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Abstract: This study focuses on the numerical investigation of the underlying mechanism of transition
from chaotic to periodic dynamics of circular cylinder wake under the action of time-dependent
fluidic actuation at the Reynolds number = 2000. The forcing is realized by blowing and suction from
the slits located at ±90◦ on the top and bottom surfaces of the cylinder. The inverse period-doubling
cascade is the underlying physical mechanism underpinning the wake transition from mild chaos
to perfectly periodic dynamics in the spanwise-independent, time-dependent forcing at twice the
natural vortex-shedding frequency.

Keywords: transitional flow; period doubling bifurcation; dynamical systems

1. Introduction

There has been a spurt of activity in the recent years regarding the understanding
of transitional phenomena in relatively simple problems with the advent of cutting edge
computational methods and advanced theoretical frameworks of hydrodynamic instability,
due to its significance in both fundamentals and applications. There are several routes
by which dynamical systems can arrive at the chaotic state: period-doubling bifurcations
(Feigenbaum scenario [1,2]); quasi-periodic route [3] or various incommensurate bifurca-
tions (Ruelle–Takens–Newhouse scenario [4]), and the intermittency regime (Manneville
and Pomeau scenario [2,5]). Period-doubling transition phenomena have been reported
as the underlying physical mechanism for the transition to chaotic state in both internal
and external flows, such as Reyléigh–Benard convection [6], cylinder wake [7], and binary
mixture convection [8]. In the flow, past an inclined plate [9], the transition route from
steady state to chaotic state reveals the co-existence of the period-doubling state and quasi-
periodic state. Studies of the flutter-instability of a flag in incompressible inviscid fluid
revealed several scenarios of transition [2]: quasi-periodic bifurcation was the underlying
physical mechanism from periodic state to chaotic state, and a period-doubling bifurcation
caused a transition from a symmetric periodic state to an asymmetric periodic state. Apart
from these former typical scenarios, other intermediate bifurcations may also exist along
the bifurcation route [10].

Flow past bluff bodies, especially the circular cylinder, which is the canonical problem
for bluff bodies, is a universal flow configuration with a wide range of applications and
significance owing to its fundamental nature. Flow around bluff bodies is characterized by
a non-dimensional parameter known as the Reynolds number, Re, a ratio of the inertial
to viscous forces. At very low Re, the flow past a circular cylinder is steady and time-
independent; however, as the Re increases, the time-dependence is broken into a space–time
symmetric periodic state through supercritical Hopf bifurcation at Re ' 49 [11]. This is fol-
lowed by the inception of a secondary instability of the 2D space–time symmetric periodic
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state, known as the von-Kármán vortex street, which depicts typical three-dimensional
patterns along the span at Re & 180 [12,13] and Re & 250 [14,15], with typical spanwise
wavelengths of 3 to 4D and 1D, respectively. The saturation to turbulent state has been
reported to occur at Re . 500 [7] through a physical mechanism of period-doubling cascade,
which has been dubbed a ’fast’ transition. Following the ’fast’ transition, the spanwise
length scale of three-dimensionality at a moderately high Re regime was characterized by
many researchers [16,17].

In the current work, we study a circular cylinder in cross flow at Re = 2000 actuated via
space-independent, time-dependent forcing at twice the natural vortex shedding frequency.
The study is 2D, despite the actual flow being 3D at the coincident Re [17]; however, we are
mainly interested in the qualitative features of the interaction of time-periodic fluidic active
flow control with a chaotic cylinder wake. We are primarily interested in the influence of
forcing amplitude on the wake dynamics. The following is an outline of the present work.
The problem formulation and numerical approach are presented in Section 2. Section 3
carefully examines the wake dynamics, and various flow states as the forcing amplitude is
changed. Then, the vortex dynamics of distinct flow states in the cylinder wake along the
inverse-period-doubling cascade are discussed, culminating with a conclusion.

2. Problem Formulation and Numerical Approach

The Navier–Stokes equations govern the flow past a two-dimensional circular cylinder
in a non-dimensional form when normalized with cylinder diameter D, incoming flow
velocity u0, and fluid kinematic viscosity ν as

∂u
∂t

+ (u · ∇)u = −∇p +
1

Re
∇2u,

∇ · u = 0,
(1)

where u and p are the non-dimensional velocity vector and pressure in the (x, y)-plane,
respectively, and t is the non-dimensional time. The computational domain extends from
−20 to 50 in the streamwise, and −20 to 20 in the transverse direction, while the center of
the cylinder is at the origin of the coordinate system. Dirichlet velocity is specified at the
inlet boundary ux î + uy ĵ = î + 0 ĵ at x = −20; no-slip condition is prescribed at the cylinder
wall, i.e., u = 0, slip wall on the lateral boundaries and Neumann at the outlet boundary,
i.e., (∇u · n̂) = 0 at x = 50. Zero pressure gradient is prescribed by high-order Neumann
boundary conditions on all boundaries except the outlet boundary, i.e., x = 50, where p = 0
is enforced as a Dirichlet boundary condition.
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Figure 1. Computational mesh in the XY plane. The inset details the mesh in the vicinity of circular
cylinder and the top slit.

Open source code NEKTAR++ was employed to evolve the flow in time by Direct
Numerical Simulation (DNS) implemented via incompressible Navier–Stokes solver tensor-
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product-based spectral element package [18]. The (x, y)-plane is discretized with 5484
high-order quadrilateral elements with Lagrange polynomial expansions up to order
P− 1 = 7 within each element. Continuous Galerkin projection was imposed across each
element. In the neighborhood of the cylinder wall, the mesh was refined, particularly the
wake and in the vicinity of actuation, to fully resolve the boundary layer, interaction of
actuation with the boundary layer, flow separation and the cylinder wake; see Figure 1.
Time integration was performed using a second-order accurate velocity correction scheme
with ∆t = 0.0002.

Table 1. Global flow parameters for convergence study alongside planner mesh resolution i.e., Nxy.

Mesh Method Nxy St C′
L C̄D C′

D

M1 DNS 13748 0.2312 1.2299 1.6132 0.2452
M2 DNS 24838 0.2351 1.2346 1.6292 0.2395
M3 DNS 30828 0.2401 1.2409 1.6304 0.2313
M4 DNS 40408 0.2457 1.2476 1.6236 0.2304
M5 DNS 54848 0.2417 1.2416 1.6192 0.2336
M6 DNS 77968 0.2418 1.2409 1.6204 0.2343

The resolution/grid-independence study is carried out without flow actuation at
Re = 2000 to find the best mesh in terms of computational burden while keeping reasonable
accuracy in terms of global parameters. Six different meshes are studied for this purpose
with the in-plane polynomial expansion of order P = 8 maintained inside each element
and the element count in the (x, y) plane changing as shown in Table 1 . Meshes with
lesser in-plane resolution, such as M1−M3, underpredict the St, C′L, and C̄D, while they
overpredict the C′D. Increasing the element count in the (x, y) − plane leads to a great
convergence of global parameters; however, a balance between computational effort and
accuracy of results is also required. As the percentage variation in global parameters is
smallest between M5 and M6, M5 was used for the remainder of the work. The maximum
y+ evaluated on the cylinder surface for M5 is 0.9.

Figure 2 indicates the Cp distribution over the circular cylinder surface at Re = 2000,
together with the numerical results of Singh and Mittal [19]. Both results demonstrate
the highest value at the front stagnation point, which gradually decreases as the flow
accelerates along the surface in the downstream direction. The flow subsequently faces
an adverse pressure gradient, which enforces flow separation as the flow convects fur-
ther downstream. Both curves display excellent agreement in terms of Cp values and
functional shape.

Figure 2. Mean pressure coefficient Cp distribution (continuous line) over the circular cylinder
surface at Re = 2000. Numerical results of [19] (dashed line) are also shown at the coincident Re.
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Flow over a circular cylinder is actuated via blowing and suction from the slits at at
±90◦ on top and bottom surfaces. The forcing is symmetric at the wake centerline, and
time-dependence is introduced at 2 fvK, where fvK is the von-Kármán vortex-shedding
frequency. The forcing is implemented in the form of a Gaussian profile in the crossflow
plane, as follows

Uxy = Ae
−( (θ±θc)2

(2ζ2)
)
sin(2π fet) (2)

where Uxy, A, θc, ζ, fe, and t are the forcing velocity in the streamwise-crossflow plane,
forcing amplitude, central angle of the slot at the azimuthal location and the, slot width,
excitation frequency, and advective time respectively. In unsteady configurations, the force
is symmetric at the wake centre plane. Figure 3 depicts a typical forcing sketch.

x

yu0
θc = 90◦

Figure 3. A sketch depicting the in-phase actuation of flow over a circular cylinder in the
cross-flow plane.

3. Wake Dynamics of Flow under Time-Dependent Actuation

The flow behind a circular cylinder features a perfectly periodic behavior in the two-
dimensional flow regime. The onset of three-dimensional flow regime brings irregular
dynamics in the wake, and this irregularity continues to build with the increase in Re. At
Re = 2000 the dynamics are already dominated by chaotic behaviour, even if the flow is
computationally forced to remain two-dimensional. However, when the cylinder flow is
actuated at twice the natural vortex shedding frequency, the wake dynamics transform
from the chotic state to perfectly periodic state through inverse-period-doubling bifurcation
with increases in the forcing amplitude, as shown in Figure 4.

3.1. Chaos

The wake flow of circular cylinder displays a chaotic trend at Re = 2000 for both
the baseline case and the actuated case at 2 fvK. Chaos exhibits mitigation with increases
in forcing amplitude, as shown in Figure 4. In the bifurcation diagram, streamwise and
crossflow velocities evaluated at probe (0.2, 0.5) are plotted against forcing amplitude to
denote different flow states at varying values of forcing amplitude. The probe location
lies in the shear layer passage, separated from the cylinder surface, in order to register the
velocity fluctuation corresponding to the wake trend. In principle, probe location could lie
anywhere in the near wake of the cylinder. The dynamics were found to be dominated by
chaos for A < 0.5u0, with a gradual decrease in the level of chaos with increasing forcing
amplitude. The critical point for the onset of the inverse-period-doubling cascade has not
been examined in this work.

To visualize the dynamics behind a circular cylinder, flow trajectories are projected on
the (u, Cl) and (v, Cl) planes evaluated at (0.2, 0.5) in the computational domain, where u, v,
and Cl are the streamwise, crossflow velocity components and lift coefficient, respectively.
Spectra of the Cl time-series are shown on the left panels of Figure 5 for the baseline (a)
and actuated with A = 0.3u0 (b) cases, respectively. The higher degree of chaos was found
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to exist in the baseline case compared to the actuated case at A = 0.3u0. A Poincaré
section was defined to determine the degree of chaos by setting uP = 1.2 and u̇ > 0. A
more disordered distribution of open circles within the phase space indicates a higher
degree of chaos, whereas closely packed open circles in a relatively smaller region of phase
space represent a lower degree of chaos. Higher chaos can also be observed from the
spectrum of the time traces of the Cl signal, with the highest peak being representative of
natural vortex-shedding frequency St = 0.2417, while the width of the corresponding peak
represents the equivalent degree of chaos (see right panels in Figure 5).

Figure 4. Bifurcation diagram of flow past a circular cylinder actuated at twice the natural vortex-
shedding frequency. The horizontal and vertical velocity components evaluated at (0.2, 0.5) with
forcing amplitude along shown along the x-axis. Symbols denote: chaotic solution (circle), period-4
orbit (diamond), period-2 orbit (right triangle), and the periodic solution (left triangle). Vertical bars
demonstrate fluctuation amplitude.

f0

(a)

f0

(b)

Figure 5. Wake dynamics of baseline and actuated cases alongside phase map projection on the (u,
Cl) and (v, Cl) planes. Open circles indicate crossings of a Poincaré section set as uP = 1.2 and u̇ > 0.
Spectra of the Cl time traces are indicated in the right figures with the corresponding time series in
the insets. (a) Uncontrolled case and (b) controlled case with A = 0.3u0.
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3.2. Inverse Period Doubling Cascade

The transition in flow state from mild chaos to perfectly periodic state takes place
between 0.5u0 < A < 0.55u0 through inverse period-doubling cascade. In this work, we
report period-4 state of actuated case with the appearance of four crossings, each having
the period four time as the fundamental time period.

The spectrum of the Cl time-series under fluidic actuation at A = 0.9u0 is shown in
Figure 6a, where the highest peak at non-dimensional frequency f0 = 0.231 corresponds to
the fundamental frequency with the corresponding fundamental period of 4.329. By quasi-
statically reducing the forcing amplitude, the periodic solution transforms to a period-2
solution, characterized by the appearance of two crossings shown by a circle and a diamond,
as indicated in Figure 6b at A = 0.6u0. This is further substantiated by the appearance of a
subharmonic peak at 0.115 in the spectrum of Cl time series; see Figure 6b. The solution
shows four crossings at A = 0.55u0, identified by circle, left-triangle, right-triangle, and
diamond symbols, respectively, which is characteristic of a period-4 solution. The spectrum
of Cl time-series presents the highest peak at f0 = 0.231, accompanied by subharmonic
peaks at f0/2 = 0.115 and f0/4 = 0.115; see Figure 6c.

(a)

(b)

up = 1.2

(c)

Figure 6. Period-doubling cascade of two-dimensional controlled case at Re = 2000 explained by
phase map projection on the (u, Cl), (v, Cl) planes, and spectrum |Ĉl | of the Cl time series. The
symbols denote the crossings of the Poincaré section defined by uP = 1.2 and u̇ > 0. (a) periodic
solution (b) period-2 solution and (c) period-4 solution.



Energies 2021, 14, 5069 7 of 10

−10

−5

0

5

10

ωz

t0 t1 t2 t3

Figure 7. Spanwise-vorticity field evolution (ωz = [−10, 10]) of the periodic orbit, evenly spaced
along a full period T. Snapshots taken from the instant when flow crosses the Poincaré section,
defined by uP = 1.2 and u̇ > 0, corresponding to Figure 6a. Snapshot evenly spaced such that t0 = 0,
t1 = T/4, t2 = T/2 and t3 = 3T/4.

t01 t11 t21 t31

t02 t12 t22 t32

Figure 8. Spanwise-vorticity field evolution (ωz ∈ [−10, 10]) of the period-2 orbit. Snapshots
taken from the instant when flow crosses the Poincaré section, defined by uP = 1.2 and u̇ > 0,
corresponding to Figure 6b. Snapshots are evenly spaced between the transition from crossing
labeled with a circle to that labeled with a diamond and then the other way round. Colour coding as
for Figure 7.

It is interesting to investigate the evolution of flow topology in the cylinder wake as A
is quasi-statically increased/decreased. Figure 7 demonstrates the evolution of a vortex-
shedding cycle (periodic solution) of flow past a circular cylinder forced at fe = 2 fvK
with A = 0.9u0 in the form of snapshots taken at equally spaced time intervals within
a time period T.Snapshot t0 was taken at the crossing shown in Figure 6a. The wake
topology of flow forced at a high value of A is quite different from a typical von-Kármań
vortex-shedding topology and is dominated by the shedding of four vortices during the
course of a periodic solution. While the vortices from the surface of the cylinder are shed
sequentially in pairs, the vortices shed from the top surface are merged into a single vortex
further downstream of the wake, displaying a typical (P + S) configuration, where P
and S stand for a vortex-pair and a single vortex, respectively. The P lies above the wake
centerline, while S remains below it, as shown in Figure 7. At t0, the leading vortex from the
bottom surface has already been shed, while the following one is about to leave the bottom
surface, and these two vortices are connected with a braid-like region. Further downstream,
previously shed vortices from the top surface are merging. These merging vortices are now
completely mixed, feature a single vortex and present a P-configuration at t1. Moreover,
both vortices from the bottom surface are already shed while the first vortex from the top
surface is in the process of shedding. At t2, the vortices are convected further downstream
and a pair with negative-sign vorticity is about to shed. When the negative-sign vortices
are completely shed, they start to merge as they are convected downstream at t3, and this
process continues.

The flow topology in terms of ωz-field for the period-2 solution corresponding to
Figure 6b is shown in Figure 8 in terms of equally spaced snapshots between the transition
from first crossing to the next: t01-snapshot corresponds to the crossing denoted by a
circle, while the t02-snapshot corresponds to a crossing shown by a diamond; see Figure 6b.
The flow topology remains, essentially, the P + S configuration with P above the wake
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centerline and S below the wake centerline. The key factor in triggering the period-2
solution is a small positive-sign vorticity blob occurring between the two-bigger positive-
sign vortices just downstream of the cylinder base; see t01 and t02 instants in Figure 8.
During the course of flow trajectory from a crossing labeled by circle to a crossing denoted
by a diamond, the small blob is connected to a succeeding positive-signed vortex as the
succeeding positive-signed vortex is shed and convected downstream in the wake, see t11
in Figure 8, and finally merged into a single vortex as it moves further downstream along
the wake; see t21 in Figure 8. Contrary to the flow from a crossing via circle to diamond, the
small positive-signed vortex blob now connects to the leading main positive-signed vortex
at t02 and is completely merged at t12. The flow topology finally maps to the snapshot t01
after evolving through t22 and t32; see Figure 8.

Figure 9 depicts the wake topology corresponding to dynamics projected in the phase
plane in Figure 6a at A = 0.55u0. t01, t02, t03, and t04 time-instants correspond to the
snapshots taken at crossing i.e., circle, left-triangle, right-triangle and diamond indicating
crossings, respectively. A fundamental change in the P + S configuration was observed
in period-4 orbit compared to period-2 and periodic orbits, i.e., P lies below the wake
centerline and S is spotted above it contrary to later cases. In period-4, positive-signed
vortices are merged during the dynamics from one crossing to the other, which is not the
case for period-2 and periodic flows.

t01 t11 t21 t31

t02 t12 t22 t32

t03 t13 t23 t33

t04 t14 t24 t34

Figure 9. Spanwise-vorticity field evolution (ωz = [−10, 10]) of the period-4 orbit. Snapshots
taken from the instant when flow crosses the Poincaré section, defined by uP = 1.2 and u̇ > 0,
corresponding to Figure 6c. Snapshots are evenly spaced between the transitions from crossing
labeled with circle to the next until it gets back to circle. Colour coding as for Figure 7.

It is also intriguing to see how the wake evolves over the course of a period-4 cycle. The
evolution of vortex-shedding from one crossing to the next is equally spaced into four time
instants. During the first transition, a positive-signed vortex pair sheds and merges into a
single vortex during evolution from t01 to t31. Another important feature of the period-4
wake is the appearance of a negatively signed small vortex located between the negatively
signed shed vortices, which remains a distinguishable vortex further downstream of the
wake. In the second transition from a left-triangle crossing to right-triangle crossing,
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the P + S-configuration remains unaltered. However, the small negatively-signed vortex
between shedding and being about to shed becomese visible at t22 instant, and finally
merges with the succeeding negatively-signed vortex after convecting downstream at t32
and t03. The same small vortex in the next transitional phase merges with the leading
vortex, as shown in t23 and t33. In the last transition, which ultimately completes the
period-4 cycle, a small negatively-signed vortex merges with the succeeding negatively
signed vortex; see t24 and t34 in Figure 9.

4. Conclusions

Active flow control in the form of blowing and suction, spanwise, independent and
time-dependent, at twice the natural vortex-shedding frequency, from the top and bottom
slits of a circular cylinder, is implemented at Reynolds number 2000 to investigate flow
dynamics. The wake dynamics are observed to undergo a transition from a mildly chaotic to
perfectly periodic state when forcing amplitude is quasi-statically increased. The physical
mechanism for the transitional flow from a chaos to periodic state is governed by the
inverse period-doubling cascade.
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