
Malicious websites blocking system using Deep
Learning algorithms

Project Thesis
Escola Tècnica d’Enginyeria de Telecomunicació de Barcelona

Universitat Politècnica de Catalunya
by Norma Gutiérrez

In partial fulfillment
of the requirements for the degree in

TELECOMMUNICATIONS ENGINEERING

Advisor: Beatriz Otero
Barcelona, Date: July, 2021

Revision history and approval record

Revision Date Purpose
0 15/04/2021 Document creation
1 29/04/2021 Document implementation
2 05/05/2021 Document implementation
3 13/05/2021 Document implementation
4 20/05/2021 Document implementation
5 25/05/2021 Document implementation
6 02/06/2021 Document implementation
7 07/06/2021 Document implementation
8 13/06/2021 Document first revision
9 14/06/2021 Document implementation
10 15/06/2021 Document implementation
11 16/06/2021 Document implementation
12 17/06/2021 Document revision
13 18/06/2021 Document revision

DOCUMENT DISTRIBUTION LIST

Name e-mail
Norma Gutiérrez norma.escobar@upc.edu
Beatriz Otero botero@ac.upc.edu

Written by: Reviewed and approved by:
Date 15/04/2021 Date 17/06/2021
Name Norma Gutiérrez Name Beatriz Otero
Position Project Author Position Project Supervisor

2

Contents

List of Figures 4

List of Tables 4

1 Introduction and Statement of purpose 9

2 Context and problem definition 11
2.1 Methods and procedures . 11

3 Work plan 13

4 State of the art 15
4.1 Related work . 15
4.2 Related commercial products . 16

5 Dataset 18

6 Preprocessing 20

7 Deep Learning application 22

8 Experiments 23

9 Results 25
9.1 Preprocessing results . 25
9.2 FFNN results . 28

10 Interface 31

11 Time limitations and viability 33

12 Budget 35

13 Sustainability 37
13.1 Social impact . 37
13.2 Economic impact . 37
13.3 Environmental impact . 38

14 Conclusions and Future work 39

A Annex 40
A.1 Extended work plans . 40
A.2 Related works comparison table . 43
A.3 Preprocessing results . 44

References 48

3

List of Figures

1 Block diagram of the system’s functioning 10
2 General view of the work packages performed through the thesis 13
3 Project’s Gantt diagram . 14
4 Example of URL preprocessing . 19
5 Preprocessing flowchart . 21
6 Percentage representation of the three dataset partitions 21
7 Feed-Forward Neural Network representation 22
8 URL subdivisions . 25
9 Preprocessed dataset parameter correlation matrix 26
10 Mean performance for the best operating FFNN (64-32-64) in 20 iterations 30
11 Initial interface view . 31
12 Output interface view . 32
13 Time performances of URLs extracted from the internet or the database . 33
14 Research work package . 40
15 Data treatment work package . 40
16 Deep Learning Neural Network implementation work package 41
17 System validation work package . 41
18 Interface creation work package . 42
19 Analysis work package . 42
20 Correlation matrix of the initial dataset . 44
21 Preprocessed dataset parameter histograms 47

List of Tables

1 Samples feature extraction from the VoMBWeb dataset 18
2 Samples and percentage of benign and malicious websites in the dataset . . 19
3 Performance of three different FFNNs with different number of layers . . . 28
4 Testing performance for the three best FFNNs with three layers and vari-

ation of the amount neurons per layer . 28
5 True Positive (TP), True Negative (TN), False Positive (FP) and False

Negative (FN) for the best performing network (64-32-64) with 10 epochs . 29
6 Total budget estimation of the project’s direct and indirect costs 36
7 Performance of the related works and comparison with this project 43

4

Abbreviations

AI Artificial Intelligence

AUC Area Under the Curve

CNN Convolutional Neural Network

CSS Cascading Style Sheets

DL Deep Learning

DNS Domain Name System

FFNN Feed Forward Neural Network

FN False Negatives

FP False Positives

FPR False Positive Rate

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IP Internet Protocol

JS JavaScript

LSTM Long Short-Term Memory

ML Machine Learning

MVC Model View Controller

NG Next Generation

NN Neural Network

RBM Restricted Boltzmann Machine

ReLU Rectified Linear Unit

ROC Receiver Operating Characteristic

SVM Support Vector Machine

TLD Top Level Domain

TN True Negatives

TP True Positives

TPR True Positive Rate

URL Uniform Resource Locator

WP Work Package

5

Abstract

Malicious websites are currently one of the most severe threats to internet users. Tradi-
tional methods that detect malicious websites, such as blacklists, do not update frequently,
and they cannot detect new attackers. To address this need, we propose a system that
can be inserted into a firewall or Google Chrome extension. Starting with a dataset that
contains both malicious and benign websites, we classify it by extracting numerous fea-
tures. Furthermore, the features are parsed, analyzed, and preprocessed to create easily
separable and categorized data. With the preprocessed data, the study proposes a Deep
Learning (DL) model to classify each sample. The model consists of a Feed-Forward Neu-
ral Network (FFNN). We evaluate different combinations of neurons in the model and
computes an in-depth study of the best performing network. Our results show up to
99.88% of detection of malicious websites and 2.61% of false hits (i.e. malicious websites
classified as benign). Additionally, the system was tested with 10000 unseen websites, and
the false hit rate decreased to 1.026%.

To approach the system to end-users, an interface is created to insert the suspicious URL
and return the prediction output. The interface response time gives a mean response time
of 2.53 seconds. This value is beneath the 4-second limit where the user’s start to lose
attention.

Overall, the proposed system can correctly classify both previously seen and unseen data,
protecting thus against new attackers. Additionally, the interface creates a space where
the user can quickly consult the URL maliciousness.

6

Resum

Les webs malicioses en aquest moment són una de les amenaces més grans que poden
tenir els usuaris d’internet. Els mètodes tradicionals que detecten pàgines web malicioses,
com les llistes negres, no s’actualitzen amb la rapidesa necessària per poder detectar amb
precisió nous atacs a la web. Per a solucionar aquesta necessitat proposem un sistema
que es pot afegir a un tallafoc o una extensió de Google Chrome. Començant amb un
conjunt de dades (dataset) que conté llocs web malicioses i benignes, els classifiquem
traient nombrosos atributs. Addicionalment, els atributs es formaten, s’analitzen i es
processen prèviament per crear dades fàcilment separables i classificables. Amb les dades
processades, l’estudi proposa un model d’Aprenentatge Profund (DL) per a classificar cada
mostra. El model consisteix en una xarxa neuronal directa (FFNN). Avaluem diferents
combinacions de neurones al model i realitzem un estudi en profunditat de la xarxa amb
millor rendiment. Els nostres resultats mostren una precisió de detecció de pàgines web
malicioses de fins al 99,88% i el 2,61% de detecció de fals positiu (és a dir, llocs web
malignes classificats com a benignes). A part, el sistema ha estat provat amb 10.000 llocs
webs no vistos prèviament i la detecció de fals positiu disminueix fins a l’1,026%.

Per fer més accessible el sistema als usuaris finals, es desenvolupa una interf́ıcie que a
l’inserir una URL sospitosa retorna el resultat obtingut d’aquesta. El temps de resposta
d’aquesta interf́ıcie dóna un valor mitjà de 2,53 segons, que és un valor inferior al ĺımit
de 4 segons en què l’usuari comença a perdre l’atenció.

En general, el sistema proposat és capaç de classificar correctament les dades vistes amb
anterioritat i les que no. Per tant, protegeix contra nous atacants. A més, la interf́ıcie crea
un espai on l’usuari pot consultar ràpidament la maĺıcia de la URL.

7

Resumen

Hoy en d́ıa, las páginas web maliciosas son una de las mayores amenazas que pueden tener
los usuarios de internet. Los métodos tradicionales para detectar páginas web maliciosas,
como las listas negras, no se actualizan con la rapidez necesaria para poder identificar con
precisión nuevos tipos de ataques en la web. Para solucionar esta necesidad proponemos
un sistema que se puede añadir en un cortafuegos o en una extensión de Google Chrome.
Empezando con un conjunto de datos (dataset) que contiene páginas web maliciosas
y benignas, los clasificamos extrayendo numerosos atributos. Además, los atributos se
formatean, se analizan y se procesan previamente para crear datos fácilmente separables
y clasificables. El modelo consiste en una red neuronal prealimentada (FFNN). Evaluamos
distintas combinaciones de neuronas en el modelo y realizamos un estudio en profundidad
de la red con mejor rendimiento. Nuestros resultados muestran una precisión de detección
de páginas web maliciosas de hasta el 99,88% y, un 2,61% de detección de falso positivo
(es decir, sitios web malignos clasificados como benignos). El sistema ha sido probado
con 10.000 páginas webs no vistas previamente y la detección de falso positivo disminuye
hasta el 1,026%.

Para hacer más accesible el sistema a los usuarios finales, se desarrolla una interfaz gráfica
que al insertar una URL sospechosa devuelve el resultado obtenido de esta. También se
estudia el tiempo de respuesta de la interfaz. Este proporciona un valor medio de 2,53
segundos, que es un valor inferior al ĺımite de 4 segundos en que el usuario empieza a
perder la atención.

En general el sistema propuesto es capaz de clasificar correctamente los datos tanto vistos
con anterioridad como los que no. Por tanto, protege de nuevos ataques. Aparte, la interfaz
crea un espacio donde el usuario puede consultar rápidamente la malicia de la URL.

8

1 Introduction and Statement of purpose

Web pages may contain numerous types of attacks that target web browsers vulnerabili-
ties. Malicious web pages have become one of the most common security threats. These
attacks run malware in the target system, intending to take control of it. This project
aims to design a system that blocks malicious website attacks by identifying possible ma-
licious web pages. Moreover, the work parts from existing URLs and extracts relevant
information from them. The big data treatment is later used to gather existing vulnera-
bilities and malicious websites used in real environments. It creates a Deep Learning (DL)
model to detect new emerging websites even before they are listed in a blacklist database.
DL techniques enable us to model complex computational architectures, such as websites
features, to predict data representation. Consequently, the mechanism can be inserted in
a firewall or web browser extension to recognize previously unseen malicious websites.
Furthermore, the system is highly scalable, and it can be retrained and perfected for new
emerging types of attacks.

We develop a defensive solution by implementing this mechanism, meaning that malicious
software cannot penetrate the private network (i.e. blocked by a firewall). Overall, the
results show high effectiveness when using only website features. Thus, the proposed
Neural Network (NN) correctly differentiates between malicious and benign websites. The
main contributions of this work are the following:

• To study the existing products similar to the project and stand out the advantages.

• Creation of three different datasets (training, testing and validation) parting from
existing URLs and extracting data directly from the internet.

• Extract and preprocess raw website data differentiating the most important at-
tributes.

• Develop a scalable DL NN that uses existing patterns in malicious web pages to
detect malicious websites in real environments.

• Produce a system able to be integrated into a firewall or a browser extension.

• Creation of an interface to visualize the environment and control the internet’s
malicious activity.

• To create an affordable, quick and efficient system for users.

Overall, the system functioning is depicted in Figure 1. As shown, the system is divided
into two main parts: the dataset creation and training of the model and the validation of
the system and its detection. Firstly, the training and testing URLs are passed through
feature extraction and labelling and are preprocessed, as explained later in the thesis. Fur-
thermore, once the datasets are computed, an FFNN is created, and the data is passed to
train and test the model’s validity. The training process is fine tunned and repeated until
a suitable NN is found. On the other hand, the second block parts from a validation set
of URLs. Then, the same features as in the training and testing datasets are extracted,
and the model is used to predict the sample’s output. The actual label is stored in the
validation dataset and compared with the predicted values to compute classification met-

9

rics. Lastly, the classification phase describes the process that an inputted URL from a
user would follow. First, the user enters the URL, then the system extracts the necessary
features and predicts the output from the URL (benign or malicious). Finally, the output
is classified between a threshold into Malicious or Benign.

Figure 1: Block diagram of the system’s functioning

The remainder of this project is organized as follows. Section 2 describes the context
and problem definition, section 3 shows the work plan and the Gantt diagram. Section 4
presents the state of the art. Sections 5 and 6 describe the dataset and its preprocessing.
Then, section 7 explains the used Neural Network, and section 8 describes the experiments
and metrics used. Section 9 presents the results and section 10 explains the interface for
the final classification phase. Additionally, section 11 describes the time limitations and
the project’s viability, while sections 12 and 13 show the budget and sustainability of this
project. Finally, we draw the main conclusions and future work in section 14.

10

2 Context and problem definition

The created system treats the increasing necessity of blocking malicious or suspicious
websites. Malicious content in web pages is a recurrent threat nowadays while browsing
the internet. Thus, the project aims to create a system that can be downloaded into
a user’s computer. This system, given an URL, extracts and analyzes its features and
classifies them into malicious or benign. Furthermore, the system is addressed to any
user that wants secure navigation through the internet. Therefore, the importance of the
product remains in keeping the users safe while navigating through the internet, avoiding
malicious content into computers.

The idea of this project emerges from my curiosity about network attacks, cybersecurity
and their detection. Moreover, I have previous knowledge of Artificial Intelligence (AI),
and I wanted to continue that learning path. Thus, to combine network attacks with AI,
particularly Deep Learning, a malicious website blocking device implemented with Deep
Learning algorithms came to my mind (the author’s) and was proposed. The idea is to
develop from scratch the desired system that uses the URLs data extracted from the
internet and predicts whether the website is malicious or benign. Finally, the project is
independent of any other existing project since the project’s main ideas were planned for
this specific thesis.

2.1 Methods and procedures

To conduct the study, some methods and procedures were followed. Firstly, meticulous
research was made to decide the thesis course of action (sections 3 and 4). We decided to
separate the project into two parts: the dataset creation and training and the validation
and detection. In the first part of the project, a dataset containing existent URLs was
searched. The dataset needed to contain non-simulated data in order to work out of a
simulated environment. Once the dataset was found, the first phase could commence.

To treat the data, several studies and similar researches were investigated. We started with
a simple dataset preprocessing but realized that the selected features were feeble and not
consistent enough to train a DL model. Hence, it was decided a new, improved dataset
parsing, modifying almost entirely the existing dataset. Once the data was computed,
new features were extracted, and further analysis (explained later on in the project) were
performed. The analysis helped to decide which extracted features were necessary and
optimize the dataset (sections 5 and 6).

Additionally, the DL model was created. To decide the different model parameters, we took
into consideration the created dataset. Since the sample information consisted of a binary
classification supervised learning dataset, an FFNN approach was selected. Furthermore,
the model’s parameters were chosen following the same approach (section 7). The final
task of the first part of the project consisted of training, testing and saving the created
model (sections 8 and 9).

The second central part of the project starts with the validation of the previously saved
model (section 9). Here, by performing the validation with unseen data, the system’s

11

efficiency can be easily seen and can be modified if needed. The validation process is the
most critical part of the project since it shows the system’s flaws, and its functioning
is crucial to assure the system’s viability. Then, for usability purposes, an interface was
created, where a user can introduce an URL, and the interface will return its prediction
output (section 10). Finally, some additional studies were performed to study the system’s
engagement, commercial outings, and sustainability (sections 11, 12 and 13). These final
analyses helped us to evaluate the efficiency of the system and its future improvements.

12

3 Work plan

The project’s work plan is divided into seven work packages. Firstly, thorough planning
and research were made. During this process, related works were searched, and a course of
action approach was developed. Once the project was planned and structured, the second
work package (WP) consisted of the data treatment. In this part, a dataset was selected
and modified so it can be used to train a DL model correctly. The data was analyzed with
different techniques, and the most effective preprocessing was applied to the samples.
The third work package is to implement the best NN for the data to predict the output
correctly. Parting from the data, the best NN and parameters must be decided, and then
several experiments must be conducted to fine-tune the model. Once the model is designed,
the next task is to train and test the model. The fourth work package consists of the NN
validation with unseen data and analyzes the final results. Next, in the fifth work package,
the main task consisted of implementing a user-friendly interface where the user provides
an URL, and the system returns the maliciousness of the website. Finally, a study of the
time limitations of the project, its sustainability and its budget has been performed. The
aim is to compute the system’s efficiency, economic viability and engagement.

Overall the different tasks performed during the course can be seen in Figure 2. Also,
note that apart from the denoted work packages (WP), an important task consisted of
prettifying and fixing the code and writing all the necessary documents that the thesis
required.

Figure 2: General view of the work packages performed through the thesis

An extensive description of these tasks as for their exact timeline is depicted in Annex
A.1. All these tasks have been performed during the semester, as depicted in the Gantt
diagram in Figure 3.

13

Phases of the Project

February March April May June

100% completeWP1

100% completeWP2

100% completeWP3

100% completeWP4

100% completeWP5

100% completeWP6

Figure 3: Gantt diagram

As shown in Figure 3, almost all tasks were sequential since all work packages required
from the one before to be performed. Nevertheless, the dataset preprocessing and the
NN design overlapped. This overlay is due to the dependence of the type of NN with its
preprocessing, meaning that we had to decide the type of Artificial Intelligence we were
going to use before completing the preprocessing process. Another overlap is the bug fix
and the final thesis report with the final tasks. Some improvements were made to the code
when performing the last work package studies, and all were instantaneously documented
into the report.

14

4 State of the art

This section includes a comprehensive literature review that treats the most relevant and
recent articles and works performed on the subject matter.

4.1 Related work

A firewall is a network security mechanism that controls incoming and outgoing network
traffic. It decides whether to allow or block specific traffic based on a defined set of secu-
rity rules. Furthermore, firewalls are a barrier between untrusted external networks and
secured, controlled and trusted internal networks [1]. Thus, we aim to detect and block
cyberattacks (i.e. an unauthorized attempt to harm someone’s computer system or in-
formation using the internet). There are many types of cyberattacks such as endpoint
attacks, malware attacks, system exploits, advanced persistent threats and network at-
tacks [2]. Most studies focus on Network traffic and Malware. Network traffic analysis
predicts whether the (network) packets are malicious or benign. On the other hand, mal-
ware detection classifies incoming traffic into different types of attacks. Their goal is to
distinguish between several network attacks. These types of approaches are evaluated with
simulated datasets. Other cybersecurity approaches are the study of WebApps, Software,
Hosts, Email, Fraud, Honeypots, Binaries, Phishing, Password or MISC attacks.

Our proposal focuses on a non-simulated dataset where features from different websites
are extracted (malicious and benign). Furthermore, our data comprises the URL and
features associated with it, such as the associated continent and its JavaScript content
length. These features are simple to obtain and simpler to treat than other attributes
such as the HTTP or CSS content.

Chiba et al. [3] propose a system that can detect a malicious or benign website by only
analyzing the IP characteristics. They create a dataset extracting campus traffic. The
article preprocesses the data separating the address by bits and applies two different
Machine Learning (ML) algorithms (SVM and RBM). They achieve a maximum of 90%
accuracy. In contrast, our proposal uses DL techniques, and the dataset does not use
IP information. Instead, it uses the URL and the JavaScript content length. Using more
features enables us to make a more precise model than the one proposed by Chiba et al.

Moreover, Xuan et al. [4] uses the URL features to extract dynamic behaviours and train
them with two supervised ML algorithms (Support Vector Machine and Random Forest).
The differences with the presented system are that they use far more URL features than we
do, expanding the computational needs of the network. Plus, they apply ML algorithms,
whereas, in our system, DL techniques are applied. Finally, their performance is less than
ours, having a 3% less accuracy, 4% less precision, and 1% less recall.

Saxe et al. [5] use HTML, CSS and embedded JavaScript (JS) files; they analyze the
data and create a model. First, they pass the data through an SVM and then through
a DL model. The model detects up to 97% of malicious traffic and can identify content
not previously caught by the vendor community. Our approach reduces the data analyzed
while also achieving a higher detection rate (i.e. instead of HTML, CSS and JS content,
our proposal uses URL and IP information and the JS length).

15

Uçar et al. [6] develop two DL models (CNN and LSTM) that blacklist malicious URL.
The models detect the type of data and classify it. It achieves up to 98.86% accuracy
in the CNN network. The main distinctions between our approach and this paper are:
(1) the type of Neural Network used. They use a more complex Neural Network. Thus
their proposal uses more resources than our proposal. (2) their dataset only contains URL
information, whereas our data also contains the continent and the JS length.

Another similar approach is presented by Johnson et al. [7]. The article presents the same
problem as in this thesis; a binary classifier detecting if the URL is malicious or benign.
Nevertheless, it adds a second multi-class classification that detects the type of attack.
Overall, the article adds a further step to the classification to detect the type of attack
but obtain a far more complicated NN and 2% less accuracy than in our system.

Finally, Sahoo et al. [8] propose a survey that gives a structural understanding of Malicious
URL detection techniques using ML. The survey separates two distinct types of families
when detecting Malicious URL: Blacklisting/heuristic approaches or ML techniques. The
survey only talks about mathematical ML algorithms that previous literature has done.
We advance the state-of-the-art presented in that survey by developing DL techniques to
classify previously unseen data.

Our final approach uses DL to train the NN since the quantity of data enabled us to
perform a model with outstanding performance. Furthermore, the chosen model was a
FFNN, which was chosen since it is the most common approach for supervised learning
with binary classification datasets. Also, a FFNN needs less computation than the other
DL approaches mentioned above. Consequently, the resulting NN presents outstanding
results. A comparison table with the presented related works and this project can be
found in Annex A.2.

4.2 Related commercial products

Additionally to the research approaches, some commercial products offer an URL blocking
system, such as the one presented in this project. The most significant and known is
GoogleSafeBrowsing.

GoogleSafeBrowsing comes with Google Chrome Enterprise [9] and can be activated
through its account configuration. It uses a URL Blocklist and a URL Allowlist to prevent
or allow users to access the URL. Furthermore, the user can personalize their configura-
tion.

WinTools URL blocker [10] is another commercial solution of our system, and it also
makes some URLs inaccessible from the user’s computer. Moreover, it works as a firewall,
and the administrator has access to all the blocked sites and manually configure some
restrictions. The system works by modifying the setting of the hosts’ file and reconfiguring
it. WinTools is a free solution, but it is only supported for Windows users.

Other solutions are DNS Filter [11] which is cloud-based and uses an AI powered real-time
threat detection with customizable URL filtering and off-network protection. A different
approach is Cloudflare Gateway [12], which offers highly effective DNS filtering and other

16

technologies to keep internal employees secure.

Moreover, Cisco Umbrella [13] is one of the largest solutions and is also a cloud-based
software. WebTitan Cloud [14] is a very scalable and DNS-based service, but its interface
is only suitable for technical users. Finally, other systems that provide the same service
are McAfee Web Gateway Cloud Service [15] and Untangle NG Firewall Complete [16].

All these approaches are priced and have to be hired by a company. Although our approach
is a research-oriented project, having compared commercial products allows us to have
a global vision of the actual market. Furthermore, some of the project’s functionalities
(such as the FFNN) could be sold to a depicted company.

17

5 Dataset

To create a DL model capable of distinguishing malicious websites, we modified the ex-
isting dataset Visualisation of Malicious & Benign Web-pages Dataset (VoMBWeb) [17]
since the dataset was fitted to our solution but lacked consistency.

Thus, the system starts from a list of URLs captured from malign and benign websites
and extracts the necessary information to be later trained and correctly classified. The
features depicted in Table 1 were extracted from each URL crawling the internet.

Table 1: Samples feature extraction from the VoMBWeb dataset

Feature
group

Feature Description

URL URL Website’s URL

URL TLD The Top Level Domain of the website

URL HTTPS Whether the website is HTTP or HTTPS

URL Entropy The URL’s entropy

URL URL length The total URL length

URL URL body length The URL body length

URL URL number of
arguments

The count of the number of arguments in the
URL

URL URL path length The URL path length

URL URL letters length The count of letters in the URL

URL URL digits and
symbols length

The count of digits and symbols in the URL

IP IP address The IP address associated to the URL

IP Continent The continent associated to the IP address

Content Filtered content The website’s JavaScript filtered content

Content JavaScript length The content’s length

As shown in Table 1, the data is extracted from three separate categories, meaning that
the data is obtained through the IP, the URL and the content. The primary group is the
URL group, parsed and treated as shown in Figure 4.

The first part of the URL is the protocol. The HTTPS feature is extracted; in the
example, we have a https value, so the value of the feature is 1. Secondly, the body is
computed where two different features are extracted, its length (url body len) and the
Top Level Domain (tld). The third part of the URL includes the arguments where thy are
quantified (url num args) and their length (url digits len) is computed. Finally, to treat
the URL globally, the URL’s length (url len), the number of digits and symbols that it
contains (url digits length), and the number of letters (url letters len) are computed.

18

Figure 4: Example of URL preprocessing

The next group is the IP. Firstly the IP associated with the URL is extracted (ip addr) as
the continent where the IP address is located (continent). Since more than 300 countries
were initially defined in the dataset, the values were grouped by continent. Furthermore,
treating each country individually does not give any additional information than by doing
it by continent.

Once all the IP and URL features are extracted and treated, the web site’s content is
withdrawn. The obtained content is the one located inside the JS code. Furthermore, the
content was filtered to remove spaces, code, and punctuation. Once all was computed, the
cleaned JS content was saved (content), such as its length in KBytes (js len).

The final feature inserted in the dataset is the label, which has a binary value, depending
on if the website is malicious (1.0) or benign (0.0). Therefore, the obtained data is non-
simulated and belongs to real IP addresses and web pages. Hence, the created dataset has
a total of 15 features.

Moreover, the dataset is divided into two parts, a training dataset (containing 1200000
samples) and a testing dataset (containing 350000 samples). In the full dataset, 27253
websites (values) are considered malicious, while 1172747 are considered benign, having
far more benign websites than malign ones. In the testing dataset, the same happens
with 7828 malicious samples and 342172 benign samples. Hence the dataset is mainly
represented by benign websites, such as illustrated in Table 2.

Table 2: Samples and percentage of benign and malicious websites in the dataset

VoMBWeb Benign websites Malicious websites

Number of samples 1514919 35081

(%) 97.74% 2.26%

19

6 Preprocessing

This section explains the treatment and preprocessing of data samples parting from the
15 initial values proposed in the previous section. Since the dataset comprises extracted
data from a physical environment, the preprocessing must be meticulously designed to
extract the best information from the given data. We analyzed each of the 15 features
thoroughly and tested it before deciding on a certain technique.

The dataset contains eight numerical features (entropy, url len, url body len, url num args,
url path len, url letters len, url digits len and js len), two binary features (https and
label), and features that have categorical values or require specific treatment (ip addr,
url, continent, tld and content).

Firstly, the continent in which the web page is hosted is preprocessed (continent). The
parameter was converted to a one-hot encoding. A one-hot encoding consists in passing the
multiple choice feature into a table where each column represents a different categorical
value, hence, we created a new feature per existing continent. The column which continent
corresponds the sample will be marked as 1, otherwise the value is marked as 0. Thus,
after the continent preprocessing,it had six new binary features, one for each continent.

Next, the Top Level Domain (TLD) preprocessing was performed. Since more than 600
different values were computed, the preprocessing concentrated on the .com domain. The
.com domain constitutes a total of 60% of the final data. Consequently, it acts as a suitable
separator. Therefore, the feature was stored whether the TLD is .com or not. Conversing
thus, the feature to a binary option.

Both URL, IP and content features were deleted since they are thoroughly represented
in other features and do not give additional information. Furthermore, the IP was initially
converted into a binary sequence, and the model was trained with the parameter. How-
ever, the results showed less performance than without this feature. Additionally, as each
web page must be parsed differently, and no clear and helpful patterns were found, the
content feature was deleted during the preprocessing. Moreover, all numerical values were
normalized, and the binary parameters passed through a binary one-hot encoding. The
label was transformed using a binary one-hot encoding with a 1 value if it is considered
malicious (bad) and 0 if the website is considered benign (good). This process is depicted
in Figure 5.

All this preprocessing is applied to the training, testing and validation datasets. The
dataset has been divided into three sections:

• Training dataset with 1200000 samples

• Testing dataset with 350000 samples

• Validation dataset with 10000 samples

Having three distinct portions of datasets allowed us to train the model with a vast amount
of data. Then by test the model we assured the performance was the desired and that
there was no over or underfitting. Once the model was trained and ready, the model was
exported and saved. Next, the project validated the model by predicting the label of 10000

20

samples (containing 195 malicious samples). We then compared the obtained labels with
the expected ones and analyzed the outputs. Figure 6 shows a percentage representation
of the three datasets.

Figure 5: Preprocessing flowchart

Figure 6: Percentage representation of the three dataset partitions

21

7 Deep Learning application

Given the preprocessed dataset generated, we propose the implementation of a Fully
Connected Neural Network, specifically a Feed-Forward Neural Network (FFNN) depicted
in Figure 7.

Figure 7: Feed-Forward Neural Network representation

The reason behind choosing an FFNN is due to the significant connection between param-
eters. Having fully connected layers enables the network to perform complex relationships
between parameters, thus improving the detection capability of the system. Therefore, we
apply this NN to demonstrate the effectiveness of the proposal.

A FFNN is described using several design parameters that conform a model where the
training data is introduced. Additionally, the model’s algorithm is run for a number of
iterations or epochs. To avoid under or overfitting and to achieve good performance, the
model parameters must be carefully chosen. Therefore, the proposed architecture has an
input layer, three hidden layers and an output layer that uses the Sigmoid activation
function. Each layer uses an activation function and has several neurons. In our model,
the hidden layers use a Rectified Linear Unit (ReLU) activation function since they avoid
saturation and do not stop to shape the sample weights. The input layer has an input
size of 17 features. Furthermore, the first hidden layer has 64 neurons; the second layer
contracts the values to 32 neurons. Finally, the third hidden layer has 64 neurons.

The final parameters that define our Neural Network are the loss, optimizer and epochs (or
iterations). A Binary cross-entropy loss is used on the resulting vectors since it calculates
the prediction error in a binary measure, just as we need for our output. The optimizer
aims to sculpt the model into a precise form and to minimize the loss. We use Adam [18],
which achieves good performance in few epochs. Finally, the number of epochs is set to
10. Ten epochs is a good compromise between stability and over-training.

22

8 Experiments

To evaluate the model and the proposed architecture, we conducted several experiments.
First, we tested the correct implementation of the preprocessing by analyzing the corre-
lation between attributes, computing the correlation matrix. Additionally, we conducted
histograms for each feature and the label value to extract the dispersion of the parameters.
In the sample’s preprocessing, it is crucial that parameters can be easily distinguishable
by the network. Therefore, performing a histogram between each value and the label is vi-
tal to understand its separability. Moreover, attributes are interconnected in the dataset.
This interconnection can be seen in the feature correlation matrices. By performing these
experiments, we can decide the optimal NN use, its parameters and identify non-useful
attributes.

Second, to implement the NN depicted in the previous section, we started by implementing
different combinations of FFNNs. The number of hidden layers was decided according to
the dataset characteristics. In total, the dataset had an input of 17 attributes, meaning
that the number of training samples considerably exceeds the number of attributes. With
that in mind and the attributes dependency, we opted for medium-sized FFNN. Having
less hidden layers allows the model to have a minor abstraction of the features, and
having a more significant number of hidden layers allows the model to be over-complex.
Additionally, to decide the number of neurons of each hidden layer, we analyzed all the
possible combinations from 16 to 512 neurons (in powers of two), meaning that in total,

we ran 56 different FFNN (CR6
3 = (6+3−1)!

3!(8−3)!
= 56). Evaluating the network neurons in

powers of two allows us to cover a larger range of values.

Furthermore, we analyzed the most frequently used metrics: accuracy, loss, Area Under
the Curve (AUC), precision, recall, and f-score for these networks. These metrics allow us
to have an extensive analysis of the network’s performance.

Firstly, the accuracy is defined as the True Positives (TP) plus the True Negatives (TN)
divided by the sum of TP, TN, False Positives (FP) and False Negatives (FN). The
formula is represented in Equation 1.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Secondly, the defined loss is the binary cross-entropy loss which formula is represented in
Equation 2. Note that the y value represents the real output, whereas the ŷ represents
the output estimation.

Loss = −[y · log(ŷ) + (1 − y) · log(1 − ŷ)] (2)

Precision is defined as the TP, divided by the sum of the TP and the FP. The formula is
represented in Equation 3.

Precision =
TP

TP + FP
(3)

23

Then, the recall is defined as the TP divided by the sum of the TP and the FN. The
formula is defined in Equation 4.

Recall =
TP

TP + FN
(4)

Next, the f-score is described as a mixture of the precision and recall formulas to evaluate
the combined performance. F-score is defined as in Equation 5.

F-Score = 2 · Precision · Recall

Precision + Recall
(5)

Finally, AUC shows the performance of a classification model. It is determined as the area
that defines the ROC curve, which is the graphical representation of the True Positive
Rate (TPR) vs the False Positive Rate (FPR). The TPR is defined as in Equation 6, and
the FPR is defined as in Equation 7.

TPR =
TP

TP + FN
(6)

FPR =
FP

FP + TN
(7)

We also analyzed the metrics from the validation data to extract further conclusions.

In the experiments, we performed 20 iterations of the three best performing FFNNs to
ensure their stability. 20 iterations were chosen since it was crucial to assure the network’s
consistency. However, we did not want to over-charge the cloud server with redundant
calculations.

Moreover, another experiment to test the system was the time limitations and viability
study. The experiment consists of studying the detection intervals that each URL takes
to be analyzed and research the project’s viability based on its limitations.

To be able to execute the project, the system requires some programs installed. The end-
user will need a computer equipped with internet, a bash terminal, and Python3 installed
to execute the script. Python was the language used to execute the system since it is
the most used programming language to develop DL programs. It has a vast platform
and has extensive documentation and community. Moreover, the system has been created
using a MacBook Air computer with a Dual-Core Intel Core i5 and 8 GB of RAM. The
university’s cluster, Sert, was used (AMD EPYC 7101p at 2.80 GHz and 128 GB of RAM)
to filter the data. Besides, all the project is coded using Python and executed using Shell
scripts. Additionally, to create the blocking system Deep Learning has been used, using
Keras from TensorFlow. Finally, the project was preprocessed using the Python’s libraries,
Pandas and analyzed with Matplotlib and Sklearn to compute correlation matrixes and
graphics.

24

9 Results

The depicted sections above explained the final procedures that were performed to achieve
the definitive result. To decide the best procedures, the experiments explained in section
8 were conducted. This section shows the different results obtained from the experiments
executed and a performance discussion. The results section is divided into two different
parts: the processing results and plots and the FFNNs results and metrics.

9.1 Preprocessing results

To test the data preprocessing and its relevance in the dataset, we decided to conduct
several experiments. Firstly we parted from the Visualization of Malicious & Benign Web-
pages Dataset (VoMBWeb) [17] since it included some of the attributes that we wanted
to treat and was generated in a non-simulated environment. Considering that Keras from
TensorFlow needs as an input a tensor of NumPy arrays, we decided to convert the multi-
class attributes into a one-hot encoding, the IP was binarized, the webpage content was
deleted, and all arguments were normalized. Once this preprocessing was performed, we
observed some concerns with the dataset structure.

This dataset’s main issue was that once performed the correlation matrix (depicted in
Figure 20 at Annex A.3), the resulting values were very dispersed between the different
attributes. There, it could be observed that the IP did not give any additional information
since its correlation was nearly zero. Furthermore, treating each country independently
added more than 300 features and gave misguided directions to the DL model. However,
the main issue was that the dataset relied exclusively on the JS obfuscated length, meaning
that the FFNN only modelled its weights regarding that feature. Hence, the dataset was
severely modified to remove this dependency and add some relevant features that enable
the FFNN to train using all the available features.

From the original dataset, we decided to remove the JS obfuscated length, group the
country feature into continents (code depicted at Annex A.3) and treat the TLD dis-
tinguishing only by .com or otherwise. With this modification, the homogeneity in the
features’ correlation increased.

Since the URL is the only input received from the user, we decided to extract as many
attributes as possible. The main goal was to find the balance between extracting trainable
features and having unnecessary or misguiding information inserted to the NN. The final
decision was to include at least one attribute from each URL subdivision (the URL, the
protocol, the body, the TLD, the arguments and the parameters) as seen in Figure 8.

Figure 8: URL subdivisions

25

Additionally, we decided to add three more attributes that gave connections between the
URL attributes. Those features were the URL entropy (computed in Annex A.3), the
URL letters length and the URL letters and digits length.

Once all the preprocessing was done and transformed into numerical values, we performed
a final analysis of the dataset (code depicted at Annex A.3). First, each parameter is
compared with the label characteristic. The resulting histograms are shown in Figure 21
at Annex A.3. They provide the interconnection information and how to differentiate each
value.

In this figure, we can see malicious and benign values have a very distinguishable separa-
tion in some cases. These results indicate that the Neural Network should discern between
malign and benign websites easily during the classification performed in the FFNN.

We conducted another analysis to study the dependence and relevance of the parameters
that do not show a very distinguishable separation. A new correlation matrix was per-
formed with all the final preprocessed attributes. The correlation matrix can be seen in
Figure 9.

Figure 9: Preprocessed dataset parameter correlation matrix

26

If we look at the label column, we observe the most and least interconnected parameters.
The most correlated parameters are js len, https and who is, which contain a correlation
between 0.24 and 0.72, meaning that these parameters are crucial for detecting malicious
websites. The parameters, such as who is and https, which have negative correlation,
indicate an inverse proportion between the label and the selected parameter. All the
remaining attributes have at least some correlation with the matrix. They are highly
correlated with other parameters, which improves the FFNN since it is a type of NN that
relies mainly on feature interconnection and dependence.

Having performed this study, we believe that it is wise to use all the depicted parameters
for evaluation in the NN. Moreover, since the parameters are correlated between them,
and each column depends on other attributes, FFNNs are the best fit.

27

9.2 FFNN results

After preprocessing, we run the different combinations of the FFNNs. As commented
in the previous section, we conducted two sets of experiments in the Neural Networks.
The first set analyzed the performance of variations of several neurons in each layer and
the network’s depth. The second set consists of the repeated execution of the three best
performing FFNN and the performance evaluation.

To finalize the network topology, we had to decide the number of layers the FFNN would
have as the number of neurons in them. As stated in the previous section (section 8), three
hidden layers is a valid compromise between good performance and network complexity.
To prove it, we conducted three different FFNNs with a low count of neurons. The reason
behind having fewer neurons in each layer is that a higher neuron count adds extra
complexity to the FFNN. The number of layers is directly related to the number of
attributes we have (17 in total). Hence, we tried networks with 2, 3 and 4 layers. The
FFNN with two layers indicated low network complexity and a lack of resources in order
to be trained. The other two networks showed similar accuracy. Since having four layers
adds complexity and computation consumption to the network, it was decided to perform
the FFNN with three hidden layers. The results are shown in Table 3.

Table 3: Performance of three different FFNNs with different number of layers

Neurons Loss Accuracy AUC Precision Recall F-score

16 - 8 0.31% 98.98% 99.95% 99.63% 94.95% 97.22%

16 - 8 - 16 0.30% 99.88% 99.93% 100.00% 94.75% 97.30%

16 - 8 - 16 - 8 0.31% 99.88% 99.95% 99.92% 94.89% 97.34%

Once the number of layers was determined, we conducted 56 different combinations of
FFNNs to decide the best fit. When performed the FFNNs variations, we observed cer-
tain similarities between results. First, all the networks achieved high performance in all
metrics oscillating between 94.81% and 99.88%. These results indicate that the election
of an FFNN with the selected loss, optimizer, activation function and epochs is ideal.
The best performing networks have a minimum of 32 neurons in each layer and 64 or
more neurons in -at least- one of the layers. Table 4 shows the results for the three
best-performing networks. The results of these networks are very similar. Note that the
Neurons column represents the number of neurons inside each hidden layer, represented
as neurons hidden 1 - neurons hidden 2 - neurons hidden 3.

Table 4: Testing performance for the three best FFNNs with three layers and variation of
the amount neurons per layer

Neurons Loss Accuracy AUC Precision Recall F-score

64 - 32 - 64 0.30% 99.88% 99.95% 97.49% 97.38% 97.42%

32 - 64 - 32 0.47% 99.88% 99.79% 99.18% 95.33% 97.22%

128 - 64 - 32 0.46% 99.87% 99.75% 99.31% 94.81% 97.01%

28

The best performing network (and the one used in the system) is the first one (64-32-64)
since the loss decreases and f-score increases compared with other two, and it is the most
stable network with lesser differences between attributes than the others. Furthermore,
the network is relatively small, meaning that it is a computationally efficient network.

Figure 10 shows the mean of all the different metrics used for the best network when
executed a total of 20 times. The network achieves 99.88% of detection with the validation
data and only ten epochs, giving a high detection rate using little resources. As for the
AUC, the network achieves 99.95% in validation data. Indicating that the performance
of the classification model is almost 100%, thus demonstrating its effectiveness. The loss
value is less than 0.5% in all executions, meaning that the model does not have over
or underfitting. Besides, the f-score achieves 97.42% with the validation data. The f-
score helps us to understand the model’s combined performance. A high f-score reiterates
the network effectiveness showing high precision, recall, accuracy and performance in all
studied metrics. Consequently, the proposed system is very effective in detecting malicious
websites.

Finally, we compute the TP (True Positives), TN (True Negatives), FP (False Positives)
and FN (False Negatives) of the selected network. The TP represents the samples that
belong to a malicious website and is correctly classified. FN represents the samples that
belong to malicious websites that are wrongly classified. The sum of TP and FN denote all
the existing malicious websites. On the other hand, TN represents the benign samples that
are correctly classified, and FP the benign samples that are wrongly classified. Together
TN and FP denote all existing benign websites. The final goal of the system is to detect
all malicious websites without misclassifying any sample, which means that the network
has to minimize the FN rate. Table 5 shows the training and validation results of these
metrics after the tenth epoch. The results show that the FN rate in the validation data
is only 2.619%. In other words, only 205 of the 8062 malicious websites are erroneously
classified as benign. We can also observe that the FN rate decreases in the validation
phase. This decrease indicates that there is still room for improvement in the network
(e.g. adding more data and re-training the network).

Table 5: True Positive (TP), True Negative (TN), False Positive (FP) and False Negative
(FN) for the best performing network (64-32-64) with 10 epochs

Data TP TN FP FN

Training 25910 1172698 48 1343

(%) (95.070%) (99.999%) (0.001%) (4.930%)

Validation 7623 341977 196 205

(%) (97.381%) (99.994%) (0.006%) (2.619%)

As commented in the preprocessing section, the dataset was divided into three different
parts. The final testing of the system consists of passing through the trained network the
validation datasets (containing 10000 samples). The final analysis results show a total
number of wrongly classified malicious websites (a total of 1.026 %) and an accuracy

29

of 99.75 %. These results show a clear identification and classification of malicious web-
sites. Overall, these outcomes demonstrate the effectiveness of our system since almost all
malicious websites will be filtered, and they will not penetrate the system.

(a) Accuracy results (b) AUC results

(c) Recall results (d) Precision results

(e) F-Score results

Figure 10: Mean performance for the best operating FFNN (64-32-64) in 20 iterations

30

10 Interface

For the final classification phase, a user-friendly interface has been computed. The in-
terface aims to test the project’s performance and is intended to be easy to operate and
engaging, assuring its usability. Hence, it is designed to be adapted into a chrome extension
that ensures a safe navigation through the web.

The interface was created with a Python Library (TKinter) and was developed to be
customer friendly. Also, it has been developed using the Model View Controller (MVC)
pattern. The interface employs this pattern to construct two different views: the initial
view and the outcome view.

In the initial view, represented in Figure 11, a welcome message and a URL input box
are shown to the user. Moreover, once the user inserts the URL, the system analyzes the
URL, and the interface adds a waiting indicator. This indicator aims to give the user an
advancing sensation.

Figure 11: Initial interface view

Finally, the output is displayed with an explanatory text at the end. The system can
show four different outcomes: good, bad, suspicious and unreachable URL. A good URL
is one that the prediction returned a value between 0 and 0.2. A bad URL is one that
the prediction returned a value between 0.8 and 1. A suspicious URL is one that the
prediction returned a value between 0.2 and 0.8. Finally, an unreachable output means
that the URL was wrongly written or the URL was not found browsing the internet. This
system is represented in Figure 12.

To create this software, some scripts have been made. Firstly, the trained model from the
first block of the project was saved. Secondly, a file containing the URL preprocessing
(computed as in the validation phase) has been used. Thus, the URL from the interface
is preprocessed, extracting the necessary data to compute all the needed features, and
passed through a prediction method. The prediction method passes the preprocessed
sample through the model and returns a prediction of the output. Moreover, since the
project aims to be as quick, accurate and efficient as possible, a database containing all the

31

Figure 12: Output interface view

1550000 samples has been introduced. Introducing the database reduces the computation
time to a fifth portion of the initial time (as explained in the following section).

Overall, the system shows an initial view that enables the users to input their URL. This
URL is passed through preprocessing and the saved model to compute a prediction. The
output can vary depending on the prediction performed and the entered URL, and it can
have four values: good, bad, suspicious and unreachable.

32

11 Time limitations and viability

Once the system is computed and working, some time calculations are performed to
assure the user viability of the program. The system must be quick and efficient, being
fast enough to avoid exhausting the user’s patience. Hence, once the system is initialized
(14 seconds), each URL is treated and classified. This classification takes some time to be
performed, and it is the case of our study. Thus, some URLs computing time was analyzed
to research if users’ waiting time will be acceptable. Two different types of URLs were
executed. Firstly, 25 URLs inside the central database, and then another 25 URLs external
to the database. The database acts as a URL cache and returns an already preprocessed
sample, therefore, reducing the waiting time.

Figure 13 plots the different times that each URL takes. Several observations can be
extracted from the graphics. Firstly, it is observed that the mean execution times are 0.37
seconds for the URLs already stored in the database and 2.53 seconds for the URLs that
were not stored in the database. According to Fiona Fui-Hoon Nah [19], users expect a
response in about 2 seconds for simple information retrieval tasks on the web and marks 4
seconds the maximum waiting time a user takes before feeling discomfort. The conducted
study was performed with different waiting times and concluded that a 2-seconds response
is needed to ensure continuous interactions.

Figure 13: Time performances of URLs extracted from the internet or the database

Furthermore, Jakob Nielsen [20] performed a study of the user’s behaviour during the
last thirty years and gave three basic rules to assure a user keeps its attention on the
desired website. The article gives three precepts: firstly, that 0.1 seconds marks the limit
to making a user feel like a system is working instantaneously. Secondly, that 1 second
is about the limit to assure the user’s navigation flow remains uninterrupted. Thirdly, 10
seconds marks the limit for keeping the user’s attention. In this project, since the largest
mean execution time is 2.53 seconds, the system surpasses neither the 10-second limit nor
the 4-second limit. Hence, the system is suitable to keep the user’s attention and perform
smoothly.

33

It can be observed that in the case that the URL’s content is already stored in a database
decreases in more than 2 seconds the computation time. Hence, storing the most frequent
and used URLs in the database is recommended.

Additionally, in Figure 13, some peaks are shown. These peaks represent delays in some
websites since the computation time of each URL varies. Nevertheless, 94% of executions
finish before the 4-second limit, and 100% of executions finish before the 10-second limit,
making the system moderately constant in their time measures and satisfactory to the
final user.

34

12 Budget

The proposed project is mainly a software research project. There is only needed a sin-
gle junior engineer with previous Python, TensorFlow, and Artificial Intelligence skills
to elaborate the system. Furthermore, the engineer must be provided with a computer,
internet connection, a cloud environment to compute the experiments, and free software
and tools.

Firstly, the junior engineer cost yearly is 26200AC for full working days. That is to say,
a mean salary of 12.6AC/h. Thus, the total engineer expense for four months (480h) is
6048ACand adding the company taxes (34%), the final expense sums up to 8104AC. Since
the employee works remotely, there are no indirect expenses related to the housing or
supplies (water and light) except the internet connection.

Secondly, an internet connection during 4 months is needed. The monthly cost of a
600Mbps internet connection is 30AC/month. Thus, having a total cost of 120AC.

Thirdly, the needed computer has a total cost of 950AC, with a lifetime period of 4 years
and a residual value of 250AC. The depreciation value is calculated as Depreciation =
asset cost−residual value

useful life
. Furthermore, with a depreciation value of 175AC/year, the total com-

puter cost for 4 months is 58AC.

Additionally, a Cloud environment must be hired since the computation needs to perform
the dataset and train the network cannot be done with the provided computer. Further-
more, having an external system provides efficiency and assures the programmer fewer
blackouts.

The need of the Cloud environment is distributed in the dataset generation, the prepro-
cessing generation and the network training. For the dataset generation, a total of 4 days
(96h) of computation time with 8 different processes and 32Gb of RAM were needed.
Additionally, we performed 56 different network combinations for the network testing and
generation, and the three best performing ones were repeated 20 times. Each network
has a mean computation time of 2h, meaning that the total hour estimation of Cloud
computing is 56 · 2 + 20 · 3 · 2 = 232h with the same computing specifications as for the
dataset.

Hence, considering the dataset computation and the network training, a total of 328h
of Cloud computing are needed. The mean estimation cost for one Debian node with 8
vCPUs, 32Gb of RAM and 50Gb of storage SSD of Amazon Web Services and Google
Cloud Computing is 161AC/month (720h). Leaving a 20% margin for unforeseen events, a
total of 394h of computation are needed. That is to say an estimation of approximately
88AC of Cloud computing costs.

Finally, the software and tools must be computed. Since the project has been developed
with free tools and software supplies, there is no added cost. Overall, all the costs are
summarized in Table 6.

35

Table 6: Total budget estimation of the project’s direct and indirect costs

Concept Time Price Amount

Engineer salary 480h 12.6AC/h 8104AC

Internet connection 4 months 30AC/month 120AC

Computer 4 months 175AC/year 58AC

Cloud environment 394h 161AC/720h 88AC

Software and tools 4 months 0AC/month 0AC

Total 8370AC

36

13 Sustainability

The project aims to minimize the negative impact that the system causes and be the most
sustainable as possible. To achieve maximum sustainability, a study of the project’s social
impact, economic impact, and environmental impact has been made.

13.1 Social impact

The social impact represents the influence that the system has on society. In our project,
the social impact is the most crucial and influential of the sustainability analysis. The
project aims to develop software capable of detecting malicious activity, enabling the
users’ comfort and trust while navigating through their browser.

Nowadays, the internet is plagued with cybercriminals that use malicious websites to
scatter attacks across the web. Their aim is to take advantage of the browsers’ different
vulnerabilities and install malicious content to control and access the user’s computer.
Hence, the final user’s data protection is essential since giving users private browsing
maintaining their information secure produces a beneficial impact in society. Besides,
fewer website attackers will profit from people allowing less cybercrime on the internet.

Furthermore, by using non-simulated data, the system can be updated and re-nourished,
enabling it to be improved. The used techniques allow research to evolve in the develop-
ment of Artificial Intelligence, such as taking this project as a reference for future studies.

13.2 Economic impact

The primary purpose of malicious websites is to promote mainly frauds and scams. By
entering a malicious website, the attacker can insert numerous types of malicious content,
such as ransomware, trojans or viruses, that can compromise the user’s computer as its
information. Furthermore, if the malware is installed in a company’s computer with a
shared network, this network could be hacked. Thus, a single URL can cause computer
catastrophes. The possible damage is so severe that one of the biggest threats of the digital
world is considered malicious sites.

The system’s economic impact can result in being of great importance. Firstly, since
the software restricts a user from entering a malicious website, it prevents viruses from
entering different devices. The lack of malicious content inserted into computers saves
considerable money to users who will not have to buy another computer ahead of time.

Additionally, some of the hacked users are requested money in exchange for their stolen
information; having a system that prevents this hacking from happening allows users to
save considerable money. Nevertheless, the system uses Cloud servers to compute some of
their calculations and a computer that the engineer must use. Nonetheless, the economic
loss that the company has by using this hardware is much less than the one saved by all
the benefactors of the system (the end-users).

37

13.3 Environmental impact

If a system gets infected by website malware, it could lead to a computer malfunctioning
or scamming. These are two factors that could drive a negative environmental impact.

Nonetheless, the system reduces the malfunctioning computers due to malware prevention
and saves them from going to waste before they have reached total capacity. Additionally,
the system prevents attackers from downloading the user’s private information preventing
them from swindling or blackmailing. Also, since the study is only composed of software,
no environmental damage must be introduced to our ecosystem.

In conclusion, the study is highly sustainable since it allows advancement in society,
withdrawing a constant threat such as malicious website activity while allowing research to
progress. Furthermore, the hardware saving by the end-user highly exceeds the hardware
used by the engineer to develop the project. Finally, the project is constituted entirely by
software, meaning no damage to the ecosystem must be introduced.

38

14 Conclusions and Future work

Malicious URL detection plays a critical role for many cybersecurity applications, and
clearly, Machine Learning approaches are a promising direction. The importance of this
detection remains in assuring the user a safe browsing, blocking the non-desired content.
In this project, we conducted a study on Malicious URL Detection using DL techniques. In
particular, we offered a comparison between existing technologies (research or commercial
wise) and our approach. Additionally, the proposed system evaluates the website’s features
and classifies them by preprocessing and entering them in a previously trained DL model.

We reformated the Visualisation of Malicious & Benign Web-pages Dataset (VoMB-
Web) [17] and extracted basic features of existing websites (malicious and benign) to
conduct the study. We measured the dispersion and correlation between the features to
observe the label separability and the feature interconnections. The preprocessing results
showed the unnecessary features, which were deleted to lower the burden of the NN.

Moreover, we proposed an FFNN to compute the classification of the labels. After studying
different variations of an FFNN and conducting several experiments, we conclude that
our network can discern malicious from benign websites efficiently and effectively. The
proposed mechanism achieves a 99.88% accuracy, 99.95% AUC, 97.49% precision, 97.38%
recall and 97.42% f-score. Furthermore, the proposed NN only incorrectly classifies 2.619%
of the malicious websites. This slight inaccuracy is due to the complexity of identifying
all possible patterns out of malicious content.

Additionally, a validation process was performed, which consisted of entering into the
model 10000 unseen samples and evaluating its results. The validation results showed
only a 1.026% of inaccuracy in wrongly classified malicious websites, thus decreasing the
error. Then, the trained NN and the sample designed preprocessing were entered into a
user-friendly interface. The user can enter a URL in the interface, and the system will
return its prediction output (malicious or benign).

Finally, time consumption and user engagement were studied to assure the product’s
engagement. Results showed a maximum mean waiting time of 2.53 seconds, which, ac-
cording to the previously mentioned studies, meets the 4-second limit, reaffirming the
system’s user engagement.

Therefore, the project’s main contributions are an interface capable of detecting if a
provided URL is malicious or benign. The interface has a model which is trained with
DL techniques and a dataset generated from non-simulated samples. Furthermore, the
FFNN and data preprocessing were optimized to achieve maximum accuracy. Besides,
the system’s results are shown to be beneficial and viable to apply.

As future works, the system can be improved by adding more data and re-training the
network. Moreover, the NN could be adapted to be automatically updated. An automati-
zation would mean that the NN would improve with every NN search and add new features
into the model. Additionally, the execution times could be reduced to give the users the
illusion that the system works instantaneously. Another improvement could be that the
system detects the type of attack that the malicious URL has. Finally, the interface could
be converted into a Google Chrome extension for easy access and application.

39

A Annex

A.1 Extended work plans

In this section the different updates in the work packages of the project are described.
You can find them inserted below.

Figure 14: Research work package

Figure 15: Data treatment work package

40

Figure 16: Deep Learning Neural Network implementation work package

Figure 17: System validation work package

41

Figure 18: Interface creation work package

Figure 19: Analysis work package

42

A.2 Related works comparison table

Table 7: Performance of the related works and comparison with this project

Work Publication Dataset ML Used Maximum

reference year or/and DL algorithm Accuracy

[5] 2018 Own
compilation

ML and DL FFNN
and SVM

97.2%

[3] 2012 From
blacklists

and campus
information

ML SVM and
RBM

85.7%

[6] 2019 ISCX-URL-
2016 data

DL LSTM
and CNN

98.86%
(with CNN)

[4] 2020 Own
compilation

ML SVM
and RF

99.7%
(with RF)

[7] 2020 ISCX-URL-
2016 data

DL and ML Fast.ia,
Keras and
Random

Forest (RF)

97.55%
(with RF)

This project 2021 modification
of the

VoMBWeb
dataset

DL FFNN 99.88%

43

A.3 Preprocessing results

In Figure 20 we can see the correlation matrix between the initial features given by
the VoMBWeb Dataset. As comented in section 9 the network depended almost entirely
in the length of the JS obfuscated web content. Note that in the attributes of the IP, TLD
and continent only one variation is shown for demonstration purposes.

Figure 20: Correlation matrix of the initial dataset

44

The following code depicts the URL entropy computation.

import math

Entropy computation
def get ent ropy (row) :

s t r i n g = row . u r l . s t r i p ()
prob = [f loat (s t r i n g . count (c)) / len (s t r i n g) for c in dict .

fromkeys (l i s t (s t r i n g))]
entropy = sum ([(p ∗ math . l og (p) / math . l og (2 . 0)) for p in

prob])
return entropy

df [’ entropy ’] = df . apply (get entropy , a x i s =1)

The following code represents the computation of the continent and the feature one-hot
encoding functions.

import pandas as pd
import numpy as np

Convert a c a t e g o r i c a l v a l u e to ONE−HOT
def to one hot (df , c o l : str , exc lude : set=None) :

i f exc lude i s None :
exc lude = set ()

cs = set (df [c o l])
for c in cs − exc lude :

df [c . lower ()] = df [c o l] == c
df [c . lower ()] = df [c . lower ()] . astype (int)

del df [c o l]

Convert a b inary v a l u e to ONE−HOT
def to num (df , new name : str , col name : str , va lue : str) :

d f [new name] = df [col name] == value
df [new name] = df [new name] . astype (int)

As we can observe there are two functions of one-hot encoding. The first one is to transform
multi-class features (more than two values), whereas the second function transforms binary
features into one-hot.

45

The continent code is depicted below.

from pycountry convert import coun t ry a lpha2 to con t in en t code
from i p 2 g e o t o o l s . databases . noncommercial import DbIpCity

def country2cont inent (s e l f , country) :
i f country != ’Unknown ’ :

return coun t ry a lpha2 to con t in en t code (country)
return country

def g e t c o n t i n e n t (s e l f) :
r e sponse = DbIpCity . get (s e l f . ip , ap i key=’ f r e e ’)
return s e l f . country2cont inent (re sponse . country)

As we can observe firstly the function gets the city associated with the IP address and
then converts the obtained country to a continent.

46

In Figure 21, we can observe the preprocessing results histograms between the
dataset’s features and we differentiate two colors. The blue color represents the benign
label, whereas the orange color represents the malicious label. Each feature is plotted with
the label attribute and its dispersion.

Figure 21: Preprocessed dataset parameter histograms

47

References

[1] CISCO. What is a firewall?, 2021.

[2] Santiago Ramos, Daniele Sartiano, and Abu Syeed Sajid Ahmed. Awesome-
cybersecurity-datasets, 2021.

[3] Daiki Chiba, Kazuhiro Tobe, Tatsuya Mori, and Shigeki Goto. Detecting malicious
websites by learning IP address features. In Applications and the Internet (SAINT),
2012 IEEE/IPSJ 12th International Symposium on, pages 29–39, 2012.

[4] Cho Xuan, Hoa Dinh, and Tisenko Victor. Malicious url detection based on machine
learning. International Journal of Advanced Computer Science and Applications, 11,
01 2020.

[5] Joshua Saxe, Richard Harang, Cody Wild, and Hillary Sanders. A deep learning
approach to fast, format-agnostic detection of malicious web content, 2018.

[6] Emine Uçar, Murat Ucar, and Mürsel İncetaş. A deep learning approach for detection
of malicious urls. In International Management Information Systems Conference,
2019.

[7] Clayton Johnson, Bishal Khadka Ram B. Basnet, and Tenzin Doleck. Towards de-
tecting and classifying malicious urls using deep learning. Journal of Wireless Mobile
Networks, Ubiquitous Computing, and Dependable Applications (JoWUA), 2020.

[8] Doyen Sahoo, Chenghao Liu, and Steven C. H. Hoi. Malicious URL detection using
machine learning: A survey, 2019.

[9] Google. Chrome enterprise. https://chromeenterprise.google/, 2021. [Online;
accessed 2-June-2021].

[10] WinTools. Wintools url blocker. https://www.wintools.info/index.php/

url-blocker, 2021. [Online; accessed 2-June-2021].

[11] DNS Filter Company. DNS filter. https://www.dnsfilter.com/, 2021. [Online;
accessed 2-June-2021].

[12] CloudFlare. Cloudflare gateway. https://www.cloudflare.com/, 2021. [Online;
accessed 2-June-2021].

[13] CISCO. Cisco umbrella. https://www.cisco.com/c/en/us/products/security/

umbrella/index.html, 2021. [Online; accessed 2-June-2021].

[14] TITAN HQ. Web TITAN. https://www.webtitan.com/webtitan-cloud/, 2021.
[Online; accessed 2-June-2021].

[15] McAfee. Mcafee web gateway cloud service. https://www.mcafee.com/enterprise/
en-gb/products/web-gateway-cloud-service.html?AID=11552066&PID=

6361382&SID=trd-es-1177665543907469300, 2021. [Online; accessed 2-June-
2021].

48

https://chromeenterprise.google/
https://www.wintools.info/index.php/url-blocker
https://www.wintools.info/index.php/url-blocker
https://www.dnsfilter.com/
https://www.cloudflare.com/
https://www.cisco.com/c/en/us/products/security/umbrella/index.html
https://www.cisco.com/c/en/us/products/security/umbrella/index.html
https://www.webtitan.com/webtitan-cloud/
https://www.mcafee.com/enterprise/en-gb/products/web-gateway-cloud-service.html?AID=11552066&PID=6361382&SID=trd-es-1177665543907469300
https://www.mcafee.com/enterprise/en-gb/products/web-gateway-cloud-service.html?AID=11552066&PID=6361382&SID=trd-es-1177665543907469300
https://www.mcafee.com/enterprise/en-gb/products/web-gateway-cloud-service.html?AID=11552066&PID=6361382&SID=trd-es-1177665543907469300

[16] Untangle. Ng firewall complete. https://www.untangle.com/shop/

NG-Firewall-Complete/, 2021. [Online; accessed 2-June-2021].

[17] Amit Kumar Singh. Dataset of malicious and benign webpages, 2020.

[18] TensorFlow. tf.keras.optimizers.adam, 2020.

[19] Fiona Nah. A study on tolerable waiting time: How long are web users willing to
wait? volume 23, page 285, 01 2003.

[20] Jakob Nielsen. Usability Engineering. Nielsen Norman Group, 1993.

49

https://www.untangle.com/shop/NG-Firewall-Complete/
https://www.untangle.com/shop/NG-Firewall-Complete/

	List of Figures
	List of Tables
	Introduction and Statement of purpose
	Context and problem definition
	Methods and procedures

	Work plan
	State of the art
	Related work
	Related commercial products

	Dataset
	Preprocessing
	Deep Learning application
	Experiments
	Results
	Preprocessing results
	FFNN results

	Interface
	Time limitations and viability
	Budget
	Sustainability
	Social impact
	Economic impact
	Environmental impact

	Conclusions and Future work
	Annex
	Extended work plans
	Related works comparison table
	Preprocessing results

	References

