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Abstract

We present a general framework to compute upper and lower bounds for linear-functional out-
puts of the exact solutions of the Poisson equation based on reconstructions of the field variable
and flux for both the primal and adjoint problems. The method is devised from a generaliza-
tion of the complementary energy principle and the duality theory. Using duality theory, the
computation of bounds is reduced to finding independent potential and equilibrated flux re-
constructions. A generalization of this result is also introduced allowing to derive alternative
guaranteed bounds from nearly-arbitrary H(div; Ω) flux reconstructions (only zero-order equili-
bration is required). This approach is applicable to any numerical method used to compute the
solution. In this work, the proposed approach is applied to derive bounds for the hybridizable
discontinuous Galerkin (HDG) method. An attractive feature of the proposed approach is that
superconvergence on the bound gap is achieved, yielding accurate bounds even for very coarse
meshes. Numerical experiments are presented to illustrate the performance and convergence of
the bounds for the HDG method in both uniform and adaptive mesh refinements.

Keywords: exact/guaranteed/strict bounds for quantities of interest, output bounds,
goal-oriented error estimation, adaptivity, potential and equilibrated flux reconstructions,
hybridizable discontinuous Galerkin method (HDG).

1. Introduction

In many applications in computational science and engineering, the numerical approximations
are used to accurately assess some target quantities or quantities of interest. That is, to provide
information on specific features of the true solution u, usually given by a linear functional s =
`O(u). The approximations are computed using the numerical solution uh, namely sh = `O(uh).
In this context, it is crucial to assess the quality of the approximated outputs.
Numerous advances in goal-oriented error estimation have been done in recent years. The most
well-established techniques provide approximations or bounds for the error in the computed
numerical approximation `O(u) − `O(uh) and produce error indicators to drive goal-oriented
mesh adaptivity, see for instance [47, 54, 2, 35, 7, 64, 40, 37, 60, 27, 30]. However, in practical
applications, two other parallel lines of research are worth mentioning. The first one consists
of techniques aimed at obtaining more accurate approximations of the quantities of interest
[23, 30, 36, 25]. In this case, the numerical approximation uh is used to either compute a new
more accurate approximation ũh yielding a more accurate approximation for the quantity of
interest s̃h = `O(ũh) or to directly compute a better approximation for the quantity of interest
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s̃h = ˜̀O(uh). The second line of research aims at the computation of certificates and guaranteed
bounds for the quantity of interest, see for instance [57, 58, 48, 66, 51, 3, 46, 32, 33]. Indeed,
besides having an accurate approximation of the quantity of interest (either `O(uh), `

O(ũh)
or ˜̀O(uh)) in decision-making processes, it is important to be able to provide a guaranteed
interval where the exact quantity of interest lies, that is, to guarantee that s ∈ [s−h , s

+
h ] where

s−h and s+
h should be fully computable, constant-free guaranteed upper and lower bounds. In

this context, it is no longer important to directly assess the error in the original approximation
of the quantity of interest s− sh, but being able to compute a new improved approximation s̃h
and providing a guaranteed bounding interval for the exact output, [s−h , s

+
h ], containing both s

and s̃h. It is also desirable that the new approximation and the bound gap s+
h − s

−
h converge

faster than the original approximation.
The present work aims at addressing the computation of highly accurate approximations for
the quantity of interest and providing certificates for the exact value of the quantity of interest.
In particular, although a general framework for computing guaranteed bounds for quantities of
interest is provided, accurate approximations for the quantity of interest and associated guaran-
teed bounds are obtained from hybridizable discontinuous Galerkin (HDG) approximations of
the Poisson equation, where the superconvergence properties of the approximation are exploited
to obtain optimally convergent approximations and bounds for the quantity of interest. Also,
goal-oriented error indicators are provided to enhance the convergence of adaptive remeshing
for non-smooth problems.
HDG methods have gained popularity in the last decade due to their reduced computational
cost with respect to classical discontinuous Galerkin methods while retaining superconvergence
properties [28]. Also, a very attractive feature is that a simple post-process of the solution
yields equilibrated H(div; Ω) approximations of the fluxes. These fluxes are used to compute
guaranteed bounds either for the energy norm or for quantities of interest [65, 1]. In the
present work, the superconvergence properties of the high-order HDG method presented in [43]
are exploited to achieve optimal convergence when approximating and certifying quantities of
interest.
The paper is organized as follows: In Section 2, we introduce the model problem and nota-
tions for the quantities of interest and adjoint problem. In Section 3, a general framework to
compute guaranteed bounds for quantities of interest by means of potential and equilibrated
flux reconstructions is presented. In particular, Section 3.2 presents an extension that allows
both to compute bounds when non-polynomial data is present and to compute bounds using
simplified zero-order equilibrated reconstructions. Section 3.3 particularizes the expression for
the bounds to high-order projections of the flux reconstructions. Finally Section 3.4 presents
an exact representation for the quantity of interest allowing to enhance the bounds using lower
bounds for the energy norm. In Section 4, we particularize the results derived in Section 3 to
the HDG method, providing both an accurate alternative approximation for the quantity of
interest and its associated guaranteed bounds. Section 5 shows the behavior of the proposed
technique in two numerical examples, and we present some concluding remarks in Section 6.
The proofs of the most significant results are presented in Appendices A, B, C and D.

2. Model problem

Consider the Poisson’s equation in a polygonal/polyhedral domain Ω ⊂ Rd for d = 2 or 3,

−∇ · (ν∇u) = f in Ω,
u = g

D
on ΓD,

−ν∇u · n = g
N

on ΓN,
(1)

where the boundary ∂Ω is divided into two disjoint parts ΓD and ΓN such that ∂Ω = Γ̄D ∪ Γ̄N,
ΓD ∩ ΓN = ∅ and ΓD is a non-empty set. The data are assumed to be sufficiently smooth, that
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is, f ∈ L2(Ω), g
N
∈ L2(ΓN), g

D
∈ C(ΓD) and ν ∈ L∞(Ω) is assumed to be strictly positive.

Moreover, for simplicity, ν is assumed to be piecewise constant on subdomains of Ω.
The equivalent mixed formulation of (1) is

q = −ν∇u in Ω,
∇ · q = f in Ω,

u = g
D

on ΓD,
q · n = g

N
on ΓN.

(2)

To introduce the weak form of (2), consider the test spaces W = H1(Ω) and V = H(div; Ω) =
{v ∈ L2(Ω),∇ · v ∈ L2(Ω)}, and the integral inner products

(q,v)ω =

∫
ω

q · v dΩ , (u, v)ω =

∫
ω

uv dΩ and 〈u, v〉γ =

∫
γ

uv dΓ,

ω being a domain in Rd and γ being a domain in Rd−1. The subscript ω is omitted when ω is
the full domain Ω. Recall that for any ω ⊂ Ω, q ∈ H(div; Ω) and w ∈ W the following Green
formula holds

(q,∇w)ω + (∇ · q, w)ω = 〈q · n, w〉∂ω. (3)

Then, the weak solution of (2) is (u, q) ∈ W × V such that

(ν−1q,v)− (u,∇ · v) + 〈u,v · n〉ΓN
= −〈g

D
,v · n〉ΓD

∀v ∈ V ,
−(q,∇w) + 〈q · n, w〉ΓD

= (f, w)− 〈g
N
, w〉ΓN

∀w ∈ W ,

or equivalently
a(u, q;w,v) = `(w,v) ∀(w,v) ∈ W × V , (4)

for
a(u, q;w,v) = (ν−1q,v)− (u,∇ · v) + 〈u,v · n〉ΓN

− (q,∇w) + 〈q · n, w〉ΓD
,

`(w,v) = (f, w)− 〈g
D
,v · n〉ΓD

− 〈g
N
, w〉ΓN

.

Remark 1. For any (u, q) ∈ W × V and (w,v) ∈ W × V it holds that

a(u, q;w,v) = (ν−1q,v) + (v,∇u)− (q,∇w) + 〈q · n, w〉ΓD
− 〈v · n, u〉ΓD

,

and in particular
a(w,v;w,v) = (ν−1v,v) = |||v|||2, (5)

where ||| · ||| denotes the energy norm in V.

We are interested in computing upper and lower bounds for linear functionals of the exact weak
solution of (2) of the form

s = `O(u, q) = (fO, u) + 〈gO
D
, q · n〉ΓD

+ 〈gO
N
, u〉ΓN

, (6)

for fO ∈ L2(Ω), gO
N
∈ L2(ΓN) and gO

D
∈ C(ΓD), namely, compute s−h , s

+
h ∈ R such that

s−h ≤ s ≤ s+
h .

To compute the bounds, we introduce the corresponding adjoint problem, which in strong form
reads:

ζ = −ν∇ξ in Ω,
∇ · ζ = fO in Ω,

ξ = gO
D

on ΓD,
ζ · n = −gO

N
on ΓN.

(7)
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Remark 2. The weak form of the adjoint problem is: find (ξ, ζ) ∈ W × V such that

a(w,v; ξ,−ζ) = `O(w,v) ∀(w,v) ∈ W × V . (8)

3. Bounds for the Quantity of Interest from general non-orthogonal approximations

Upper and lower bounds for the quantity of interest can be computed given any equilibrated flux
and potential reconstructions of the primal and adjoint problem, usually obtained from discrete
approximations (ũh, q̃h) and (ξ̃h, ζ̃h) of (4) and (8) respectively. The complexity of computing
the reconstructions and evaluating the bounds strongly depends on: 1) the properties of the
discrete approximations (ũh, q̃h) and (ξ̃h, ζ̃h), 2) the kind of data associated with the primal
and adjoint problems and 3) the desired accuracy of the bounds. This section presents three
different approaches to compute bounds for the quantity of interest s. The first approach
recovers the bounds by means of computing fully equilibrated fluxes, which in practice can only
be used if the data are piecewise polynomial functions. In the second approach, the bounds
are recovered by relaxing the equilibration conditions on the fluxes by means of introducing
data oscillation errors. Finally, the third approach enhances the bounds using a Helmholtz
decomposition.

3.1. Bounds from potential and equilibrated flux reconstructions
Let (ũh, q̃h) and (ξ̃h, ζ̃h) be two approximations of (4) and (8) respectively. The pairs (ũh, q̃h)
and (ξ̃h, ζ̃h) are said to be potential and equilibrated flux reconstructions of the primal and
adjoint problems if the following conditions hold:

Potential reconstructions: ũh ∈ W ξ̃h ∈ W

ũh = g
D
on ΓD ξ̃h = gO

D
on ΓD

Equilibrated flux reconstructions: q̃h ∈ V ζ̃h ∈ V

∇ · q̃h = f in Ω ∇ · ζ̃h = fO in Ω

q̃h · n = g
N
on ΓN ζ̃h · n = −gO

N
on ΓN

(9)

The next result shows that potential and equilibrated flux reconstructions allow computing
constant-free bounds for the quantity of interest s.

Theorem 1. Let (ũh, q̃h) and (ξ̃h, ζ̃h) be two potential and equilibrated flux reconstructions of
the primal and adjoint problems satisfying (9). Then

±s ≥ ±`O(ũh, q̃h)−
1

2
|||q̃h + ν∇ũh||| |||ζ̃h + ν∇ξ̃h||| ±

1

2
(ν−1(q̃h + ν∇ũh), ζ̃h − ν∇ξ̃h) ≡ ±s∓h ,

(10)
and therefore, the quantity of interest s is bounded by

s > s−h = `O(ũh, q̃h) +
1

2
(ν−1(q̃h + ν∇ũh), ζ̃h − ν∇ξ̃h)−

1

2
|||q̃h + ν∇ũh||| |||ζ̃h + ν∇ξ̃h|||

s < s+
h = `O(ũh, q̃h) +

1

2
(ν−1(q̃h + ν∇ũh), ζ̃h − ν∇ξ̃h) +

1

2
|||q̃h + ν∇ũh||| |||ζ̃h + ν∇ξ̃h|||.

The proof of this result is included in Appendix A.

Remark 3. Equation (10) should be interpreted as a shorthand expression for two equations
where the ± and ∓ signs and superscripts are linked (each equation obtained by picking all the
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top/bottom signs/superscripts). Namely, equation (10) represents the two equations

+s ≥ +`O(ũh, q̃h)−
1

2
|||q̃h + ν∇ũh||| |||ζ̃h + ν∇ξ̃h|||+

1

2
(ν−1(q̃h + ν∇ũh), ζ̃h − ν∇ξ̃h) ≡ +s−h ,

−s ≥ −`O(ũh, q̃h)−
1

2
|||q̃h + ν∇ũh||| |||ζ̃h + ν∇ξ̃h||| −

1

2
(ν−1(q̃h + ν∇ũh), ζ̃h − ν∇ξ̃h) ≡ −s+

h .

This notation is used throughout this paper.

Once the upper and lower bounds for the quantity of interest s are computed, one can compute
the bound average

s̃h =
1

2
(s+
h + s−h ) = `O(ũh, q̃h) +

1

2
(ν−1(q̃h + ν∇ũh), ζ̃h − ν∇ξ̃h),

and the bound gap
∆h = s+

h − s
−
h = |||q̃h + ν∇ũh||| |||ζ̃h + ν∇ξ̃h|||. (11)

The bound average s̃h is seen as an estimate of the output s. Its error with respect to s can be
easily bounded since

|s− s̃h| ≤
1

2
∆h. (12)

Remark 4. Theorem 1 states that guaranteed upper and lower bounds for quantities of interest
may be computed from any potential and equilibrated flux reconstructions satisfying (9). Note
that throughout this section and Appendix A, these reconstructions (ũh, q̃h) and (ξ̃h, ζ̃h) are
denoted using a subscript h, because they are usually computed from discrete approximations.
However, the result presented in Theorem 1 is general and therefore is valid for any reconstruc-
tions (ũ, q̃) and (ξ̃, ζ̃) ∈ W × V satisfying (9).

Remark 5. The use of potential and equilibrated flux reconstructions to compute bounds for
quantities of interest using equation (12) is not new, see for instance [52, 34, 40, 38, 56]
and the references provided therein. For instance, Mallik et al. [37] have recently presented a
result similar to equation (12), but excluding the case of non-homogeneous Neumann boundary
conditions. The derivation of the existing results rely on the use of algebraic manipulations and
reiterated use of the Cauchy-Schwarz inequality or on Prager-Synge type equalities, instead of
the reformulation of the output of interest as a constrained minimization problem, see Appendix
A. The new approach introduced here enables the derivation of the three improvements described
in the forthcoming sections and the extension of this approach to other problems.

3.2. Bounds from potential and zero-order equilibrated flux reconstructions
For non-polynomial data, it is not possible in general to find reconstructions satisfying (9),
and therefore (10) cannot be used to compute guaranteed bounds for the output. Fortunately,
we can employ the technique described in [22, 32, 33, 3] to recover bounds for the energy
from projected equilibrated flux reconstructions by means of introducing data oscillation errors
[26, 49, 50, 5].
Let Th be a collection of d-dimensional non-overlaping and non-degenerate simplices K that
partition Ω, such that the intersection of a distinct pair of elements is either an empty set or
their common node, edge or face (in three dimensions). Let Eh denote the set of all its facets
e, and define Πp̂

K : L2(K) → Pp̂(K) and Πp̄
e : L2(e) → Pp̄(e) to be the L2(K) and L2(e)-

orthogonal projection operators onto Pp̂(K) and Pp̄(e), respectively. Finally, assume that Th is
such that the data ν is constant in each element K, that is ν|K = νK ∈ R.
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Then, the pairs (ũh, q̃
0
h) and (ξ̃h, ζ̃

0

h) are said to be potential and zero-order equilibrated flux
reconstructions of the primal and adjoint problems if the following conditions hold:

Potential reconstructions: ũh ∈ W ξ̃h ∈ W

ũh = g
D
on ΓD ξ̃h = gO

D
on ΓD

Zero-order equilibrated flux reconstructions:

q̃0
h ∈ V ζ̃

0

h ∈ V

∀K ∈ Th (∇ · q̃0
h, 1)K = (f, 1)K (∇ · ζ̃0

h, 1)K = (fO, 1)K

∀e ∈ Eh ∩ ΓN 〈q̃0
h · n, 1〉e = 〈g

N
, 1〉e 〈ζ̃0

h · n, 1〉e = 〈−gO
N
, 1〉e

(13)

Note that the relaxation of the equilibrium conditions affect only fluxes, and that the conditions
on the potentials are not weaker than in (9). Assuming that the conditions on the potentials ũh
and ξ̃h are exact is not a strong restriction because any approximation can be easily modified
on the Dirichlet boundary to exactly satisfy the Dirichlet boundary conditions. This simplified
approach can be considered here since the potential and flux reconstructions necessary to com-
pute the bounds for s are completely independent, as opposed to what occurs in other existing
more involved approaches, see for instance [3].
If the bounds for the output are computed using zero-order equilibrated fluxes, the bounding
property presented in (10) is lost in general. The next result, proved in Appendix B, introduces
a workaround to replace the exactly equilibrated fluxes reconstructions by its zero-order peers
by means of introducing data oscillations errors. Indeed, constant-free bounds for the quantity
of interest s can be computed from potential and zero-order equilibrated flux reconstructions.

Theorem 2. Let (ũh, q̃
0
h) and (ξ̃h, ζ̃

0

h) be two potential and zero-order equilibrated flux recon-
structions of the primal and adjoint problems satisfying (13) and κ ∈ (0,+∞) be an arbitrary
scaling parameter. Then

±s ≥ ±(fO, ũh)± 〈gON , ũh〉ΓN
± (f, ξ̃h)∓ 〈gN , ξ̃h〉ΓN

∓ (ν∇ũh,∇ξ̃h)−
1

4κ

∑
K∈Th

(η0∓
K )2, (14)

for

η0∓
K = ||| ± (ζ̃

0

h + ν∇ξ̃h)− κ(q̃0
h + ν∇ũh)|||K + C1ν

−1/2
K || ± (fO −∇ · ζ̃0

h)− κ(f −∇ · q̃0
h)||L2(K)

+
∑

e∈ΓN∩∂K

C2ν
−1/2
K || ∓ (gO

N
+ ζ̃

0

h · n)− κ(g
N
− q̃0

h · n)||L2(e),

(15)
where || · ||L2(K) denotes the L2(K) norm both in R and Rd, ||| · |||K is the restriction of the
energy norm defined in (5) to element K and the values for the constants C1 and C2 are given
in Appendix B, equation (B.7).

Remark 6. The bounds provided in expression (14) coincide with the bounds introduced in
(10) if q̃0

h = q̃h and ζ̃
0

h = ζ̃h are exact equilibrated flux reconstructions and one considers
κ = κopt = |||ζ̃h + ν∇ξ̃h|||/|||q̃h + ν∇ũh|||.

Remark 7. The bounds given by (14) are less accurate than the previously introduced in (10)
since they rely on the local Poincaré inequality, a trace inequality and reiterated applications of
the Cauchy-Schwarz inequality. Therefore, if possible, the a posteriori error estimation tech-
nique should minimize the data oscillation errors included in ||±(fO−∇·ζ̃0

h)−κ(f−∇·q̃0
h)||L2(K)

and || ∓ (gO
N

+ ζ̃
0

h · n)− κ(g
N
− q̃0

h · n)||L2(e).
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3.3. Bounds from potential and projected equilibrated flux reconstructions
In order to minimize the influence of the data oscillation errors and to obtain computable ex-
pressions for the equilibrated flux reconstructions if the data for the problem are not piecewise
polynomial fields, it is standard to introduce an intermediate step between the generally un-
computable exact equilibrated fluxes given by (9) and the zero-order equilibrated fluxes given
by (13). Indeed, (ũh, q̃

π
h) and (ξ̃h, ζ̃

π

h) are said to be potential and projected equilibrated flux
reconstructions of the primal and adjoint problems associated with the constant pair (p̂, p̄) if
the following conditions hold:

Potential reconstructions: ũh ∈ W ξ̃h ∈ W

ũh = g
D
on ΓD ξ̃h = gO

D
on ΓD

Projected equilibrated flux reconstructions: q̃πh ∈ V ζ̃
π

h ∈ V

∀K ∈ Th ∇ · q̃πh|K = Πp̂
Kf ∇ · ζ̃πh|K = Πp̂

Kf
O

∀e ∈ Eh ∩ ΓN q̃πh · n|e = Πp̄
egN ζ̃

0

h · n|e = −Πp̄
eg
O
N

(16)

In this case, bounds for the quantity of interest are obtained from (14) where now the local
elementary contributions read

ηπ∓K = ||| ± (ζ̃
π

h + ν∇ξ̃h)− κ(q̃πh + ν∇ũh)|||K + C1ν
−1/2
K || ± (fO − Πp̂

Kf
O)− κ(f − Πp̂

Kf)||L2(K)

+
∑

e∈ΓN∩∂K

C2ν
−1/2
K || ∓ (gO

N
− Πp̄

eg
O
N

)− κ(g
N
− Πp̄

egN)||L2(e),

(17)
and moreover, if p̂ and p̄ are greater or equal than degree{ξ̃h} then

±(fO, ũh)±〈gON , ũh〉ΓN
± (f, ξ̃h)∓〈gN , ξ̃h〉ΓN

∓ (ν∇ũh,∇ξ̃h) = ±`O(ũh, q̃
π
h)∓ (q̃πh + ν∇ũh,∇ξ̃h)

yielding the alternative form of the bounds

±s ≥ ±`O(ũh, q̃
π
h)∓ (q̃πh + ν∇ũh,∇ξ̃h)−

1

4κ

∑
K∈Th

(ηπ∓K )2. (18)

Remark 8. Finding the optimal value of κ minimizing the bounds given in (14) either for the
expression or the local estimate ηK given (17) or (15) is not trivial. Therefore, it is usual to use
the value κ = |||ζ̃πh + ν∇ξ̃h|||/|||q̃πh + ν∇ũh||| or κ = |||ζ̃0

h + ν∇ξ̃h|||/|||q̃0
h + ν∇ũh||| that optimizes

the bounds assuming that no data oscillation errors are present.

Remark 9. Computing bounds for quantities of interest from zero-order or projected equi-
librated flux reconstructions is useful when non-polynomial data are present in the problem.
Being able to choose the interpolation degrees p̂ and p̄ associated to the flux reconstructions can
help reduce the cost of computing the bounds, see for instance [4, 49, 50].

3.4. Exact representation for the quantity of interest - enhancement of the bounds using lower
bounds for the energy

To improve the quality of the bounds given in the previous sections, the following result pro-
viding an exact representation for the quantity of interest can be used, see Appendix C for its
proof.
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Theorem 3. For any (ũh, q̃h) and (ξ̃h, ζ̃h) in W × V and κ ∈ (0,+∞) the following exact
representation for the quantity of interest holds

±s = ±ŝ∓h +
1

4κ
|||e∓ϕ − ν∇e∓φ |||

2
+ (u,±(fO −∇ · ζ̃h)− κ(f −∇ · q̃h))

−〈u,∓(gO
N

+ ζ̃h · n)− κ(g
N
− q̃h · n) · n〉ΓN

− 〈q · n,∓(gO
D
− ξ̃h)− κ(g

D
− ũh)〉ΓD

,
(19)

where

±ŝ∓h = ±`(ξ̃h,−ζ̃h) + κ`(ũh, q̃h)−
1

4κ
||| ± (ζ̃h + ν∇ξ̃h)− κ(q̃h − ν∇ũh)|||

2
,

and e∓φ = ∓(ξ − ξ̃h)− κ(u− ũh) and e∓ϕ = ±(ζ − ζ̃h)− κ(q − q̃h).

Remark 10. In the case where (ũh, q̃h) and (ξ̃h, ζ̃h) in W × V are potential and equilibrated
flux reconstructions of the primal and adjoint problems, s̃∓h coincides with s∓h , expressed in two
different forms in equations (B.1) and (B.2).

Many a posteriori error estimation techniques can be derived from this exact representation
of the quantity of interest. For instance, it is possible to devise error estimators incorporat-
ing possible errors in the Dirichlet boundary conditions, error estimators incorporating the
data oscillation errors outside ŝ∓h in contrast to the strategy described in Section 3.2, or error
estimators incorporating the term |||e∓ϕ − ν∇e∓φ |||

2 in the final bounds.
Here, this expression is only used to introduce two enhancements of the bounds. The first error
estimation technique derived from Theorem 3 is summarized in Remark 11. This technique
mimics the standard expression used in a posteriori error estimation to compute bounds for
quantities of interest for standard Galerkin orthogonal finite element approximations. That is,
it allows obtaining bounds for the quantity of interest by means of computing upper and lower
bounds for the energy norm.

Remark 11. Let ũh and ξ̃h be two potential reconstructions of u and ξ respectively and consider
q̃h = q = −ν∇u and ζ̃h = ζ = −ν∇ξ. Noting that in this case s̃∓h = s∓h , so that s̃∓h can be
rewritten as shown in equation (B.2), the exact representation for the quantity of interest (19)
yields after some rearrangements to

±s = ±(fO, ũh)± 〈gON , ũh〉ΓN
± (f, ξ̃h)∓ 〈gN , ξ̃h〉ΓN

∓ (ν∇ũh,∇ξ̃h)

− 1

4κ
|||ν∇(ξ − ξ̃h ∓ κ(u− ũh))|||

2
+

1

4κ
|||ν∇(ξ − ξ̃h ± κ(u− ũh))|||

2
,

(20)

and therefore bounds for the quantity of interest may be recovered computing upper and lower
bounds for the energy norm of the adequate combined primal/adjoint problems as

±s ≥ ±(fO, ũh)± 〈gON , ũh〉ΓN
± (f, ξ̃h)∓ 〈gN , ξ̃h〉ΓN

∓ (ν∇ũh,∇ξ̃h)

− 1

4κ
|||ν∇(ξ − ξ̃h ∓ κ(u− ũh))|||

2

UB
+

1

4κ
|||ν∇(ξ − ξ̃h ± κ(u− ũh))|||

2

LB
.

(21)

In fact, expanding the norms appearing in equation (20) allows obtaining the following exact
expression for the quantity of interest

s = (fO, ũh) + 〈gO
N
, ũh〉ΓN

+ (f, ξ̃h)−〈gN , ξ̃h〉ΓN
− (ν∇ũh,∇ξ̃h) + (ν∇(ξ− ξ̃h),∇(u− ũh)) (22)

from where equation (20) is recovered back using the standard parallelogram identity applied to
the last scalar product.

The second technique devised from Theorem 3 incorporates the error in the term |||e∓ϕ − ν∇e∓φ |||
2

in the final expression of the bounds. For simplicity of presentation, this technique is only
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described assuming that no data oscillation errors are present, that is, assuming it is possible
to compute (ũh, q̃h) and (ξ̃h, ζ̃h) being potential and equilibrated flux reconstructions of the
primal and adjoint problems satisfying (9). In this case, the quantity of interest is rewritten
using equation (19) as

±s = ±s∓h +
1

4κ
|||e∓ϕ − ν∇e∓φ |||

2 ≥ ±s∓h +
1

4κ
|||e∓ϕ − ν∇e∓φ |||

2

LB
, (23)

and therefore, the bounds can be improved by introducing a lower bound of the energy norm
of e∓ϕ − ν∇e∓φ . These lower bounds are incorporated using the result detailed in Appendix D.
Indeed, the following representation holds

±s = ±s∓h + sup
w∓ ∈ H1

0 (Ω)
ψ∓ ∈ [H1(Ω)]2d−3

1

4κ

(`∓×(w∓, ψ∓))2

|||ν∇w∓ +∇×ψ∓|||2
≥ ±s∓h +

1

4κ

(`∓×(w∓, ψ∓))2

|||ν∇w∓ +∇×ψ∓|||2
, (24)

for any w∓ ∈ H1
0 (Ω), ψ∓ ∈ [H1(Ω)]2d−3, where

`∓×(w∓, ψ∓) = ∓(ν−1(ζ̃h + ν∇ξ̃h), ν∇w∓ +∇×ψ∓)− κ(ν−1(q̃h + ν∇ũh), ν∇w∓ −∇×ψ∓)

and ∇× denotes the standard curl operator, see [29].

4. Bounds for the Quantity of Interest using the Hybridizable Discontinuous Galerkin
Method

This section details how to compute bounds for a quantity of interest using the HDG method
introduced in [43] as a means to obtain the approximations (ũh, q̃h) and (ξ̃h, ζ̃h) in W × V of
the primal and adjoint problems. For simplicity, only the construction of the potential and
equilibrated flux reconstructions for the primal problem are described. The constructions for
the adjoint problem are analogous.

4.1. Notations and HDG approximation
To introduce the HDG approximation of (4), some notations have to be introduced, see [43].
Let Th be a disjoint partition of Ω, see Section 3.2, and consider the set of all its facets Eh =
Eoh ∪ E∂h , where E∂h consists of the facets lying on the boundary ∂Ω, and Eoh are the remaining
interior facets. Also denote by ∂Th the mesh skeleton {∂K : K ∈ Th}.
Given two elements K+ and K− of Th sharing a common facet e = ∂K+ ∩ ∂K− ∈ Eoh, let n+

and n− be the outward unit normals to K+ and K−, respectively, and let (q±, u±) be the traces
of (q, u) on e from the interior of K±, that is q± = q|K± and u± = u|K± . Then, we define the
mean values {{·}} and jumps [[·]] as follows. For e = ∂K+ ∩ ∂K− ∈ Eoh, we set

{{q}} = (q+ + q−)/2 {{u}} = (u+ + u−)/2
[[q · n]] = q+ · n+ + q− · n− [[un]] = u+n+ + u−n−,

whereas for e ∈ E∂h , the set of boundary facets on which q and u are single valued, we set

{{q}} = q , {{u}} = u , [[q · n]] = q · n , [[un]] = un,

where n is the outward normal to ∂Ω. Note that the jump in u is a vector, but the jump in q
is a scalar which only involves the normal component of q. Furthermore, the jump will be zero
for a continuous function.
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The discontinuous finite dimensional spaces Wp
h and Vph are defined by

Wp
h = {w ∈ L2(Ω) : w|K ∈ Pp(K) ∀K ∈ Th},
Vph = {v ∈ [L2(Ω)]d : v|K ∈ [Pp(K)]d ∀K ∈ Th},
Mp

h = {µ ∈ L2(Eh) : µ|e ∈ Pp(e) ∀e ∈ Eh},
Mp

h(g
D
) = {µ ∈Mp

h : µ|e = Πp
egD ∀e ∈ E∂h ∩ ΓD},

where Pp(D) denotes the set of polynomials of degree at most p ≥ 0 on D and Πp
e denotes the

L2 projection defined in Section 3.2.
Finally, let

(w, v)Th =
∑
K∈Th

(w, v)K , 〈ζ, ρ〉∂Th =
∑
K∈Th

〈ζ, ρ〉∂K , 〈µ, ν〉Eh =
∑
e∈Eh

〈µ, ν〉e

for scalar or vector functions w, v defined on Th, ζ, ρ defined on ∂Th and µ, ν on Eh.
The HDG method seeks an approximation (uh, qh) ∈ W

p
h × V

p
h to the exact solution (u, q) ∈

W × V such that for all K ∈ Th

(ν−1qh,v)K − (uh,∇ · v)K + 〈ûh,v · n〉∂K = 0 ∀v ∈ [Pp(K)]d

−(qh,∇w)K + 〈q̂h · n, w〉∂K = (f, w)K ∀w ∈ Pp(K),
(25)

where the numerical traces are defined as

ûh =
τ+

τ+ + τ−
u+
h +

τ−

τ+ + τ−
u−h +

1

τ+ + τ−
[[qh · n]] on Eoh,

q̂h =
τ−

τ+ + τ−
q+
h +

τ+

τ+ + τ−
q−h +

τ+τ−

τ+ + τ−
[[uhn]] on Eoh,

ûh = Πp
egD , q̂h · n = qh · n+ τ(uh − Πp

egD) on E∂h ∩ ΓD,

q̂h · n = Πp
egN , ûh = uh +

1

τ
(qh · n− Πp

egN) on E∂h ∩ ΓN,

(26)

and τ is the strictly positive stabilization parameter which plays a crucial role on the stabil-
ity, accuracy and convergence properties of the HDG method, see for instance [19, 43]. The
stabilization function τ is defined for each element K ∈ Th so that τ+ and τ− denote its re-
striction to elements K+ and K− respectively, namely τ± = τ |K± . Note that for each facet
e = ∂K+ ∩ ∂K− ∈ Eoh, in general, τ+|e 6= τ−|e so that the stabilization parameter is double-
valued on Eoh.
As shown in [43], the distinctive feature of the HDG method is that both uh and qh converge
with the optimal order p+1 in the L2-norm. Moreover, it is shown that uh and ûh superconverge
with order p+ 2 to some L2-like projections of the exact variable u. As a consequence, a post-
processing of the approximate solution provides an approximation of the potential converging
with order p + 2. We can see from (26) that the HDG method belongs to a family of DG
methods whose numerical traces are of the form

ûh = {{uh}} −C12[[uhn]] + C22[[qh · n]] on Eoh,
q̂h = {{qh}}+C12[[qh · n]] + C11[[uhn]] on Eoh,

where the penalization parameters are such that |C12| is finite, C11 > 0, and C22 ≥ 0. This
family of DG methods were studied first in [22] and more thoroughly in [18, 21], wherein it
was shown that if one chooses C22 ∼ 1/C11, then both uh and qh converge in L2-norm with the
optimal order p+ 1. Since the HDG method satisfies this condition for any value of τ such that
τ+ = τ− > 0, the method possesses the optimal and superconvergence properties as mentioned
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above. Note that, for some other DG methods such as the LDG method [22] with C22 = 0, the
approximate flux qh converges with order p in L2-norm, which is suboptimal. Furthermore,
one can show that the HDG method is consistent, adjoint consistent, and locally and globally
conservative by following the analysis given in [11, 6].

Remark 12. The weak problem given by (25) and (26) is equivalent to the following alternative
weak formulation: find (uh, qh) ∈ W

p
h × V

p
h such that

ahdg(uh, qh;w,v) = `hdg(w,v) ∀(w,v) ∈ Wp
h × V

p
h (27)

where

ahdg(u, q;w,v) = (ν−1q,v)Th − (u,∇ · v)Th − (q,∇w)Th + 〈û,v · n〉∂Th\ΓD
+ 〈q̂ · n, w〉∂Th\ΓN

`hdg(w,v) = (f, w)Th − 〈gD ,v · n〉ΓD
− 〈g

N
, w〉ΓN

.

Moreover, if (u, q) is the solution of (4) and (w,v) ∈ W × V then,

ahdg(u, q;w,v) = a(u, q;w,v) +
1

τ
〈g

N
− Πp

egN ,v · n〉ΓN
+ τ〈g

D
− Πp

egD , w〉ΓD

and `hdg(w,v) = `(w,v), and since Wp
h 6⊂ W ,Vph 6⊂ V, the approximation (uh, qh) ∈ W

p
h × V

p
h

can be seen as a non-conforming approximation of the exact solution (u, q) ∈ W ×V such that

ahdg(u, q;w,v) = `hdg(w,v)− 1

τ
〈g

N
−Πp

egN ,v ·n〉ΓN
− τ〈g

D
−Πp

egD , w〉ΓD
∀(w,v) ∈ W ×V .

Remark 13. The numerical traces ûh and q̂h defined in (26) are single-valued functions for
each edge e ∈ Eoh and verify q̂h · n|ΓN

= Πp
egN, ûh|ΓD

= Πp
egD. Moreover, from equation (25) it

holds that for all K ∈ Th
〈q̂h · n, 1〉∂K = (f, 1)K . (28)

4.2. HDG projected equilibrated flux reconstruction
As described in [43], thanks to the single-valuedness of the normal component of the numerical
trace q̂h and using (28) it is possible to recover a projected equilibrated flux reconstruction
q̃πh ∈ V using an element-by-element procedure and converging in an optimal fashion. Indeed,
let RT p(K) = [Pp(K)]d + xPp(K) be the Raviart-Thomas finite element space of order p, see
[55, 41, 9], and let q̃πh ∈ V be the post-processed flux defined in [43], namely for each element
K ∈ Th, q̃πh|K ∈ RT p is such that

〈(q̃πh − q̂h) · n, µ〉e = 0 ∀µ ∈ Pp(e) , ∀e ∈ ∂K,
(q̃πh − qh,v)K = 0 ∀v ∈ [Pp−1(K)]d , if p ≥ 1.

(29)

Then, the projected conditions (16) are satisfied for p̂ = p̄ = p. This is proven by letting
w ∈ Pp(K) and µ ∈ Pp(e). Since ∇w ∈ [Pp−1(K)]d and w|e ∈ Pp(e), using equation (3) with
ω = K, and equations (29), (25) and (26) it holds that

(∇ · q̃πh, w)K = 〈q̃πh · n, w〉∂K − (q̃πh,∇w)K

= 〈q̂h · n, w〉∂K − (qh,∇w)K = (f, w)K = (Πp
Kf, w)K

and
〈q̃πh · n, µ〉e = 〈q̂h · n, µ〉e = 〈Πp

egN , µ〉e for e ∈ ∂K ∩ ΓN,

which concludes the proof using that ∇ · q̃πh ∈ Pp(K) and q̂h · n ∈ Pp(e).
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4.3. HDG potential reconstruction
A potential reconstruction ũh is computed taking into account the single-valuedness of the
numerical trace ûh or alternatively, by simply averaging uh. However, the equilibrated projected
flux reconstruction q̃πh converges with order p + 1, and therefore optimal convergence for the
quantity of interest is only achieved if the potential reconstruction ũh superconverges with order
p + 2. Luckily, the post-processed scalar variable u∗h ∈ W

p+1
h introduced in Section 4.2 of [43]

can be used to achieve this desired superconvergence, namely

(∇u∗h,∇w)K = (∇ · q̃πh, w)K − (q̃πh · n, w)∂K ∀w ∈ Wp+1
h ,

(u∗h, 1)K = (uh, 1)K .
(30)

It is shown in [18, 20, 17] that the post-processed solution u∗h converges with order p+ 2 owing
to the fact that qh converges optimally with order p+1 and that the cell average of uh converges
with order p+ 2. Note that since u∗h is discontinuous, it is not suitable for computing bounds.
Then the continuous potential reconstruction ũh ∈ Wp+1

h ∩W is recovered using a simple aver-
aging of u∗h at the element interfaces and exactly enforcing the Dirichlet boundary conditions.
Recall that the condition regarding the values of ũh on ΓD is exact, namely ũh = g

D
on ΓD (16).

Therefore, on the edges e ∈ E∂h ∩ ΓD for which g
D
|e ∈ Pp+1(e), the nodal values of ũh lying on

ΓD are modified to match g
D
. Otherwise, local extension operators are used to exactly enforce

the boundary conditions.

4.4. Local optimization of the bounds
The quality of the bounds for the quantity of interest is measured using the bound gap intro-
duced in (11). Therefore, the optimal reconstructions are the ones minimizing |||q̃h + ν∇ũh|||.
Thanks to the single-valuedness of the numerical traces ûh and q̂h one could recover ũh ∈ W
and q̃h ∈ W verifying (16) by first averaging ûh at the mesh vertices and then using a con-
strained local optimization procedure in each element. This strategy, however, does not provide
optimal convergence for the quantity of interest because it does not recover a superconvergent
potential reconstruction ũh.
However, once the flux and potential reconstructions are obtained using the strategies described
in Subsections 4.2 and 4.3, an extra local minimization procedure can be performed in each
element to improve the bounds. Indeed, let ũh ∈ W and q̃πh ∈ V be the reconstructions defined
in the aforementioned subsections. Then for each element of the mesh, the improved value for
the reconstructions is computed as: find ũ∗h|K ∈ Pp+1(K) and (q̃πh)∗|K ∈ [Pp+1(K)]d minimizing
|||(q̃πh)∗ + ν∇ũ∗h|||K such that

∇ · (q̃πh)∗ = Πp
Kf in K

(q̃πh)∗ · n = q̃πh · n on ∂K
ũ∗h = ũh on ∂K.

It is worth noting that this improvement is only relevant for large values of p where the degrees
of freedom are not concentrated on the boundaries. Also, the local interpolation degree of ũ∗h
and (q̃πh)∗|K could be increased but no gain on the global convergence would be obtained.

4.5. Bounds for the quantity of interest
A summary of the procedure devised above to determine the bounds for s from HDG approxi-
mations of the primal and adjoint problems is shown in Figure 1.
Following this procedure, since the data oscillation errors are of high order, the convergence of
the half bound gap is governed by

∆h = s+
h − s

−
h ∼ |||ζ̃

π

h + ν∇ξ̃h||||||q̃πh + ν∇ũh|||, (31)
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0.- Compute the HDG approximations of the primal and adjoint problems (uh, qh)
and (ξh, ζh) ∈ W

p
h × V

p
h such that ∀(w,v) ∈ Wp

h × V
p
h

ahdg(uh, qh;w,v) = `hdg(w,v) and ahdg(ξh, ζh;w,v) = `Ohdg(w,v)

where `Ohdg(w,v) = (fO, w)Th − 〈gOD ,v · n〉ΓD
+ 〈gO

N
, w〉ΓN

.

1.- Compute the potential and projected equilibrated flux reconstructions ũh, ξ̃h ∈ W
and q̃πh, ζ̃

π

h ∈ V such that, q̃πh|K , ζ̃
π

h |K ∈ RT p verify

〈(q̃πh − q̂h) · n, µ〉e = 0 and 〈(ζ̃πh − ζ̂h) · n, µ〉e = 0 ∀µ ∈ Pp(e) , ∀e ∈ ∂K

(q̃πh − qh,v)K = 0 and (ζ̃
π

h − ζh,v)K = 0 ∀v ∈ [Pp−1(K)]d , if p ≥ 1,

and ũh and ξ̃h are continuous averages (exactly verifying the Dirichlet boundary
conditions) of u∗h and ξ∗h ∈ W

p+1
h satisfying

(∇u∗h,∇w)K = (∇ · q̃πh, w)K − (q̃πh · n, w)∂K ∀w ∈ Wp+1
h ,

(∇ξ∗h,∇w)K = (∇ · ζ̃πh, w)K − (ζ̃
π

h · n, w)∂K ∀w ∈ Wp+1
h ,

(u∗h, 1)K = (uh, w)K and (ξ∗h, 1)K = (ξh, w)K .

2.- For each element of the mesh compute κ = |||ζ̃πh + ν∇ξ̃h|||/|||q̃πh + ν∇ũh||| and

ηπ−K = |||ζ̃πh + ν∇ξ̃h − κ(q̃πh + ν∇ũh)|||K + C1ν
−1/2
K ||fO − Πp̂

Kf
O − κ(f − Πp̂

Kf)||L2(K)

+
∑

e∈ΓN∩∂K

C2ν
−1/2
K ||gO

N
− Πp̄

eg
O
N

+ κ(g
N
− Πp̄

egN)||L2(e)

ηπ+
K = |||ζ̃πh + ν∇ξ̃h + κ(q̃πh + ν∇ũh)|||K + C1ν

−1/2
K ||fO − Πp̂

Kf
O + κ(f − Πp̂

Kf)||L2(K)

+
∑

e∈ΓN∩∂K

C2ν
−1/2
K ||gO

N
− Πp̄

eg
O
N
− κ(g

N
− Πp̄

egN)||L2(e)

3.- Compute the approximation of s

s̃h = (fO, ũh) + 〈gO
N
, ũh〉ΓN

+ (f, ξ̃h)− 〈gN , ξ̃h〉ΓN
− (ν∇ũh,∇ξ̃h)

and the bounds for the quantity of interest s+
h and s−h

s−h = s̃h −
1

4κ

∑
K∈Th

(ηπ−K )2 and s+
h = s̃h +

1

4κ

∑
K∈Th

(ηπ+
K )2.

Figure 1: Bounds for the quantity of interest from the HDG approximations

and therefore the convergence of the strategy is directly related to the convergence of both
|||q̃h + ν∇ũh||| and |||ζ̃h + ν∇ξ̃h|||. For smooth problems, the error in the HDG reconstructions
converge as p + 1, and therefore the bound gap is expected to converge with order 2(p + 1).
It is worth mentioning that the strategies introduced in Section 3 yielding a convergence of
the bound gap driven by the errors in the reconstructions, like (31), can also be used in other
contexts to yield fast-converging bounds for quantities of interest. For instance, in a standard
finite element setting, it is standard to use a finer discretization for the adjoint problem, aiming
to decrease the term |||ζ̃h + ν∇ξ̃h|||. This strategy could also be easily used in the context of
the present context where the convergence of the bound gap would be p + p̃ + 2, p̃ being the
interpolation order of the adjoint problem. Another existing strategy to increase the accuracy
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of the adjoint problem is the use of handbook functions, see [36, 14, 34, 62, 15]. Finally, any
technique able to compute better reconstructed approximations would also improve the order
of convergence, see for instance [23].
The cost of the overall error estimation procedure for quantities of interest is basically twice the
cost of computing the HDG approximation since both the primal and adjoint solutions have
to be computed. Indeed, the element-by-element computation of the post-processed solutions
associated to the initial HDG approximations necessary to compute the bounds for the quanti-
ties of interest is a standard step included in most HDG solvers, see [31, 45] for specific details
on CPU costs for the HDG solvers. The only specific computations required to compute the
bounds are: 1) the smoothing of u∗h and ξ∗h ∈ W

p+1
h and 2) the cost of computing the local

indicators ηπ−K and ηπ+
K which require an extra loop on the edges of the mesh and an extra loop

on the elements of the mesh respectively. In the case of non-piecewise polynomial data, data
oscillation terms are included in ηπ−K and ηπ+

K . These terms are not standard in HDG solvers
but are commonly computed in an posteriori error estimation setting, see [39, 59, 49, 50].

5. Numerical examples

The behavior of the bounding procedure described above is analyzed in two numerical examples.
Four estimates of s are considered: the upper and lower bounds (s+

h and s−h respectively),
their average s̃h = (s+

h + s−h )/2 and the quantity of interest given by the HDG finite element
approximation, denoted by sh = `O(uh, qh). The stabilization parameter is set to τ = 1 in all
the cases.
A measure of the accuracy of the bounds is the half bound gap ∆h/2 = (s+

h − s
−
h )/2 since it is

an upper bound for the error between the approximation s̃h and the exact output, see equation
(12). The bound gap also provides local error information which is used as an indicator for
mesh adaptivity. Indeed, the bound gap associated with the bounding strategy described in
Figure 1 is split using the local elemental contributions

∆h = s+
h − s

−
h =

1

4κ

∑
K∈Th

((ηπ+
K )2 + (ηπ−K )2) =

∑
K∈Th

∆K
h .

The elemental contributions ∆K
h are informative mesh adaptivity indicators for controlling the

error in the quantity of interest. Note that these indicators take into account the error in both
the primal and adjoint problems and also the data oscillation errors, and therefore, the mesh is
refined both in the areas most contributing to the error and in the areas where the data cannot
be properly represented using its projection.
Two remeshing strategies are considered, see for instance [48, 24]. In the first strategy, given
a target bound gap ∆tol, a uniform error distribution assumption is used and, at each level of
refinement, the elements with ∆K

h ≥ (∆tol)/nel are refined where nel = |Th| denotes the number
of triangles of the mesh. The second strategy refines the elements according to a bulk criterion,
that is, given a prescribed scalar parameter Θ ∈ (0, 1], selects a subset M of Th such that
Θ(
∑

K∈Th ∆K
h ) ≤

∑
K∈M ∆K

h .
Finally, in the numerical experiments we monitor the convergence of the estimates via the
computational order of convergence calculated as follows. We denote by e(nel) and e(ñel) any
error-like quantity for two consecutive triangulations with nel and ñel number of triangles. Then,
the computational ratio of convergence is given by

−2
log(e(nel)/e(ñel))

log(nel/ñel)
.

5.1. Example 1 - Smooth solution
First, we investigate the order of convergence of the bounds for smooth solutions. Consider
the Poisson equation in the square plate Ω = (0, 1)2 with homogeneous Dirichlet boundary
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conditions and empty Neumann boundary, namely ∂Ω = ΓD, ν = 1 and g
D

= 0 in equation (1).
The right-hand side f is chosen such that the exact solution is given by

u(x, y) = sin(πx) sin(πy).

Two quantities of interest are considered. The first one, s1, is an average of the solution over
the whole domain, and the second one, s2, is a weighted average of the normal flux in the
Dirichlet boundary. These quantities of interest are given by equation (6) for

• Data for s1: gOD = gO
N

= 0 and fO(x, y) = 1, where s1 = 4/π2 for

ξ(x, y) =
x(1− x)

2
− 4

π3

∑
odd k

sin(kπx)(sinh(kπy) + sinh(kπ(1− y)))

k3 sinh(kπ)
.

• Data for s2: fO = gO
N

= 0 and gO
D

= π
2

sin(πy) on x = 1 and gO
D

= 0 elsewhere, where
ξ(x, y) = π sin(πy) sinh(πx)/(2 sinh(π)) and s2 = π2/4.

The HDG approximations of both the primal and adjoint problems associated with s2 have
an optimal convergence and both |||q̃h + ν∇ũh||| and |||ζ̃h + ν∇ξ̃h||| superconverge with order
p+ 1, and therefore the bound gap is expected to converge with order 2(p+ 1) or O(n

−(p+1)
el ).

However, the adjoint solution associated with s1 verifies ξ ∈ H3(Ω) and therefore we expect that
|||ζ̃h + ν∇ξ̃h||| converges with order 2 for p ≥ 1, see [12, 30], yielding an expected convergence
of the bound gap of order p+ 3 or O(n

−(p+3)/2
el ).

The numerical results for the first quantity of interest s1 for a uniform mesh refinement are
shown in Table 1 and Figure 2, where the stopping criteria is set to achieve ∆h < 10−8. The
initial structured mesh consists of 16 triangles and at each refinement, every triangle is divided
into four similar triangles. For all the values of p, the optimal order of convergence p + 3
predicted by the theory is achieved. It is also worth noting that for high order polynomials, the
required precision is achieved with very coarse meshes. Since the number of degrees of freedom
of the global system of HDG computations is nedge ≈ 3(p + 1)nel/2 and taking into account
that the manipulation of the mesh takes up a significant amount of computational effort both
in the HDG computation and in the a posteriori error estimation procedure, working with
high-order polynomials seems to be advantageous. For this problem and with this particular
quantity of interest, using adaptive mesh refinement strategies does not provide significantly
more accurate bounds, since the error is uniformly distributed both for the primal and adjoint
problems. Figure 2 also shows the effect of the choice of the stabilization parameter τ in the
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Figure 2: Example 1: s1 - Convergence of the half bound gap for a uniform mesh refinement (optimal convergence
of order p+ 3 or O(n

−(p+3)/2
el )) (τ = 1 on the left and influence of the selection of τ on the right).
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nel nedge s̃h ±∆h/2 order |s− sh| |s− s̃h|
p = 1

16 56 0.406021554922 ± 5.47e-03 – 1.90e-03 7.37e-04
64 208 0.405317075580 ± 3.19e-04 4.10 3.64e-04 3.23e-05
256 800 0.405286596697 ± 1.97e-05 4.02 5.01e-05 1.86e-06
1024 3136 0.405284843586 ± 1.27e-06 3.96 6.52e-06 1.09e-07
4096 12416 0.405284741107 ± 8.28e-08 3.93 8.32e-07 6.54e-09
16384 49408 0.405284734968 ± 5.45e-09 3.93 1.05e-07 3.99e-10
65536 197120 0.405284734592 ± 3.58e-10 3.93 1.20e-08 2.24e-11

p = 2
16 84 0.405275669432 ± 1.26e-04 – 6.64e-05 9.07e-06
64 312 0.405284783569 ± 3.02e-06 5.38 1.10e-06 4.90e-08
256 1200 0.405284735937 ± 8.33e-08 5.18 2.14e-08 1.37e-09
1024 4704 0.405284734592 ± 2.46e-09 5.08 4.86e-10 2.26e-11

p = 3
16 112 0.405284626142 ± 4.25e-06 – 8.77e-08 1.08e-07
64 416 0.405284735218 ± 5.04e-08 6.40 7.91e-09 1.05e-08
256 1600 0.405284734574 ± 6.73e-10 6.23 3.37e-11 4.53e-12

p = 4
16 140 0.405284734710 ± 1.43e-07 – 4.17e-08 1.41e-10
64 520 0.405284734520 ± 7.95e-10 7.49 1.71e-10 4.96e-11

Table 1: Example 1: s1 - Uniform mesh refinement: effect of the polynomial degree p.

quality and convergence of the bounds. Even though the presented a posteriori error estimation
techniques is independent of the stabilization parameter, the quality and convergence of the
bounds is strongly dependent on the quality and approximation properties of the potential and
flux reconstructions, and therefore the stabilization parameter has to be carefully selected to
yield optimal convergence. It is well known that if the stabilization parameter is taken to be of
order one, the HDG reconstructions are superconvergent, see [31, 18, 20, 21], which is confirmed
by the optimal convergence rates achieved in the half bound gap using τ = 1. As can be seen
in Figure 2 the results obtained with τ = 10−2, 10−1 and τ = hK are also optimal and nearly
indistinguishable from the results for τ = 1. However, for larger values of the stabilization
parameter, τ = 10, 100 and τ = 1/hK , the quality of the reconstructions deteriorates and
worst results are obtained. It is worth mentioning that as concluded in [31], if the stabilization
parameter is taken to be of order 1/hK the method looses optimal convergence in the locally
post-processed approximations, which can be appreciated in the loss of optimal convergence in
the half bound gap.
To compute the bounds for the second quantity of interest, it is worth noting that in this
case, a simple averaging of the post-processed HDG approximation ξ∗h ∈ W

p+1
h does not yield

a potential reconstruction since it does not exactly verify the Dirichlet boundary conditions
ξ̃h = gO

D
= π

2
sin(πy) on the right edge (x = 1). In this case, even though more elaborate

extensions operators could be used, see for instance [63, 43], since the bounding procedure is
valid for any potential reconstruction ξ̃h, the exact Dirichlet boundary conditions are enforced
via an easy modification of ξ̃h in a small band around x = 1. Specifically, ξ̃h is obtained as

1. the post-processed scalar variable ξ∗h is averaged to obtain a continuous reconstruction ξ̃h

2. the maximum value xband ∈ [0, 1) such that the straight line x = xband does not intersect
any element interior is computed
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3. introducing the following extension of the Dirichlet boundary conditions

ĝO
D

=
π

2
sin(πy)

x− xband
1− xband

for x ∈ [xband, 1] and ĝO
D

= 0 otherwise,

and its global nodal interpolant Ip+1
h

(
ĝO
D

)
, the value of ξ̃h is modified on the edge x = 1,

ξ̃h|{x=1} = Ip+1
h

(
ĝO
D

)
|{x=1}

4. for each element inside the band [xband, 1]× [0, 1], the final value of ξ̃h|K is set adding the
interpolation error

ξ̃h|K + ĝO
D
|K − Ip+1

h

(
ĝO
D

)
|K .

Figure 3 shows the band where the solution is modified and the shape of ĝO
D

for a particular
mesh while Figure 4 shows the magnitude of the modifications given by the functions ĝO

D
−

Ip+1
h

(
ĝO
D

)
. It can be seen that the proposed procedure only introduces relevant modifications

to the adjoint approximation for small values of p and coarse meshes. In these cases, more
involved strategies could be considered if no adaptive procedures alleviating the influence of
the boundary conditions are available.

a

Figure 3: Example 1: s2 - Exact enforcement of the Dirichlet boundary conditions: band for p = 3 (left) and
ĝO
D

(right).

Figure 4: Example 1: s2 - Plots of ĝO
D
− Ip+1

h

(
ĝO
D

)
for p = 1, 2, 3 (exact enforcement of the Dirichlet boundary

conditions).

Figure 5 shows the convergence of the half bound gap for the second quantity of interest s2

and for a final tolerance limit ∆h = 10−8. The convergence is shown both for a uniform mesh
refinement and the adaptive strategy following the bulk criterion for Θ = 0.5. For the adaptive
procedure, both the bounds associated with the reconstructions shown in Sections 4.3 and 4.2
and the bounds obtained adding the extra local optimization procedure detailed in Subsection
4.4 are shown. As can be seen both in this figure and in Table 2, the extra local optimization
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procedure provides an improvement of the value for the half bound gap that becomes more
relevant as p increases. Also note that for p = 1 and p = 2 optimal convergence is only reached

nel s̃h ±∆h/2 |s− s̃h|
p = 1

61310 2.467401099996 ± 3.56e-09 2.76e-10
optimized 59762 2.467401100185 ± 3.40e-09 8.71e-11

p = 2
1004 2.467401100039 ± 3.92e-09 2.33e-10

optimized 952 2.467401100554 ± 4.22e-09 2.81e-10
p = 3

130 2.467401100099 ± 3.13e-09 1.73e-10
optimized 138 2.467401100343 ± 1.98e-09 7.02e-11

p = 4
34 2.467401100022 ± 3.34e-09 2.50e-10

optimized 36 2.467401100173 ± 2.46e-09 9.88e-11

Table 2: Example 1: s2 - Bounds for the final meshes of the adaptive procedure.

when adaptive procedures are used, due to the simple procedure used to exactly impose the
Dirichlet boundary conditions in the adjoint problem. If no adaptive procedures are available,
more involved techniques could be used to achieve optimal convergence, see [63, 43]. Finally,
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Figure 5: Example 1: s2 - Convergence of the half bound gap both a uniform and adaptive mesh refinements.

Figure 6 shows the final meshes obtained in the adaptive procedures. As can be seen, using the
extra local optimization procedure does not significantly introduce changes in the final meshes
while providing slightly better results with a small extra computational cost.
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Figure 6: Example 1: s2 - Final meshes of the adaptive procedure for p = 1, 2, 3 and 4 from left to right
with nel = 61310, 1004, 130 and 34 respectively (top) and final meshes with extra optimization procedure with
nel = 59762, 952, 138 and 36 respectively (bottom).

5.2. Example 2 - L-shaped domain
Consider the Poisson equation, ν = 1, in the L-shaped domain Ω = [−1, 1]2\(0, 1)×(−1, 0) with
right-hand side f = 1 and all homogeneous Dirichlet boundary conditions, that is, ∂Ω = ΓD and
g
D

= 0. The exact solution is unknown, but its energy norm is |||ν∇u|||2 = 0.2140758036140825,
see [10]. The solution has a typical corner singularity at the origin and a theoretical convergence
rate of the error in the energy norm is O(h2/3) = O(n

−1/3
el ).

Two quantities of interest are considered. The first quantity of interest is associated with
gO
D

= gO
N

= 0 and fO(x, y) = f(x, y) = 1. In this case, the primal and adjoint problems
coincide yielding s1 = |||ν∇u|||2. The second quantity of interest, s2 is taken from [44, 3] and is
associated with the data gO

D
= gO

N
= 0 and

fO(x, y) = − 3(2y − 1)

10−4 + ((−2x+ 0.5)2 + (2y − 1)2)2.5)
.

Figure 7 shows the source term of the adjoint problem associated with s2 and the initial mesh
for all the computations.
The behavior of the proposed strategy is first shown for the energy quantity of interest, s1 =
|||ν∇u|||2, using both a uniform mesh refinement (where in each step each triangle is bisected
splitting its longest edge) and three different criteria for the adaptive procedure. The three
adaptive procedures are all associated with a final bound gap of ∆tol = 10−5 (or an equivalence
target for the half bound gap of 0.5 · 10−5): the first adaptive strategy assumes a uniform error
distribution while the two others use a bulk criterion with Θ = 0.5 and Θ = 0.25. Figure 8
shows the convergence of the half bound gap obtained from the HDG approximations of order
p = 1, 2 and 3. As can be seen, using a uniform mesh refinement the expected convergence rate
of O(n

−2/3
el ) is achieved, since the HDG method in this case converges as O(n

−1/3
el ) regardless

of the value of p, see [12]. The adaptive strategies using both bulk criterions asymptotically
converge as O(n−2p

el ). On the other hand, the adaptive strategy based on a uniform error
distribution assumption reaches the same accuracy with a similar number of elements, but
with a very different convergence behavior. In the initial steps of the adaptive procedure, the
meshes are uniformly refined resulting in a slow convergence, and once the adaptive strategy
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Figure 7: Example 2: Source term fO(x, y) associated with the second quantity of interest (left) and initial
mesh.
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Figure 8: Example 2: s1 = |||ν∇u|||2 - Convergence of the half bound gap for both uniform and adaptive mesh
refinements.

starts refining the elements around the singularity, convergence is reached in few iterations.
The final meshes of the adaptive procedures are shown in Figure 9. As can be seen, all the
adaptive strategies provide similar final meshes (although the intermediate meshes vary signif-
icantly in the first steps of the adaptive procedures when using a uniform error distribution
strategy than when using a bulk criterion). Also, since the adaptive strategies converge like
O(n−2p

el ), there is a clear difference between the final meshes associated with p = 1 and p > 1.
Table 3 summarizes the results associated with the initial mesh, the intermediate iterations
associated with a half bound gap lower than 0.5 · 10−3, 0.5 · 10−4 and for the final mesh where
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Figure 9: Example 2: s1 = |||ν∇u|||2 - Final meshes of the adaptive procedure (∆tol = 10−5 top, Θ = 0.5 middle
Θ = 0.25 bottom) for p = 1, 2, 3 from left to right.

∆tol/2 < 0.5 · 10−5. The results for Θ = 0.25 are omitted since they are similar to the ones
associated with Θ = 0.5.
It is worth noting that as expected, the half bound gap ∆h/2 provides indeed an upper bound
for the error in the quantity of interest associated with s̃h, namely, s− s̃h. In fact, even though
the bounding procedure is devised to minimize the bound gap and not to produce accurate
upper bounds for s − s̃h, the effectivities measuring the quality of the half bound gap as an
upper bound of s− s̃h are quite good in most cases.
The results associated with the second quantity of interest are shown in Figure 10 for ∆tol =
10−4. Two adaptive strategies are used: the uniform error distribution assumption and the bulk
criterion for Θ = 0.5. It can be seen that in the first iterations of both the uniform and adaptive
refinements, the estimators are governed by the large data oscillation errors associated with the
adjoint problem yielding to pessimistic bounds. However, since the data oscillation errors are of
high order, after few iterations the half bound gaps converge as expected. It is again clear that
using higher order elements is advantageous, because for about the same accuracy high order
elements result in meshes with fewer triangles and fewer global edge degrees of freedom. Also,
the order of convergence of the adaptive procedures for larger values of p makes a difference in
the computational effort required to achieve a desired prescribed tolerance.
The final meshes obtained in the adaptive procedures are shown in Figure 11. As can be
appreciated the adaptive procedure refines both in the corner singularity and in the area where
the source term of the adjoint problem presents a large gradient and large data oscillation errors
appear. It can also be seen that in this case, the bulk criterion yields coarser meshes for the
same accuracy.
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nel s−h s+
h s̃h ±∆h/2 |s− s̃h| |s− sh|

p
=

1

un
ifo

rm

6 0.1740651 0.2392014 0.2066332 ± 3.26e-02 7.44e-03 2.62e-03
768 0.2136240 0.2143344 0.2139792 ± 3.55e-04 9.66e-05 2.64e-04

24576 0.2140310 0.2141012 0.2140661 ± 3.50e-05 9.69e-06 2.86e-05
393216 0.2140687 0.2140798 0.2140743 ± 5.52e-06 1.53e-06 4.54e-06

∆
to

l
=

10
−

5 6 0.1740651 0.2392014 0.2066332 ± 3.26e-02 7.44e-03 2.62e-03
608 0.2136232 0.2143347 0.2139789 ± 3.56e-04 9.69e-05 2.53e-04
1086 0.2140289 0.2141023 0.2140656 ± 3.66e-05 1.02e-05 7.50e-06
1224 0.2140708 0.2140786 0.2140747 ± 3.85e-06 1.14e-06 1.83e-05

Θ
=

0.
5 6 0.1740651 0.2392014 0.2066332 ± 3.26e-02 7.44e-03 2.62e-03

90 0.2134465 0.2143698 0.2139081 ± 4.62e-04 1.68e-04 9.74e-04
272 0.2140174 0.2141062 0.2140618 ± 4.43e-05 1.40e-05 1.51e-04
984 0.2140714 0.2140781 0.2140748 ± 3.31e-06 1.04e-06 2.48e-05

p
=

2

un
ifo

rm

6 0.2084763 0.2169298 0.2127031 ± 4.23e-03 1.37e-03 2.52e-03
192 0.2136675 0.2143265 0.2139970 ± 3.29e-04 7.88e-05 2.89e-04
6144 0.2140352 0.2141007 0.2140680 ± 3.27e-05 7.84e-06 2.90e-05
98304 0.2140694 0.2140802 0.2140748 ± 5.35e-06 1.03e-06 4.57e-06

∆
to

l
=

1
0−

5 6 0.2084763 0.2169298 0.2127031 ± 4.23e-03 1.37e-03 2.52e-03
104 0.2136664 0.2143269 0.2139966 ± 3.30e-04 7.92e-05 2.87e-04
206 0.2140344 0.2141011 0.2140677 ± 3.33e-05 8.07e-06 2.85e-05
238 0.2140709 0.2140787 0.2140748 ± 3.84e-06 1.03e-06 2.48e-06

Θ
=

0.
5 6 0.2084763 0.2169298 0.2127031 ± 4.23e-03 1.37e-03 2.52e-03

40 0.2135426 0.2144586 0.2140006 ± 4.58e-04 7.52e-05 3.61e-04
88 0.2140251 0.2141104 0.2140678 ± 4.26e-05 8.03e-06 3.39e-05
152 0.2140700 0.2140790 0.2140745 ± 4.47e-06 1.30e-06 6.65e-07

p
=

3

un
ifo

rm

6 0.2120143 0.2153474 0.2136809 ± 1.67e-03 3.95e-04 1.49e-03
48 0.2135839 0.2143962 0.2139901 ± 4.06e-04 8.57e-05 3.72e-04

1536 0.2140275 0.2141076 0.2140676 ± 4.00e-05 8.23e-06 3.72e-05
49152 0.2140709 0.2140793 0.2140751 ± 4.13e-06 7.19e-07 3.70e-06

∆
to

l
=

10
−

5 6 0.2120143 0.2153474 0.2136809 ± 1.67e-03 3.95e-04 1.49e-03
40 0.2135838 0.2143962 0.2139900 ± 4.06e-04 8.58e-05 3.72e-04
80 0.2140266 0.2141079 0.2140672 ± 4.06e-05 8.59e-06 3.76e-05
120 0.2140706 0.2140791 0.2140749 ± 4.20e-06 9.09e-07 3.86e-06

Θ
=

0.
5 6 0.2120143 0.2153474 0.2136809 ± 1.67e-03 3.95e-04 1.49e-03

24 0.2135489 0.2144235 0.2139862 ± 4.37e-04 8.96e-05 3.99e-04
66 0.2140296 0.2141068 0.2140682 ± 3.85e-05 7.60e-06 3.71e-05
112 0.2140713 0.2140790 0.2140752 ± 3.79e-06 6.38e-07 3.95e-06

Table 3: Example 2: s1 = |||ν∇u|||2 - Bounds for both uniform and adaptive mesh refinements for p = 1, 2 and
3.

6. Concluding remarks

A general framework to compute guaranteed lower and upper bounds for quantities of interest
from potential and equilibrated (or zero-order equilibrated) flux reconstructions is presented.
The bounds are guaranteed regardless of the size of the underlying finite element mesh and
regardless of the kind of data (the source term and the Neumann boundary conditions are not
required to be piecewise polynomial functions).
In particular, bounds for quantities of interest from HDG approximations of both the primal
and adjoint problems are obtained. Properly exploiting the superconvergence properties of local
post-processed HDG approximations yields optimal convergence curves for the bound gap in
the quantity of interest, both using uniform and adaptive mesh refinements.
Two numerical examples are presented to demonstrate the accuracy of the proposed technique
when using HDG approximations. The obtained results seem to confirm the superconvergent
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Figure 10: Example 2: s2 - Convergence of the half bound gap for both uniform and adaptive mesh refinements.

Figure 11: Example 2: s2 - Final meshes of the adaptive procedure associated with p = 1, 2 and 3 from left
to right and Θ = 0.5 (top) with meshes with 5119, 614 and 282 triangles respectively and a uniform error
distribution with ∆tol = 10−4 (bottom) where the meshes have 9882, 1086 and 422 triangles respectively.

properties of the bounds and show that using high-order HDG approximations yields very
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accurate bounds for the quantity of interest, even for very coarse meshes.
The present work concerns the scalar Poisson equation. However, future research could fruitfully
explore the extension to linear elasticity using the results presented in [42, 61, 36, 56, 8]. Also,
it would be interesting that future research investigates the extension of the present work to
the scalar convection-reaction-diffusion equation and to parabolic time-dependent problems,
see [43, 13, 58, 51, 16].
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Appendix A. Output bounds from potential and equilibrated flux reconstructions
– proof of Theorem 1

The key ingredient to prove Theorem 1 is the reformulation of the output of interest as a
constrained minimization. This reasoning is similar to the approaches introduced for conforming
non-mixed approximations [47, 53, 57, 58, 48]. We begin by writing the quantity of interest
s = `O(u, q) as a constrained minimization problem

±s = inf
(w,v)∈W×V

±`O(w,v) + κ(a(w,v;w,v)− `(w,v))

s.t. a(w,v;φ,ϕ) = `(φ,ϕ) ∀(φ,ϕ) ∈ W × V ,
(A.1)

where κ ∈ (0,+∞) is an arbitrary parameter. The above statement is easily verified by noting
that, from (4), the constraint a(w,v;φ,ϕ) = `(φ,ϕ),∀(φ,ϕ) ∈ W × V is only satisfied when
(w,v) = (u, q) due to the uniqueness of the solution and clearly a(u, q;φ,ϕ) = `(φ,ϕ). Now,
the Lagrangian associated with the above constrained minimization problem is given by

L∓(w,v;φ,ϕ) = ±`O(w,v) + κ(a(w,v;w,v)− `(w,v)) + a(w,v;φ,ϕ)− `(φ,ϕ),
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and problem (A.1) becomes

±s = inf
(w,v)∈W×V

sup
(φ,ϕ)∈W×V

L∓(w,v;φ,ϕ). (A.2)

Bounds for the output s can be easily found using the strong duality of the convex optimization
problem and the saddle point property of the Lagrange multipliers as

±s = sup
(φ,ϕ)∈W×V

inf
(w,v)∈W×V

L∓(w,v;φ,ϕ) ≥ inf
(w,v)∈W×V

L∓(w,v; φ̃∓h , ϕ̃
∓
h ) ≡ ±s∓h ∀(φ̃∓h , ϕ̃

∓
h ) ∈ W×V ,

(A.3)
where in order to obtain sharp bounds, it is important to use a good approximation (φ̃∓h , ϕ̃

∓
h )

of the Lagrange multipliers. Note that the explicit dependence of s∓h on κ is omitted here for
simplicity of presentation.
The explicit expression for the bounds s∓h associated with a particular choice of (φ̃∓h , ϕ̃

∓
h ) is

found imposing the stationary conditions, that is, requiring the variations of L∓(w,v; φ̃∓h , ϕ̃
∓
h )

with respect to w and v vanish. From the definition of L∓(w,v; φ̃∓h , ϕ̃
∓
h ) and taking into account

(5) it is easy to see that

L∓(w + δw,v + δv; φ̃∓h , ϕ̃
∓
h )− L∓(w,v; φ̃∓h , ϕ̃

∓
h )

= ±`O(δw, δv)− κ`(δw, δv) + a(δw, δv; φ̃∓h , ϕ̃
∓
h ) + 2κ(ν−1v, δv) + κ(ν−1δv, δv)

= (±fO − κf −∇ · ϕ̃∓h , δw) + 〈±gO
N

+ κg
N

+ ϕ̃∓h · n, δw〉ΓN

+(2κν−1v + ν−1ϕ̃∓h −∇φ̃∓h , δv) + 〈±gO
D

+ κg
D

+ φ̃∓h , δv · n〉ΓD
+ κ(ν−1δv, δv),

(A.4)
and therefore, denoting by (w∓,v∓) the minimizers of L∓(w,v; φ̃∓h , ϕ̃

∓
h ), the stationary condi-

tions require the conditions given in equation (A.5) to hold.

Combined φ̃∓h ∈ W

primal/adjoint potential reconstruction: φ̃∓h = ∓gO
D
− κg

D
on ΓD

Combined ϕ̃∓h ∈ V
primal/adjoint equilibrated flux reconstruction: ∇ · ϕ̃∓h = ±fO − κf in Ω

ϕ̃∓h · n = ∓gO
N
− κg

N
on ΓN

Minimizer condition: w∓ free

v∓ =
1

2κ

(
−ϕ̃∓h + ν∇φ̃∓h

)
(A.5)

It is worth noting that the combined primal/adjoint potential and equilibrated flux reconstruc-
tions can be computed introducing the potential and equilibrated flux reconstructions of the
primal and adjoint problems (ũh, q̃h) and (ξ̃h, ζ̃h) satisfying (9) as

φ̃∓h = ∓ξ̃h − κũh , ϕ̃∓h = ±ζ̃h − κq̃h.

Now, the expression for the bounds s∓h can be rewritten by first noting that the stationary
condition (A.4) for the optimal values (w∓,v∓) ∈ W × V implies that

±`O(δw, δv)− κ`(δw, δv) + a(δw, δv; φ̃∓h , ϕ̃
∓
h ) + 2κ(ν−1v∓, δv) = 0 ∀(δw, δv) ∈ W × V ,

which in particular holds for (δw, δv) = (w∓,v∓), and using equation (5) for δv = v∓. In-
serting these expressions into the definition of L∓(w∓,v∓; φ̃∓h , ϕ̃

∓
h ) yields, after some algebraic
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manipulations, to

±s∓h = L∓(w∓,v∓; φ̃∓h , ϕ̃
∓
h ) = − 1

4κ
|||ϕ̃∓h − ν∇φ̃∓h |||

2 − `(φ̃∓h , ϕ̃
∓
h ). (A.6)

Also, using equation (3), it is easy to see that the primal and adjoint equilibrated flux recon-
structions satisfying (9) verify that forall (w,v) ∈ W × V

`(w,v) = −(q̃h,∇w) + 〈q̃h · n, w〉ΓD
− 〈g

D
,v · n〉ΓD

, (A.7a)

`O(w,v) = −(ζ̃h,∇w) + 〈ζ̃h · n, w〉ΓD
+ 〈gO

D
,v · n〉ΓD

, (A.7b)

and therefore taking (w,v) = (φ̃∓h , ϕ̃
∓
h ) = (∓ξ̃h − κũh,±ζ̃h − κq̃h) into (A.7a) and (w,v) =

(ũh, q̃h) into (A.7b) yields, after some simplifications,

`(φ̃∓h , ϕ̃
∓
h ) = ∓`O(ũh, q̃h)∓ (ζ̃h,∇ũh)± (q̃h,∇ξ̃h) + κ(q̃h,∇ũh).

Finally, expanding |||ϕ̃∓h − ν∇φ̃∓h |||
2
and rearranging terms yields

±s∓h = ±`O(ũh, q̃h)∓ (q̃h + ν∇ũh,∇ξ̃h)−
1

4κ
|||(ζ̃h + ν∇ξ̃h)∓ κ(q̃h + ν∇ũh)|||

2

= ±`O(ũh, q̃h)−
1

4κ
|||ζ̃h + ν∇ξ̃h|||

2 − κ

4
|||q̃h + ν∇ũh|||2 ±

1

2
(ν−1(q̃h + ν∇ũh), ζ̃h − ν∇ξ̃h),

(A.8)
and substituting the optimal value of κopt = |||ζ̃h + ν∇ξ̃h|||/|||q̃h + ν∇ũh||| concludes the proof.
Indeed, joining all the obtained expressions provides

±s ≥ ±s∓h (κopt) = ±`O(ũh, q̃h)−
1

2
|||q̃h + ν∇ũh||| |||ζ̃h + ν∇ξ̃h|||±

1

2
(ν−1(q̃h+ν∇ũh), ζ̃h−ν∇ξ̃h).

Appendix B. Output bounds from potential and zero-order equilibrated flux re-
constructions – proof of Theorem 2

Equation (A.8) shows that for any potential and equilibrated flux reconstructions of the primal
and adjoint problems (ũh, q̃h) and (ξ̃h, ζ̃h) then

±s ≥ ±s∓h = ±`O(ũh, q̃h)∓ (q̃h + ν∇ũh,∇ξ̃h)−
1

4κ
|||(ζ̃h + ν∇ξ̃h)∓ κ(q̃h + ν∇ũh)|||

2
. (B.1)

Moreover, the first two terms in (B.1) can be rewritten to yield

s ≥ ±s∓h = ±(fO, ũh)± 〈gON , ũh〉ΓN
± (f, ξ̃h)∓ 〈gN , ξ̃h〉ΓN

∓ (ν∇ũh,∇ξ̃h)

− 1

4κ
|||(ζ̃h + ν∇ξ̃h)∓ κ(q̃h + ν∇ũh)|||

2
,

(B.2)

which in particular holds for q̃h = q = −ν∇u and ζ̃h = ζ = −ν∇ξ yielding

±s ≥ ±(fO, ũh)± 〈gON , ũh〉ΓN
± (f, ξ̃h)∓ 〈gN , ξ̃h〉ΓN

∓ (ν∇ũh,∇ξ̃h)

− 1

4κ
|||ν∇(ξ − ξ̃h ∓ κ(u− ũh))|||

2
.

(B.3)

Therefore, to compute bounds for the quantity of interest it is sufficient to be able to compute
upper bounds for

1

4κ
|||ν∇(ξ − ξ̃h ∓ κ(u− ũh))|||

2
=

1

4κ
|||ν∇(φ± − φ̃±h )|||2
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where φ̃±h = ±ξ̃h − κũh and φ± = ±ξ − κu satisfies

−∇ · (ν∇φ±) = ±fO − κf = f± in Ω,
φ± = ±gO

D
− κg

D
on ΓD,

−ν∇φ± · n = ∓gO
N
− κg

N
= g±

N
on ΓN.

(B.4)

Upper bounds for the energy norm |||ν∇(φ± − φ̃±h )|||2 are computed introducing the zero-order
equilibrated flux reconstruction of φ±, namely (ϕ̃∓h )0 = ±ζ̃0

h − κq̃0
h ∈ V such that

(∇ · (ϕ̃∓h )0, 1) = (Π0
K(±fO − κf), 1) = (f±, 1) in Ω,

((ϕ̃∓h )0 · n, 1) = (Π0
e(∓gON − κgN), 1) = (g±

N
, 1) on ΓN.

(B.5)

Indeed, let w ∈ W be such that w|ΓD
= 0, that is, w ∈ H1

0 (Ω). Using equation (3) for ω = Ω

and q = (ϕ̃∓h )0, namely

(∇ · (ϕ̃∓h )0, w)− 〈(ϕ̃∓h )0 · n, w〉ΓN
+ ((ϕ̃∓h )0,∇w) = 0

and equation (B.4) yields after some rearrangements

(ν∇(φ± − φ̃±h ),∇w) = −〈g±
N
− (ϕ̃∓h )0 · n, w〉ΓN

+ (f± −∇ · (ϕ̃∓h )0, w)− ((ϕ̃∓h )0 + ν∇φ̃±h ,∇w)

=
∑
K∈Th

[
(f± −∇ · (ϕ̃∓h )0, w)K − ((ϕ̃∓h )0 + ν∇φ̃±h ,∇w)K −

∑
e∈ΓN∩∂K

〈g±
N
− (ϕ̃∓h )0 · n, w〉ΓN

]
.

(B.6)
In order to bound the three terms in the previous summation, we need to introduce the following
Poincaré and trace inequalities

||w − Π0
Kw||L2(K) ≤ C1||∇w||L2(K) = C1ν

−1/2
K |||νK∇w|||K

||w − Π0
ew||L2(e) ≤ C2||∇w||L2(K) = C2ν

−1/2
K |||νK∇w|||K ,

where, recall that, || · ||L2(K) denotes the L2(K) norm both in R and Rd, ||| · |||K is the restriction
of the energy norm defined in (5) to element K and

C1 = hK/π , C2
2 =

|e|
d|K|

hK
π

(
2 max
x∈e
|x− xe|+

d hK
π

)
, (B.7)

where xe denotes the vertex of element K opposite to the facet e, |x − xe| denotes the Rd

Euclidean norm of the vector x−xe, |e| is the measure of the facet γ and hk = maxx,y∈K |x−y|
and |K| are the diameter and measure of element K respectively. Note that maxx∈e |x − xe|
can be replaced by hK and the inequalities still hold. The proof of these results can be found
in [26, 49, 50, 5].
Then, since (ϕ̃∓h )0 satisfies (B.5) it holds that∫

K

(f± −∇ · (ϕ̃∓h )0)w dΩ =

∫
K

(f± −∇ · (ϕ̃∓h )0)(w − Π0
Kw) dΩ

≤ ||f± −∇ · (ϕ̃∓h )0||L2(K)||w − Π0
Kw||L2(K)

≤ C1ν
−1/2
K ||f± −∇ · (ϕ̃∓h )0||L2(K)|||νK∇w|||K

(B.8)
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and ∫
e

(g±
N
− (ϕ̃∓h )0 · n)w dΓ =

∫
e

(g±
N
− (ϕ̃∓h )0 · n)(w − Π0

ew) dΓ

≤ ||g±
N
− (ϕ̃∓h )0 · n||L2(e)||w − Π0

ew||L2(e)

≤ C2ν
−1/2
K ||g±

N
− (ϕ̃∓h )0 · n||L2(e)|||νK∇w|||K .

(B.9)

Finally, it also holds that

(ν∇φ̃±h + (ϕ̃∓h )0,∇w)K = (ν−1((ϕ̃∓h )0 + ν∇φ̃±h ), ν∇w)K ≤ |||(ϕ̃∓h )0 + ν∇φ̃±h |||K |||ν∇w|||K ,

which introduced in (B.6) along with the previous inequalities yields

(ν∇(φ± − φ̃±h ),∇w) ≤
∑
K∈Th

[
|||(ϕ̃∓h )0 + ν∇φ̃±h |||K + C1ν

−1/2
K ||f± −∇ · (ϕ̃∓h )0||L2(K)

+
∑

e∈ΓN∩∂K

C2ν
−1/2
K ||g±

N
− (ϕ̃∓h )0 · n||L2(e)

]
|||ν∇w|||K

=
∑
K∈Th

η0∓
K |||ν∇w|||K ≤

√∑
K∈Th

(η0∓
K )2

√∑
K∈Th

|||ν∇w|||2K =

√∑
K∈Th

(η0∓
K )2|||ν∇w|||.

Finally, since φ± − φ̃±h |ΓD
= 0, we can substitute w = φ± − φ̃±h in the previous inequality to

yield

|||ν∇(φ± − φ̃±h )|||2 = (ν∇(φ± − φ̃±h ),∇(φ± − φ̃±h )) ≤
√∑

K∈Th

(η0∓
K )2|||ν∇(φ± − φ̃±h )|||

and therefore
|||ν∇(φ± − φ̃±h )|||2 ≤

∑
K∈Th

(η0∓
K )2

yielding the desired bound

±s ≥ ±(fO, ũh)± 〈gON , ũh〉ΓN
± (f, ξ̃h)∓ 〈gN , ξ̃h〉ΓN

∓ (ν∇ũh,∇ξ̃h)−
1

4κ

∑
K∈Th

(η0∓
K )2. (B.10)

Finally, the estimator η0∓
K can be rewritten explicitly in terms of the primal and adjoint problems

as

η0∓
K = ||| ± (ζ̃

0

h + ν∇ξ̃h)− κ(q̃0
h + ν∇ũh)|||K + C1ν

−1/2
K || ± (fO −∇ · ζ̃0

h)− κ(f −∇ · q̃0
h)||L2(K)

+
∑

e∈ΓN∩∂K

C2ν
−1/2
K || ∓ (gO

N
+ ζ̃

0

h · n)− κ(g
N
− q̃0

h · n)||L2(e)

Appendix C. Exact representation for the quantity of interest – Proof of Theorem
3

The bounds given by (A.3) are exact if (φ̃∓h , ϕ̃
∓
h ) = (φ∓,ϕ∓) = (∓ξ − κu,±ζ − κq) since the

infimum is reached imposing (w∓,v∓) in (A.5) to be (w∓,v∓) = (u, q) for all values of κ.
Moreover, in this case, from equation (A.6) if holds that

±s = L∓(w∓,v∓;φ∓,ϕ∓) = − 1

4κ
|||ϕ∓ − ν∇φ∓|||2 − `(φ∓,ϕ∓). (C.1)

It is worth noting that this exact representation can also be algebraically derived by substituting
(φ∓,ϕ∓) = (∓ξ − κu,±ζ − κq) into the right-hand side of (C.1) and simplifying the terms
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appearing therein.
Let now (ũh, q̃h) and (ξ̃h, ζ̃h) be two pair of approximations both inW×V but not necessarily
satisfying (9), and define the errors in the approximations as

u = ũh + eh , ξ = ξ̃h + εh , φ
∓ = φ̃∓h + e∓φ ,

q = q̃h + eh , ζ = ζ̃h + εh , ϕ
∓ = ϕ̃∓h + e∓ϕ.

Then, it holds that

1

4κ
|||ϕ̃∓h − ν∇φ̃∓h |||

2
+ `(φ̃∓h , ϕ̃

∓
h )

=
1

4κ
|||ϕ∓ − ν∇φ∓ − e∓ϕ + ν∇e∓φ |||

2
+ `(φ∓,ϕ∓)− `(e∓φ , e∓ϕ)

= ∓s+
1

4κ
|||e∓ϕ − ν∇e∓φ |||

2
+ (u,∇ · e∓ϕ)− 〈u, e∓ϕ · n〉ΓN

− 〈q · n, e∓φ 〉ΓD

= ∓s+
1

4κ
|||e∓ϕ − ν∇e∓φ |||

2
+ (u,±(fO −∇ · ζ̃h)− κ(f −∇ · q̃h))

−〈u,∓(gO
N

+ ζ̃h · n)− κ(g
N
− q̃h · n) · n〉ΓN

− 〈q · n,∓(gO
D
− ξ̃h)− κ(g

D
− ũh)〉ΓD

,

where we have used that ϕ∓ − ν∇φ∓ = −2κq, equation (4) with (w,v) = (e∓φ , e
∓
ϕ) and the

fact that
e∓φ = ∓(gO

D
− ξ̃h)− κ(g

D
− ũh) on ΓD

∇ · e∓ϕ = ±(fO −∇ · ζ̃h)− κ(f −∇ · q̃h) in Ω

e∓ϕ · n = ∓(gO
N

+ ζ̃h · n)− κ(g
N
− q̃h · n) on ΓN.

Finally, the Theorem is proved by noting that ∓ŝ∓h coincides with

1

4κ
|||ϕ̃∓h − ν∇φ̃∓h |||

2
+ `(φ̃∓h , ϕ̃

∓
h ) =

1

4κ
||| ± (ζ̃h + ν∇ξ̃h)− κ(q̃h − ν∇ũh)|||

2 ∓ `(ξ̃h,−ζ̃h)− κ`(ũh, q̃h).

Appendix D. Lower bounds for the energy norm of |||e∓ϕ − ν∇e
∓
φ |||

2
– Proof of

equation (24)

Let (ũh, q̃h) and (ξ̃h, ζ̃h) be potential and equilibrated flux reconstructions of the primal and
adjoint problems satisfying (9), and consider e∓φ = ∓(ξ − ξ̃h) − κ(u − ũh) and e∓ϕ = ±(ζ −
ζ̃h)− κ(q − q̃h). Then, in two and three dimensions, a lower bound for |||e∓ϕ − ν∇e∓φ |||

2 can be
computed using a Helmholtz decomposition of e∓ϕ, see [1, 29]. Indeed, since e∓φ ∈ H1

0 (Ω), the
error e∓ϕ−ν∇e∓φ ∈ V ⊂ [L2(Ω)]d can be rewritten in the form e∓ϕ−ν∇e∓φ = ν∇(χ∓ϕ−e∓φ )+∇×ψ∓ϕ
where χ∓ϕ ∈ H1

0(Ω) satisfies

(ν∇χ∓ϕ,∇w) = (e∓ϕ,∇w) ∀w ∈ H1
0 (Ω)

and ψ∓ϕ ∈ H1
0×(Ω) = {ψ ∈ [H1(Ω)]2d−3,∇×ψ · n = 0 on ΓN} satisfies

(ν−1∇×ψ∓ϕ ,∇×ψ∓ϕ) = (ν−1e∓ϕ,∇×ψ∓ϕ),

where ∇× is the standard curl operator, see [29, Sec 2.3]. Now, for any w∓ ∈ H1
0 (Ω) and

ψ∓ ∈ [H1(Ω)]2d−3, consider

`∓×(w∓, ψ∓) = (ν−1(e∓ϕ − ν∇e∓φ ), ν∇w∓ +∇×ψ∓),
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and the associated scalar parameter λ∓ = −`∓×(w∓, ψ∓)/|||ν∇w∓ +∇×ψ∓|||2. Then,

|||e∓ϕ − ν∇e∓φ + λ∓(ν∇w∓ +∇×ψ∓)|||2

= |||e∓ϕ − ν∇e∓φ |||
2

+ (λ∓)2|||ν∇w∓ +∇×ψ∓|||2 + 2λ∓(ν−1(e∓ϕ − ν∇e∓φ ), ν∇w∓ +∇×ψ∓)

= |||e∓ϕ − ν∇e∓φ |||
2

+ (λ∓)2|||ν∇w∓ +∇×ψ∓|||2 + 2λ∓`∓×(w∓, ψ∓)

= |||e∓ϕ − ν∇e∓φ |||
2 − (`∓×(w∓, ψ∓))2

|||ν∇w∓ +∇×ψ∓|||2
.

which yields to

|||e∓ϕ − ν∇e∓φ |||
2

= |||e∓ϕ − ν∇e∓φ + λ∓(ν∇w∓ +∇×ψ∓)|||2+
(`∓×(w∓, ψ∓))2

|||ν∇w∓ +∇×ψ∓|||2
≥ (`∓×(w∓, ψ∓))2

|||ν∇w∓ +∇×ψ∓|||2
.

Moreover, for w∓ = χ∓ϕ − e∓φ and ψ∓ = ψ∓ϕ , since ν∇w∓ + ∇×ψ∓ = e∓ϕ − ν∇e∓φ then
`∓×(w∓, ψ∓) = |||e∓ϕ − ν∇e∓φ |||

2 and the previous inequality becomes an equality yielding to

|||e∓ϕ − ν∇e∓φ |||
2

= sup
w∓ ∈ H1

0 (Ω)
ψ∓ ∈ [H1(Ω)]2d−3

(`∓×(w∓, ψ∓))2

|||ν∇w∓ +∇×ψ∓|||2
.

Equation (24) is finally proved by noting that if ũh and ξ̃h are potential reconstructions of the
primal and adjoint problems, since

(∇v,∇×ψ) = 0 ∀v ∈ H1
0 , ψ ∈ H1

0×.

then

`∓×(w∓, ψ∓) = ∓(ν−1(ζ̃h + ν∇ξ̃h), ν∇w∓ +∇×ψ∓)

+κ (2(f, w∓)− 2 < g
N
, w∓ >ΓN

+(q̃h − ν∇ũh,∇w∓) + (ν−1(q̃h + ν∇ũh),∇×ψ∓)) .

Moreover, if q̃h and ζ̃h are equilibrated flux reconstructions, `∓×(w∓, ψ∓) reduces to

`∓×(w∓, ψ∓) = ∓(ν−1(ζ̃h + ν∇ξ̃h), ν∇w∓ +∇×ψ∓)− κ(ν−1(q̃h + ν∇ũh), ν∇w∓ −∇×ψ∓),

proving the desired result.
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