium to top 
marine predators (Bustamante et al., 1998; Muirhead and Furness, 
1988). Studies reported before have shown that seabird species which 
include an appreciable amount of crustacea in their diet, had lower 
cadmium and mercury concentrations than those predated predomi-
nantly on squids (Stewart and Furness, 1998). The absence of cadmium 
seems to exclude the provisioning of squid or other cephalopods for the 
Scopoli’s shearwater colony of Linosa island, in contrast to what was 
found in the Cory’s shearwater colony of the Azores (Alonso et al., 2014; 
Granadeiro et al., 1998). Furthermore, the very low levels of cadmium 
and other toxic metals such as Hg and Pb could be traced back to the 
absence of industrial processes in the study areas. 

This hypothesis can be improved in the future by analysing the levels 
of Cd in marine organisms of Linosa’s coasts. Therefore, low levels of Hg, 
Pb, As and the absence of Cd indicate an unremarkable pollution in this 
area. 

5. Conclusions 

To the best of our knowledge, the present work reports for the first 
time the trace metals composition of the stomach oil of Scopoli’s 
shearwater colony in Linosa island. Our results showed a marked tem-
poral difference in the chick provisioning activity of this species, sug-
gesting a dual provisioning strategy based on the nutritional needs of the 
chicks and food availability. It could be hypothesized that the stomach 
oils of Procellariiformes may have an important role as trophic markers 
to understand predator-prey relationships and to have evidence on the 
accumulation of pollutants in the latter. The study also stresses the need 
to have references on trace metals patterns of potential prey in Medi-
terranean, in order to deepen the ecological status of this area. The re-
sults of this work suggest that Linosa island and its marine ecosystem has 
low level of pollution. 
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