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3)Departament de F́ısica, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès,
Spain

(Dated: 25 August 2021)

We have found a way for penetrating the space of the dynamical systems towards systems of arbitrary dimen-
sion exhibiting the nonlinear mixing of a large number of oscillation modes through which extraordinarily
complex time evolutions may arise. The system design is based on assuring the occurrence of a number of
Hopf bifurcations in a set of fixed points of a relatively generic system of ordinary differential equations, in
which the main peculiarity is that the nonlinearities appear through functions of a linear combination of the
system variables. The paper outlines the design procedure and presents a selection of numerical simulations
with a variety of designed systems whose dynamical behaviors are really rich and full of unknown features. For
concreteness, the presentation is focused to illustrating the oscillatory mixing effects on the periodic orbits,
through which the harmonic oscillation born in a Hopf bifurcation becomes successively enriched with the in-
termittent incorporation of other oscillation modes of higher frequencies while the orbit remains periodic and
without necessity of bifurcating instabilities. Even in the absence of a proper mathematical theory covering
the nonlinear mixing mechanisms we find enough evidence to expect that the oscillatory scenario be truly
scalable concerning the phase space dimension, the multiplicity of involved fixed points and the range of time
scales, so that extremely complex but ordered dynamical behaviors could be sustained through it.

PACS numbers: 05.45.-a, 05.45.Xt, 47.27.De

The intuitively convincing idea that complex os-
cillations may be achieved by combining more
and more oscillations of different frequencies, like
for instance the sequence of oscillatory instabil-
ities generating quasiperiodic states of succes-
sively higher order proposed by Landau to tenta-
tively explain the transition to turbulence,1 has
not found a definite way in the mainstream of
nonlinear dynamics and to date there is no es-
tablished mechanism sustaining a so wide kind of
oscillatory combination in autonomous systems.
The problem extends beyond the onset of turbu-
lence since the natural world is full of things ex-
hibiting rather complex dynamical activities that
denote the coordinated interplay of large num-
bers of degrees of freedom into the time evolu-
tion of the whole, often showing recurrence and
involving a disparate range of time scales, and
whose tentative explanation in light of nonlin-
ear dynamics would necessarily require some kind
of highly scalable mechanism that, on the other
hand, seems difficult to be not based on com-
bining oscillations. Our work is devoted to en-
lighten the possibilities of the dynamical systems
at this respect, as motivated by the experimen-
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tal observation of an alternative kind of oscilla-
tory combination permitting the incorporation of
successive modes in a so robust manner that sug-
gest a generic kind of dynamical scenario,2 and
we now present additional steps towards verify-
ing the scalable possibilities of this scenario.

I. INTRODUCTION

The work deals with a kind of dynamical scenario
whose appropriate unfolding allows for the participation
of successive oscillation modes into the system behav-
ior and whose features suggest significant scalable pos-
sibilities. In the optimum development of this scenario,
that we named generalized Landau scenario, each one
of a set of fixed points partaking in the same basin of
attraction undergoes successive Hopf bifurcations up to
exhaust its stable manifold and the resulting oscillation
modes participate in nonlinear mechanisms of mode mix-
ing through which the faster ones combine within the
slower ones and, in particular, most of them manifest to-
gether but intermittently in the time evolution of the at-
tractor. The oscillation modes appear with well-defined
frequency and phase-space orientation everywhere their
influence is manifested, each one denoting in this way a
clear association with a given dynamical activity of the
system variables. Thus, the scenario phase portraits il-
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lustrate how an autonomous system is able to sustain an
organized assemblage of dynamical activities by articu-
lating their interactive conjunction into the whole func-
tioning.

The complex oscillations of the generalized Landau
scenario were experimentally discovered with a family
of physical devices of successively increasing dynamical
dimension (up to 6)2–4 and numerically demonstrated
with related mathematical models,5–7 in which the sce-
nario develops in its simplest form by involving a saddle-
node pair of fixed points only. The scenario possibilities
through larger sets of fixed points were tentatively pre-
dicted from generic considerations on the presumably in-
volved mechanisms.8 In this paper we introduce a family
of systems of differential equations of arbitrary dimen-
sion admitting to be designed such that they are able to
develop the oscillatory scenario over an arbitrarily large
number of fixed points, and their behavior is illustrated
with some numerical examples dealing with sets of four
fixed points.

Although introduced twenty years ago,2,7 the general-
ized Landau scenario and its most significant feature, the
nonlinear oscillatory mixing, remain practically unknown
in the field and we find here necessary to put them into
context. The Landau’s proposal1 tentatively relating the
onset of turbulence to a succession of oscillatory instabil-
ities was qualitatively argued by using the nonlinearities
to stabilize each one of the new quasiperiodic states, and
a similar reasoning mathematically more elaborated was
later presented by Hopf,9 in both cases with the aim of
achieving complex time evolutions of broad enough spec-
trum. Nevertheless a so long quasiperiodic sequence has
not been observed in any concrete system and, on the
other hand, some theorems were established10,11 show-
ing that, after three of such instabilities small pertur-
bations of the quasiperiodic state may create a chaotic
attractor12. At that time the association of turbulence
with chaos became popular but the multiplicity of spa-
tiotemporal scales in turbulent flows requires more than a
few instabilities. Fluid physics researchers analyzing the
role of coherent structures in the turbulent transition of a
variety of flows have numerically shown the coexistence of
multiple equilibria and a large variety of periodic orbits,
most of them saddles, by characterizing their spatial and
spatiotemporal patterns, respectively, and the dominant
description of the turbulent state is a wandering trajec-
tory with close passages to such periodic orbits, although
a definite explanation about its origin and development
is lacking (see, e.g., Refs. 13 and 14).

In dissipative systems a quasiperiodic sequence implies
a succession of torus bifurcations, each requiring some
conditions, and, in light of the bifurcation theory, a po-
tentially proper circumstance for a long sequence is a
fixed point having done or being near to do a large num-
ber of Hopf bifurcations in different planes of a high-
dimensional phase space. This is so because, in the space
of the dynamical systems, the major source of torus bi-
furcations lies on systems with a fixed point experienc-

ing several Hopf bifurcations simultaneously (see, e.g.,
Ref. 15), with the peculiarity that the new frequencies
are usually determined by those of the fixed point bifur-
cations. Such a proper circumstance is the one consid-
ered for the theorems of Ref. 10 and it may be achieved
by dealing with sets of weakly coupled oscillators, each
one near enough to its Hopf bifurcation, where, in addi-
tion to the occurrence of chaos, quasiperiodic sequences
of order higher than three have been also numerically
demonstrated in appropriately chosen parameter space
domains near enough to the multiple Hopf bifurcation.
For instance, Ref. 16 describes a sequence up to a five-
frequency torus in a network of five oscillators when de-
creasing their coupling towards vanishing. The sequence
starts from the stable periodic orbit associated with the
first Hopf bifurcation of the fixed point and is character-
ized through the Lyapunov exponents of the consequent
attractors. As it is usual in studies of coupled oscillators,
what happens to the other, non-stable, periodic orbits is
not considered. Another relevant feature is that the oscil-
lators are such that their Hopf bifurcations occur ordered
in frequency from the highest to the lowest and then the
observed quasiperiodic sequence also proceeds ordered in
frequency from the highest one, suggesting such a kind
of order as appropriate for the sequence success. In any
case, the ubiquity and robustness of turbulence are in
strong contrast with the restricted and critical occurrence
of quasiperiodic sequences.

Our method of design just tries to achieve systems with
the mentioned proper circumstance not in one but in a set
of fixed points sharing in a basin of attraction and it has
allowed us to systematically analyze the behavior of all
the periodic orbits, either initially stable or not, in a large
number of systems, although always of the designable
kind and by considering different enough frequencies to
facilitate their distinction. Two main conclusions are:8,17

• The torus bifurcations, when happen, always occur
with a lower frequency than that of the bifurcating
periodic orbit and the involved frequency is always
almost equal to one of the fixed point bifurcations.
If the number of bifurcations of a given fixed point
is higher than two, the periodic orbits of higher fre-
quency can experience successive torus bifurcations
with the different lower frequencies (see, e.g. Fig.
2 of Ref. 17) and higher-order tori may be also ex-
pected. Nevertheless, the two-frequency limit sets
associated with the two-tori have not been located
and the possible occurrence of higher-order torus
bifurcations remains then unknown, as well as that
of the Ruelle-Takens chaos, but we can say that
the occurrence of the first torus bifurcation is not
general and becomes more rare with increasing the
number of fixed points, as it may be appreciated in
the numerical results of this paper.

• By contrast, the periodic orbits usually incorporate
localized influences of the higher-frequency oscilla-
tions associated with other periodic orbits and this
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happens at the level of each fixed point and also
among the different fixed points of the attraction
basin. We introduced the name of nonlinear oscil-
latory mixing to describe such a kind of oscillatory
combination and, although a proper mathematical
theory covering it is even lacking, our numerical
experience clearly indicates that the mixing mecha-
nism is simply based on the intertwine of oscillatory
motions on the phase space trajectories, affecting
the periodic orbits themselves but also extended
phase space regions, and occurs without requiring
any bifurcation of the periodic orbits. Unlike the
quasiperiodic combination, the new kind of oscilla-
tory mixing is essentially nonlinear, being difficult
to imagine a linear approach to it,18 and rather ro-
bust since it is smoothly affected by varying any of
the involved parameters.

Thus, the generalized Landau scenario is essentially
based on the nonlinear oscillatory mixing of the oscilla-
tion modes emerged from the set of fixed points, with the
possible contribution of the torus bifurcations that, with-
out introducing new modes, would provide additional
ways of oscillatory combination. Its scalability degree
and to what extent it is generic under the condition of
a set of fixed points doing Hopf bifurcations remain to
be clarified, but we don’t know an alternative way to
achieve in autonomous systems the effective combination
of a so large number of oscillation modes. Of course, its
potential relation to the onset of turbulence19 requires to
verifying its occurrence with the Navier-Stokes equation,
which has not been done, but it is for now appealing to
consider the spatiotemporal pattern of a periodic orbit of
a fluid flow while its associated harmonic oscillation is in-
corporating a variety of intermittent and phase-space lo-
calized contributions of faster modes, ones within others
and each one with the spatiotemporal pattern of the cor-
responding periodic orbit, up to visualize something that
qualitatively evokes the nested network of spatiotempo-
ral structures of turbulence.

It is worth stressing that, even if inspired by the de-
vices with which the oscillatory scenario was discovered,
the considered system of differential equations has been
built with the aim of achieving appropriate designable
systems under enough control, independently of any ten-
tative modeling. Although we have tried to maintain
the maximum generality, the achievement of such a con-
trol has required some restriction in the couplings among
variables possibly implying efficiency losses in the oscil-
latory mixing mechanisms. The design procedure ends
with a problem of solving a polynomial system that im-
plies a technical limit in the achievement of designed sys-
tems, essentially affecting the number of imposed Hopf
bifurcations. Nevertheless, we think that the approach
allowed us to penetrating the space of dynamical sys-
tems towards suitable systems for illustrating how the
basic features of the generalized Landau scenario around
a saddle-node pair extend to larger sets of fixed points in
a robust manner and for indicating in this way its scala-

bility possibilities. After describing the structure of the
system of equations and characterizing its steady-state
solution, we briefly outline the procedure for determin-
ing the coefficients with which the equations yield the
unfolding of the oscillatory scenario when varying the
control parameters and, finally, the numerical examples
are presented.

II. DESIGNABLE SYSTEMS WITH AN
m-DIRECTIONAL NONLINEAR VECTOR FIELD

A very general description of N -dimensional systems
is

ż = Az +

m∑
j=1

bjfj(z, µ) , (1)

where z ∈ <N is the vector state, A is a constant N×N
matrix, bj are constant N -vectors, fj are scalar-valued
functions nonlinear in z, µ describes constant parame-
ters involved in the nonlinear functions, and the m ≤ N
components bjfj are linearly independent. The multi-
directionality m of the nonlinear part of the vector field
generically determines the topological structure of the
potential sets of fixed points. In effect, it is generically
possible to choose a new basis including the bj and with
the rest of vectors, aj , j = m+ 1, .., N , orthogonal to all
the bj . By projecting the equilibrium condition, ż = 0,
onto the vectors aj we obtain

ajAz = 0, j = m+ 1,m+ 2, . . . , N , (2)

that define a set of (N -1)-dimensional hyperplanes pass-
ing through the origin. If A is non-singular, the normal
vectors ajA are linearly independent and the intersec-
tion of the (N − m) hyperplanes of Eq. (2) reduces to
an m-dimensional linear subspace, within which the po-
tential fixed points should stay. The actually existing
fixed points are determined by the m projections of the
equilibrium condition onto the vectors bj and, under opti-
mum nonlinearities, they may extend like m-dimensional
arrays so that a basin of attraction may include up to
3m − 1 saddle points on the separatrix, in addition to
the attracting point.8 The design of systems with m = 1
has been reported in a previous work7 and the method
is now extended to arbitrary m values. For this purpose,
the generic system (1) should be particularized in differ-
ent ways.

Firstly, the generality of (1) is restricted by as-
suming N ≥ 2m and the m-dimensional sub-
space of the fixed points contained within the span
of the aj , so that we can choose a basis like
(b1, .., bm, am+1, .., aN−m, eN−m+1, .., eN ), where the ej
describe the subspace of the fixed points. In a basis like
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this, the equations may be written as

ẋj =

N∑
q=1

cj,q xq + fj(xq, µ), j = 1, 2, ..,m ,

ẋj =

N−m∑
q=1

cj,q xq, j = m+ 1,m+ 2, .., N , (3)

where the xj are the components of the new vector state.
Each equation of the first group contains one and only
one of the nonlinear functions and the absence of the m
variables xq>N−m in the right-hand side of the second
group implies that the fixed points have the variables
xq≤N−m equal to zero, provided the corresponding ma-
trix of cj,q coefficients should be non-singular.

Another restriction is done by reducing the presence of
the m variables xq>N−m in the first group of equations
to only one of them in each equation as follows

ẋj =

N−m∑
q=1

cj,q xq + cj,N−m+j xN−m+j + fj(xq≤N−m, xN−m+j , µ), j = 1, 2, ..,m ,

ẋj =

N−m∑
q=1

cj,q xq, j = m+ 1,m+ 2, .., N . (4)

This restriction makes the equilibrium solution of each
one of the variables xq>N−m independent of those of the
others. It means that the one-dimensional bifurcations
leading to the appearance/disappearance of fixed points
within the m-dimensional subspace should happen just
along the ej directions in the linear regime. It means also
that a bifurcation creating new solutions along a given di-
rection will usually produce a multiplicity of fixed points
according to the previously existing solutions for the rest
of variables and, in this way, the fixed points would ap-
pear by forming regular and full multidimensional arrays
extended according to the ej directions.

Finally, the nonlinear functions are particularized by
assuming that they are functions of a single variable that,
in its turn, is a linear combination of the system variables
as follows

fj(xq≤N−m, xN−m+j , µ) = µj gj(ψj , µ), j = 1, 2, . . . ,m ,
(5)

with

ψj =

N−m∑
q=1

dj,q xq + dj,N−m+j xN−m+j , (6)

and where the scale factors µj are introduced to be used

as control parameters. As it will be shown, this kind of
function allows us to divide the design problem into two
separate problems of clear solution: The determination of
the coefficients cj,q and dj,q by imposing the occurrence of
Hopf bifurcations at a potential set of fixed points, on the
one hand, and the choice of the nonlinear functions gj in
order to have the desired fixed points, on the other. The
division is possible because the linear stability analysis of
the fixed points can be formalized independently of the
actual nonlinear functions and, therefore, of the actually
existing fixed points. Here resides the trick of the design
procedure.

It will be also shown that the procedure has a limit
in the number of different Hopf bifurcations that the full
set of fixed points can sustain and this means a limit in
the number of free coefficients the system can contain.
As it will be seen, such a limit is surpassed in Eqs. (4-6),
provided N is chosen high enough in relation to m, and
we make now a drastic reduction by fixing the values
of all the cj,q of the second group of Eqs. (4) and by
choosing 0 for all except for one in each equation. The
reduced system is written as

ẋj =

N−m∑
q=1

cj,q xq + cj,N−m+j xN−m+j + fj(xq≤N−m, xN−m+j , µ), j = 1, 2, ..,m ,

ẋj = xj−m, j = m+ 1,m+ 2, .., N , (7)

with the same nonlinear functions fj defined in (5) and (eq6). For simplicity, in the following we will refer to the
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full and reduced systems as systems (4) and (7), respec-
tively. We will see that, for m = 1, the free coefficients
in the reduced system are just what is needed for impos-
ing the maximum number of Hopf bifurcations, while, for
m > 1, there is a deficit growing with m and then succes-
sive pairs of additional terms with the corresponding cj,q
should be introduced in the second group of Eqs. (7) if
more bifurcations are wanted to be imposed. Another pe-
culiarity of the case m = 1 is that the existence of a linear
transformation from (1) to (7) is rather generic since it
only requires that the rank of (b1, Ab1, A

2b1, .., A
N−1b1)

be equal to N .20 Notice that in this case Eqs. (7) are
just in the standard form.

Both systems (4) and (7) may be reinterpreted as a
coupled set of simpler subsystems and one of such a kind
of decomposition is presented in Appendix A. This kind
of view may be useful for the analysis when comparing
different systems and their dynamical behaviors or for
studying certain kinds of problems, but we find it inap-
propriate for a good design of the global system through
the way of starting from oscillatory optimized subsystems
and then increasing the coupling among them.

III. STEADY-STATE SOLUTION: VARIABLES AND
FIXED POINTS

Systems (4) and (7) have the same steady-state solu-
tion. In both cases the equilibrium condition imposes
that

x̄q≤N−m = 0 , (8)

ψj = dj,N−m+j x̄N−m+j = βj gj(ψj , µ), j = 1, 2, . . . ,m ,
(9)

where the overbars denote equilibrium values and the
rescaled control parameters

βj = −dj,N−m+j

cj,N−m+j
µj , j = 1, 2, . . . ,m , (10)

have been introduced to have the solution ψj(βj) fully
independent of the coefficients cj,q and dj,q. In Sect.IV,
however, it will be shown that the dj,N−m+j cannot be
determined by imposing the Hopf bifurcations and then
we will choose dj,N−m+j = − cj,N−m+j so that βj = µj .

The steady-state solution depends on N and m in the
exclusive sense that (N −m) defines the number of vari-
ables with null coordinate and m the number of those
that can be nonzero, but the solution of each nonzero
variable is exclusively determined by the corresponding
nonlinear function gj and the chosen value of βj and,
therefore, it is independent of the other variables. In
the numerical simulations reported in this article we have
considered systems with the same function for the m non-
linear functions and used two different functions:

g1j(ψj) =
1.25− 1.06 cosψj

1.68− cosψj
, j = 1, 2, . . . ,m , (11)

g2j(ψj) = 1.1− exp
−
(
ψj−10

2.5

)2

, j = 1, 2, . . . ,m , (12)

of which the first is periodic and describes the interfer-
ometric Airy function of the family of physical devices
through which the oscillatory scenario was discovered2,
while the second is simply an inverted Gaussian. For each
case, the nonlinear function and corresponding steady-
state solution ψj(βj) are represented in the columns
(a) and (b) of Fig. 1, respectively. The steady-state
solution is multivalued and then it cannot be analyti-
cally expressed, but its graphical representation is achiev-
able by representing on inverted coordinates the single-
valued function βj(ψj) obtained from Eq. (9). The so-
lution can also be inferred through a graphical analysis
of the condition of Eq. (9) by drawing the straight line
gj(ψj) = β−1j ψj over the representation of the function

gj(ψj), as shown in Fig. 1(a), and by gradually lower-
ing the line slope from the vertical one in correspondence
with a βj sweep starting at the 0 value. The intersections
between the line and the function define the steady-state
solutions of ψj for the given βj value and the number of
solutions increase in two (or decrease in two) every time
a tangency takes place. Every tangency denotes a non-
hyperbolic solution and the occurrence of a single-zero
eigenvalue bifurcation, typically of saddle-node type, as
it is the case in Fig. 1(a).

The ratio between the slopes of the nonlinear function
and of the straight line at their intersection is useful for
characterizing the steady-state solution of the given vari-
able and to this aim we introduce the following set of
auxiliary parameters

pj = βj

[
∂gj
∂ψj

]
ψj

= −dj.N−m+j

cj,N−m+j

[
∂fj
∂ψj

]
ψj

, j = 1, 2, . . . ,m ,

(13)
respectively associated with the ratios of slopes for the
m nonzero variables of a steady-state solution. The de-
scription of how the pj value varies upon the steady-state
solution is also exclusively dependent on the nonlinear
function gj , as it is illustrated in Fig. 1(c). Thus, the
representations of Figs. 1(b) and 1(c) apply to any sys-
tem defined by Eqs. (4) or (7) if the involved nonlinear
function is that represented in Fig. 1(a), independently
of the concrete values for N , m, cj,q and dj,q .

Notice that pj is equal to 1 for the non-hyperbolic so-
lution of a saddle-node bifurcation and it becomes either
higher or lower than 1 for the two solutions emerging after
tangency, respectively. Something similar happens in the
case of transcritical or pitchfork bifurcations occurring
for gj functions fulfilling the proper conditions and, in
general, the neighboring solutions always alternate their
pj value between higher and lower than 1 (provided gj is
continuous). The pj character of higher or lower than 1
is not altered by the occurrence of one-dimensional bifur-
cations affecting other variables and, most importantly,
it is not altered also by the occurrence of Hopf bifurca-
tions generically affecting all the variables. On the other
hand, from continuity considerations and supposing that
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FIG. 1. Steady-state solution of one of the m nonzero coordinates of the fixed points, for the two nonlinear functions used in the
simulations. (a) Representation of the nonlinear functions g1 and g2. In the first case the straight line of slope β−1

j of Eq. (9)
is represented for βj = β0 = 15. Its intersections with the nonlinear function denote the steady-state values of ψj for the given
βj . (b) Representation of such values as a function of βj . (c) Distribution of pj values, as defined by Eq. 13, corresponding to
the steady-state solution of (b). The dotted line indicates the pj = 1 level at which the saddle-node bifurcations occur. The
blue and red curves indicate the steady-state solutions of the basic set of fixed points involved in the numerical simulations.

no other kinds of limit sets exist, we know that neigh-
boring solutions should also alternate between attracting
and repelling along the xN−m+j direction and such an
alternation should begin according to the stability of the
initial solution, already existing at βj=0 with pj = 0. For
instance, if we know that the initial solution with pj = 0
is attractive along the xN−m+j direction, we can then
associate the pj < 1 character with attraction along that
direction and, vice versa, the pj > 1 character with re-
pulsion.

The description above applies to each one of the
nonzero variables of the steady-state solution and the
next step is to relate the solution of the variables to the
fixed points. For instance, Fig. 2 illustrates the situation
form= 3 and arbitraryN , when the three control param-
eters are sequentially increased from 0 to the value β0 in-
dicated in Fig. 1(a) so that each variable experiences one
saddle-node bifurcation. The fixed points are represented
in the three-dimensional subspace (eN−2, eN−1, eN ) with
rescaled coordinates dj,N−m+j xN−m+j so that they ap-

pear located at (ψ̄ i1 , ψ̄
j
2 , ψ̄

k
3 ), with the superscripts denot-

ing the various solutions of each variable. The existing
fixed points will correspond to all the combinations of
existing solutions for the various variables and, except

for the first one, a saddle-node bifurcation affecting a
given variable will produce a multiplicity of pairs of fixed
points, as many as previously existing points with differ-
ent coordinates for the rest of variables. The alternation
between pj lower and higher than 1 occur along each one
of the ej directions, starting always from the pj < 1 char-
acter of the initial fixed point, and, in the assumed ab-
sence of limit cycles, the associative criterion with attrac-
tion or repulsion would work for each direction according
to the corresponding stable or unstable behavior of this
fixed point for the given direction. In addition, concern-
ing the dimensions outside the m-dimensional subspace,
all the fixed points will have the same stability as the
initial fixed point because the bifurcations yielding ap-
pearance/disappearance of fixed points will leave such
dimensions unaltered.

We associate each one of the fixed points with the cor-
responding values of the m-tuple (p1, p2, .., pm) and intro-
duce a distinctive classification among them according to
if such values are higher or lower than 1, independently
of their concrete values. Leaving apart the nonhyperbolic
fixed points with some pj = 1, we find also useful to de-
note by Sn any of the fixed points having a number n of
pj values higher than 1 so that we have Sn points with n
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FIG. 2. Illustration of how the fixed points appear in the phase space by extending on a regular m-dimensional array, for
m = 3 and arbitrary N . The three control parameters are successively swept to produce a saddle-node bifurcation on the
corresponding variable, with b and c denoting the new pair of solutions (see Fig. 1). The dotted lines mark the directions along
which the saddle-node bifurcations occur and schematically indicate the network of one-dimensional (actually non straight)
invariant submanifolds connecting pairs of neighboring fixed points across the full array, provided that no limit cycles exist. Sq

denotes a fixed point with a number q of pj values higher than 1. The initial fixed point for βj= 0, ∀j, is always S0 and the
new fixed points necessarily appear like denoted by the labeling color. In the absence of limit cycles and supposing the initial
fixed point fully stable, the subscripts of Sq indicate the unstable dimensions of the fixed points.

varying from 0 to m. In particular, the initial fixed point
existing at βj=0, ∀j, is surely of type S0. The identifi-
cation procedure distinguishes up to 2m different classes
of fixed points, among which there are

(
m
n

)
classes of Sn

points differentiated by the pj > 1 positions within the
m-tuple, for n = 0, 1, ..,m. For instance, in the m = 3
case of Fig. 2(d), the phase space contains the full set
of 2m different classes of fixed points: one S0 class, three
S1 classes, three S2 classes and one S3 class, and each
S0 is surrounded by one fixed point of the other seven
classes, but there is no a fully filled basin of attraction,
which including 3m fixed points would require a second
saddle-node bifurcation along each direction.

As it will be seen in the next Section, the chosen kind
of system, either (4) or (7), allows for the association of
each one of its potential fixed points with the respective
set of pj values in relation to both its identification and
its linear stability behavior, without requiring explicit
knowledge of its phase-space coordinates and indepen-
dently of the chosen nonlinear functions. The method

of design is based on this fact since it allows us to im-
pose a number of Hopf bifurcations to a generic set of
fixed points by simply characterizing them through the
appropriate m-tuples of pj values.

IV. DETERMINATION OF THE cj,q AND dj,q
THROUGH THE LINEAR STABILITY ANALYSIS

The Jacobian matrix of system (4) has the following
elements

Jj,i =


cj,i − cj,N−m+j

dj,i
dj,N−m+j

pj , i = 1, 2, . . . , N −m,
cj,N−m+j (1− pj) , i = N −m+ j ,

0 , rest of i values ,

(14)

for j = 1, 2, . . . ,m, and

Jj,i =

{
cj,i , i = 1, 2, . . . , N −m,

0 , i > N −m,
(15)
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for j = m + 1,m + 2, . . . , N , while, in the case of the
simplified system (7), the Eqs. (15) reduce to

Jj,i =

{
1 , i = j −m,

0 , rest of i values .
(16)

Thus, the Jacobian elements depend on the sys-
tem details as implicitly and generically expressed by
Jj,i (cj,i , cj,N−m+j , dj,i/dj,N−m+j , pj), where the pj ’s
describe the fixed point and take into account the fj ’s in-
fluences on its linear stability. The exclusive presence of
the dj,q coefficients through the ratios dj,i/dj,N−m+j re-
sults from the definition of the parameters pj in order to
provide them with the well-defined properties they have.
Such a kind of dependence means that the linear stability
behavior of the fixed points is independent of one coeffi-
cient of each set of dj,q with j = 1, 2, ..,m, and we fix one
of them for each j by choosing dj,N−m+j = − cj,N−m+j

in order to have βj = µj . This implies a reduction of m
free coefficients affecting both system (4) and system (7).

Another restriction of free coefficients is introduced in
order to dispose of control on the dissipation degree of
the system to be designed. The divergence of the vector
field of system (4) is given by

N∑
j=1

∂ẋj
∂xj

=

m∑
j=1

(
cj,j − cj,N−m+j

dj,j
dj,N−m+j

pj

)
+

N−m∑
j=m+1

cj,j ,

(17)
where the pj denote here a generalization of definition
(13) to a generic phase space point and with the last term
vanishing in case of system (7). This expression illus-
trates how the system parameters influence on the degree
of dissipation and how it varies through the phase space
position according to the set of corresponding pj values.
It also applies to the fixed points and, in particular, to
the initial fixed point at βj = 0, for which pj = 0, ∀j.
Thus, the divergence on this fixed point is just the addi-
tion of the diagonal coefficients cj,j and, then, this value
should be equal to the addition of the N eigenvalues char-
acterizing its linear stability behavior. Our option is to
predefine all the cj,j by choosing a negative value for each
one of them and by adjusting it in relation to the high-
est Hopf frequency. In this way we dispose of control on
the dissipation degree of the system and can determine
the total amount of the eigenvalues of the initial fixed
point, although the possibility of unstable dimensions is
not excluded.

The election of the cj,j values implies a reduction of
(N−m) free coefficients, m of which affect both Eqs. (4)
and Eqs. (7) and the rest affect Eqs. (4) only. Thus, the
number of remaining free coefficients in system (4) is

F
(4)
c d =

(
N2 −m2

)
− (N − 2m) , (18)

while for system (7) the number is

F
(7)
c d = 2m (N −m) . (19)

Let us here assume that the initial fixed point will
be fully stable because it is compulsory if we want to
guarantee the existence of attractor while varying the βj
parameters and because, in fact, it will be one of the
aims to be achieved through the system design. Thus, in
the assumed absence of limit cycles, we can apply to all
the fixed points the associative criterion between pj < 1
(pj > 1) and attraction (repulsion) along the xN−m+j di-
rection, for j = 1, 2, ..,m, and, in addition, we also know
that they are attractive in the rest of (N − m) dimen-
sions. The Sn points will then have unstable invariant
manifolds of dimension n, linearly associated with the
set of vectors eN−m+j for which pj > 1, and stable mani-
folds of dimension N−n covering the rest of ej vectors as
well as the (N −m) dimensions outside the subspace of
the fixed points. The

(
m
n

)
classes of Sn points will differ

in one or more directions of their unstable dimensions.
The system design is based on imposing the occurrence

of successive Hopf bifurcations in a set of fixed points in-
cluding one of each one of the 2m different classes and,
for each bifurcation, such an imposition is done by defin-
ing the fixed point through the m-tuple of pj values at
which the bifurcation should occur and by choosing the
oscillation frequency value. The tentative goal is to pro-
duce the Hopf bifurcations within the stable manifold of
the fixed points, while the initially unstable manifold is
wanted to remain unstable since, according to our expec-
tation, it should be relevant for the good working of the
oscillatory mixing mechanisms. The optimum scenario
would be achieved by exhausting the stable manifold of
all the involved fixed points and this defines the limit in
the number of different oscillation modes we can impose
to our designable systems. Such a limit is given by

LHB =

m∑
n=0

(
m

n

)⌊
N − n

2

⌋
= 2m−1

(
N − m+ 1

2

)
,

(20)
where the binomial coefficient describes the number of
different classes of Sn points and the integer floor func-
tion defines the maximum number of Hopf bifurcations
each one of such points can sustain in the (N − n) di-
mensions we are assuming for its stable manifold. The
basin of attraction may contain a higher number of fixed
points than the 2m different classes used in the design
procedure. In fact, it can contain up to 2n points of
each Sn class and this means a total number of 3m fixed
points in a fully filled basin. The coexisting points of the
same class, either in the same or in a different attraction
basin, will in general have different pj values so that they
will experience the imposed Hopf bifurcations at different
values of the control parameters βj .

Since at the linear level the imposition of every Hopf bi-
furcation with a specific frequency will imply the twofold
condition of a complex eigenvalue with definite real and
imaginary parts, the design problem should be well posed
if the number of free coefficients is just twice that of bi-
furcations to be imposed. For m = 1, LHB is equal to

N−1 and F
(7)
c d is twice this number so that the free coef-
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ficients of system (7) are just what is needed for imposing
all the Hopf bifurcations. For m = 2, LHB = 2N − 3,

F
(7)
c d = 2(2N − 4) and F

(4)
c d = N2 − N , so that system

(7) lacks of two coefficients while system (4) surpasses the
maximum in a number increasing with N . We can design
a system (7) by imposing one bifurcation less than the
maximum or, alternatively, we can consider an intermedi-
ate system between (4) and (7) by adding two nonzero co-
efficients in the second group of equations and imposing
all the bifurcations. For m = 3, LHB = 4N−8, while sys-
tems (7) and (4) can admit 3N−9 and

⌊(
N2 −N − 3

)
/2
⌋

bifurcations, respectively. In this case, even the full sys-
tem (4) could lack coefficients if N is not high enough. In

general, it may be seen that the condition F
(4)
c d ≥ 2LHB

will require N of the order of 2m for counterbalancing
the exponential growth in m of the number of disposable
fixed points for doing Hopf bifurcations. Nevertheless,
for practical reasons, we will be usually unable to impose
the maximum number of bifurcations even for system (7)
and then the system design will be done by arbitrarily
choosing a value for additional pairs of free coefficients.

A. Imposition of Hopf bifurcations

The system design consist in determining a set of ap-
propriate values for the cj,q and dj,q coefficients and, as
already said, it is based on imposing the occurrence of
successive Hopf bifurcations in a set of fixed points in-
cluding one of each one of the 2m different classes. With
the characteristic equation of the Jacobian matrix writ-
ten as

λN + k1λ
N−1 + . . .+ kN−1λ+ kN = 0 , (21)

the condition for a saddle-node or any other zero-
eigenvalue bifurcation is kN = 0 while those for a Hopf
bifurcation with frequency ω are either

k1(iω)N−2 + k3(iω)N−4 + . . .+ kN−3(iω)2 + kN−1 = 0 ,

(iω)N + k2(iω)N−2 + . . .+ kN−2(iω)2 + kN = 0 , (22)

if N is even, or

k1(iω)N−1 + k3(iω)N−3 + . . .+ kN−2(iω)2 + kN = 0 ,

(iω)N−1 + k2(iω)N−3 + . . .+ kN−3(iω)2 + kN−1 = 0 ,
(23)

if N is odd.
As determined by the Jacobian matrix elements, the

characteristic-equation coefficients exclusively depend on
the cj,q , dj,q , and pj . In particular, let us give the ex-
pression for the last coefficient

kN = (−1)N(m+1)+m h(cq,i)

m∏
j=1

cj,N−m+j (1− pj) ,

(24)

because it allows to verify how any pj = 1 implies a fixed
point with a zero eigenvalue. In Eq. (24), h(cq,i) de-
notes the determinant of the cq,i coefficients of the sec-
ond group of Eqs. (4) and it is equal to 1 for system (7).
Similarly, from the expressions of kN−1, kN−2, .., and
kN−m+1 it is seen that the m-tuple (p1, p2, . . . , pm) with
a number n of pj values equal to 1 should correspond to
fixed points having n zero eigenvalues.

By imposing a number of Hopf bifurcations through
the m-tuples of pj values at which the bifurcations should
occur and their frequency values, we have the same num-
ber of couples of polynomial equations with the cj,q and
dj,q coefficients as unknowns and, if the number of equa-
tions is equal to that of unknowns, their solution will
provide us with families of systems whose fixed points
will do the imposed Hopf bifurcations if the chosen non-
linear functions can sustain the corresponding pj values.
As a matter of fact, however, our technical limitations in
solving the polynomial systems significantly restrict the
attainment of solutions when increasing the number of
imposed bifurcations and the degree of the polynomials,
in deceiving contrast with the expectable growing of pos-
sible solutions (Technical details in Appendix B). In the
case of the dynamical system (7), the polynomials are
of degree m, while for intermediate systems between (7)
and (4) the degree is equal to the number of dynamical
equations with unknowns, and, of course, the number of
different terms in the polynomial equations significantly
grows with both m and N .

Thus, after choosing the values of m and N (≥ 2m)
and the kind of system between (7) and (4), the design
proceeds with the selection of the set of values for the
m-tuple (p1, p2, . . . , pm) and the frequency ω that define
the distribution of imposed bifurcations among the vari-
ous classes of fixed points, and also of the values for the
cj,j coefficients that characterize the dissipation degree
of the system. Initially, the number of imposed bifurca-
tions is taken just the maximum allowed by the number
of free coefficients and then we try with a solver of poly-
nomial equations. If no solution is obtained after several
trials with different values for the cj,j coefficients, the
number of imposed bifurcations is reduced in one, usu-
ally the fastest, and some arbitrary value is attributed to
two arbitrarily chosen unknowns, and the solver is then
applied to the reduced system, in which the degree of
some polynomial terms has consequently decreased also.
If no solution is achieved a new reduction may be done
and so on. If there is success, several solutions are often
obtained for the same polynomial system and, trying dif-
ferent values on the predefined coefficients, a variety of
solutions may be obtained for the same set of imposed
bifurcations. Although the procedure involves elements
of both handwork and serendipity, the achievement of
solutions under the solver limits is relatively easy and
in doing this work we have obtained hundreds of them,
mostly corresponding to m = 2 with N varying from 5
to 8 but also to m = 3 with N = 6 or to m = 4 with
N = 8.
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Assuming that suitable nonlinear functions will be
used, any of the obtained solutions should provide for
families of dynamical systems experiencing the imposed
Hopf bifurcations and the consequent nonlinear oscilla-
tory mixing, but we want systems fulfilling what we ex-
pect to be the most appropriate circumstances for the
optimum development of the oscillatory scenario. Our
desideratum is that the initial fixed point be fully stable,
that the rest of fixed points will appear with n unsta-
ble dimensions in accordance with its Sn type, and that,
when the various βj will reach their final values, each
fixed point has experienced the corresponding Hopf bifur-
cations within its stable manifold. The initial fixed point
stability assures the existence of attractor and is a nec-
essary, though not sufficient, condition for the achieve-
ment of the rest of wanted circumstances, and it is easily
verified by computing the eigenvalues of the m-tuple (0,
0,. . . , 0). The solutions are additionally selected by dis-
carding those yielding the m-tuple (1, 1,. . . , 1) with some
positive eigenvalue and, then, the eigenvalue behaviors of
the 2m different classes of fixed points are analyzed when
their pj values vary according to a simultaneous sweep-
ing of the several βj parameters so that they pass for the
imposed bifurcations, with the aim of verifying their oc-
currence and characterizing how they affect the invariant
manifolds, and also with the aim of detecting the fortu-
itous but frequent occurrence of additional bifurcations,
often appropriate for our purposes.

As it may be expected, the distribution of imposed bi-
furcations among the different classes of fixed points is
the critical step for the successful achievement of appro-
priate solutions, being especially relevant the distribution
order of the bifurcation frequencies. We have simplified
our search by always choosing pj values of similar mod-
ulus for the imposed m-tuples and by usually ordering
the occurrence of successive bifurcations on a given class
of fixed point according to their frequencies from lower
to higher. In practice, we have essentially varied the fre-
quency order among the different classes of fixed points
and our trials indicate that certain kinds of distributions
easily result in appropriate solutions while others only
provide for solutions yielding unstable initial fixed points,
as well as there are kinds of distributions that seem un-
able to sustain any solution. For examples of successful
distributions see Appendix B, where the design details of
the systems used for the numerical simulations are pre-
sented. For a wider view of the Hopf bifurcation of the
m-parameter system of Eqs. (4) or (7) see the supple-
mentary material .

V. THE NONLINEAR FUNCTIONS

By specifying a set of m gj(ψj) functions, we define
a particular m-parameter family of systems with the
cj,q and dj,q coefficients of a given solution and with the
βj as freely varying parameters, and whose fixed points
will experience the excursions of pj values determined by

the nonlinear functions in the βj sweepings. The essen-
tial requirement on the nonlinear functions is that they
should describe appropriate dips or/and humps to allow
for the occurrence of saddle-node pairs of fixed points
with proper values of their pj parameters, while their de-
tailed expression would have a secondary, although of
course relevant, influence on the oscillatory behavior.

As it has been said, the numerical simulations of this
work correspond to systems with the same function for
the m nonlinear functions and we have used two differ-
ent functions, the g1 and g2 given by Eqs. (11) and (12),
respectively. The periodicity of g1 provides for a succes-
sion of saddle-node bifurcations with the consequent suc-
cession of steady-state branches exhibiting successively
higher pj values and then facilitates the achievement of
the appropriate pj values for the oscillatory scenario, al-
though the profusion of fixed points may originate com-
plications. The single dip of g2 provides for a simple S-
shaped solution with the peculiarity of the higher branch
having the corresponding pj value practically equal to
zero as a consequence of the function horizontal flatness
outside the dip.

Of course, the last step of the design work should
be the analysis of the dynamical systems and it suffers
also technical troubles, mainly concerning the localiza-
tion and continuous following of periodic orbits, at least
with our numerical tools. The difficulty particularly af-
fects those orbits manifesting strong oscillatory mixing
and also some simple orbits acquiring a really large mul-
tiplier, and logically it grows withN andm. The problem
grows also with the range of coexisting time scales and it
makes convenient some reduction in the wanted diversity
of imposed frequencies so useful for the oscillation modes
distinction. There is also a certain influence of the chosen
nonlinear function and in particular we have experienced
less trouble when using the function g2 and, for this rea-
son, the majority of the reported simulations correspond
to g2. In the phase-space portraits, the continuation diffi-
culties have occasionally impeded us to reach the proper
parameter values for certain periodic orbits but, when
we do not see a reason for the orbit disappearance, such
orbits have been included at lower values of the control
parameters to give a more complete view of the portraits.
All the reported simulations correspond to the reduced
system (7) and with a maximum multiplicity m equal to
2, i.e., with sets of four different classes of fixed points.

The final wish in our desideratum is the achievement
of appropriate variable interrelations for optimum oscil-
latory mixing but it is uncontrollable under the design
procedure and remains a matter of chance. The prop-
erly designed systems always exhibit oscillatory mixing
to some extent but the achievement of a good case re-
quires a number of them. Although we have only ana-
lyzed the dynamics of a fraction of the designed systems,
the most impressive fact is the large variety of pictures
with which the oscillatory mixing manifest in the phase
space portraits of the m = 2 systems and from our expe-
rience we can expect that novel pictures will continue to
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appear by analyzing more systems. In the following we
begin by briefly introducing the oscillatory mixing phe-
nomena in the simplest circumstance of a saddle-node
pair of fixed points for m = 1 and by remarking some
peculiar features that will facilitate the comprehension
of the graphical representations for m = 2. The different
families of systems are identified with a label like, for in-
stance, N5m1 X g1 directly specifying the values for N
and m and the nonlinear function, and with X= A, B,
etc., defining the set of cj,q and dj,q coefficients through
the TableII of Appendix B. None of these systems is an-
alyzed in detail but we try to provide a global view of
the nonlinear oscillatory mixing possibilities for m = 2,
although limiting the presentation to the mixing effects
on the periodic orbits only. It will be useful to introduce
the notation LC q

j to denote a limit cycle with unstable
and stable invariant manifolds of dimension j and q, re-
spectively.

VI. BRIEF OVERVIEW OF OSCILLATORY MIXING IN
m = 1 SYSTEMS

For m = 1 the design is achieved by imposing N−1
Hopf bifurcations to the reduced system (7) and the poly-
nomial problem to be solved consists of 2(N−1) equations
of degree one with the same number of unknowns so that
its single solution is generically achievable for arbitrary
N values. In addition, there is a clear criterion for a suc-
cessful distribution of the imposed bifurcations between
the two classes of fixed points: When ordered according
to their frequency from lower to higher, the various bi-
furcations should be alternatively imposed on S0 and S1

in order to assure the stability of the initial fixed point
and the proper occurrence of the successive bifurcations
within the stable manifolds of both fixed points. Instead
the frequency order in the successive bifurcations of a
given fixed point is not so critical. In general, the prop-
erly designed systems have21 c1,q < 0, ∀q, and the q-
succession d1,q with alternatively opposite signs ending
with d1,N = −c1,N > 0. The sequential and inverted dif-
ferentiation relation between successive variables in the
standard form of system (7) for m = 1 implies that the
relative presence of the various oscillation modes in the
time evolutions xj(t), j = 1, .., N , increases in proportion
to their frequencies each time the subscript j is decreased
in one. Thus, x1 optimizes the observation of faster fre-
quencies while they will be practically imperceptible in
xN . This fact makes the axes choice strongly influenc-
ing in what modes appear more pronounced in the phase
space projections.

For m = 1 systems the reader is referred to Refs. 2,
7, and 8, where the oscillatory behavior is mainly inves-
tigated through time evolution signals of the attractor,
and to Ref. 17, where a broader view of the scenario is
given by showing how the oscillatory mixing may affect
extended phase space regions and other periodic orbits
besides the attractor. It is worth, however, introducing

here a brief overview of the m = 1 scenario and we do
it with the five dimensional example illustrated in Fig.
3. Notice that the phase portraits are three-dimensional
projections of a higher-dimension phase space so that
the trajectories may appear much more intertwined than
they actually are. Notice also the combination of vari-
ables used in the vertical axis: x5 is the unique nonzero
coordinate of the fixed points, allowing then for their
distinction, but it is practically insensitive to the fast
oscillations and its combination with x1 provides a bet-
ter visualization of such oscillations. In fact, we often
use the variables ψj in the phase portrait representations
because each one of them contains contribution of one
of the nonzero fixed point coordinates together with an
equilibrated contribution of the rest of variables. Look at
Table I to verify how in the design of N5m1 A the four
bifurcations are alternatively imposed on the S0 and S1

fixed points when ordered according to their frequencies
from lower to higher. In this case, and generically for
m = 1 and arbitrary N , the designed systems with such
a kind of bifurcation order always create the S0-S1 pair
of fixed points fully stable, the former, and with one un-
stable dimension, the latter, and, most importantly, the
successive bifurcations happen within their stable mani-
folds so that they increase in two the unstable dimension
at each bifurcation. In the case of Fig. 3 all the bi-
furcations have been supercritical so that the two orbits
emerged from S0, denoted by W1 and W3, and those from
S1, W2 and W4, have appeared as LC 5

0 , LC 3
3 , LC 4

2 and
LC 2

4 , respectively. The first three orbits have even not
experienced any bifurcation, while W4 has become LC 4

2

at β1 = 23.6 by doing a torus bifurcation with a sec-
ondary frequency almost equal to that of W2, and W2 is
just near to do a period doubling bifurcation, which will
occur at 24.026. Of course, the periodic orbits emerge as-
sociated with harmonic oscillations at the corresponding
frequencies but, with increasing the control parameter,
certain of them incorporate influences of other oscillation
modes of higher frequency. The incorporation happens
in a localized place of the orbit, appearing from nothing
and extending more or less along the orbit, sometimes
the same mode appears in several places and sometimes
several modes appear already combined ones within the
others, and all this while the orbit remains periodic, usu-
ally with a period enlargement, without necessity of do-
ing any bifurcation. Finding rather paradigmatic such
a process of becoming complex by nonlinear mode mix-
ing we introduced the name of nonlinear complexification
of a periodic orbit to describe it.17 On the other hand,
the trajectory of the W2 unstable manifold in Fig. 3(a)
points out the influence of the several oscillation modes
in a wide phase space region and, at the same time, illus-
trates how complex the time evolution of a single trajec-
tory may become through the oscillatory combination. In
fact, the oscillatory influence extends relatively far from
the periodic orbits, as it is shown by the transient tra-
jectories of Fig. 3(b). It is worth remarking that each
oscillatory mode appears with the same frequency and



12

FIG. 3. Nonlinear mixing of four oscillation modes emerged from a saddle-node pair of fixed points having both experienced
two successive Hopf bifurcations, as exhibited by five particular phase space trajectories: The four periodic orbits, denoted
by Wj, and a single trajectory (in yellow) belonging to the two-dimensional unstable manifold of W2 and descending towards
the attractor W1. The representation corresponds to β1 = 24. The clear distinction in orientation of the four oscillation
modes (labeled by numbers) makes evident their influence on the represented trajectories: W1 has incorporated localized
contributions of the other three modes in several places, W3 has contribution of mode 4, W2 begins to show influences of
modes 3 and 4 that will enhance with increasing β1, and the yellow trajectory in its way towards the attractor exhibits an
extraordinary combination of modes 2, 3 and 4. The time evolutions of the trajectories confirm that each mode contribution has
the corresponding frequency. (b) is the same as (a) but with some axes inclination and with a number of transient trajectories
initiated far from the periodic orbits. All finish on W1 but have been discretionally truncated. The helical segments without
number correspond to mode 4. The transient start with a long excursion describing a fast half oscillation is generically found
under arbitrary choice of the initial transient point.

phase-space orientation everywhere its influence is mani-
fested in the phase space, by denoting the mode associa-
tion with a well-defined dynamical activity of the system
variables. In addition, although not shown in the figures,
a rather relevant feature is that the various oscillation
modes with noticeable mixing among them already ap-
pear in the phase space trajectories before the occurrence
of the Hopf bifurcations generating the corresponding pe-
riodic orbits and even before the saddle-node bifurcation
producing the fixed points from which the periodic orbits
will emerge (see, e.g., Figs. 1, 4 and 9 of Ref. 17). Fi-
nally, concerning the potential scalability with N of the
m = 1 oscillatory scenario, it is worth referring to the
simulation for N = 12 reported in Ref. 22 showing how
the eleven oscillation modes appear with similar ampli-
tude in the time evolution signal and suggesting then as
feasible the absence of a limit for N .

We have tentatively tried to explain the oscillatory
mode mixing as based on how some periodic orbits extend
their oscillations along their unstable manifold towards
other periodic orbits like a kind of corkscrew effect8 (for

a descriptive overview see Appendix 3 of Ref. 22). This
view seems to apply well in a variety of cases but it is
not general enough to cover all the circumstances and, of
course, it does not apply when the limit sets are lacking.
Particularly difficult to be explained in this way is the in-
fluence of periodic orbits appeared from the node point
towards those emerged from the saddle since the influ-
encing orbits are born with unstable manifolds lacking
any connection towards the influenced orbits and its for-
mation during the scenario development seems unlikely.
For instance, in Fig. 3(a) the influence of mode 3 on W2
happens while the three-dimensional unstable manifold
of W3 (not drawn in the figure) is fully going towards
W1 and, by contrast, the two-dimensional unstable man-
ifold of W2 descends towards W1 by incorporating oscil-
lations of mode 3 (as well as of mode 4) upon its own ω2

oscillations, apparently suggesting that the influence of
mode 3 is going from W2 to W3. On the other hand, the
presence of high-frequency modes on the transient tra-
jectories far from the attractor cannot be also related to
any unstable manifold of the periodic orbits.
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FIG. 4. Nonlinear mixing of six oscillation modes in the system N5m2 B g2, for β1 = β2 = 22, illustrated with the corresponding
periodic orbits Wj and with their periods indicated. W1 is stable while the rest are saddles. The mixing influences of other
modes are denoted by numeric labels.

VII. NONLINEAR COMPLEXIFICATION OF PERIODIC
ORBITS IN m = 2 SYSTEMS

The m = 2 systems may have four classes of fixed
points that we denote like S0, S1a, S1b and S2 and whose
stable dimensions (assuming properly designed systems)
can sustain up to 2N−3 Hopf bifurcations while the free
coefficients of system (7) provide for a maximum of 2N−4
bifurcations. Nevertheless, as previously noted, we have
been usually unable to solve the polynomial system for
the maximum of bifurcations and a number of free coef-
ficients have been then arbitrarily valued in the design
process. In compensation, it is also usual the fortuitous
occurrence of additional appropriate bifurcations. The
reported simulations correspond to four different designs,
one for N = 5 and the rest for N = 6, all with the non-
linear function g2 (see details in Appendix B). At the
βj values of the simulations, the systems with g2 possess
9 fixed points in a configuration like that shown in Fig.
2(c), where the four ones labeled with a and b on both
axes constitute the basic set for the oscillatory scenario
development in all the considered systems. Although the
other five fixed points have at least one of their pj values

practically equal to zero, some of them may also expe-
rience Hopf bifurcations and develop the oscillatory sce-
nario to some extent. A complete overview of the phase
space will be shown in Fig. 9(a), where the phase portrait
covers all the fixed points and shows the different oscil-
latory scenarios developed around them. All the consid-
ered systems behave properly in the sense that the fixed
points of class Sj appear with j unstable dimensions and
experience the successive Hopf bifurcations within their
stable manifold by reducing in two its dimension at each
bifurcation.

Two differences with the m = 1 case should be noted.
First, the dynamical equations (7) contain now two sep-
arated chains of inverted differentiation relations among
the variables xj(t), along each one of which the relative
presence of the different oscillation modes increases in
proportion to the respective frequencies each time the
subscript j is decreased in two, but the relation between
the two chains depends on the system parameters and
then it can differently manifest in different systems. Sec-
ond, we are now dealing with two-parameter families of
systems in which, as may be seen in Fig. S1 of the sup-
plementary material , a given Hopf bifurcation of a given
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FIG. 5. Some cycles of the asymptotic time evolution on the attractor W1. The intermittent contributions of the different
modes are indicated by numbers.

class of fixed point may occur within one or more contin-
uous ranges of frequencies, sometimes rather broad, ac-
cordingly with the corresponding intervals of pj values. It
is then expectable to find significant differences in some
periodic orbits between the imposed and observed fre-
quencies when going far from the bifurcation, indepen-
dently of the additional mode mixing influences.

We identify the different oscillation modes with the
corresponding periodic orbits that, as indicated in Ta-
ble I, are denoted by Wj in the design process accord-
ing to the corresponding frequencies ωj of the imposed
Hopf bifurcations ordered from lower to higher. The ad-
ditional bifurcations occurring without being imposed are
denoted by increasing the j index independently of the
frequency order. In all the considered systems the lowest
frequency is imposed to be the first bifurcation of the S0

class and this means that, in properly designed systems,
the relevant attractor will be W1 or some limit set de-
rived from it. On the other hand, the generic mode mix-
ing feature that the influencing mode is always of higher
frequency than the influenced one implies that a given
periodic orbit may incorporate mixing contributions of
higher j modes.

Figures 4 and 5 correspond to the system N5m2 B g2,
for the given βj values. The phase portrait shows the
periodic orbits emerged around a set of fixed points in-
cluding one of each one of the four classes. The periodic
orbits have been located and their period and set of mul-
tipliers determined, with the exception of the attractor
W1 whose continuous following initiated near the Hopf
bifurcation was interrupted at lower βj values probably
due to the pronounced mode mixing influences. What is
represented as W1 is one cycle of the asymptotic time
evolution that, as shown in Fig. 5, looks rather periodic.
Nevertheless, the time signal is not strictly periodic since
the faster oscillations of successive cycles do not exactly
superpose in the phase space representations. Under the
diversity of involved time scales, such a loss of strict peri-

odicity may be attributed to the numerical noise arising
from the inherent contradiction between the truncation
and round-off errors and, in fact, it has been already ap-
preciated in the time signals at lower βj values while the
periodic orbit continuation even works and no bifurca-
tion has occurred. On the other hand, the time signal
inspection is in this case rather easy and allows us to
exclude the occurrence of a period doubling bifurcation
up to the represented situation so that chaos seems not
feasible. Something similar happens in all the reported
phase portraits, i.e., the represented attractor W1 de-
scribes one cycle of the asymptotic time signal appearing
as practically periodic but with the faster oscillations not
exactly equal in successive cycles. In some of them the
time signal analysis is not so easy and then the exclu-
sion of chaos is less sure. Nevertheless, it is worth noting
that, if chaos would be developed, the chaotic attractor
itself and each one of the multitude of coexisting unstable
periodic orbits would have an orbit structure of similar
complexity like that of the represented W1 and would
appear congregated in a small neighborhood of the at-
tractor.

In this case, the fixed points have done the maximum
number of Hopf bifurcations except S1a that lacks one
bifurcation and remains with two stable dimensions. All
the periodic orbits have appeared through supercritical
bifurcations, W1 like LC 5

0 , W2 and W3 like LC 4
2 , W4 and

W5 like LC 3
3 and W6 like LC 2

4 , and all of them have de-
veloped its oscillatory structure by mode mixing without
suffering any bifurcation. The attractor W1 has incorpo-
rated intermittent contributions of the other five modes,
as it may be appreciated better in the time evolution of
Fig. 5. Notice two kinds of mode mixing influences. One
at the level of the same fixed point when it has done two
successive Hopf bifurcations, like happens to S0 or S1b,
and the other from top to bottom in the j scale of Sj
fixed points, although not within the same j level like
between S1a and S1b. Notice also the absence of inverted
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FIG. 6. Nonlinear mixing of nine oscillation modes on the eight periodic orbits Wj emerged from a set of four fixed points in
the system N6m2 C g2, at β1 = β2 = 20 except W3 at β1/β2 = 20/19.1, W5 at 17.9/18.9 and W6 at 17.6/20. Mode 9 appears
everywhere but lacks of periodic orbit. The axes have been adjusted to optimize the visualization (S1b and S2 are at ψ1 = 12.1
and x1 = 0).
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influences from bottom to top in the j scale.

The next system is the N6m2 C g2. In the phase por-
trait of Fig. 6 three periodic orbits, W1, W5 and W7
have emerged from S0, two, W2 and W6, from S1a, two,
W3 and W8, from S1b, and one, W4, from S2. All the
fixed points have exhausted their stable manifold except
S2 which remains with two stable dimensions. The time
evolution signals of some of the orbits shown in Fig. 7
aid to interpret their phase-space structure and the W1
portraits for successively increasing values of the βj pa-
rameters shown in Fig. 8 illustrate the mode mixing pro-
cess on this orbit. Notice the presence of an additional
oscillation mode of very short period that appearing ev-
erywhere does not correspond to any of the eight periodic
orbits. Such a mode 9 with a frequency around 1570 can-
not be associated with the pending bifurcation of S2 since
this fixed point remains with two or more stable dimen-
sions in the full two-parameter plane (β1, β2), suggesting
that it could be related to a S2 bifurcation of neighboring
systems in the space of the dynamical systems, outside
the two-parameter plane.

Besides the ubiquitous presence of mode 9, notice the
strong influence of mode 4 on W2 and also, although in
minor degree, on W3, being responsible for a significant
increase of their periods. W3 receives also influence of
mode 8, emerged from the same fixed point, but W8 has
incorporated a couple of bursts of mode 9 that become
transferred to W3. In its turn, W3 originates the main
mixing influences on the attractor W1 by transferring
modes 4, 8 and 9 with itself. Figure 8 illustrates how
mode 4 actuates in a twofold way on W1 along the βj
scale: first on the two lateral sides, in what seems a di-
rect influence from W4 and in which mode 9 also appears,
and, second, indirectly through W3. W1 shows a rela-
tively small influence of mode 7 while mode 5 is totally
lacking and being these modes emerged from the same
fixed point this behavior is somewhat unusual. Also un-
usual is the W5 behavior in the sense that it acquires a
rather complex oscillatory structure (Fig. 7(c)), in which
the influence in two places of mode 7 is clear but the other
oscillations cannot be identified. Such a complex struc-
ture is surely the cause of the W5 continuation troubles.
W7 shows a small component of mode 9 (not appreciable
in the figures). W2 is essentially dominated by mode 4
but it also incorporates influences of mode 9 alone and
of mode 8 with its two mode 9 bursts. Supposing the
mode identification to be right, the influence of mode 8,
associated with S1b, on W2, associated with S1a, would
be rather significant since it would mean mixing between
modes emerged from the two classes of S1 fixed points
and this is far from usual. W6 contains a small oscilla-
tory burst of similar period to those unidentified in W5.
W4 even maintains a rather harmonic oscillation but at
β1 = β2 = 24 it begins to incorporate influence of mode
9. Finally, the modes emerged from S1a, W2 and W6,
have no influence on the rest of periodic orbits.

The bifurcation of periodic orbits is a rare phenomenon
in this system, at least up to the represented situation in

Figs. 6-8. Along the employed two-parameter continua-
tion paths only W1, W2 and W7 have bifurcated while
the rest remained with the same stability as they were
born in the Hopf bifurcation. W2 has suffered two cyclic
saddle-node bifurcations after which it has recovered the
LC 5

2 nature. W7 born like LC 2
5 has done two succes-

sive torus bifurcations, one the reverse of the other, and
a period doubling bifurcation after which it has become
LC 3

4 . W1 born like LC 6
0 at β1/β2 = 14.69/14.69 has

been continuously followed up to 17.5/17.5 without do-
ing any bifurcation and by inspection of the asymptotic
time evolution we have appreciated a period doubling bi-
furcation quickly followed by a reverse one, two times, up
to recover the single-period signal of Fig. 6. Of course,
without the orbit continuation we cannot discard the de-
velopment of chaos but there is no reason to consider such
a possibility as underlying the process of periodic orbit
complexification through the successive incorporation of
localized contributions of other oscillation modes.

Consider now the Figs. 9 and 10 dealing with the sys-
tem N6m2 D g2. The phase portrait in Fig. 9(a) in-
cludes the nine fixed points sustained by g2 to illustrate
how the oscillatory scenario may develop around differ-
ent sets of fixed points in accordance with the variation
of their pj values in the βj sweeping. The different fixed
points of the same class are distinguished by adding a
capital letter into their labels. While each one of the four
fixed points in the attraction basin of S0 fulfills well the
design conditions of all the imposed Hopf bifurcations, so
that they should behave as expected, the other five fixed
points have at least one of their pj values always practi-
cally zero and cannot then fulfill the imposed conditions,
so that their Hopf bifurcations, if occur, must happen on
different parameter values. The periodic orbits W1 and
W5 have emerged from S0, W2 and W6 from S1a, W3
and W7 from S1b, W4 from S2 and W8 will appear also
from this fixed point at slightly higher βj values. S0 re-
mains with two stable dimensions and is unable to do its
third bifurcation since it requires an enormous p1 value
(see Table I). The initially stable fixed points S0A and
S0B have done two and one bifurcations, respectively, and
S1aA with initially one unstable dimension has done two
bifurcations, while the rest of fixed points do not do any
bifurcation. Significantly, the periodic orbits emerged
from these fixed points exhibit relatively similar frequen-
cies to those of the Wj orbits and then they are labeled
by referring to the Wj of more similar frequency together
with the fixed point from which they emerge. It is re-
markable how similar some of these periodic orbits look
with respect to the relative Wj. Concretely, W7S0B with
respect to W7, by including both the mixing influence of
mode 8, and W4S1aA with respect to W4, whose influ-
ence of mode 8 will appear also on the former at higher
βj values, although at the opposite orbit side. Notice
however their different stability due to the different one
of the fixed points from which they emerge.

The continuation of W1 has been done up to 18/18
and by a coarse inspection of the asymptotic time evo-
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FIG. 7. Time evolution signals of one cycle of the attractor W1 and of the periodic orbits W3 and W5 with the contributions of
other oscillation modes indicated by numbers. The oscillating bursts without numeric label in W5 are difficult to be associated
with any of the other eight modes.

lution we consider that it remains practically periodic
up to 24/24, after which a period-doubling is apparent.
The continuation of W2, W3 and W4 has not reached
the βj values of the phase portrait. W2 have not done
any bifurcation, W3 a period-doubling, and W4 a cyclic
saddle-node, a period-doubling and it is approaching an-
other fold bifurcation. W5 has done a succession of pairs
of fold bifurcations and W6 two torus bifurcations, both
having recovered their initial stability status. W7 has not
done any bifurcation and W8 will appear in the second
Hopf bifurcation of S2 just before 21.5/21.5.

In the one cycle W1 signal shown in Fig. 10(a) it is seen
how its oscillatory structure is enriched through mixing
influences of modes 5 and 3, both transferring modes 7
and 8 with themselves, and how these two faster modes
densely fill a big part of the W1 undulation. Having
ordered the successive bifurcations of a fixed point from
lower to higher frequency, the mixing influence of the sec-
ond oscillation on the first one is relatively generic and in
the system N6m2Dg2 it happens in all the fixed points
experiencing two bifurcations. It is also usual that such
an influence appears in two opposite places of the first
periodic orbit, like happens on W1, W2, W3 and W1S0A

but not in W4 and in W4S1aA. Significantly, in the ψj
variables, such a twofold influence appears at intermedi-
ate levels of the slower oscillatory undulation, like shown
in Fig. 10 for W1 and W3; while, on the other hand, the
mixing influences of modes associated with a neighboring

fixed point usually appear on the top or/and the bottom
of the ψj slower undulation. In Fig. 10(b) it is seen that
the big bursts of mode 7 on W3 lack of mode 8 but we
expect that it will occur at higher βj values. Mode 4 has
only influence on W2, while modes 2 and 6 do not partic-
ipate in any mode mixing except for the influence of the
latter on the former. In contrast, the second mode asso-
ciated with S2, mode 8, has a noticeable influence even
before the occurrence of the corresponding Hopf bifur-
cation, although it always happens in combination with
mode 7. Finally, notice the mode 5 influence on W3 that
takes place from bottom to top in the j scale of Sj fixed
points, i.e., from S0 to S1b.

The last selected system is N6m2 E g2 and the behav-
ior of its periodic orbits is illustrated in Figs. 11 and
12. Here again the phase portrait includes more fixed
points than the basic set around S0 and illustrates two
oscillatory mixing scenarios. Concerning the Hopf bi-
furcations, the behavior of this system is rather similar
to that of the previous one. W1 and W5 have emerged
from S0, W2 and W6 from S1a, W3 and W7 from S1b, W4
from S2 and W8 will appear also from this fixed point at
higher βj values (24.7/24.7). S0 remains with two stable
dimensions and is unable to do its third bifurcation since
it requires an enormous p1 value (see Table I). The ini-
tially stable fixed points S0A and S0B have done two and
one bifurcations, respectively, and S1aA with initially one
unstable dimension has done two bifurcations, while the
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FIG. 8. Nonlinear complexification of W1 with increasing the two βj parameters. The successive orbits are represented in the
same three-dimensional projection as in Fig. 6 and with the same relative scales on the axes. The first five orbits are located
periodic orbits, while the last two describe five cycles of the asymptotic time evolution. The last orbit has a clear period
doubled structure. The magenta numbers denote the mixing influence of the corresponding modes as they begin to incorporate
on W1.

rest of fixed points do not do any bifurcation. Neverthe-
less, the phase portrait only shows the periodic orbits of
S0A.

The continuous following of W1 has been done up to
17.8/17.8 and the asymptotic time signal remains practi-
cally periodic up to 25/25. Except W2 and W5, the other
periodic orbits have not done any bifurcation along the
followed pathways towards the 22/22 of the phase por-
trait. With W2 we have tried a variety of pathways in the
two-parameter plane and verified that it meets in a cyclic
saddle-node bifurcation with W5S0A, the second periodic
orbit emerged from S0A. Typically, after emerging from
S1a like LC 5

2 , W2 experiences a significant reduction of
its period and an odd number of cyclic saddle-node bifur-

cations by ending like LC 4
3 and, then, it may be moved

towards S0A to coalesce on it through a Hopf bifurca-
tion. There are parameter regions with both periodic
orbits but only one exists at 22/22 and it is around S0A.
The behavior of W5 is also peculiar since after appearing
like LC 4

3 from S0 at 17.51/17.51, it does not bifurcate
and maintains unchanged features while β2 is varied up
to 22 but with increasing β1 it experiences the mixing
incorporation of modes 8 and 7 and a huge number of
bifurcations: 43 pairs of torus bifurcations, one the re-
verse of the other and with the orbit becoming stable
in between, combined with 11 pairs of period-doubling
bifurcations, one the reverse of the other too and with
the orbit becoming LC 3

4 in between, and, finally, two
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FIG. 9. System N6m2 D g2 at β1 = β2 = 21, except W2 at β1/β2 = 19.5/17, W3 at 20.1/18.2, W4 at 21/20.7 and W8 at
21.5/21.5. In (a) the phase portrait covers the nine fixed points with the periodic orbits emerged from them, although W1 is
not represented for a better visualization of W3 and W5. (b) Enlarged detail around the basic set of four fixed points with W1
included.
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FIG. 10. Time evolution signals illustrating the oscillatory structure of the practically periodic attractor W1 and of the periodic
orbits W3 and W5.

cyclic saddle-node bifurcations so that the orbit at 22/22
is again LC 4

3 .

The periodic orbit structure of W1 and of W1S0A is
not easily appreciated in Fig. 11 and it may be bet-
ter understood through the time evolutions of the inset.
W1S0A has incorporated in two places a significant mix-
ing influence of the second periodic orbit associated with
S0A, which in its turn has incorporated influence of mode
8. Similarly, W1 shows the mixing influence of W5 with
its incorporated modes 8 and 7 but here the two W5
contributions appear glued together and followed by a
long W7 contribution with modes 7 and 8. The wide
presence of mode 8, associated with the second bifurca-
tion of S2 at higher βj values, occurs by influencing W5,
W7 and W5S0A, all of them the second periodic orbit
of the respective fixed points and through them mode 8
reaches into the respective first periodic orbit, W1, W3
and W1S0A. There is also influence of W7 with its mode

8 oscillations on W5 and it is transmitted to W1. W4
lacks of any influence maintaining an almost harmonic os-
cillation. Particularly significant is the absence of mode
8 associated with the same fixed point and otherwise of
ubiquitous presence in the rest of periodic orbits. Never-
theless, at higher βj values, W4 suffers the peculiar pro-
cess illustrated in Fig. 12, through which it incorporates
influence of W7 with its mode 8 oscillations and which
confirms the occurrence of mode mixing from the S1 to
the S2 levels. During the represented process and par-
ticularly between the second and third portraits, W4 ex-
periences several period-doubling and cyclic saddle-node
bifurcations. The S-shaped pathway associated with the
latter kind of bifurcations explains how W4 can signifi-
cantly transform while both W7 and W8 remain practi-
cally unchanged.

Inspection of Tables I and II shows that the chosen
values for the design parameters of the three N6m2 sys-
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FIG. 11. Nonlinear oscillatory mixing in the periodic orbits of the system N6m2 E g2 at β1 = β2 = 22, except W6 at
β1/β2 = 19.3/22. The representation covers six fixed points while the other three, S0B , S1aA and S0C , are at ψ1 = 24.2. The
time evolutions of the inset aid for a better comprehension of the periodic orbit structure of W1 and W1S0A.
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FIG. 12. Mode mixing process through which the periodic orbit W4 incorporates influence of the orbit W7, from the beginning
of the first incorporation to the beginning of the second one. The four representations are on the same scales and the axes are
those of Fig. 11.

tems are very similar. The differences are difficult to be
appreciated. First, the seventh bifurcation is imposed on
S0 for system C but on S1b for systems D and E. Sec-
ond, the bifurcations imposed on S1a and S1b have equal
frequencies in D and E but different in C. And, third,
there are differences in the values of the cj,q predefined
coefficients. In contrast, the phase portraits of the three
systems look rather different. As a matter of fact, up
to now we have (partially) analyzed the periodic orbits
of 28 N6m2 system families covering a wider diversity
of designing parameters and it is worth to say that it is
difficult to find two of them with similar phase portraits,
including cases of multiple solutions for the same design-
ing parameters. Such variability seems due to the multi-
plicity of possible mode mixing processes and to which of
them dominate in each case. In the overall, the reported
results point out that the oscillation modes characterize
the dynamical behavior of the given system by showing
relatively well defined frequencies and phase-space orien-
tations in the different places where they manifest, being
particularly significant the similitude of periodic orbits
emerged from fixed points of different attraction basins.

VIII. CONCLUDING COMMENT

The ultimate aim of our work is to elucidate the scala-
bility capabilities of the generalized Landau scenario with
the designable kind of systems and we hope that with the
overall of reported results the reader would realize a va-
riety of reasons in favor of its possibilities to be highly
scalable. The method of design in itself is defined for

arbitrarily large m and N (≥ 2m) allowing, in principle,
for the imposition of the maximum number of Hopf bi-
furcations up to exhaust the stable manifolds of all the
2m classes of fixed points, as given by Eq. (20). Cer-
tainly, the existence of a solution for the optimum design
is not guaranteed even with the full system of dynami-
cal equations (4) and, on the other hand, it is clear that
the highest number of imposable bifurcations yielding a
consistent polynomial system will depend on the chosen
values for the predefined designing parameters but, leav-
ing our limited ability in finding the polynomial system
solution aside, we take for granted that such a number
would increase with increasing N and m so that the num-
ber of involved oscillation modes will consequently grow.

Another thing is to attain the good working of the
nonlinear mode mixing mechanisms or, in other words,
to what degree the nearby occurrence of Hopf bifurca-
tions in the set of fixed points guarantees the appropriate
unfolding of the oscillatory mixing scenario. As already
said, for m = 1 the optimum design with N − 1 bifur-
cations is surely achievable for arbitrary large N values
with the reduced dynamical system (7) and, according to
our experience, the occurrence of the bifurcations in the
saddle-node pair of fixed points is enough for assuring the
full scenario development in its simplest form, although
we have not analyzed what happens when the separa-
tion of the several bifurcations within the βj parame-
ter plane is increased with the chosen pj values. Deal-
ing with m = 2 systems we have seen how the design
procedure opens a wide variety of possibilities when im-
posing the Hopf bifurcations to sets of four fixed points,
but with the drawback of lacking a definite control on
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how the mode mixing mechanisms work and therefore
on how they could be optimized. The reported results
illustrate different kinds of mixing processes among os-
cillation modes associated with the four classes of fixed
points and we can affirm that the variety of processes sig-
nificantly enlarges when considering more system fami-
lies, but in general the obtained scenarios do not appear
fully developed in the sense of achieving the combina-
tion of all the oscillation modes in the attractor. In any
case, we consider that the observed variety of processes
confirms the scenario extension to some degree and we
reasonably expect that m = 2 systems developing more
complete scenarios must exist. Although designed by im-
posing noticeably lower numbers of bifurcations than the
maximum allowed, we consider feasible the analysis of
m = 3 systems. In comparison with the m = 2 case, we
should expect a even more pronounced opening of pos-
sibilities and the consequent necessity of a larger num-
ber of analyzed systems (and a great amount of chance)
to catch good enough systems for our purpose. At the
end, what we need to verify is the occurrence of mode
mixing processes among the 8 classes of Sj fixed points,
particularly those involving the higher j classes and sus-
taining the hierarchical transmission along the j scale
towards the attractor. For higher m values the numer-
ical research will become more difficult and in order to
clarify the scenario scalability would probably be more
useful to advance in the mathematical characterization
of the oscillatory mixing mechanisms and particularly of
their limiting constraints, by expecting that the under-
standing for m = 1 and m = 2 systems will enlighten the
extension to the general case.

In principle, since the oscillatory scenario develops in
association with the successive Hopf bifurcations of the
fixed points, one could expect that a proper mathemati-
cal theory would require to consider the role of the high-
codimension bifurcation in which all the Hopf bifurca-
tions of a fixed point occur simultaneously and which
may be a source of other kinds of bifurcations, and this
for the different classes of fixed points. Nevertheless, the
fact that the periodic orbits become complex by mode
mixing without requiring instabilities indicates that the
secondary bifurcations are not essential for the scenario
unfolding. This view is also sustained by the robustness
of the scenario unfolding manifested by the continuous
and smooth development of the mode mixing processes
under variation of any of the involved parameters, either
the βj , or the cj,q and dj,q , or the ones of the nonlinear
functions. The main aspect of the mixing problem should
be at the topological level: how each oscillation mode
expands its influence for the phase space and how the
several modes can intertwine their influences to appear
together on the trajectories, either transients or limit cy-
cles, and, most importantly, if there are limiting reasons
on the mixing development. The topological constraints
will particularly manifest over the unfolding of the sev-
eral limit cycles with their invariant manifolds of varied
dimensions sustaining a mesh of connections among them

under the no crossing restriction. Significant information
could be achieved through the numerical analysis of such
invariant manifolds and, more in general, through the
analysis of transient trajectories, which, although cum-
bersome, is reasonably feasible for not excessively high
dimensions. Without having done any kind of system-
atic analysis we have noted two peculiar features of the
transients in m = 1 systems. First, the intriguing fact
that, after arbitrary choice of the initial point in regions
far from the attractor, the transient generically begins
with a fast oscillation (usually the fastest), like may be
seen in Fig. 3(b), where the farther the initial point the
longer the path of the first half oscillation. Second, in
the approach towards the attractor the transient often
describes a succession of oscillatory bursts of different
frequencies ordered from higher to lower (see, e.g., Figs.
4 and 9 of Ref. 17).

In the meantime, we find reasonable to expect that the
criterion of considering Hopf bifurcations within the sta-
ble manifolds only would make compatible the scenario
unfolding with the topological constraints and that, at
least, a significant part of the allowed maximum num-
ber of oscillation modes could appear together on the
attractor. Of course, after supposing the oscillatory sce-
nario highly scalable, a tentative explanation of how the
natural world might have been able to exploit its possi-
bilities is required in order to make feasible its potential
relation with the highly complex things of nature, and
it should necessarily be through a proper evolutionary
mechanism. With this purpose, we have tentatively in-
troduced a framework of structural evolution in dynami-
cal systems based on the optimization of their oscillatory
capabilities,8 for which the continuous extension of oscil-
latory systems within the space of the dynamical systems
and the early appearance of faster modes in the phase
space would be rather convenient features.

SUPPLEMENTARY MATERIAL

See the supplementary material for a wider view of
the Hopf bifurcation of the m-parameter system families
described by Eqs. (4) or (7).
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Appendix A: THE m = m SYSTEM AS A SET OF m
COUPLED m = 1 SUBSYSTEMS

To visualize the system of dynamical equations as a set
of coupled subsystems we consider the reduced system of
Eqs. (7), with the nonlinear function (5), and assume the
simplest circumstance of N = nm, where n is an integer.
The global system may then be seen as a coupled com-
position of m subsystems of dimension n, each one with
only one nonlinearity, and the subsystem j = 1, 2, . . . ,m
written as follows

ẏj,1 =

n∑
q=1

lj,qj,1 yj,q + µjgj (ψj) +

m∑
i=1
i 6=j

n−1∑
q=1

li,qj,1 yi,q ,

ẏj,p = yj,p−1 , p = 2, · · · , n , (A1)

with

ψj =

n∑
q=1

hj,qj yj,q +

m∑
i=1
i6=j

n−1∑
q=1

hi,qj yi,q (A2)

and with the relation to the original system given by

yj,q ≡ xj+(q−1)m, li,qj,1 ≡ cj,i+(q−1)m , hi,qj ≡ dj,i+(q−1)m ,

(A3)
where the two new sets of coefficients describe the influ-
ence of the variable q of subsystem i either on the time
rate change of the variable 1 of subsystem j or on the
single variable of the nonlinear function of subsystem j,
respectively.

Appendix B: DESIGNED SYSTEMS FOR THE
SIMULATIONS AND TECHNICAL DESIGN DETAILS

The Tables I and II characterize the systems used for
the reported simulations. Table I describes the set of
imposed Hopf bifurcations to design the systems and in-
cludes the additional bifurcations that the designed sys-
tems can sustain in accordance with our purpose of ex-
hausting the stable manifold. Table II gives the coef-
ficients cj,q and dj,q of the different systems distinguish-
ing those obtained through the design process from those
whose value has been predefined, either by directly choos-
ing it or through the assumed condition dj,N−m+j =
−cj,N−m+j . While, for m = 1, the c1,q negative signs and
the d1,q sign alternation reflects the well-organized struc-
ture of competing effects underlying the proper oscilla-
tory scenario unfolding, for m = 2, we have been unable
to appreciate any distinguishing criterion between proper
and improper designed systems through their coefficients,
and this refers to Table II and to a large number of other
designed systems. More apparent is the influence of the
distribution of imposed bifurcations among the different
classes of fixed points. To illustrate this point with con-
creteness, let us consider the case of N6m2 systems po-
tentially possessing four different classes of fixed points:

S0, S1a, S1b and S2, upon which up to nine Hopf bifurca-
tions could be imposed up to exhaust their stable mani-
folds: three on S0 and two on the other three classes. By
considering the bifurcations ordered according to their
frequency ωj , from lower to higher, we can impose the
nine successive bifurcations, for instance, on S0, S1a, S1b,
S2, S0, S1a, S1b, S2 and S0, by appropriately choosing
the corresponding (p1, p2) values within the correspond-
ing classes, but just with such values we can adjust the
bifurcations order on each fixed point in relation to how
they destabilize successive pairs of dimensions, indepen-
dently of the frequency order. For simplicity we have
usually imposed the successive bifurcations on a fixed
point ordered according to their frequency from lower to
higher and this is the case for all the systems of Table
II, but we have verified that properly designed systems
are also obtained by inverting the frequency order of the
imposed bifurcations in one or more fixed points. On the
other hand, the number of free coefficients in the system
(7) of differential equations allows for eight bifurcations
only and, as it will be discussed in more detail bellow, our
capability in polynomial system solving for N6m2 sys-
tems appears limited to fourteen equations. Thus, the
N6m2 systems C, D and E have been designed by im-
posing seven bifurcations and by arbitrarily choosing the
values of two arbitrarily chosen cj,q coefficients in addi-
tion to c11 and c22. For D and E the bifurcations dis-
tribution among fixed point classes was that mentioned
above while for C the seventh bifurcation was imposed
on S0 instead of S1b. The sets of imposed (p1, p2) values
have been taken equal for the different systems in order
to facilitate the dynamical analysis of successive systems.
Notice the symmetric choice of the (p1, p2) values for the
two S1 classes and also that, in D and E, the symmetry
extends to the bifurcation frequencies, while in C the fre-
quencies are different. The frequency symmetry between
S1a and S1b is also imposed in the system N5m2 B. Not
always but it is usual that the defined systems exhibit
additional bifurcations contributing to exhaust the sta-
ble manifolds of the fixed points and this is the case for
all the m = 2 systems of Table I (The reported values
have been chosen at convenience within the continuous
interval of each extra bifurcation). In this way, the sys-
tems B, D and E may exhaust fully the stable manifolds
of the four classes of fixed point, although in the three
cases the last bifurcation requires an enormous pj value
so that it will be irrelevant in practice. Instead, the addi-
tional bifurcation at W8 in the systems C, D, and E cor-
responds to moderate enough pj values and it may then
significantly influence the dynamical behavior of the sys-
tem family, as it is the case for the reported examples
with the nonlinear function g2. The ninth and pending
bifurcation for system C should correspond to S2. Oddly
enough, the dynamics of C reported in Figs. 6-8 exhibits
a significant contribution of a ninth mode whereas it is
absent in D and E.

The systems of polynomial equations have been tried
to be solved with Maple, usually numerically with the
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TABLE I. Values of (p1, . . . , pm) and ω of the imposed Hopf
bifurcations. In brown the extra bifurcations.

N5m1 A
Wj p1 ω 2π/ω

1 S0 -5 0.05 125.7

2 S1 +6 0.3 20.9

3 S0 -6.4 1.8 3.5

4 S1 +7 26 0.24

N5m2 B
Wj p1 p2 ω 2π/ω

1 S0 -5 -5 0.0628 100

2 S1a -5 +6 0.314 20

3 S1b +6 -5 0.314 20

4 S2 +6 +6 1.26 5

5 S0 -6 -6 6.28 1

6 S1b +7.85 -6.85 47.5 0.13

7 S1a -241 +6.52 322 0.019

N6m2 C
Wj p1 p2 ω 2π/ω

1 S0 -5 -5 0.0628 100

2 S1a -5 +6 0.314 20

3 S1b +6 -5 0.628 10

4 S2 +6 +6 3.14 2

5 S0 -6 -6 12.57 0.5

6 S1a -6 +6.5 62.83 0.1

7 S0 -6.5 -6.5 314 0.02

8 S1b +4.29 -5.89 152 0.04

N6m2 D
Wj p1 p2 ω 2π/ω

1 S0 -5 -5 0.0628 100

2 S1a -5 +6 0.314 20

3 S1b +6 -5 0.314 20

4 S2 +6 +6 1.57 4

5 S0 -6 -6 12.57 0.5

6 S1a -6 +6.5 314 0.02

7 S1b +6.5 -6 314 0.02

8 S2 +7.3 +7.3 4328 0.0014

9 S0 -280 -6.46 3646 0.0017

N6m2 E
Wj p1 p2 ω 2π/ω

1 S0 -5 -5 0.0628 100

2 S1a -5 +6 0.628 10

3 S1b +6 -5 0.628 10

4 S2 +6 +6 3.14 2

5 S0 -6 -6 31.4 0.2

6 S1a -6 +6.5 314 0.02

7 S1b +6.5 -6 314 0.02

8 S2 +8.46 +8.46 4092 0.0015

9 S0 -120 -6.79 2588 0.0024

TABLE II. Coefficients cj,q and dj,q of the designed systems
used in the simulations. These values have been obtained by
rounding the calculated ones (to six digits for m = 2 and
to two for m = 1). In brown the non-free coefficients with
predefined values. The number of free coefficients is twice
that of imposed bifurcations (see Table I) which, in its turn,
is limited by the polynomial system solver capability.

N5m1 A

q c1,q d1,q

1 -20 2.9

2 -323 -50

3 -59 10

4 -26 -5.1

5 -0.046 0.046

N5m2 B

q c1,q c2,q d1,q d2,q

1 -500 360.895 -8.36751 112.813

2 688.537 -500 11.9384 -155.551

3 10 -10 2.10513 -2.8886

4 2.85421 0 -2.85421 0

5 0 -0.0206974 0 0.0206974

N6m2 C

q c1,q c2,q d1,q d2,q

1 -200 3000 -33.3135 509.704

2 -3000 -200 -493.788 -28.9993

3 707.506 90.92 141.126 -38.5204

4 -7786.2 103502 -1257.74 21003.3

5 0.0975128 0 -0.0975128 0

6 0 386.052 0 -386.052

N6m2 D

q c1,q c2,q d1,q d2,q

1 -200 -3000 -3.23244 214.508

2 -3000 -200 -491.81 58.1074

3 -12849700 -850748 -2106690 247847

4 10.8482 0.371201 10.1695 -0.438213

5 -34726.9 0 34726.9 0

6 0 -0.0400246 0 0.0400246

N6m2 E

q c1,q c2,q d1,q d2,q

1 -152 200 -5.58776 2429.77

2 -200 -152 -32.7155 41.6331

3 -2886640 -2125490 -472240 589097

4 24.822 6.61275 3.34745 -6.15871

5 -7582.04 0 7582.04 0

6 0 -0.545635 0 0.545635



fsolve command since it can deal with more equations
than the algebraic solver RootFinding [Isolate]. The
fsolve command outputs a single real root (a few may be
achieved by using the avoid option) but we don’t need
to find all the solutions since one or, better, a few of
them are enough for our purpose of designing dynamical
systems. Dealing with the system of dynamical equa-
tions (7), the polynomial equations are of degree m. For
m = 2 the maximum number of equations for which fsolve
provide us with solutions depends on the dynamical di-
mension: up to fourteen for N = 6 and up to eighteen for
N = 8, while with Isolate we don’t surpass ten equations
although obtaining around 25 solutions. The computa-
tions have been done with 20 or 25 digits to assure enough
precision in obtaining the roots of the polynomials but
such a precision is unnecessary for the good working of
the designed dynamical systems and the obtained coef-
ficients may be drastically rounded without significant
changes in the dynamical behavior. Concretely, the re-
ported simulations for m = 2 have been done with coeffi-
cients rounded to six digits without noticeable variations
in the frequencies and pj values of the Hopf bifurcations
with respect to those imposed in the design process.

Of course the design success depends also on the cho-
sen values for the predefined coefficients and this opens
a wide way of possibilities. Our trials with m = 2
have been usually done by defining the value of some
cj,q coefficients in addition to the c11 and c22: two
for N = 6 and six for N = 8. A few trials with
dj,q coefficients pointed out that their values are more
critical for the design success.

DATA AVAILABILITY

The data that supports this study are available from the
corresponding author upon a reasonable request.
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Supplementary Material for

Nonlinear Complexification of Periodic Orbits

in the Generalized Landau Scenario

R. Herrero, J. Farjas, F. Pi, and G. Orriols

Linear Stability Analysis of Fixed Points in the

Designable Kind of Systems

The fact that the linear stability of the fixed points of the considered kind of systems

may be analyzed without specifying the involved nonlinear functions and the con-

crete fixed points, by using the auxiliary pj ’s parameters to describe the influence of

both things, makes feasible a global linear stability analysis of all the potential fixed

points of all the m-parameter families of systems defined by a given set of values for

the cj,q and dj,q coefficients and arbitrary nonlinear functions in the form of Eqs. (5).

This is not relevant for the single-zero eigenvalue bifurcations since their stability

analysis is independent of the cj,q and dj,q coefficients and is simply described by the

conditions pj = 1, j = 1, ..,m, each one denoting the occurrence of a bifurcation

along the direction of the corresponding xN−m+j variable.

The global linear stability analysis of the Hopf bifurcation of the m-parameter

system families defined by a given set of cj,q and dj,q coefficients means to know all

the m-tuples of pj values at which the bifurcation may occur and the correspond-

ing frequencies. Of course, with a specific set of nonlinear functions, the actual

pj excursions with varying the control parameters βj will be accordingly limited and

therefore the achievable fixed points also. Concretely, the numerical simulations

reported in this work involve fixed points with pj values of modulus lower than 10,

although the periodic function g1, Eq. (11), may sustain larger values. We begin

by firstly introducing an auxiliary item providing for a geometrical visualization of

the problem.

A. The kq space

The characteristic equation (21) is universal in the sense that it applies to any fixed

point of any continuous dynamical system and both the concrete system and the

fixed point under analysis are introduced through the values of the actual kq coeffi-

cients. We find useful to consider the N -dimensional space of kq coordinates where
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each point is associated with the corresponding set of N eigenvalues as determined

by the characteristic equation. This space contains all the variety of possible fixed

points of the N -dimensional linear systems and allows to visualizing how the design

method works to define the system coefficients such that the various fixed points

start from the desired Sn types and transform as a function of the control parameters

by increasing their unstable dimensions through successive Hopf bifurcations.

The most relevant features of the kq space are the loci of the nonhyperbolic

fixed points, those possessing one or more real eigenvalues equal to zero or/and one

or more complex eigenvalue pairs with real part equal to zero, and which may be

generically described as {0n,±iω1, . . . ,±iωq}, where 0n denotes n real eigenvalues

equal to 0 and the ±iωj describe a set of q complex conjugate pairs with real part

equal to zero and arbitrary but different imaginary part. The loci of nonhyperbolic

fixed points of a given type defines a geometrical object of dimension N−(n+q) that

will be denoted like the fixed points and which, for convenience, will be generically

termed as a surface. By imposing the corresponding eigenvalue condition on Eq.

(21) it is seen that the fixed points {0} occupy the (N -1)-dimensional subspace

kN = 0 and, more in general, the {0n} occupy the (N -n)-dimensional subspace

kN−n+1 = . . . = kN−1 = kN = 0. It is also seen that the fixed points {±iω} form the

(N -1)-dimensional surface parametrically determined as a function of ω by either

Eqs. (22), if N is even, or Eqs. (23), if N is odd. Each value of ω defines an (N -

2)-dimensional subsurface that for ω = 0 corresponds to the subspace {02}. With

increasing ω, {±iω} emerges from {02} by developing a complex folding structure

with intersections with itself and with {0} defining the surfaces {±iω1,±iω2} and

{0,±iω}, respectively, both of dimension (N -2).

As discussed in more detail in Ref. 7, where illustrative graphical representations

are reported, the surfaces {0} and {±iω}, both of dimension (N -1), with their

interconnections {02} and {0,±iω} and the self-intersection {±iω1,±iω2}, introduce

a partition of the kq space into N+1 different types of regions containing fixed points

with a different number of unstable dimensions, from 0 to N . The regions with

an even number of unstable dimensions appear located in the half space kN > 0,

while those with an odd number appear in the half space kN < 0. The contiguous

regions at the two sides of {0} contain fixed points of unstable dimensions differing

in one and the separating hyperplane appears demarcated by {02} and {0,±iω}
in N qualitatively different types of zones where it separates pairs of regions with

consecutive numbers of unstable dimensions, i.e., 0|1, 1|2, .., N -1|N . The surface

{±iω} separates regions with fixed points of unstable dimensions differing in two

and it appears demarcated by {0,±iω} and {±iω1,±iω2} in N -1 types of zones with

different pairs of contiguous regions, i.e., 0|2, 1|3, 2|4, .., N -2|N .

The first step when analyzing the linear stability of a fixed point of a given

system is to determine its eigenvalues or, equivalently, to locate it in the kq space.

By modifying the system parameters, the eigenvalues change and the fixed point

correspondingly moves through the kq space, and, if it crosses the surfaces {0}

2



or {±iω}, a saddle-node or a Hopf bifurcation occurs, respectively, provided the

system nonlinearities are appropriate. In a saddle-node bifurcation the fixed point

approaches {0} while another one approaches also by the opposite side, both become

the same nonhyperbolic point and then disappear or, conversely, the contrary process

takes place. The involved fixed points possess the same stability except along the

direction affected by the bifurcation, and the event happens in the appropriate

zone of {0} accordingly to the stability of the rest of dimensions. Although less

generic, the crossing of {0} can also be associated with the transcritical or pitchfork

bifurcations by involving different configurations of fixed points in each case. In the

crossing of {±iω}, the fixed point changes its stability in two dimensions and, under

appropriate nonlinearities, a limit cycle emerges around it at one of the surface sides,

with a two-dimensional submanifold connecting one another and with the stability

of the rest of dimensions remaining unaltered in the fixed point and being inherited

by the limit cycle.

B. The m-dimensional surface of potential fixed points

We now consider the m-parameter families of systems given by Eqs. (4) (or (7)) with

a definite set of values for the coefficients cj,q and dj,q but with arbitrary nonlinear

functions of the form (5), and try to visualize where, in the linear regime, their

potential fixed points would appear located in the kq space and how they would

move when the m control parameters βj are varied. The kq coordinates of such fixed

points are the characteristic-equation coefficients for the Jacobian matrix (14-15)

(or with (16) instead of (15)) and are then expressed through polynomial functions

implicitly written as

kq = kq (c i,l , cj,N−m+j , dj,l/dj,N−m+j , pj) , q = 1, 2, . . . , N , (S1)

with the subscripts varying as i = 1, 2, .., N (or i = 1, 2, ..,m), l = 1, 2, .., N − m,

and j = 1, 2, ..,m, and where the pj , describing the influences of βj and gj(ψj), are

the polynomial variables. The polynomial functions (S1) are of degree m but each

variable has maximum degree equal to one. In particular, the kN expression given

in Eq. (24) illustrates how any pj = 1 implies a fixed point {0} and, vice versa, any

fixed point {0} of a system given by Eqs. (4) or (7) should generically have one

pj = 1 at least. Similarly, from the expressions of kN−1, kN−2, .., and kN−m+1 it is

seen that the m-tuple (p1, p2, . . . , pm) with a number n of pj values equal to 1 should

correspond to fixed points {0n}.
The m-dimensional surface parametrically defined by Eqs. (S1), with the m pj ’s

values as freely varying parameters, contains all the potential fixed points of any

system with the given set of cj,q and dj,q values, with each one of these points being

univocally located accordingly to its values of the m-tuple (p1, p2, . . . , pm). The

intersections of this surface with the (N -1)-dimensional surfaces {0} and {±iω}
are of dimension (m-1), as corresponds to the codimension-one of the associated
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bifurcations. In particular, the intersection of the m-dimensional surface with {±iω}
describes the Hopf bifurcation of all the potential fixed points of the families of

systems with the given set of cj,q and dj,q values but arbitrary nonlinear functions of

the form (5).

C. Hopf bifurcation of the potential fixed points of the m-

parameter system families defined by a set of cj,q and

dj,q coefficients

The (m-1)-dimensional intersection with {±iω} may be analyzed by introducing

Eqs. (S1) as the kq coordinates of either Eqs. (22), if N is even, or Eqs. (23), if N is

odd, to derive a couple of equations with the m pj ’s and ω as variables. For m = 1

the surface of fixed points is a straight line and it may be seen that the number of

punctual intersections with {±iω} has a maximum equal to N -1, just the maximum

number of imposable bifurcations in a saddle-node pair of fixed points, as given by

Eq. (20). For m = 2 and by taking ω as a parameter, the intersection equations may

be solved and a twofold solution for p1(ω) and p2(ω) is obtained. For instance, Fig.

S1 represents the real solutions for the families of the case N6m2 C (Table I). In

this case the twofold solution covers finite frequency intervals in the limits of which

the two solutions become equal (and complex conjugated at the other side), but

there are cases the solutions of which cover all the frequencies in continuity from 0

to probably infinity, as it is the case for N6m2 E. Nevertheless, for frequencies very

much higher than those imposed in the system design the solutions often correspond

to enormous pj values. At ω = 0 always exist a degenerate twofold solution with

p1 = p2 = 1 that in the case of Fig. S1 remains isolated but in other cases it may

also extend along some frequency interval. A vertical line within a dispersive curve

is a typical feature of such a kind of representation, appearing several times in all

the analyzed cases, and it seems really to be a vertical straight line reaching infinite

values (at least, we have been numerically unable to find their limits). It would mean

that the ±iω eigenvalue condition at the given frequency is fulfilled independently

of the pj parameter varying along the line and, therefore, of the corresponding βj

control parameter. Its explanation requires realizing that, for arbitrary m and as a

consequence of the maximum degree equal to one of the polynomial variables in Eqs.

(S1), the m-dimensional surface contains the straight lines defined by arbitrarily

fixing the values of (m − 1) of the m pj ’s in Eqs. (S1), while the remaining one

is freely varying. Thus, a vertical line appearing at a given frequency in one of

the pj(ω) representations with the other pj ’s having definite values means that the

corresponding straight line is fully contained within the intersection with {±iω} and,

more specifically, within the (N -2)-dimensional subsurface of {±iω} corresponding

to the given frequency.

The horizontal line at p = 1 aids to distinguish the different classes of fixed

points on the represented solutions. As a function of the frequency, the twofold
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Figure S1: Representation of the p1 and p2 values of all the possible nonhyperbolic
fixed points {±iω} of the system families of case N6m2 C, describing the poten-
tial Hopf bifurcations of such systems as a function of the bifurcating frequency ω.
The lower figure is an enlarged detail of the upper one. The green arrows indicate
the seven imposed bifurcations for the design and the orange one denotes the extra
bifurcation (see Table I). The continuous and dotted lines distinguish the two dif-
ferent solutions, respectively. Out of the represented vertical scale, the dotted red
line includes an inverted U with maximum around ω = 1 and p2 = −38 in between
the two vertical lines. The horizontal grey line at p = 1 aids to identify the four
classes of fixed points.
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solution describes two classes of fixed points that may be equal or not, and every

time one of the pj(ω) curves of one of the solutions crosses the p = 1 line there is

a change of class from Sj to Sj±1 for such a solution. Such crossings correspond

to {0,±iω} non-hyperbolic fixed points in the kj space and they may easily occur

in the intersection with {±iω} because require a single condition only, i.e., a zero

eigenvalue. Instead the occurrence of {±iω1,±iω2} fixed points may be generically

excluded since they would require the twofold condition of identical values of both p1

and p2 at two different frequencies in a given solution. In the absence of {±iω1,±iω2}
fixed points, the continuous frequency intervals associated with a given class of fixed

point corresponds to the same bifurcation in the sense of yielding equal dimensional

changes in the invariant manifolds of the fixed point. Therefore, to identify the

kinds of bifurcations we only need to calculate the fixed point eigenvalues once at

each frequency interval of the two solutions. For simplicity we have not included

such a kind of information in Fig. S1 but as an illustrative example we say that the

third bifurcation of S0, through which it passes from four to six unstable dimensions

with increasing the pj values, occurs in the continuous line solution from the vertical

line at ω ≈ 157 to the end at ω ≈ 316 and in the dotted line solution from the

vertical line at ω ≈ 65 to the common end at ω ≈ 316, with the latter including the

imposed bifurcation W7 at ω ≈ 314. Since the involved pj values are moderate and

almost all available with g2, the family of systems N6m2 C g2 can sustain such a

bifurcation practically over the full range of involved frequencies. In contrast, the

S2 class only appears in a narrow interval of the dotted line solution around the

imposed bifurcation W4 at ω = 3.14, where the fixed point changes from two to

four unstable dimensions, and, then, we can exclude the occurrence of its second

bifurcation, which is the lacking one in order to exhaust the stable manifolds of the

four classes of fixed points. Sometimes the localization of a periodic orbit becomes

rather difficult, usually due to the significant influence of a higher frequency mode

very close to the fixed point, and it is then convenient to try at different frequencies

within the continuous interval(s) of the given bifurcation.

The fact that the bifurcations may occur within a broad frequency range, accord-

ingly with the corresponding broad ranges of pj values, reflects its codimension-one

but it also means that, in the linear regime, a given periodic orbit may be generated

as a harmonic oscillation within a, sometimes very large, frequency range, with the

consequent uncertainty about its oscillatory features when going far from the bifur-

cation by varying the βj values. It should be the nonlinearities which will define the

actual properties of the periodic orbit as a function of the βj parameters, including

both those intrinsic to the given oscillation and those arising from mixing influences

of other oscillation modes.

For m = 3, the couple of equations characterizing the intersection with {±iω}
may be tackled if, in addition to ω, one of the pj ’s, say p3, is taken as a parameter and

analytic expressions for p1(p3, ω) and p2(p3, ω) are then obtained that represented

as a function of ω for a given value of p3 provides a twofold solution for p1 and p2
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covering continuous frequency intervals, like happens for m = 2 (Fig. S1), while in

a 3D representation as a function of ω and p3 the twofold solution covers continuous

two-dimensional zones, in correspondence with the fact that in the kq space the

intersection with {±iω} is two-dimensional. By assuming properly designed systems

with a significant number of imposed Hopf bifurcations, we expect that the described

behavior of the Hopf bifurcation will extend to m-parameter families of systems with

higher m values.
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