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Abstract

Deep neural networks have been a leading research topic within the machine learning field
for the past few years. The introduction of graphical processing units (GPUs) and hardware ad-
vances made possible the training of deep neural networks. Previously the training procedure
was impossible due to the huge amount of training samples required. The new trained introduced
architectures have outperformed the classical methods in different classification and regression
problems. With the introduction of 5G technology, related to low-latency and online applica-
tions, the research on decreasing the computational cost of deep learning architectures while
maintaining state-of-art performance has gained huge interest.

This thesis focuses on the use of Self Size-estimating Feedforward Network (SSFN), a feed-
forward multilayer network. SSFN presents low complexity on the training procedure due to a
random matrix instance used in its weights. Its weight matrices are trained using a layer-wise
convex optimization approach (a supervised training) combined with a random matrix instance
(an unsupervised training). The use of deterministic transforms is explored to replace random
matrix instances on the SSFN weight matrices. The use of deterministic transforms automat-
ically reduces the computational complexity, as its structure allows to compute them by fast
algorithms. Several deterministic transforms such as discrete cosine transform, Hadamard trans-
form and wavelet transform, among others, are investigated. To this end, two methods based on
features’ statistical parameters are developed. The proposed methods are implemented on each
layer to decide the deterministic transform to use.

The effectiveness of the proposed approach is illustrated by SSFN for object classification
tasks using several benchmark datasets. The results show a proper performance, similar to the
original SSFN, and also consistency across the different datasets. Therefore, the possibility of
introducing deterministic transformations in machine learning research is demonstrated.

Keywords

Multilayer neural network, deterministic transforms, weight matrices, computational cost, ma-
chine learning.
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Sammanfattning

Under de senaste åren har djupa neurala nätverk varit det huvudsakliga forskningsområdet
inom maskininlärning. Införandet av grafiska processorenheter (GPU:er) och hårdvaruutveck-
ling möjliggjorde träning av djupa neurala nätverk. Tidigare var träningsförfarandet omöjligt på
grund av den enorma mängd datapunkter som krävs. De nya tränade arkitekturerna har överträf-
fat de klassiska metoderna i olika klassificerings- och regressionsproblem. Med introduktionen
av 5G-teknik, som hör samman med låg fördröjning och onlineapplikationer, har forskning om
att minska beräkningskostnaderna för djupinlärningsarkitekturer utan att tappa prestandan, fått
ökat intresset.

Denna avhandling fokuserar på användningen av Self Size Estimating Feedforward Network
(SSFN), ett feedforward multilayer-nätverk. SSFN har låg komplexitet i träningsproceduren på
grund av en slumpmässig matrisinstans som används i dess vikter. Dess viktmatriser tränas med
hjälp av en lagervis konvex optimeringsstrategi (en övervakad träning) i kombination med en
slumpmässig matrisinstans (en oövervakad träning). Användningen av deterministiska transfor-
mationer undersöks för att ersätta slumpmässiga matrisinstanser på SSFN-viktmatriserna. An-
vändningen av deterministiska transformationer ger automatiskt en minskning av beräknings-
komplexiteten, eftersom dess struktur gör det möjligt att beräkna dem med snabba algoritmer.
Flera deterministiska transformationer som diskret cosinustransformation, Hadamardtransforma-
tion och wavelettransformation undersöks bland andra. För detta ändamål utvecklas två metoder
som baseras på statistiska parametrar i indatans olika dimensioner. De föreslagna metoderna im-
plementeras på varje lager för att bestämma den deterministiska transform som ska användas.

Effektiviteten av det föreslagna tillvägagångssättet illustreras med SSFN för objektklassi-
ficering med hjälp av flera dataset. Resultatet visar ett korrekt beteende, likt den ursprungliga
SSFN, och konsistenta resultat över de olika dataseten. Därmed demonstreras möjligheten att
införa deterministiska transformationer i maskininlärningsforskning.

Keywords

Neurala nätverk i flera lager, deterministiska transformationer, viktmatriser, beräkningskostnad,
maskininlärning.
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Chapter 1

Introduction

To develop artificial computing systems capable of learning and being closest to human intelligence
in decision terms has been the aspiration of researchers since digital technology appearance. It was
in the late 1950s, by the hand of Rosenblatt, that the first considered artificial neural network (ANN),
named perceptron, was invented [3]. This perceptron constituted the base for multi-layer neural
networks and, consequently, deep learning (DL), with its first appearance in [4]. Unfortunately,
training an RNA is computationally expensive, limiting its research and use for a few decades.

It has not been until the last decade, with technology evolution and hardware advances, that
ANNs have received enormous attention. Newly neural network architectures have been created and
improved. Examples such as deep neural networks (DNNs) [5] and convolutional neural networks
(CNNs) [6], have outperformed the classical methods in different classification and regression prob-
lems [7, 8]. However, this impressive progress has come with a cost–it has made machine learning
(ML) training strictly reliant on extensive computational resources due to the huge amount of data
needed to train a network, as well as the enormous amount of operations and parameters to train. In
order to increase the training speed, clusters of CPU or parallel computations using graphical pro-
cessing unit (GPUs) have been applied. However, even many optimizations have been achieved, the
process complexity and time consumption are huge, requiring high data processing capabilities [9].

Nowadays, with the 5G evolution, many applications demand efficient and fast algorithms, such
as low-latency communication devices [10] and artificial intelligence in autonomous vehicle driv-
ing [11]. Several algorithms and architectures have been developed to approach these requirements.
There are two main classes of DNNs based algorithms that address modern neural networks’ high
computational complexity requirements. The first class of algorithms tries to preserve the state-of-
the-art performance of famous architectures, such as ResNet [12] and AlexNet [6], while reducing
the size of the network as much as possible. EfficientNet [13], SqueezeNet [14], and MobileNet [15]
are examples of this kind. However, training of the above architecture is still quite expensive due
to the use of stochastic gradient descent and backpropagation [16]. The second class of algorithms
tries to resolve this issue by using a gradient-free training approach. To this end, one popular tech-
nique is that some of the weight matrices of the network are set to instances of random matrices, and
only the rest of the weight matrices are updated during training. This leads to a convex relaxation of
the training cost and eliminates the need for error backpropagation throughout the layers. Extreme
learning machine (ELM) [17], random vector functional link (RVFL) and its variants [18, 19], pro-
gressive learning network (PLN) [1], and self size-estimating feed-forward network (SSFN) [2] are
examples of this class that are shown to provide competitive performance with very low computa-
tional requirements in various applications.

1



2 CHAPTER 1. INTRODUCTION

1.1 Problem Statement

To solve the expensive computational cost of deep neural networks, two algorithm approaches have
been developed. The first class tries to reduce the network size as much as possible to reduce its
operational complexity while keeping the performance. The second class also deals with the training
complexity.

The intends to reduce the network operation complexity always have been similar, proposing
different architectures and learning methods. Although there are uncountable different constructed
network architectures, they are usually based on the same principle: a list of concatenated layers
connecting the network input-output. Each layer consists basically of linear matrix multiplications
followed by a non-linear transform.

The possibility to reduce neural network operation complexity without changing the "linear
transform - non-linear transform" structure but changing the computation process could be explored.

1.2 Research Question and Goals

From the end of the above section, a question is raised

Is it possible to find a different network implementation approach to reduce the network
operational complexity?

In other words, propose a new network operation paradigm, conserving the "linear transform -
non-linear transform" structure, to reduce the network computational complexity after trained.

Thus, the main goal of the project is

Propose a method to achieve a reduction of the computational cost of a neural network on the
operational stage, while preserving similar performances and training complexity compared to the

original network.

In order to preserve network low training complexity, the second-class of neural network algo-
rithms presented before will be considered. This class of networks uses a random matrix instance
in the linear transform, which may give versatility to explore linear transforms atypical in neural
networks.

1.3 Research Methodology

The second class of DNNs algorithms is chosen to consider and modify in the project. The structure
of this class of networks is mainly based on multilayer perceptron (MLP) [20], more specifically
on a feed-forward neural network (FNN) structure, presented in Figure 1.1. It consists of the input-
output connected by a box. The box is filled by one or more layers, interconnected by a linear
transform (LT), called weights, followed by a non-linear transform (NLT). The networks within this
class of algorithms have in common that a part of their LT consists of random weights. The neural
network decided to take into consideration is SSFN [2].

When the network is already trained and the network is operating, unseen samples pass through
the network. When an input sample enters the network, at every layer is performed a vector-matrix
product followed by a non-linear transform. If MLP structure is wanted to be kept, two options
remain to improve the computational cost:

1. Modify the linear transform block, weights matrix.

2. Modify the non-linear transform block, activation function.
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Figure 1.1: Architecture of a multi-layer perceptron network with L hidden layers, with input x and
prediction t̃L.

In the project, the first option is approached. The linear transform block will be modified, and
therefore the solutions might be either develop an efficient way to compute vector-matrix multipli-
cation, which is not an option or find a more efficient way to compute the linear transform.

Following the second approach, it is proposed to use signal processing linear transforms, also
referred to as deterministic or orthogonal transforms. In signal processing, a large variety of discrete
linear transforms have an essential role in spectral analysis, image processing, and data compression,
among others, representing different signal properties and features. A property of these transforms
is their orthogonality or semi-orthogonality, making it possible to be computed by fast computation
algorithms, reducing the cost.

The neural network decided to work with is Self Size-estimating Feed-forward Network (SSFN) [2].
It is built following a layer-wise approach with convex optimization, i.e., a new layer is added in
top of the others and the corresponding output matrix is optimized. The network also presents
low training complexity, achieved by using a random matrix instance, and ensuring monotonically
decreasing training cost. Three main reasons are present to consider and work implementing this
architecture:

1. Self size-estimating. It estimates itself its size, hence the network builds itself accordingly to
its optimal architecture.

2. Random matrix instance. A random matrix is whatever matrix, thus it can be easily replaced
by a deterministic transform.

3. Monotonically decreasing training cost. Even SSFN does not use gradient descent algorithms,
the training cost is assured to decrease.

The project intends to assemble the concepts presented in this section in order to develop a new
framework for the linear transform of neural network architectures.

1.4 Main Contributions

The author explored different deterministic linear transforms, such as Discrete Cosine Transform
(DCT) and Discrete Wavelet Transform (DWT), widely applied in diverse signal processing fields.
Deterministic transforms replace the random matrices instance of SSFN, the chosen neural network.
Therefore, SSFN algorithm is modified and adapted to introduce the new working approach. Some
statistical signal properties are summarized and used in the different approaches. Three different
experiments are carried to perform a complete comparison and study of the implementation with
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the original network in [2]. The studies show to provide similar performances to the original case
over several bench-mark classification datasets. It offers a new method to compute linear transforms
weights for different neural network architectures belonging to the second class of algorithms, based
on deterministic transforms use.



Chapter 2

Background

In this chapter necessary theoretical background used along the thesis work is covered. In Sec-
tion 2.1 the concept of signal processing deterministic linear transforms is introduced. Section 2.2
follows with a brief definition and explanation of three different signal statistical properties widely
used in the field of signal processing. In Section 2.3 feed-forward neural networks (FNNs) are intro-
duced, starting with a brief ANNs introduction and followed by its structure definition and training.
Two classes of FNNs are distinguished but focusing on the second class by briefly explaining ex-
treme learning machine (ELM). The section ends with a detailed introduction to SSFN, network
structure evaluated in this thesis.

2.1 Deterministic Linear Transforms

Data collection has grown exponentially in the last decades with different infinite purposes such as
image and audio analysis, noise reduction, and data transmission. Collected data is acquired from
signals in nature and it must be meaningful for each specific purpose. Signals in their nature can
be observed in spatial and temporal dimensions, which typically are correlated and with uniformly
distributed energy. These facts, in general, are not usually desirable when pretending to analyze
and extract information from the captured data. Signal correlation and uniformly distributed energy
hinder signal decomposition, needed in applications such as information extraction, noise reduction
and data compression [21]. Data analysis and signal processing become necessary to cope with this
problem and represent data in a meaningful representation. At this point is where orthogonal linear
transforms had become essential in signal processing.

Applying an orthogonal linear transform to an input signal present two main advantages of
interest to this thesis:

• Decorrelates the signal and concentrates its energy in fewer coefficients, allowing a more
compact information representation.

• Represent the signal in an alternative dimension than time and space, as frequency dimen-
sion, where more features can be present depending on the purpose. Fourier transform is an
example, being the most famous and worldwide used transform illustrated in Figure 2.1.

An orthogonal or semi-orthogonal transform is equivalent to a simple rotation of the data in its
dimensions, meaning that its energy and information are kept untouched. Biorthogonal, as some
discrete wavelet transforms are [22], can be also as efficient in terms of energy preservation as
orthogonal transforms [23] under some conditions. Different transforms differ among them on
the signal properties they represent and how it is done, as well as how uncorrelated the resulting

5



6 CHAPTER 2. BACKGROUND

Time

Frequency

Figure 2.1: Discrete Fourier transform illustration.

coefficients are and its new information distribution. Depending on the application is intended, a
transform will be optimal for the specified purposes.

Orthogonal linear transforms are fixed matrices for a determined input dimension N , i.e. are
signal independent. To emphasize its constant structure, in the project they will be referred as
Deterministic Linear Transforms (DLTs), denoted as WDLT . DLTs can be either orthogonal trans-
forms or semi-orthogonal. Consider a raw input signal N -dimensional x ∈ RN , to which a DLT
WDLT ∈ RM×N is applied by matrix product

y = WDLTx. (2.1)

The resulting output vector y ∈ RM is computed with O(M × N) computational complexity. It
is important to mention that most of the deterministic transforms are squared transforms, N = M ,
and even in some cases squared by a power of 2 [24].

Computational complexity when implementing DLTs can be reduced by using fast algorithms
developed for each of them, as Fast Fourier Transform (FFT) can be for the DFT. These fast al-
gorithms make use of matrix factorization (as FFT algorithm), cascade filterbanks (as DWT algo-
rithms), and divide and conquer recursive implementations (as FWHT algorithm). By fast algo-
rithms implementation, it is possible to reduce the computational complexity, for a square matrix
transform, from O(N2) to O(Nlog2N) [21, 24], or even O(N) [25, 26]. To highlight when a fast
algorithm is used instead of matrix products, the previous equation will be expressed in function
notation as

y = wDLT (x), (2.2)

expressing the DLT as w( · ) ∈ RN → RM .

2.2 Signal properties

Three different statistical signal properties, standard deviation and variance, cross-correlation ma-
trix and singular value decomposition (SVD), are introduced in this section. It is crucial to fully
understand them as the proposed methodology approaches rely on these properties.

2.2.1 Standard deviation and variance

In statistics given a signal X =
[
x(1), ..., x(J)], with J samples, its variance σ2

X or standard devia-
tion σX measure the amount of variation or dispersion of the signal around its mean value. Standard
deviation preserves the signal units, being useful if a direct comparison is intended.

σX =

√∑J
j=1(x(j) − µX)2

J
, σY =

√∑J
j=1(y(j) − µY )2

J
. (2.3)
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A low variance indicates that the samples of a set are close to the mean, while a large variance
indicates that samples are spread from the mean, illustrated in Figure 2.2. In a neural network, the
variance of the nodes can refer to the information a node is carrying [27]. If a node presents low
variance across the training dataset, it means that the node presents similar values for all training
samples and therefore, it carries a small amount of information, acting as a bias term.

Figure 2.2: Signal plot on the left and same signal histogram on the right. Mean value indicated as
a red line and standard deviation as black lines.

2.2.2 Cross-Correlation

In signal processing cross-correlation is a similarity measure among two signals as a function of time
delay and relativity. If there is statistical relationship between two signals it means that a dependency
exist between them. Cross-correlation between two signal variables X =

[
x(1), ..., x(J)] and Y =[

y(1), ..., y(J)], both of J observations, is computed as

Cov(X,Y ) = 1
J

J∑
j=1

(x(j) − µX)(y(j) − µY ) (2.4)

ρX,Y = Corr(X,Y ) = Cov(X,Y )
σXσY

= E [(X − µX)(Y − µY )]
σXσY

, (2.5)

where Cov( · ) and E( · ) are the covariance and expected value operators respectively, µ and σ
are the signal mean and standard deviation respectively and ρX,Y is the correlation coefficient.
The correlation coefficient is a dimensionless measure being −1 ≤ ρX,Y ≤ 1. The closer to the
extreme values ±1, stronger is the statistical relation between the signals, where the sign indicates
similarities direction.

Now, consider two different vectors of variables expressed as X = [X1, ..., XP ]T and Y =
[Y1, ..., YN ]T with different amount of variables. Each variable X1, X2, Y1, etc, is defined as
before with J observations or samples. The correlation measure between two different variables is
commonly summarized in the form of the correlation matrix RX,Y.

RX,Y =


ρX1,Y1 ρX1,Y2 . . . ρX1,YQ

ρX2,Y1 ρX2,Y2 . . . ρX2,YQ

...
...

. . .
...

ρXP ,Y1 ρXP ,Y2 . . . ρXP ,YQ

 . (2.6)
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2.2.3 Singular Value Decomposition (SVD)

SVD is a factorization method for real and imaginary matrices widely used in signal processing
tasks. The two most important properties are the following:

• Decorrelates variables into a set of uncorrelated to express and make use of different relation-
ships of the original data.

• Identify and order the main variation of points among different dimensions the data have.
This allows to reduce data dimensions while keeping the maximum information amount.

A matrix A ∈ RM×N is decomposed as

A = UΛVT , (2.7)

where U ∈ RM×M and V ∈ RN×N are orthogonal matrices which its column vectors are referred
as left-singular vectors and right-singular vectors respectively. The singular values matrix Λ ∈
RM×N is a diagonal matrix of the form

Λ =



λ1 0 . . . 0

0 λ2
. . .

...
...

. . . . . . 0
...

. . . λM
... 0
...

...
0 . . . . . . 0


. (2.8)

When A is a squared matrix, singular values correspond to eigenvalues and singular vectors corre-
spond to eigenvectors.

Figure 2.3: Illustration of SVD of a matrix A ∈ R2×2.

2.3 Feedforward Neural Networks

In this section first, it is explained an overview of the concept of Artificial Neural Networks (ANNs).
Then the focus is set on Feedforward Neural Networks (FNNs), a type of Deep Neural Network
(DNN) whose connections are connected only to forward layers. After DNNs structure is sum-
marized its training procedure is approached. The training of a DNN is divided into two groups.
The first group makes use of backpropagation and stochastic gradient descent, it is summarized and
some disadvantages are listed. The second group solves some of those problems and it is illus-
trated by summarizing the training of extreme learning machine (ELM). To end the section, SSFN
is summarized.
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2.3.1 Overview

ANNs are computation algorithms based on brain neural network systems, although much less
complex. Unlike traditional algorithms which are created for a specific purpose, neural networks
are capable to learn to work for a specific task by themselves, by carrying a training procedure,
analogously how humans do.

Figure 2.4: Illustration of a SLFN architecture, with hidden layer weights W1 and output layer
weights O.

An ANN architecture consists basically of an input layer with several input neurons P equal
to the dimension of the input signal, its body which consists of one or more hidden layers, and
the output neurons Q, with the number of neurons equal to the dimension of the output. When
the layer connections are connected only to the next layers without forming a loop the network
is named feed-forward neural network (FNN). In 2.4 is illustrated an FNN with only one hidden
layer, named single-layer feed-forward network (SLFN). Provided enough number of neurons in
an SLFN hidden layer any function of a compact set can be approximated [28]. However, it is a
difficult task to achieve, almost impossible, as it requires a huge computational cost. To achieve a
similar representation with less computational cost, deep neural networks (DNNs) are implemented.
Instead of using only one wide layer to approximate the functions, DNNs are built with more than
one and narrower hidden layers.

2.3.2 DNNs Overall structure

As mentioned above, DNNs are composed of an input layer, hidden layers and output layer. Con-
sider a dataset containing J samples of P -dimensional input data x(j) ∈ RP and its corresponding
Q-dimensional target vector tj ∈ RQ, defined as D =

{
x(j), t(j)}J

j=1. The j’th first layer linear
transform (LT) output, with weight matrix W1 ∈ RN1×P , is described as

z(j)
1 = W1x(j) + b1, (2.9)

with output z(j)
1 ∈ RN1 and b1 ∈ RN1 corresponding to the bias term used to adjust the output.

The LT is always followed by a non-linear transform, named activation function g( · ), to add non-
linearity to the model in each node output, producing the feature vector y(j)

1 = g(z(j)
1 ) ∈ RN1 . Real

data is usually non-linear and with high dimensionality and/or complexity. The implementation of
activation functions in the network allows it to create more complex mappings within the signal
flow and therefore approximate and model more accurately the input data.
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Convolutional neural networks (CNNs) are a type of DNNs with different architecture and layer
variations. They work in a multi-dimensional space where the weights are a filter and the compu-
tation is carried through convolutions, therefore sharing the weights across the outputs. After the
weight convolution and before the activation function, there is an extra stage to reduce the dimension
named pooling layer. They are mainly used in image processing [29].

2.3.3 DNNs training

When training a neural network is intended to fit to the training data while keeping a generalization
for when using the network with non-known samples. The training is carried by optimizing the
parameters to minimize the loss cost L as

W∗,O∗L = arg min
W,OL

J∑
j=1
L(t(j),OLfW(x(j))). (2.10)

In the equation network hidden layer’s parameters are represented by the function fW(x(j)) =
g(WL−1g(...g(W1x(j)))), where the biases are obviated but present and OL references to the
network output matrix at last layer L. The loss function L of a sample pair {x(j), t(j)} can be
mean-squared error loss, Huber loss or log-cosh loss among others. The implemented cost in this
thesis is mean square error loss defined by

C = L(OL,W) = 1
J

J∑
j=1
||t(j) − t̂(j)||2 = 1

J

J∑
j=1
||t(j) −OLfW(x(j))||2. (2.11)

The progress achieved by DNNs has come with a counter cost regarding the computational cost
needed to train the networks to achieve desired performances. To reduce the complexity require-
ments of training DNNs, there can be distinguished two different classes of algorithms. The first
class is trying to preserve the state-of-the-art performance of famous architectures while intends
to reduce the size of the network, as EfficientNet and SqueezeNet. Although the network size is
reduced and therefore the training complexity is also reduced, it is still quite expensive due to the
use of backpropagation algorithm and stochastic gradient descend minimization method. To deal
directly with training cost reduction, a second class of algorithms is implemented. These second
class algorithms are based on the use of a random matrix instance in some weight matrices of the
network, meaning that do not have to be trained.

In the following subsections are described both classes of algorithms. First, the typical stages
of the first-class algorithms are described together with their main disadvantages. It is followed by
a well-known algorithm named ELM, in order to illustrate the second-class algorithm.

2.3.3.1 First class of DNN algorithms: stochastic gradient descent and Back-propagation

Consider a FNN as the SLFN sowhn in Figure 2.4 but with L − 1 hidden layers and OL output
matrix, with all weights randomly initialized. The network have two different weight matrices, the
hidden layers weights Wl ∈ RNl×Nl−1 with 1 ≤ l ≤ L − 1, and the output matrix OL ∈ RQ×N1

weights. The prediction target is defined as

t̂(j) = OLfW(x(j)) j = 1, ..., J. (2.12)

Expanding to the whole dataset with T̂ =
[
t̂(1), t̂(2), ..., t̂(J)] ∈ RQ×J the equation can be com-

pacted as
T̂ = OLH, (2.13)



2.3. FEEDFORWARD NEURAL NETWORKS 11

where

H =


g(fW(x(1)))
g(fW(x(2)))

...
g(fW(x(J)))


T

. (2.14)

H ∈ RNL×J is defined as the hidden layer output matrix of the neural network [30]. The n’th row
of the matrix corresponds to the last hidden layer L − 1 n’th node, respect to x(1), ...,x(J)input
observations.

The training procedure is carried with the goal to find the optimal parameters, i.e. weights and
biases W, b and OL, such that

||T−O∗LH(W∗,b∗)|| = min
W,b,OL

||T−OLH(W,b)||, (2.15)

which is equal to minimize the error in (2.11).
To solve the minimization problem in previous equation, stochastic gradient descent methods

are used. In the minimization procedure β is defined as the set of weights and biases, W, b and O.
It is computed iteratively as

βk = βk−1 − η
δL(β)
δβ

, (2.16)

with η > 0 being the learning rate.
Backpropagation method, therefore, is used to learn efficiently the gradients by propagating

from the output to input and it can be summarized into the following four main steps, which are
repeated until the training error is acceptable small [31]:

1. Feed-forward computation.

2. Backpropagation to the output layer.

3. Backpropagation to the hidden layer.

4. Weight updates.

As it can be guessed from the previous steps, working with stochastic gradient descent together
with BP is a computationally expensive method due to gradient computation and all the propagation
iterations. Several inconveniences appear and have to be taken into account when working with the
combination of the two algorithms:

• Necessity of hand-tuning properly the learning rate η hyperparameter (2.16). When η is too
small the algorithm converges very slowly, but when is too large, the algorithm can diverge
due to instability.

• The presence of local minima may make think the backpropagation algorithm that has reached
the global and stop in a non-optimal point [32].

• Over-fitting may happen and therefore modifications such as validation and stop methods are
needed.

• Very time-consuming due to the computational complexity of the optimization operations.
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2.3.3.2 Second class of DNN algorithms: Random weights instance

To cope with some of the exposed problems above, a second class of FNN algorithms is created.
By avoiding the use of backpropagation and stochastic gradient descent, the local minima problem
is solved and computational cost can be reduced. Some examples of this second class are RVFL,
SSFN and ELM, this last being the most famous and widely used. They are based on the use of
a random definition of network weights and biases making unnecessary their training. The output
matrix requires to be optimized and it can be done with some optimization algorithm, such as least-
squares (LS).

Following, ELM algorithm will be briefly explained to have a basic notion on the operation
basics of this class of algorithms. Consider the SLFN architecture of Figure 2.4 and its output as
in (2.12), t̂j = Og(W1xj + b). ELM algorithm is based on the random initialization of the weight
matrix W1 and biases b, keeping them as constant. The only parameters that need to be optimized
are the output weight O2 by solving the linear system in (2.15), which now is simply solved by
finding the LS solution as

||T−O∗H(W1,b)|| = min
O
||T−OH(W1,b)|| (2.17)

According to [33] the LS solution is

Ô = H+T = g(W1x)+T (2.18)

with H+ being the Moore-Penrose generalized pseudoinverse of matrix H and x =
[
x(1), ...,x(J)].

The algorithm steps can be summarized then with the following two steps:

1. Initialize W1 and b with random values.

2. Calculate the hidden layer output matrix H as in (2.14).

3. Calculate the ouptut matrix hidden weight O as in (2.18).

In [34] ELM is extended to H-ELM as a multilayer structure.

2.3.4 Self size-estimating feed-forward network (SSFN)

In this subsection, it is introduced and reviewed the structure and training procedure of SSFN [2].
It belongs to the second class of algorithms previously presented, therefore makes use of a random
instance matrix and presents low training computational cost. It is also needed of limited human
intervention, estimating itself its size, and architecture shown in Figure 2.5. It is built using a layer-
wise approach with convex optimization together with the use of random matrix instances to ensure
a monotonically decreasing training cost. A new layer is added on top of an optimized structure
and is optimized. Is possible to maintain a decreasing cost by preserving a so-called ’lossless flow
property’ (LFP), a property of an SLFN. If LFP is preserved it means the signal flows through a
system without any loss or change.

Consider the signal flow between the l’th layer and the network input as

yl = g(Wlyl−1) = g(Wl...g(W2g(W1x))...) ∈ RNl , (2.19)

where Wl ∈ RNl×Nl−1 is the weight matrix of l’th layer with Nl hidden neurons and the activation
function g( · ) is specifically ReLu or a derived generalization. The network is built using a layer-
wise approach with convex optimization. A new layer is added on top of an optimized structure and
is optimized as follows:
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Figure 2.5: Architecture of a multi-layer SSFN with L layers and its signal flow diagram. LT stands
for linear transform, (weight matrix) and NLT stands for non-linear transform (activation function).
ReLU is uses as activation function (Schematic from [1]).

1. Consider the training dataset D = {(x(j) ∈ RP , t(j) ∈ RQ)}Jj=1. The output in the l’th layer
is computed as in (2.19).

2. The prediction of the j’th sample and training cost in each l’th layer is defined as

t̂(j)
l = Oly(j)

l (2.20)

Cl = 1
J

∑J
j=1 ||t(j) − t̂(j)

l ||2 (2.21)

3. The output matrix Ol is computed by minimizing the previous training cost by solving the
following optimization problem

O?
l = arg min

O
Cl s.t. ||O||2F ≤ εl = 2αQ. (2.22)

Here εl denotes the regularization parameter with 1 ≤ α, refer to [2] for more details. Two
methods are used distinguishing between the first output matrix and the remaining:

• First output matrix O∗0: Regularized least-squares (with Tikonov regularization). Used
to solve the unconstrianed Lagrangian:

arg min
O0

 1
J

J∑
j=1
||t(j)−O0y(j)

l ||
2 + λ0||O0||2F

 (2.23)

where λ0 is RLS regularization parameter.
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• From second to onwards output matrix O∗1...O∗L: ADMM. New matrices are defined
containing the whole dataset as T =

[
t(1), t(2), ...t(J)] and Y =

[
y(1),y(2), ...y(J)].

Equivalently to (2.22),

O?
l = arg min

Ol,Ql

||T−OlYl||2F s.t. ||Ql||2F ≤ εα, Ql = Ol. (2.24)

Refer to [2] for derivation of the process and method iterative equations. An hyperpa-
rameter µ > 0 is used to control the convergence rate of ADDM.

4. The weight matrix of (l + 1)’th layer is constructed as

Wl+1 =
[

VQO?
l

Rl+1

]
, (2.25)

where VQ = [IQ; −IQ]T ∈ R2Q×Q, with IQ ∈ RQ×Q as identity matrix, is needed to
assure LFP. Rl+1 corresponds to a random matrix instance.

This procedure is carried until the maximum number of layers Lmax is reached, or the cost
shows a saturation trend defined as

C∗l − C∗l−1
C∗l−1

< ηlayer, (2.26)

with ηlayer being a predefined threshold and the cost computed as in (2.21).
Additionally there is also an iterative procedure to compute each layer width. Analogously to

the layer-addition procedure, nodes are added in a step-size ∆ until the maximum number of nodes
Nmax is reached or it presents a saturation trend

C∗nl
− C∗nl−∆
C∗nl−∆

< ηnode. (2.27)

It is important to note that this layer-wise approach avoids dealing with problems such as van-
ishing gradients or local minima while ensuring a reduction of the cost. In [2] is It shown that
preservation of LFP training of SSFN leads to Cl ≤ Cl−1. This procedure is summarized in Algo-
rithm 1.
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Algorithm 1 : Algorithm for construction of SSFN
Input:

1: Training dataset D(x(j), t(j))}J
j=1

2: Parameters to set:
(a) Lmax (Maximum number of layers)
(b) Nmax ≥ 2Q (Maximum number of nodes in a layer)
(c) α ≥ 1 (Parameter in (2.22))
(d) ∆ (Numbers of nodes to increase in a step)
(e) µ and kmax (Parameters in ADMM)
(f) ηnode and ηlayer (Stopping thresholds)

Regularized least-squares:

1: y(j)
0 = x(j)

2: Solve (2.23) to find O?
0 (Cross-validation for λ0)

Estimating number of nodes and layers:
1: Initialization: l = 0 (Index for l’th layer)
2: repeat
3: l← l + 1 (Increase in layers)
4: Nl = 2Q (Minimum number of nodes for all layers)
5: repeat
6: Nl ← Nl + ∆ (Increase in nodes)
7: Construct Wl,Nl according to (2.25)
8: Find feature y(j)

l,Nl
(For nl nodes)

9: Solve (2.24) to find O?
l,Nl

(using ADMM)
10: until (2.27) and Nl > Nmax (Cost saturation or maximum nodes)
11: O?

l ← O?
l,Nl

, C?
l ← C?

Nl

12: until (2.26) and l > Lmax (Cost saturation or maximum layers)
Output:

1: Number of layers L = l and number of nodes {Nl}L
l=1

2: Weight matrices {Wl}L−1
l=1

3: Output matrix O∗
L



Chapter 3

Methodology

In this chapter are presented the proposed learning scheme, based on SSFN architecture, subsec-
tion 2.3.4, together with the implementation of deterministic transforms in section 2.1. It is followed
by the four different learning approaches implemented. A box filled with different linear transforms
is constructed and iteratively a transform is chosen to be used in layers addition. Supervised and
unsupervised decision criteria to chose the transform are implemented and compared. To generalize
the second part of SSFN’s linear transform is redefined as Wpart2,l, as in the figure below.

Figure 3.1: Architecture of SSFN as in Figure 2.5 generalizing the LT, replacing the random instance
by a linear transform Wpart2,l.

3.1 Proposed Learning Scheme

This section is subdivided into two subsections. In the first subsection, the term of the linear trans-
form of network layers is redefined with new notation. In the second, is introduced the algorithm to
iterate and chose a transform among the linear transforms box.

3.1.1 Linear transform redefinition

In subsection 2.3.4 has been shown that SSFN guarantees a monotonic reduction of the training
cost when a new layer is added with weights according to (2.25). This property remains when
replacing Rl+1 for any linear transform. To ease generalization the linear transform weight matrix
is expressed as

Wl =
[

Wpart1,l
Wpart2,l

]
=
[

VQO∗l−1
Wpart2,l

]
, (3.1)

as represented in Figure 3.1.

16
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In this thesis is proposed to place deterministic transforms in Wpart2,l+1. The main advantage
is to incorporate low computational complexity achieved by fast transform algorithms while con-
serving monotonically decreasing cost achieved by keeping LFP. The previous equation from now
on is represented as

LTl( · ) =
[

VQO∗l−1
wpart2,l( · )

]
. (3.2)

The linear transform LTl( · ) and wpart2,l( · ) are represented in function notation instead of matrix,
to emphasize that the linear transform is not necessarily implemented as a matrix-vector product
with O(N2) complexity.

The signal at the output of the linear transform at l’th layer is therefore denoted as

zl =
[

zpart1,l
zpart2,l

]
=
[

VQO∗l−1yl−1
zpart2,l

]
, (3.3)

with yl−1 = g(zl−1), where g( · ) is ReLu activation function. Note that to preserve FLP, ReLu is a
necessary condition only in the upper part zpart1,l. In consequence it would be possible to use any
other non-linear function as activation for the bottom component zpart2,l.

In the previous equation (3.3) the bottom term is not expanded. Before expand it, it is necessary
to define an intermediate step as

z′part2,l = wpart2,l(yl−1). (3.4)

The reason behind this intermediate step is that pruning nodes based on variance is necessary. In
Section 2.1 it has been mentioned that most of the deterministic linear transforms, e.g. DCT, FHT,
among others, are squared matrices, and some as Haar transform, FWHT, etc, are also 2-power
squared matrices. The concatenation of a DLT output together with the upper part, as in equa-
tion (3.3), makes the network width (number of hidden neurons) monotonically increasing as the
network gets deeper. To control the width growth a pruning step based on node variance is carried.

The output of a DLT in l’th layer is defined by z = zpart2,l = [z1, z2, ..., zn, ..., zNl
]T with

Nl being the number of nodes on the layer. The variance of each node n is computed across the
training set as

σ2
n = 1

J

J∑
j=1

(z(j)
n −

1
J

J∑
k=1

z(k)
n )2, n = 1, 2, ..., Nl. (3.5)

The pruning function p( · ) is defined as follows

p(σ2
n) =

{
Keep node if σ2

n ≥ ηvar
Remove node if σ2

n < ηvar
, (3.6)

where ηvar is a predefined threshold to remove the nodes presenting lower variance. According to
the concept explained in Subsection 2.2.1, the pruned nodes do not contain relevant information.

After low variance node pruning, a normalization step to arrest energy increase of the signal
flow is needed. The norm is computed across the remaining nodes of the linear transform, and each
of them is normalized. The bottom part of the l’th layer linear transform is then obtained by the
following equation

zpart2,l =
p(z′part2,l)
||p(z′part2,l)||

= p(wLT,l(yl−1))
||p(wLT,l(yl−1))|| . (3.7)
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These two operations, node pruning and normalization are critical to achieve a stable behavior for
the algorithm performance. Finally equation (3.3) is extended as

zl =
[

zpart1,l
zpart2,l

]
=
[

VQO∗l−1yl−1
p(wLT,l(yl−1))
||p(wLT,l(yl−1))||

]
. (3.8)

Signal flow defined in equation (2.19) is redefined now to include the linear transform function
notation as

yl = g(LTl(yl−1)) = g(LTl(...g(LT2(g(LT1(x)))))) ∈ RNl . (3.9)

3.1.2 Linear transform decision algorithm

The proposed learning scheme is based on creating a box, referred onwards as linear transform box,
which contains different linear transforms. This linear transform box will be iterated at each layer
addition to choose the most suitable transform for the l’th layer. The box is denoted as LT and
each linear transform contained as LTi with i = 1, 2, ..., T and T being the total number of linear
transforms in it. The different approaches are presented in the next sections as follows:

1. Supervised approach (Algorithm 3): decision based on the transform minimizing the error
between the real target and the estimated.

2. Unsupervised approach (Algorithm 4): decision approach based on statistical signal proper-
ties and two different choice methods are proposed.

The network construction is summarized below in Algorithm 2. It is similar to the SSFN original
algorithm with an extra iterating procedure to chose the linear transform used in every layer and
representing it as Wpart2,l.

3.2 Supervised Approach with and without Random Instance

An approach based on supervised linear transform selection is presented. The algorithm iterates
among all the transforms, LTi, contained in the linear transform box, estimates the training instances
network output T̂ and computes the training cost Cl with equation (2.21). The chosen transform is
the one presenting the lowest cost. The procedure is summarized in algorithm 3.
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Algorithm 2 : Proposed algorithm for construction of SSFN
Input:

1: Training dataset D(x(j), t(j))}J
j=1

2: Parameters to set:
(a) Lmax (Maximum number of layers)
(b) α ≥ 1 (Parameter in (2.22))
(c) µ and kmax (Parameters in ADMM)
(d) ηlayer (Stopping thresholds)
(e) Box of linear transforms: LTi with i = 1, 2, ..., T

Regularized least-squares:

1: y(j)
0 = x(j)

2: Solve (2.23) to find O?
0 (Cross-validation for λ0)

Estimating number of nodes and layers:
1: Initialization: l = 0 (Index for l’th layer)
2: repeat
3: l← l + 1 (Increase in layers)
4: Chose the optimal Wpart2,l using Algorithm 3 or 4
5: Construct LTl( · ) according to (3.3)
6: Compute yl,i according to (2.19)
7: Solve (2.24) to find O?

l (using ADMM)
8: until (2.26) or l > Lmax (Cost saturation or maximum layers)

Output:
1: Number of layers L = l and number of nodes {nl}L

l=1
2: Linear transforms {LTl( · )}L

l=1

Algorithm 3 : Supervised approach to compute the optimal linear transform in each layer
Input:

1: yl−1 (Input of l-th layer)
2: ηvar (Variance threshold)
3: Bag of linear transforms: LTi with i = 1, 2, ..., T

Estimation of the optimal linear transform:
1: for i = 1 : T do
2: wpart2,i = LTi (Choose i-th LT in the bag)
3: Compute zpart2,l,i according to (3.7)
4: Construct LTl( · ) according to (3.3)
5: Compute yl,i according to (2.19)
6: Solve (2.24) to find O?

l (using ADMM)
7: Compute Cl according to (2.20) and (2.21)
8: end for
9: wpart2,l ← minLTi (Cl) (Choose LT with minimum training cost)

Output:
1: wpart2,l

One must note that when including the random matrix instance within the linear transform box
there is an extra step in Algorithm 3 operation 2. It is to compute the optimal random matrix as
done in Algorithm 1, operations 5-10 [2].
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3.3 Unsupervised Approaches

In order to perform a legitimate comparison between the proposed learning scheme and the pre-
sented in [2] the linear transform decision must be performed following an unsupervised method.
This section intends to propose two different methods to choose a suitable deterministic linear trans-
form without making use of the sample targets.

Two different methods are proposed in order to chose a DLT following an unsupervised ap-
proach. Both methods analyse the linear transform output, zpart2,l in equation (3.7), and assign
a score sc1 to the transform tested. The score assignment is based on statistical signal properties,
presented in Section 2.2. The scores are used to compare the different DLT candidates from the box
and choose the most suitable in each layer following its decision criteria defined as

wpart2,l = arg min
DLTi

(sc1,i) with i = 1, ..., T, (3.10)

which coincide for both methods.
This procedure is summarized in 4.

Algorithm 4 : Unsupervised learning of deterministic transforms
Input:

1: yl−1 (Input of l-th layer)
2: ηvar (Variance threshold)
3: Bag of deterministic transform: DLTi with i = 1, 2, ..., T

Estimation of a suitable deterministic transform:
1: for i = 1 : T do
2: wDLT,i = DLTi (Choose i-th DT in the bag)
3: Compute zpart2,l,i according to (3.7)
4: Apply Method1 (3.3.1) or Method2 (3.3.2)
5: end for
6: wpart2,l ← arg minDLTi

(sc1) (Choose DT with min sc1)

Output:
1: wpart2,l

3.3.1 Method 1: Nodes standard deviations

Variability in layer nodes give an insight about the amount of information each node handles [35],
also mentioned in Subsection 2.2.1. Nodes standard deviation σn is computed by square root of
equation (3.5). Variability over layer l’th nodes standard deviation is related to how differ the
amount of information carried by different nodes. This variability is illustrated in Figure 3.2 and
computed as follows

σT = 1√
N

N∑
n=1

(σn −
1
N

N∑
n=1

σn). (3.11)

The score is set to the previous standard deviation

sc1 = σT . (3.12)
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Figure 3.2: Illustration of standard deviation σT over nodes standard deviation σn.

By choosing the minimum sc1 among all the transforms, according to (3.10), the transform
chosen is the one considered to carry more equally information amount over all the nodes. One
must note that nodes carrying a small amount of information do not exist since low variance nodes
have been removed previously according to (3.7).

3.3.2 Method 2: Singular values of cross-correlation matrix

In feed-forward neural networks, and basically all neural networks, initial layers matter more [36].
In the network’s initial layers the input signal has suffered fewer modifications and therefore the
choice of layer weights must be carried more carefully. As the samples go through the network,
disturbances and noise is added and also amplified.

This second method intends to choose the transform that is more related to the input signal
meaning that it contains a bigger amount of original information. In Subsections 2.2.2 and 2.2.3
the concepts of cross-correlation and SVD have been introduced. Cross-correlation and SVD are
computed to measure the similarity between l’th layer output and network input signal.

Consider x =
[
x(1), ...,x(J)] as the network input and the bottom part of the linear transform

for simplicity as zpart2,l = zl =
[
z(1), ..., z(J)]. The cross-correlation matrix Rx,zl

is computed
by equation (2.6).

The interest lays in the singular values of the cross-correlation matrix computed by SVD. From
the matrix in (2.8) are extracted the singular values λk, with 1 ≤ k ≤ K and K the total number of
singular values. Singular values represent the sparsity variance of the data in the space. When the
data is more concentrated in fewer components means that it is concentrated in fewer dimensions
which is convenient. An indicator of the correlation of two signals is that its singular values are
more concentrated in fewer components, as illustrated in Figure 3.3.

The singular values are sorted in descending order, meaning from more shared information to
less shared information. The cumulative singular value is defined as

Cλ(k) =
∑k
i=1 λi∑K
i=1 λi

where 0 ≤ Cλ(k) ≤ 1. (3.13)

To choose the DLT more related with the input signal is needed the introduction of a threshold
for the cumulative singular value. 0 ≤ γ ≤ 1 is defined as cumulative singular value percentage
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Figure 3.3: Example of correlation eigenvalue curve in black. In red, the first cumulative value
higher than the threshold (in green) and its designated scores. In blue, a line corresponding to if the
signals were uncorrelated.

threshold. To chose a transform, the position index idx for which the cumulative singular value is
higher than the threshold is computed as

idx = arg min
k

(Cλ(k) ≥ γ). (3.14)

Note as smaller idx is, more related are both signals. Each transform score sc1 is defined by

sc1 = 100× idx

K
, (3.15)

where the index is normalized by the number of eigenvalues K, to avoid the influence of different
outputs length. It might be the case that two transforms have the same index and it is the lower
producing a tie. To cope this problem, a new score sc2 is introduced. This score is defined as the
percentage value of the previously chosen idx as

sc2 = Cλ(idx). (3.16)

In case of a tie in sc1 a new decision criterion is chosen for this second method as

wpart2,l = arg min
DLTi

(sc1,i), arg max
DLTi

(sc2,i) with i = 1, ..., T. (3.17)

A visual representation of the method decision criterion is illustrated in Figure 3.3.

To summarize, the interest lays in the transform that presents a greater value of the cumulative
singular values in fewer components, meaning that the linear transform output is more correlated to
the network input.



Chapter 4

Experimental evaluation

In this chapter, the experimental setup and results are presented. As an introduction, the datasets
and deterministic transforms used in the experiments are summarized. It is followed by the experi-
ments carried, which consist in test the different architecture approaches introduced in the previous
sections 3.2 and 3.3. The results are presented by representing the obtained accuracies and error, as
well as network architectures in each case. Additionally, in the last section is presented an experi-
ment to improve performance on CIFAR10 dataset is performed by combining SSFN with a CNN
architecture.

4.1 Datasets

This section presents the datasets used to evaluate the network. All datasets are widely used for
multi-class classification, being the same datasets as used in [2] to legitimately compare our results
with the presented in the article. In Table 4.1 datasets dimensions are shown, i.e. number of train
and test samples, and input x and output t dimensions. Additionally, a column has been added to
indicate if the dataset partition is constant or randomly chosen at each implementation.

Table 4.1: Used datasets for multi-class classification.

Dataset
Number of

train samples
Number of

test samples
Input

dimension (P )
Number of
classes (Q)

Random
partition

Vowel 528 462 10 11 No

Satimage 4435 2000 36 6 No

Caltech101 6000 3000 3000 102 Yes

Letter 13333 6667 16 26 Yes

NORB 24300 24300 2048 5 No

Shuttle 43500 14500 9 7 No

MNIST 60000 10000 784 10 No

CIFAR-10 50000 10000 3072 10 No

The datasets are chosen due its popularity in literature, diversity in their signals for a better
network performance generalization and level of complexity for tasks. Among the datasets there are
speech recognition tasks, in vowel dataset, and image object classification among all other datasets.
Following all datasets are defined in more detail:

(a) Vowel: speech recognition task (vowel recognition). Consists of fifteen individual speakers
where each says each vowel six times [37].

23
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(b) Satimage: image classification task. Input dimension is 36, corresponding to 3x3 pixels
square neighbourhood in 4 different spectral bands [37].

(c) Caltech101: image classification task (different objects with unequal number of samples per
object). As implemented in [2], it is used a 3000-dimensional feature vectors suggested
in [38].

(d) Letter: image classification task (letter classification). Identify from a black-and-white image
one of the 26 capital letters in the English alphabet. Feature details are presented in [37].

(e) NORB: image classification task (3D object recognition from shape) in black-and-white [39].

(f) Shuttle: image classification task. Approximately 80% of the samples belong to the same
class, so the goal is to achieve a 99-99.9% accuracy [37].

(g) MNIST: image classification task (handwritten digits classification) [40].

(h) CIFAR-10: image classification task (coloured objects) [41].

4.2 Deterministic Transforms Used

Along the report to refer linear transforms used has been done by a linear transform box. When the
box includes a random matrix instance, apart from deterministic transforms is referenced as linear
transform box LT ( · ), and when it does not as deterministic linear transform box DLT ( · ). Both
boxes are illustrated in Figure 4.1.

In this section, the 11 deterministic transforms used in the experimental part are listed. Addi-
tional information is included, as the computational cost achieved by its fast algorithms [21] and
also its typical applications:

1. Discrete Trigonometric Transforms (Discrete Cosine and Sine Transforms (DCT-II and DST-
I)). Both have uses in audio, image and video processing as well as data compression among
others. Due to the even symmetry of the DCT, its use is more extended and convenient than
DST, which has odd symmetry. Computational complexity O(Nlog2N).

2. Fast Walsh-Hadamard Transform (FWHT). Two different coefficient order are used. FWHT1
indicates that the coefficients are in normal Hadamard order while FWHT2 indicates that
they are in order of increasing sequence value. FWHT1 is widely used in signal process-
ing tasks such as spectrum analysis, processing speech and medical signals, among oth-
ers, while FWHT2 is mostly used for control applications [42]. Computational complexity
O(Nlog2N).

3. Discrete Hartley Transform (DHT). Used in image and optical signal processing and computer
vision applications. Computational complexity O(Nlog2N).

4. Discrete Wavelet Transforms (DWT). Used in signal coding, image processing and digital
communications applications. Computational complexity O(N). The DWTs used are:

a) Discrete Haar Transform (Haar)

b) Daubechies 4 (DB4) and 20 (DB20).

c) Symlets 2 (sym2) and Coiflets 1 (coif1).

d) Biorthogonal 1.3 (bior1.3) and Reverse Biorthogonal 1.1 (rbior1.1).
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Figure 4.1: Two transforms box used in the experiments carried, LT with a random matrix and
DLT with only deterministic transforms.

It is important to mention, for reproducibility, that DWTs output is treated as a concatenation
of both approximation and detail coefficients and maximum decomposition level.

A table of computational complexity comparison between matrix-vector multiplication and
DLTs fast algorithms is presented in Appendix A.
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4.3 Experiment overview

Three different experiments are performed implementing the learning scheme defined in Section 3.1
and the approaches defined in the previous chapter:

1. Experiment 1, supervised learning approach with random matrix instance (Subsection 4.4.1).
The random matrix instance taken into account is optimized as in Algorithm 1, steps 5 to 10.
The resulting matrix is a candidate together with all other deterministic transforms contained
in the box.

2. Experiment 2: supervised learning approach without random matrix instance (Subec-
tion 4.4.2). The transforms proposed to be chosen are only the deterministic transforms.

3. Experiment 3, Unsupervised learning approach (Section 4.5). It considers the same DLT
transform box as experiment 2 but following an unsupervised approach. Both methods pre-
sented in Subsections 3.3.1 and 3.3.2 are tested.

With these experiments, it is intended to show that the use of deterministic transforms is suit-
able to SSFN architecture and can achieve similar performance to the original SSFN, shown in
Appendix B, where state-of-art performances are also stated. Also, a goal is to show that when a
supervised approach is carried together with the optimized random matrix, a deterministic trans-
form can be more convenient. The second experiment is pretended to show that by removing the
random matrix instance, performances are still valid. Finally, with the last experiment, two methods
are proposed to chose the deterministic transform in an unsupervised manner without deteriorating
the network performance.

In the following sections, the results are shown for Vowel, Caltech101, Letter and CIFAR-10, for
their variability and interpretability. The four remaining dataset results are presented in Appendix D.
Also, state-of-art performances

4.4 Supervised approaches

In this section two experiments are performed following the architecture approaches shown in Sec-
tion 3. The experiments are divided into whether the random matrix is considered within the liner
transform box or not.

In Table 4.2 are summarized the train and test performances achieved in both cases. Notice
that when not using the random instance (DLT box, right column) there are only two datasets with
variations in their accuracy. Both datasets correspond to the random partition datasets (Table 4.1).
For the remaining deterministic dataset partitions, the accuracy is constant as the transforms are
also. Both approaches’ performances are quite similar between them and also to the ones obtained
by the original SSFN, in table B.1.
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Table 4.2: Supervised SSFN approach classification accuracies across 20 monte-carlo simulations
with and without random matrix instance. Hyperparameters are defined in Appendix C.

Dataset
LT Box DLT Box

Accuracy (in %) (avg. ± std. dev) Accuracy (in %) (avg. ± std. dev)

Train dataset Test dataset Train dataset Test dataset

Vowel 99.99 ± 0.04 59.91 ± 1.76 99.81 62.99

Satimage 92.13 ± 0.23 89.51 ± 0.36 92.97 89.4

Caltech101 99.95 ± 0.02 76.34 ± 0.81 99.95 ± 0.02 76.34 ± 0.81

Letter 100 ± 0 95.23 ± 0.25 100 ± 0 92.89 ± 0.24

NORB 100 ± 0 87.74 ± 0.4 100 87.56

Shuttle 99.84 ± 0.06 99.8 ± 0.05 99.98 99.92

MNIST 97.82 ± 0.17 96.65 ± 0.13 97.57 96.74

CIFAR-10 70.41 54.88 70.41 54.88

4.4.1 Supervised with random matrix

Network accuracy results are shown in the above table 4.2 left column (LT Box). Following are
summarized the architectures for Vowel, Caltech101, Letter and CIFAR10 datasets, the remaining
dataset results graphs are displayed in Appendix D.1.

Vowel, Caltech101 and Letter present an accuracy with variations across monte-carlo simula-
tions. In table 4.3 is shown the average of network layers for each dataset, as it also varies across
simulations. In figures 4.2 and 4.3 are shown the network architectures of each dataset across all
the simulations. Network architectures are summarized with two figures for each dataset, a figure
in the left illustrating the LT chosen at each layer and a figure in the right showing the number of
nodes at each layer for all simulations. The last or two last layers of the network may not belong to
all 20 MC simulations as the network may be constructed with fewer layers.

Table 4.3: Network layers average across MC simulations for supervised approach with random
matrix.

Dataset Layers avg.

Vowel 14.6

Caltech101 4

Letter 13.35

CIFAR-10 4
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In the figure below, for Vowel dataset, the random instance matrix is observed to be the most
chosen transform except in layers 7, 9, 11 and 12. When the chosen transform is not the random
instance, it presents a wide variability among the other transforms. Regarding the node distribution,
it presents a wide deviation from the mean, meaning that the network size is not consistent across
different simulations.

Caltech101 dataset presents a special scenario where all the chosen transforms remain equal
across all simulations and also being the four of them deterministic transforms. In consequence, the
node distribution remains almost constant with small variability.

Figure 4.2: Network architecture for Vowel and Caltech101 datasets implementing supervised ap-
proach with random matrix.
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Figure 4.3: Network architecture for Letter dataset implementing supervised approach with random
matrix.

Letter dataset presents an opposite scenario compared to Vowel. The random instance is always
chosen in the first layer and sometimes in the second layer, but for the remaining layers, only
deterministic transforms are chosen. Chosen DTs present a consistency among MC simulations
where FWHT1 and FWHT2 predominate, being both closely related. Nodes are closely distributed
across all executions but one, presenting a constant network architecture for this dataset.

CIFAR10 is totally a different case as in table 4.2 presents a constant accuracy. Similar to
Caltech101, it always presents the same chosen transforms being all of them DLTs. CIFAR10 is
also a constant dataset, with random partition set to "No", table 4.1. These both facts make all
MC simulations to be equal. Table 4.4 shows the CIFAR-10 network architecture and following in
figure 4.4 are presented the accuracy and NME curves across the number of layers. Although the
accuracy achieved is low compared to the state-of-art, it is around 17% greater on training and 8%
on testing than the original SSFN, table B.1.

Table 4.4: Network architecture applying supervised approach with random matrix for CIFAR10
dataset.

Dataset
Nodes arrangement

Accuracy
(Deterministic Transform layout)

CIFAR-10
3799-3047-2502-3176

54.88
(FWHT1-FWHT2-FHT-FWHT2)
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Figure 4.4: Accuracy and NME curves on every layer for CIFAR10 dataset implementing super-
vised approach with random matrix.

The implementation of this experiment shows that the use of a deterministic transform may be
preferable in terms of cost than a random matrix, without taking into account the lower compu-
tational cost. This supervised learning approach combines the selection of random matrices with
deterministic matrices. Additionally, in some cases, deterministic transforms are the only ones cho-
sen.

4.4.2 Supervised without random matrix

Accuracy results are shown in the left column, DLT Box, in table 4.2. In this approach it is ob-
served that all the presented accuracies, except for Caltech101 and Letter datasets, are constant,
both corresponding to the datasets with a "Yes" in the random partition in table 4.1. As mentioned
before, constant partition datasets together with the use of deterministic transforms result always in
the same network architecture. As could be deduced from the previous case, for CIFAR10 coincides
with the previous case as in any layer the random instance was chosen.

In table 4.5 are shown the different architectures for the different datasets and simulations. Com-
pared to the previous experiment and the original SSFN in [2], the network tends to get deep and
wide in most datasets, as Caltech101, Letter and NORB. The cause is the dependence of most DLTs
to be squared matrix, increasing the network size in every layer. Checking table A.1 it is seen that
even an increase to the size of 211 = 2048 neurons computed by a fast algorithm, requires fewer
operations than 28 = 256 neurons computed by the typical matrix operation.
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Table 4.5: Monte Carlo trials of SSFN with supervised deterministic transforms decision.

Dataset
Nodes arrangement

Accuracy
(Deterministic Transform layout)

Vowel
136-137-240-245-256-263-497-491-470-456

62.99
(DB20-DST-FWHT1-DCT-FWHT1-DHT-FWHT1-DHT-FWHT1-DCT)

Satimage
222-186-236

89.85
(DB20-DHT-FWHT1)

Caltech101

3200-3389-3415-3492
76.34

(Haar-Haar-DCT-DHT)
3200-3389-3416-3502

77.03
(Haar-Haar-DCT-DHT)
3200-3389-3419-3492

76.27
(Haar-Haar-DCT-DHT)

Letter

224-454-468-537-1028-1991-1925-1883-1993-1985-1963-1919-1882-1978-1960
93.11

(DB20-DB20-DCT-FWHT1-FWHT1-FWHT2-DCT-FWHT1-
FWHT1-FWHT1-FWHT1-FWHT2-FWHT1-FWHT1-FWHT1)

224-454-467-539-1029-2002-1929-1870-1917-1984-1955-1980-1938-1961-1974
93.01

(DB20-DB20-DCT-FWHT1-FWHT1-FWHT2-DCT-FWHT2-
FWHT1-FWHT1-FWHT1-FWHT1-FWHT1-FWHT1-FWHT2)

224-454-467-540-1010-1038-1923-1848-1883-1992-1896-1991-1979-1957-1975-1967
93.1

(DB20-DB20-DCT-FWHT2-FWHT1-DHT-FWHT2-DCT-
FWHT1-FWHT2-FWHT1-FWHT1-FWHT1-FWHT1-FWHT1-FWHT2)

NORB
4041-3751-3310-2743-2153-3231-2541-2011

87.56
(FWHT2-DCT-DCT-DCT-DCT-FWHT1-DCT-DHT)

Shuttle
140-270-490-438

99.92
(DB20-FWHT1-FWHT1-DHT)

MNIST
979-976-1025-1882

96.74
(DB20-FHT-FWHT1-FWHT2)

CIFAR-10
3799-3047-2502-3176

54.88
(FWHT1-FWHT2-FHT-FWHT2)

In the following figure 4.5 are shown the accuracy and NME curves for Vowel dataset. Com-
paring the architecture shown in table 4.5 with the presented in figure 4.2 for Vowel, it presents a
similar transform and nodes pattern.
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Figure 4.5: Accuracy and NME curves on every layer for Vowel dataset implementing supervised
approach without random matrix.

For the random datasets, Caltech101 and Letter, the network architectures are still different
across simulations. Similar to CIFAR10, in the previous case the chosen transforms for Caltech101
were only deterministic what makes equal both approaches. Caltech101 built architecture corre-
sponds to the one presented in figure 4.2. For Letter dataset, the newly built architectures are shown
below, with layers average of 15.3. The results are similar to the previous case, with a similarity of
changing the random instance for DB20 transform. The deterministic transforms chosen are more
constant and the number of nodes also presents a lower variance.

Figure 4.6: Network architecture for Letter dataset implementing supervised approach without ran-
dom matrix.

The results show that in a supervised manner the use of random instances can be replaced by
using deterministic transforms, as the presented results show a similar performance regarding the
accuracy and similar network architectures.
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4.5 Unsupervised approaches

In this experiment SSFN unsupervised approach presented in section 3.3 is implemented and both
methods defined in subsections 3.3.1 and 3.3.2 are tested. The performances achieved are shown
in the table below. As in the previous unsupervised without random matrix case, only Caltech101
and Letter datasets present variations on the performances for every simulation as well as network
architecture. Both datasets present low standard deviation, meaning consistent classification per-
formance and architectures. Also, the networks present a constant number of layers, in table 4.7,
and moreover, both methods present the same number of layers for Caltech101. Also, similar ac-
curacies are presented by both methods and also close to both presented implementing supervised
approaches in table 4.2 and therefore to the original SSFN performance.

Table 4.6: SSFN Classification accuracy of unsupervised LT selection across 50 Monte-Carlo sim-
ulations, applying method 1 and 2. Hyperparameters set are defined in Annex C.

Dataset
Method 1 Method 2

Accuracy (in %) (avg. ± std. dev) Accuracy (in %) (avg. ± std. dev)

Train dataset Test dataset Train dataset Test dataset

Vowel 99.62 64.72 93.75 63.42

Satimage 91.41 89.15 93.62 89.15

Caltech101 99.95 ± 0.02 76.73 ± 0.82 99.93 ± 0.02 76.39 ± 0.67

Letter 100 ± 0 92.72 ± 0.3 95.43 ± 0.12 91.07 ± 0.42

NORB 98.22 84.75 100 87.46

Shuttle 99.8 99.76 99.96 99.9

MNIST 97.32 96.54 98.09 96.9

CIFAR-10 61.12 53.79 65.66 54.12

In the two following subsections are better presented the resulting network architectures for both
methods and graphical representations for the same four datasets as previously. It is observed that
the DLT selection between both methods is different, although the pattern of the transforms chosen
is similar.

Table 4.7: Network layers average across MC simulations for variable datasets for unsupervised
approaches.

Dataset
Layers avg.

Method1 Method2

Caltech101 4 4

Letter 12 6
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4.5.1 Method 1 implementation

Accuracy results are shown in the left column, in table 4.6. In the following table are shown the
network architectures, represented by the number of nodes and DLTs chosen at each layer, for each
dataset together with the achieved performance.

The constructed networks for all datasets are similar to the previous supervised approach in
table 4.5, both for node distribution and transforms. Both depth and width are similar to the previous
case. These results show the validity of the method to chose the different layers transforms in an
unsupervised manner. As in the previous case, the network gets very wide for most of the datasets,
such as Caltech101, Letter and MNIST but it also gets very deep for Letter dataset. Nevertheless, it
is observed for NORB dataset the size has been drastically reduced while keeping the performance.

Table 4.8: Monte Carlo trials of SSFN with deterministic transforms applying Method1.

Dataset
Nodes arrangement

Accuracy
(Deterministic Transform layout)

Vowel
136-355-426-487-475-491-492

64.72
(DB20-DB20-FWHT1-FWHT1-DCT-FWHT2-FWHT1)

Satimage
222-215-263

89.15
(DB20-DB20-DB20)

Caltech101

4096-3543-3702-3854
76.83

(FWHT2-DHT-FWHT1-FWHT1)
4096-3552-3757-3873

76.23
(FWHT2-DHT-FWHT1-FWHT1)

4096-3552-3756-3856
76.53

(FWHT2-DHT-FWHT1-FWHT1)

Letter

224-269-521-1028-1998-2002-2011-1988-1979-1885-1987-1901
92.6

(DB20-FWHT1-FWHT1-FWHT1-FWHT1-FWHT1-
FWHT1-FWHT1-FWHT2-FWHT1-FWHT2-FWHT1)

224-268-520-1014-1024-1010-1044-1926-1989-1974-1973-1981
92.16

(DB20-FWHT2-FWHT1-FWHT1-DCT-FWHT1-
FWHT2-FWHT1-FWHT1-FWHT1-FWHT1-FWHT1)

224-268-520-1019-1032-2008-1966-2016-1980-1901-1987-1889
92.42

(DB20-FWHT1-FWHT1-FWHT1-FWHT1-FWHT2-
FWHT1-FWHT1-FWHT2-FWHT1-FWHT2-FWHT1)

NORB
997-939-331

84.57
(rbio1.1-FWHT2-DB20)

Shuttle
140-317-233

99.76
(DB20-DB20-DB20)

MNIST
1044-2038-1956

96.54
(FWHT1-FWHT1-FWHT2)

CIFAR-10
2875-2700-3271-3324

53.79
(DB20-FWHT1-FWHT1-FWHT1)
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The four figures below show the accuracy and NME curves versus the number of layers for
Vowel and CIFAR10 datasets. Both cases show a non-saturation trend for the training curve and
similar behavior to those achieved when implementing supervised approaches.

Figure 4.7: Accuracy and NME curves on every layer for Vowel and CIFAR10 datasets implement-
ing unsupervised approach Method1.
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The four figures below show the network architecture for the two variable datasets. On both
of them, consistency when choosing the DTs is observed, close to the supervised without random
transform approach. The node distribution deviation is small for Caltech101 while for Letter looks
bigger, although this big deviation comes from some simulation outlier as the main executions lay
close with a similar node distribution.

Figure 4.8: Network architecture for Caltech101 and Letter datasets implementing unsupervised
approach Method1.

This first method to chose a DLT based on nodes’ standard deviation has shown to achieve
performance and network architectures similar to those achieved by the supervised approach when
the training cost is minimized.
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4.5.2 Method 2 implementation

Accuracy results are shown in the right column, in table 4.6. As in the previous method, the follow-
ing table shows the network architecture for all datasets along with different executions.

Constructed networks have a similar accuracy than with the previous method and similar net-
work architecture. It can be noticed that for some datasets the network is built smaller, as in-depth
for Letter dataset and width for Caltech101 and MNIST. Nevertheless, the architecture achieved by
Method1 for NORB dataset is not preserved and the size is increased, similar to the one achieved as
in the unsupervised cases.

Table 4.9: Monte Carlo trials of SSFN with deterministic transforms applying Method2.

Dataset
Nodes arrangement

Accuracy
(Deterministic Transform layout)

Vowel
136-355-370-332-324

63.42
(DB20-DB20-DB20-DB20-DB20)

Satimage
222-210-299-444

89.15
(DB20-FWHT2-DB20-FWHT2)

Caltech101

4096-558-1108-2170
76.4

(FWHT2-DB20-FWHT1-FWHT2)
4096-557-1110-2162

76.5
(FWHT2-DB20-FWHT2-FWHT1)

4096-556-1107-2157
76.16

(FWHT2-DB20-FWT2-FWHT1)

Letter

224-454-441-451-458-464
91.78

(DB20-DB20-DB20-DB20-DB20-DB20)
224-454-441-452-457-469

91.11
(DB20-DB20-DB20-DB20-DB20-DB20)

224-454-442-454-455-464
91.39

(DB20-DB20-DB20-DB20-DB20-DB20)

NORB
4041-3814-3710-3572-3272-3188

87.46
(FWHT2-DCT-FWHT2-FWHT1-FWHT2-FWHT2)

Shuttle
140-317-318-447

99.9
(DB20-DB20-DST-FWHT1)

MNIST
1044-2038-1998-1931-1789

96.9
(FWHT1-FWHT2-DST-DST-FWHT2)

CIFAR-10
3102-2924-3270-3181

54.12
(bior1.3-FWHT1-FWHT2-FWHT2)
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The following two figures show the accuracy and NME curves for Vowel and CIFAR10 datasets
as for the previous cases. All curves are similar to the supervised and unsupervised with Method1
cases.

Figure 4.9: Accuracy and NME curves on every layer for Vowel and CIFAR10 datasets implement-
ing unsupervised approach Method2.

The figures below show the network architecture for the two random datasets. The results now
differ more from the previous approach. For Caltech101 the DLT distribution coincides but differing
in the second layer, where instead of DHT transform, DB20 is used. This change provokes a drastic
reduction in the number of neurons from the second layer onwards compared to that got applying
Method1. For Letter dataset, the difference is absolute. Applying Method1, the number of layers
is around 12, being the FWHT1 and FWHT2 the chosen transforms except DB20 in the first layer.
In this case, the number of layers is half than before and the number of nodes at each layer has
drastically decayed from around 2000 to around 450 nodes.

The results show the correct operation of both methods. Both provide similar results despite
referring to performance even if the network architecture differ. For some datasets, the number
of nodes decays drastically while conserving the performance. Is important to mention that the
variance threshold was set to ηvar = 10−7 for all datasets and both methods. Correct tuning of
this parameter for each dataset and method would probably improve the results by reducing the
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Figure 4.10: Network architecture for Caltech101 and Letter datasets implementing unsupervised
approach Method2.

number of nodes on some occasions. The results for the remaining four datasets are presented in
Appendix D sections D.3 and D.4.
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4.6 CIFAR-10 performance improvement

SSFN has shown to be unable to compete with state-of-art performance for CIFAR10 [2] [43].
Despite the original performance has been slightly improved by the proposed approaches, it is still
far from the state-of-art. A work presented in [44] exposes the non-triviality to generalize CIFAR-10
performance, although CNNs have shown to work properly for image classification tasks [45].

In [2] an ad-hoq adaptation is generated. SSFN is a flexible architecture that can use the output
of a successfully previously trained network as an output matrix. The implemented adaptation
consists of training a CNN on CIFAR10, achieving good performance and use it as the first layer
output matrix O∗0. This so-called SSFN hybrid approach results in increasing SSFN performance
on CIFAR-10 but without showing improvement concerning the trained CNN.

In this thesis the approaches are performed to the bottom part of the linear transform, Wpart2,l.
In Section 3.1 it has been mentioned that this transform could be whatever. A new experiment is
performed by placing a CNN instead of a DLT in the bottom part aiming to improve performance on
CIFAR10 and also study if is better than applying it to LT the top part as in [2]. Additional network
layers are build as an unsupervised approach applying Method2. The resulting hybrid-architecture
is shown in Figure 4.11.

The implemented CNN architecture is the following:

Conv(32 @ 3x3) → Conv(32 @ 3x3) → MaxPooling(2x2) → Dropout(0.1) → Conv(64 @ 3x3) →
Conv(64 @ 3x3) → MaxPooling(2x2) →
Conv(128 @ 3x3) → Conv(128 @ 3x3) → MaxPooling(2x2) →
Flatten → Dense(128) → Output(10, Softmax),

with the convolutional layers expressed as Conv(nFilters@FilterSize).

The CNN has been trained for 50 epochs with a batch size of 64, achieving an accuracy of
74.45%, close to the 75.34% used in [2]. In figure 4.12 is shown the accuracy curves for the trained
CNN.

Figure 4.11: Hybrid SSFN architecture where the bottom part of the first linear transform is a CNN.
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Figure 4.12: Train and test accuracy curves for CNN and CIFAR10 dataset.

The resulting performance for the hybrid SSFN is 75.53%, 1.08% better than CNN itself. This
small accuracy improvement is similar to the achieved in [2]. Nevertheless, it shows that an alter-
native implementation in CNN is possible, although computational expensive. Below, are shown
both accuracy and NME curves for the hybrid SSFN. Layer 1 corresponds to the output matrix O∗0
computed by RLS. CNN effect is reflected from the second layer to onwards represented by a jump
in both. The network transforms are: CNN-DB20-FWHT1-DB20-FWHT1-DB20-FWHT1-DB20-
FWHT1-DB20.

As mentioned, despite the failure on improving the accuracy with respect achieved by CNN
itself, this experiment offers opportunities to improve the performance with SSFN that could be
explored.

Figure 4.13: Accuracy and NME curves on every layer for CIFAR10 dataset implementing hybrid
SSFN with a CNN at the first layer bottom LT.



Chapter 5

Discussion and Conclusions

In this chapter implemented methods and experiments limitations are discussed, further research
and future works are proposed and conclusions are drawn.

5.1 Discussion

In the upraising AI technologies, the low complexity of developed algorithms is becoming a must
for different real-time and online applications and low-cost hardware. Reduction of algorithms
complexity has two main advantages, low latency operation, and energy consumption reduction.

In the project has been evaluated the validity of using deterministic transforms in the linear
part of a neural network. Deterministic transforms can be computed with fast algorithms which
by definition are more efficient and less complex than matrix multiplication forms. Replacing ma-
trix operations within a neural network by deterministic transforms produces a reduction of neural
network computational expenses.

The neural networks that easily allow performing the experimentation belong to a type of DNNs
which use a random matrix instance. This type of neural networks already presents low complexity.
SSFN is a neural network architecture belonging to this group and has been the chosen architecture
to experiment on. In the previous chapters have been proposed two different methods to implement
deterministic transforms on SSFN and how to decide a suitable transform among a list of transforms.
The two methods are based on signal properties, like standard deviation and cross-correlation matrix
respectively, which provide sufficient information about the signal. After the experimental evalua-
tion, the results are presented in order of the four approaches proposed.

The obtained results show the evolution from the original SSFN, passing through supervised
approaches and combining DLTs with random instances, to unsupervised approaches using only
DLTs. The presented results are satisfactory showing consistency and stability behavior both on
performance and network architecture. It has been mentioned that some of the hyperparameters
could have been tuned more adequately for each case improving the presented results. The thesis,
therefore, shows the suitability of deterministic transforms within neural networks and can be used
as an initial basis for its implementation in the field.

5.2 Future work

The work proposed in the thesis provides proof and a first step of the validity of implementing
deterministic transforms within neural networks. It is a recent and non explored topic and therefore
many doors may be opened for further research. Following are proposed some future works to
continue the presented work:

42
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• Methods and approaches implementation into other NN architectures. Along with the project
SSFN has been the only neural network used to test the proposed methods. Its generalization
to other neural network architectures belonging to the same group, such as ELM, HELM and
RVFL, would be of great general interest and generate further interest on the thesis topic.

• Implementation and experimental study of the complexity of a neural network implementing
deterministic transforms instead of matrix weights: As mentioned before, this project has
been presented theoretically a comparison between the matrix-vector multiplication and fast
algorithms complexity. As future steps, it would be important to show experimentally the
complexity comparison with a suitable and optimized software.

• Suitability of different DTs: Along with the project the same DTs have been implemented.
Its selection was not based on any criteria other than deterministic transforms’ popularity.
Many DTs are used for different purposes and on different occasions. Further investigation
on transforms to be used and depending on the dataset may be essential.

• Interpretability of NNs flow: Since its beginning has been seen as a black box without trans-
parency due to its non-linearity [46]. Deterministic transforms are usually implemented de-
pending on a purpose, and based on signal properties. The decision to choose a deterministic
transform preferred to another, may give an insight about the signal flow through the network
and therefore a bit of interpretability to the network flow.

5.3 Conclusion

In this thesis a non-explored topic has been set under research, the use of deterministic transforms
in the weight matrices of a multilayer neural network. Along with the research the focus has been
set under SSFN, a specific neural network architecture. The achieved results prove the possibility
to implement deterministic transforms within neural networks and theoretically presenting a com-
putational cost reduction. Although many open issues and future works remain, the results are
satisfactory and introduce a topic to consider to research within neural networks. An article based
on this thesis has been written [47]. Its acceptance in EUSIPCO 2021 (European Signal Processing
Conference, held in Dublin - Ireland) proved the relevance and interest to research of the presented
project. In Appendix E there are the acceptance and scheduling emails of the proposed article in the
conference.
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Appendix A

Theoretical computational complexity

In the following table is presented a comparison of the computational complexity and therefore
operations needed between three different cases: matrix-vector multiplication, fast algorithms with
Nlog2N and fast algorithms withN operations. For easier visual comparison, the input dimensions
N are defined as powers of 2.

In the table, it is important to notice that from an input dimension N > 28, the usual matrix-
vector operation is more computationally expensive than both other options carried by fast algo-
rithms with an input size N ≤ 212.

Table A.1: Computational complexity comparison between normal matrix-vector product and dif-
ferent complexities achieved by DLT fast algorithms.

N (input dimension)
Operations

N2 (Matrix-vector) O(Nlog2N) O(N)

23 26 23 · 3 23

24 = 16 28 = 256 24 · 4 = 64 24 = 16
25 210 25 · 5 25

26 = 64 212 = 4.098 26 · 6 = 384 26 = 64
27 214 27 · 7 27

28 = 256 216 = 65.546 28 · 8 = 2.048 28 = 256
29 218 29 · 9 29

210 = 1.024 220 = 1.048.576 210 · 10 = 10.240 210 = 1.024
211 222 211 · 11 211

212 = 4.098 224 = 16.777.216 212 · 12 = 49.152 212 = 4.098
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Appendix B

Original SSFN performance

Original performance achieved by SSFN in [2] for an easier comparison with the results acquired
in Chapter 4.

Table B.1: Classification accuracy of original SSFN architecture across 50 Monte-Carlo simula-
tions. Extracted from [2].

Dataset

Original SSFN State-of-art

(reference)

Test accuracy (in%)

Accuracy (in %) (avg. ± std. dev)

Train dataset Test dataset

Vowel 100 ± 0 60.2 ± 2.4 65.95 [34]

Satimage 95.55 ± 0.15 89.90 ± 0.5 90.90 [38]

Caltech101 99.51 ± 0.06 76.10 ± 0.8 78.50 [48]

Letter 99.02 ± 0.07 95.70 ± 0.2 95.82 [34]

NORB 99.11 ± 0.04 86.10 ± 0.2 89.20 [49]

Shuttle 99.73 ± 0.08 99.80 ± 0.1 99.91 [17]

MNIST 97.21 ± 0.03 95.70 ± 0.1 99.79 [50]

CIFAR-10 53.19 ± 0.15 47.30 ± 0.2 98.52 [43]
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Appendix C

Hyperparameter values

Here are presented the tuned hyperparameters chosen to build the proposed architectures presented
in Chapter 3 and implemented and tested in Chapter 4. In Table C.1 are summarized the following
hyperparameters and its chosen values:

• λ0 (equation (2.23)): RLS regularization parameter to compute SSFN first layer output ma-
trix.

• µ (equation (2.24) and [2]): control the ADMM convergence rate.

• ηvar (equation (3.6)): variance threshold to remove nodes.

• Random matrix parameters (algorithm 1): parameters used to control the random matrix shape
when including random instance in the linear transforms box.

• γ (equation (3.14)): cumulative singular values threshold when using method 2 in unsuper-
vised approach.

Table C.1: Overall tuned parameters indicating to the experiments "Exp." they belong.

λ0 (RLS) and µ (ADMM) ηvar Random matrix γ (Exp. 3,

(Exp. 1-2-3) (Exp. 1-2-3) parameters (Exp. 1) Method 2)

Table C.3 10−7 Table C.2 0.8

Table C.2: Parameter tuning for random matrix instance in first experiment.

Dataset kmax α nmax − 2Q ηnode ηlayer Lmax ∆

All 100 2 4000 0.005 0.15 20 500

50
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Table C.3: Tuned RLS (λ0) and ADMM (µ) parameters for the three different experiments "Exp.".

Dataset
λ0 (RLS) µ (ADMM)

Exp.1, Exp.2, Exp.3 Exp.1 Exp.2 Exp.3

Method1 Method2

Vowel 101 103 1 103 103

Satimage 106 105 108 108 108

Caltech101 3 10−2 10−2 10−2 10−2

Letter 10−5 108 106 105 109

NORB 102 104 104 104 104

Shuttle 105 104 106 104 104

MNIST 108 105 105 107 107

CIFAR-10 108 104 104 104 104



Appendix D

Remaining experimental results

This appendix presents the graphical results for the datasets not presented in chapter 4, Satimage,
Norb, Shuttle and Mnist datasets.

D.1 Supervised approach with random matrix

Table D.1: Network layers average across MC simulations for supervised approach with random
matrix for the remaining datasets.

Dataset Layers avg.

Satimage 3

NORB 6.68

Shuttle 3.55

MNIST 4.9
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Figure D.1: Network architecture for Satimage, NORB, Shuttle and MNIST datasets implementing
supervised approach with random matrix.
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D.2 Supervised approach without random matrix
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Figure D.2: Accuracy and NME curves on every layer for Satimage, NORB, Shuttle and Mnist
datasets implementing supervised without random matrix.

D.3 Unsupervised approach Method 1 implementation
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Figure D.3: Accuracy and NME curves on every layer for Satimage, NORB, Shuttle and Mnist
datasets implementing unsupervised approach Method1.



D.4. UNSUPERVISED APPROACH METHOD 2 IMPLEMENTATION 57

D.4 Unsupervised approach Method 2 implementation
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Figure D.4: Accuracy and NME curves on every layer for Satimage, NORB, Shuttle and Mnist
datasets implementing unsupervised approach Method2.



Appendix E

EUSIPCO 2021 Article Publication

E.1 EUSIPCO confirmation
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7/6/2021 Correo - polgj@kth.se

https://webmail.kth.se/owa/#path=/mail/search 1/3

EUSIPCO 2021 Review Results [Paper #6716]

Dear Pol Grau Jurado, Xinyue Liang, Alireza M. Javid, Saikat Chatterjee, 

Paper ID: 6716 
Title: Use of Deterministic Transforms to Design Weight Matrices of a Neural Network 

The review process for the 29th European Signal Processing Conference (EUSIPCO 2021) has now been finalized, and it is our
pleasure to inform you that your paper has been accepted for publication. Congratulations! The review comments that have led
to this decision can be found below.  

Please note that due to the COVID-19 outbreak, the event will be FULLY VIRTUAL.  

Carefully consider the following instructions for the publication of your paper and your participation in the conference: 
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preparing your camera-ready paper. The layout of the camera-ready paper is identical to the layout of the submitted paper.
Details can be found in the Author's Information page on the EUSIPCO 2021 website. Please do not include page numbers or
headers/footers in your camera-ready paper. 

- Your paper needs to be covered by a regular (non-student) conference registration by June 1, 2021. This requirement also holds
for papers authored or presented by students. Registration will soon open on the conference website: https://eusipco2021.org.
When registering, you will be asked to enter the Paper ID of the papers you wish to cover with your registration. Papers that are
not covered by a regular (non-student) conference registration by June 1, 2021 will be removed from the conference proceedings.
Detailed instructions will be soon available on the conference website. 

- In the following days, with another email, you will be informed about the format of your paper (lecture/poster) and on its
location in the conference program. You will be asked to record a video for presenting your work and we will provide you with a
link for the instructions. 

- The conference proceedings will be published by September 2021 in the open-access proceedings archive of the European
Association for Signal Processing (EURASIP) and on IEEE Xplore.  

We look forward to meeting you virtually in Dublin in August 2021! 

Sincerely, 

Maria Sabrina Greco, Stephen McLaughlin and Josiane Zerubia 
EUSIPCO 2021 Technical Program Co-Chairs 

---- Comments from the Reviewers ---- 
Review #0071 

*Paper Format*: Minor improvements needed 

EUSIPCO 2021<eusipco2021@cmsworkshops.com>
mar 04/05/2021 21:17

Para:Pol Grau Jurado <polgj@kth.se>; Xinyue Liang <xinyuel@kth.se>; Alireza Mahdavi Javid <almj@kth.se>; Saikat Chatterjee
<sach@kth.se>;
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*Topic relevance*: High 

*Originality of the content*: Very High 

*Methodology / Research design*: High 

*Evaluation of results and derived conclusions*: High 

*References to previous work*: Very High 

*Correct English usage*: High 

*General Comments to Authors* 
This paper explored the use of deterministic transforms（discrete cosine transform, discrete wavelet transform）instead of
random matrix instances, for the Self size-estimating feedforward network (SSFN) weight matrices. beside with two criterion such
as features standards deviations and singular values of cross-correlation matrix. 
The use of deterministic transforms provides a reduction in computational complexity and achieve competitive classification
performance on different datasets. 
and may provide understanding of interpretability/explainability, and bring new insights about the information flow within layers
of a neural network. 
Hennce achieve a new learning approach as a hybrid combination of supervised and unsupervised learning in each layer of the
network.  
It will better if the introdution part give a overall structure description of the paper.  
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Review #01B8 

*Paper Format*: Correctly formatted 

*Topic relevance*: High 

*Originality of the content*: High 

*Methodology / Research design*: High 

*Evaluation of results and derived conclusions*: Average 

*References to previous work*: High 

*Correct English usage*: Average 

*General Comments to Authors* 
The paper presents a comparative performance analysis study on the use of deterministic transforms instead of random matrices
in the neural network weights (specifically the SSFN architecture) to reach final models that are better suited for limited resource
scenarios. 
The problem addressed is interesting, theoretical explanations are found appropriate, experimental design used is concrete with
sufficient detail, literature review is considered adequate. With that being said,  
1) sections II and III of the paper contains typo errors here-and-there, that should be corrected. 
2) R_{l+1} in equation 4 should be explained. 
3) While comparative accuracies of the state-of-the-art and the proposed methods are valuable; presentation, analyses, and
detailed comparisons in terms of usages of computational resources (processing power, RAM, etc.) for both training and testing
would make the conclusions drawn more convincing towards applicability of the proposed approach for scenarios with more
strict real time and online requirements. 
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4) The result corresponding to the new trained network structure ’4096-2977-3477-
3300 (FWHT2-DHT-DST-FWHT1)’ stated in the end of the results section could have been added to Table II, so that the paper
would convey its message in a more coherent way. 

----------- 
Review #02A8 

*Paper Format*: Correctly formatted 

*Topic relevance*: High 

*Originality of the content*: Average 

*Methodology / Research design*: High 

*Evaluation of results and derived conclusions*: High 

*References to previous work*: High 

*Correct English usage*: High 

*General Comments to Authors* 
The authors propose the use of deterministic transformations (e.g., DCT) to design the weight matrices in a feed-forward neural
network. The complexity of the proposed system varies between O(N) and 0(Nlog_base_N). The proposed system is evaluated in
speech recognition and image classification datasets. In general, it is a well-written paper with a solid research design and
experimental evaluation. 

Some minor comments for the authors: 
- Try to avoid "etc." in scientific writing 
- It is better to use passive voice instead of saying "We investigate...", "We use..." 
- Section should always start with a capital "S" 
- "e.g.," --> a comma should follow  
- ’4096-2977-3477-3300 (FWHT2-DHT-DST-FWHT1)’ --> Replace the beginning quote mark with ` (formatting) 

----------- 

-end- 
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EUSIPCO 2021: Presentation Schedule [Paper #6716]

Dear Pol Grau Jurado, Xinyue Liang, Alireza M. Javid, Saikat Chatterjee, 

Paper ID: 6716 
Paper Title: Use of Deterministic Transforms to Design Weight Matrices of a Neural Network 

The session and presentation times for your paper are: 

Session: SiG-DML-L2: Neural network learning Part 2 

Session Time:
Wednesday, 25 August, 10:30 - 12:30 IST (UTC +01:00) 

Session Format: Lecture 

In the acronym of the session label, P# stands for poster and L# for lecture. 

You can find the instructions on pre-recorded videos at https://eusipco2021.org/virtual-participation/ 

The deadline for author registration is July 1st. Registrations will be open soon at https://eusipco2021.org/registration/ 

Best regards, 
Maria Sabrina Greco, Stephen McLaughlin and Josiane Zerubia 
Technical co-Chairs, EUSIPCO 2021  

EUSIPCO 2021<eusipco2021@cmsworkshops.com>
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Para:Pol Grau Jurado <polgj@kth.se>; Xinyue Liang <xinyuel@kth.se>; Alireza Mahdavi Javid <almj@kth.se>; Saikat Chatterjee
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