
Energy-Efficient Stream Compaction Through
Filtering and Coalescing Accesses in GPGPU

Memory Partitions
Albert Segura, Jose-Maria Arnau, and Antonio González, Fellow, IEEE

Abstract—Graph-based applications are essential in emerging domains such as data analytics or machine learning. Data gathering in a
knowledge-based society requires great data processing efficiency. High-throughput GPGPU architectures are key to enable efficient
graph processing. Nonetheless, irregular and sparse memory access patterns present in graph-based applications induce high memory
divergence and contention, which result in poor GPGPU efficiency for graph processing. Recent work has pointed out the importance of
stream compaction operations, and has proposed a Stream Compaction Unit (SCU) to offload them to a specialized hardware. On the
other hand, memory contention caused by high divergence has been tackled with the Irregular accesses Reorder Unit (IRU), delivering
improved memory coalescing.
In this paper, we propose a new unit, the IRU-enhanced SCU (ISCU), that leverages the strengths of both approaches. The ISCU
employs the efficient mechanisms of the IRU to improve SCU stream compaction efficiency and throughput limitations, achieving a
synergistic effect for graph processing. We evaluate the ISCU for a wide variety of state-of-the-art graph-based algorithms and
applications. Results show that the ISCU achieves a performance speedup of 2.2x and 90% energy savings derived from a high reduction
of 78% memory accesses, while incurring in 8.5% area overhead.

Index Terms—Graph processing, Stream Compaction, GPGPU architectures, Memory divergence, Stream Compaction Unit (SCU),
Irregular accesses Reorder Unit (IRU).

F

1 INTRODUCTION

G RAPH-BASED applications are ubiquitous in important do-
mains such as data analytics [1] or machine learning [2]

among many other examples. Road navigation and self-driving cars
[3], recommendation systems [4] and speech recognition [5] are
paradigmatic examples of graph processing workloads. Current
trends towards increased data gathering [6] and knowledge-based
applications result in an increased importance of graph-based
applications and, at the same time, a demand for higher data
processing capabilities, which motivates high-throughput graph
processing on GPGPU architectures.

GPGPUs achieve high performance for regular programs that
exhibit low branch and memory divergence. Unfortunately, graph
algorithms exhibit sparse memory accesses, as they traverse un-
structured and irregular data with unpredictable patterns [7]. Hence,
GPGPU implementations of graph algorithms show significant
memory divergence [8], which leads to high contention in the
memory hierarchy and poor utilization of the functional units.
Not surprisingly, some recent work focused on improving graph
processing on GPGPUs through software-level optimizations [9],
[10], [11]. Furthermore, graph frameworks such as Gunrock [12],
nvGRAPH [13], HPGA [14] or MapGraph [15] have been intro-
duced in recent years. Despite all these efforts, we found that state-
of-the-art CUDA implementations still suffer from high contention
in the memory hierarchy and low utilization of the functional units,
as low as 13.5% on average in our graph datasets.

• The authors are with the Department of Computer Architecture,
Universitat Politècnica de Catalunya, 08034 Barcelona, Spain.
E-mail: asegura, jarnau, antonio@ac.upc.edu.

Manuscript received July 15, 2020

0
20
40
60
80

100

Pe
rc

en
ta

ge
 o

f T
im

e

GTX980 TX1
GTX980 TX1

GTX980 TX1

BFS SSSP PR

Rest of graph processing Stream compaction

Fig. 1: Execution time breakdown for several applications and three
graph primitives (BFS, SSSP and PR). Measured on an NVIDIA
GTX 980 and Tegra X1.

One of the most effective optimization for GPGPU graph
processing is stream compaction [11]. This technique is based
on the observation that, on each iteration of a graph algorithm,
only a small and sparsely distributed subset of the nodes/edges are
typically active. Stream compaction gathers the data of active
nodes/edges on a compacted array in contiguous memory, so
subsequent processing on the compacted array exhibits much more
regular memory access patterns and, hence, it runs efficiently on
the Streaming Multiprocessors (SMs) of the GPU. However, the
GPU is ineffective at performing stream compaction operations,
which represent a large fraction of execution time across several
graph algorithms, as shown in Figure 1.

Recognizing the importance of stream compaction in graph
processing, recent work [8] proposes to offload this operation

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI 10.1109/TC.2021.3104749

IEEE TRANSACTIONS ON COMPUTERS 2

TABLE 1: Comparison between SCU, IRU and ISCU hardware extensions for Graph Processing on GPGPU architectures.

GPU GPU+SCU GPU+IRU GPU+ISCU
Offloaded task Nothing Stream Compaction Irregular Loads Stream Compaction

Speedup over GPU - 1.37x 1.33x 2.2x
Energy savings over GPU - 84.7% 13% 90%

Area overheads - 3.3% 5.6% 8.5%
NoC contention High High Low Low

Node/Edge filtering In software (expensive) In SCU (data in L2) In L2 In L2

to a specialized unit tightly integrated in the GPU, called the
Stream Compaction Unit (SCU). The SCU is a small unit with an
architecture tailored to the irregular memory accesses that arise
in stream compaction. The remaining steps of the graph-based
algorithm are executed on the SMs taking benefit of the large
amount of parallelism in the GPU, but they operate on the SCU-
prepared data and achieve much higher efficiency. The SCU writes
the compacted nodes/edges in an order that improves memory
coalescing and, in addition, it performs filtering of repeated and
already visited nodes during the compaction process, significantly
reducing GPGPU workload.

Filtering duplicated and already visited elements is key for high-
performance graph processing. Software based solutions require
expensive atomic operations to accurately detect repeated elements,
or they loosely track duplicated nodes which severely impacts the
effectiveness of the filtering. The SCU employs a hash table, stored
in the L2 cache, to track already processed nodes/edges. According
to our measurements, a large amount of data is moved between the
SCU and the L2 partitions just for the filtering. More specifically,
we have measured that 57% of the traffic in the NoC is due to
the filtering operations of the SCU. We claim this is an important
limitation and we improve the SCU design in this paper to avoid
this bottleneck.

Another GPU architectural extension for graph processing,
the Irregular accesses Reordering Unit (IRU), shows a more
efficient design for filtering. Instead of offloading the entire stream
compaction, the IRU focuses on improving coalescing of irregular
memory accesses by reordering the node/edge frontier on-the-fly,
so threads within the same warp receive nodes/edges stored in the
same cache line. During this reordering, the IRU filters duplicated
elements but, unlike the SCU, it is located inside the GPU memory
partitions and it performs the filtering directly in the L2, reducing
traffic in the NoC by a large extent.

Table 1 summarizes both approaches, SCU and IRU. The SCU
achieves significant speedups and large energy savings, but it
produces high contention in the NoC since a lot of data is moved
between the L2 and the SCU for the filtering operation. On the
other hand, the IRU achieves more modest energy savings, since
it focuses on irregular load operations while most of the stream
compaction still runs on the GPU, but its filtering operation is
highly efficient as it is done inside the memory partitions, largely
reducing contention in the NoC. The IRU requires 46% lower NoC
traffic according to our measurements.

In this paper, we show that the IRU and the SCU have
interesting synergies and we propose a novel GPU design that
effectively combines both techniques. In our scheme, we leverage
the SCU to offload the stream compaction operation. However, we
modify the behavior of the filtering operation. Instead of fetching
data from L2 and performing the filtering in the SCU, our SCU
issues requests to the IRU to filter repeated elements in the memory
partitions. In this manner, the IRU ameliorates the main bottleneck
of the SCU, achieving the benefits of both solutions: large energy

savings due to offloading stream compaction to a specialized unit
and low contention in the NoC since filtering of duplicated elements
is done inside the memory partitions. We call this system the IRU-
enhanced SCU (ISCU).

This paper focuses on improving the performance of graph
processing on GPGPU architectures. Its main contributions are the
following:

• We characterize the bottlenecks of the SCU. We observe
that the main limiting factor is the large amount of data
movement between the L2 cache and the SCU required
for the filtering operation, which represents 57% of NoC
traffic.

• We identify the synergies between the SCU and the IRU,
and show that they perfectly complement each other. Based
on this observation, we propose the ISCU, a novel GPU
extension that combines both the efficient SCU and the
filtering mechanism of the IRU to improve overall graph
processing efficiency.

• We evaluate our proposal on top of a modern GPU
architecture. Our experimental results show that the ISCU
improves performance by 2.2x and delivers 90% energy
savings for a diverse set of graph-based applications over
a GTX 980 GPU. Compared to the GPU+SCU, our ISCU
improves performance by 63%, while achieving 66% energy
savings.

The remainder of this paper is organized as follows. Section 2
reviews graph processing on GPGPU architectures and introduces
the SCU and IRU hardware extensions. Section 3 presents the
architecture of the ISCU, whereas Section 4 describes its API and
programmability. Section 5 presents the evaluation methodology
and Section 6 provides the experimental results. Section 7 reviews
the related work and, finally, Section 8 sums up the main
conclusions.

2 GPGPU GRAPH PROCESSING

Graph processing is used in many domains and applications
that employ graphs to represent data, such as road navigation
systems or data analytics. Graphs consist of two main elements:
nodes and edges. Graph nodes are used for data entries while
the edges indicate relationships between the nodes of the dataset.
The graph dataset is typically stored in a Compressed Sparse
Row (CSR) [9] format which reduces memory footprint. The
characteristics of graph traversal algorithms are highly dependent
on the topology of the graph, which tends to be highly unstructured
and irregular, resulting in unpredictable memory access patterns.
These characteristics negatively impact graph exploration efficiency
on GPGPU architectures. Nonetheless, graph processing is highly
parallelizable, as many elements can be processed simultaneously
without dependencies, which GPGPU architectures can exploit
with their huge parallelism.

IEEE TRANSACTIONS ON COMPUTERS 3

Graph traversal algorithms on GPGPU architectures consist of
an iterative process. Each iteration starts with the set of active nodes,
i.e. the node frontier. Each element in the node frontier is processed
in parallel. Afterwards, edges departing from active nodes are
traversed to generate the node frontier for the next iteration. This
process is repeated until the algorithms converges, i.e. it reaches
the stop condition. GPGPU architectures assign a given element of
the frontier to a thread. Since graph exploration happens in parallel,
synchronization mechanism are used to avoid expanding duplicated
nodes, which would severely increase workload.

In this work we focus on popular graph algorithms, in particular
Breadth-First Search (BFS), Single-Source Shortest Paths (SSSP)
and PageRank (PR). BFS computes the shortest hops from a source
node to all the other nodes in the graph. SSSP computes the
shortest distances from a source node to any node (i.e. every edge
having a different weight). PR computes a ranking of the most well
interconnected nodes in a graph which is used in recommendation
systems. The state-of-the-art CUDA implementation of BFS [10]
uses best-effort synchronization approaches, that avoid the use of
atomic operations but provide a degree of filtering of duplicated
elements. SSSP [16] and PR [4] use atomic operations to avoid
duplication, yet incur in significant overheads.

Taking BFS as an example, its exploration consists of two main
phases or kernels: Expansion and Contraction. In the Expansion
kernel, a thread processes a node in the node frontier expanding
its edges into the edge frontier, a process done cooperatively with
other threads to improve thread balancing, as some nodes might
have higher connectivity than others. In the Contraction kernel, a
thread is used per edge in the edge frontier, if the destination node
of each edge has not been visited it sees its hops from the source
node updated, is marked as visited and is inserted in the next node
frontier, otherwise it is not processed. As BFS uses best-effort
filtering of visited nodes it might expand nodes already visited,
increasing workload, but producing a correct result. Further details
about SSSP and PR graph processing phases can be found in the
SCU paper [8].

2.1 Graph Processing and SCU Hardware Extension
Stream compaction operations improve memory coalescing and lo-
cality of sparse accesses performed by graph applications. However,
this process is inefficiently performed in the GPU due to the high
amount of irregular accesses and synchronization overheads which
leads to inefficient use of the GPU resources. Although stream
compaction results in a net performance improvement, it represents
about 50% of the total execution time of graph applications [8].
The Stream Compaction Unit (SCU) is a GPU hardware extension
tailored to efficiently perform compaction operations which are
offloaded from the GPU, this provides high performance and energy
efficient hardware by avoiding both synchronization overheads and
utilizing the GPU to perform inefficient data movements with main
memory.

2.1.1 SCU Architecture Overview
The SCU is a new hardware unit added to the GPU, which is
attached to the interconnection of the GPU as shown in Figure 2.
The internal pipeline of the SCU consists of a set of components
that are able to efficiently issue, gather and compact sparse irregular
data, while providing flexibility to allow for a comprehensive set
of data operations, detailed in Section 4.

The host-issued SCU operations configure the unit and initiate
its processing. First, the Address Generator component obtains

SCU

Interconnection

Address
Generator

Data
Store

Data
Fetch

Bitmask
Constructor

Filtering
Grouping

Coalescing
Unit

Processing

Sparse
Data

Bitmask

Index

Count

Filtering

Grouping

Hash
Compacted

Data

Main Memory

Coalescing
Unit

Fig. 2: SCU internal pipeline and memory data structures.

parameters and issues requests only to the data to compact from
memory, which then is fetched by the Data Fetch component from
main memory through the GPU L2. Afterwards, the fetched data is
processed in the Processing component according to the operation
launched, this unit provides the functionality to perform complex
data compaction operations and optimizations. Finally, the resulting
data is then forwarded to the Data Store which writes directly to
memory in a compacted manner.

As indicated, the SCU can perform data optimizations by
filtering and grouping pre-processing, this can be done more
efficiently than in the GPU when performing the gathering of
data. To deliver these optimizations, the SCU uses an in-memory
hash that is cached in GPU L2, this is done to to reduce hardware
overheads, as well as allowing for re-configuration to tailor the
data optimizations. For the filtering operation, the hash table
provides a low-cost mechanism to loosely remove duplicates.
Each new edge/node probes the hash table and is discarded if
a previous occurrence of the same node/edge is found. In case of
hash collisions the corresponding hash table entry is overwritten,
which means that false negatives are possible. Nonetheless, SCU
provides a highly effective filtering reaching more than 70%
of the workload [8] without incurring in significant overheads.
On top of this, it removes additional synchronization overheads
required for regular filtering steps performed in successive steps the
GPU, that are required for software-based solutions for removing
duplicated nodes/edges. For the grouping operation, the hash table
is reconfigured to create groups of edges whose destination node
lies in the same cache line, in order to store them together in the
compacted array.

2.1.2 SCU Programming Model

The SCU is capable of performing a set of data compaction
operations issued from the host CPU with an API detailed in
Section 4. This set of operation enables complex data compaction
patterns which are performed by GPU compaction algorithms.

IEEE TRANSACTIONS ON COMPUTERS 4

Each SCU operation uses a set of parameter vectors stored in main
memory which are provided by the CPU and are fetched when
an operation is started. These parameters are shown in Figure 2,
they are used to indicate the sparse data to fetch with the bitmask,
indirections and duplications to perform with the index and count
and to enable the data optimizations with the filtering and grouping
vectors.

The BFS algorithm [10] is instrumented in Figure 3 in order to
use the SCU with operations shown in Section 4. Both BFS kernel
data compaction efforts can be offloaded using the SCU stream
compaction operations, meanwhile the GPU performs the regular
part of the graph exploration. In the first kernel BFS Expand,
the SCU efficiently compacts in memory all the edges from the
active nodes processed, while in the second kernel BFS Contract
it efficiently filters out the discarded edges.

1 // nF: node_frontier , eF: edge_frontier
2 void BFS_Expand (nF) {
3 indexes ,count = BFS_preparationGPU (nF);
4 eF = accessExpansionCompactionSCU
5 (edges , indexes , count);
6 return eF;
7 }
8

9 void BFS_Contract (eF) {
10 bitmask = BFS_contractionGPU (eF);
11 nF = dataCompactionSCU (eF, bitmask);
12 return nF;
13 }

Fig. 3: Pseudo-code of BFS using the SCU Hardware Extension.

2.2 Graph Processing and IRU Hardware Extension
Irregular accesses performed by graph applications have high
memory divergence which increases overall use of memory
hierarchy resources and reduces data locality. GPGPU coalescing
hardware targets an application access patterns which are often
hard to optimize by the programmers, requiring major code
overhauls, yet memory divergence remains high requiring for
memory requests per group of threads. The Irregular Accesses
Reorder Unit (IRU) hardware extension transparently improves
divergence in irregular accesses performed by the GPU. The IRU
achieves this by reordering indices in the node/edge frontiers, an
optimization made possible by relaxing the GPU programming
model restriction as to allow threads to retrieve reordered indices,
which is valid in graph applications since threads can process any
given element.

2.2.1 IRU Architecture Overview
The IRU is a GPU hardware extension placed in the memory
partitions of the GPU alongside other components it it, as shown
in Figure 4. Each IRU partition consists of a set of components
responsible to fetch and reorder the indexes used in irregular
accesses by the GPU, thus reducing memory divergence. The
IRU reordering is enabled by the use of a partitioned hash table,
which is employed to gather indices that will collocate to the same
memory block. The direct connection of the IRU partitions allows
a global scope when reordering indexes across all SMs, for which
a regular GPU system is not capable and is key on further reducing
divergence.

Initially, the IRU is configured from the host by receiving infor-
mation of which indices are targeted for divergence improvement.

Memory Partition

 IRU
to icnt

 to L2

 to neighbor

Main Memory

L2 Cache Memory Controller

Prefetcher Classifier

Ring Interconnect

Data
Processing

Data
Replier

Reordering
HashIRU

Controller

Fig. 4: IRU internal pipeline in a Memory Partition.

Upon the kernel being launched, the different IRU partitions start
prefetching the indices with a Prefetcher. These indices are later
classified and issued to the local Reordering Hash or sent to the
Ring Interconnection if they target another hash partition. Indices
are collocated into the hash table until a request from the IRU
ISA instructions arrives at the partition, which is serviced with the
reordered indices that will result in improved memory coalescing in
subsequent memory accesses performed by the GPU. Additionally,
the hash is also able to filter duplicated indices, which disable the
execution of the requesting threads reducing workload.

The Reordering Hash is direct mapped and multi-banked, each
entry holding 32 indexes which are filled consecutively at each
insertion. The indexes in an entry target the same memory block,
reducing memory divergence. The hash allows collocating indexes
that do not match tags thus accessing different memory blocks,
a feature which allows to reduce conflict handling complexity.
Nonetheless, the amount of conflicts is mitigated with a dispersion
hash function and sufficiently sized hash. Note that some of these
conflicting elements might collocate among themselves, thus not
severely impairing memory coalescing.

2.2.2 IRU Programming Model
The IRU introduces new ISA instructions and API which requires
very simple changes to the code, further details are provided in
Section 4. The operations provided replace regular load operations
with a request to the IRU for that same data. Additional host
operations are provided to configure the IRU with the indexes
targeted for reordering. Figure 3 shows a BFS GPGPU kernel
instrumented to use the IRU showcasing the simple instrumentation
required.

3 IRU-ENHANCED SCU (ISCU)
In this section we present the IRU-enhanced SCU (ISCU), a
GPGPU hardware extension targeting graph processing applica-
tions. The ISCU improves the SCU by utilizing the IRU hardware

IEEE TRANSACTIONS ON COMPUTERS 5

1 __global__ void BFS_contractionGPU (...) {
2 int pos = blockDim.x * blockIdx.x +
3 threadIdx.x;
4 if (pos < number_elements) {
5 int edge;
6

7 #ifdef NOT_INSTRUMENTED
8 edge = edge_frontier[pos];
9 #elif USE_IRU

10 load_iru(edge);
11 #endif
12

13 // additional computations ...
14 label[edge] = distance;
15 }
16 }

Fig. 5: Instrumentation of a BFS algorithm Kernel using the IRU.

L2

GPU die

IRU
Mem Partition Mem Partition

L1 & Shrd

EUs
SM

Interconnection

Main Memory

L2

IRU

L1 & Shrd

SM
EUs

ISCU

Fig. 6: GPGPU architecture including the ISCU extension.

extension to perform pre-processing operations, in particular
the filtering of duplicated nodes/edges. The ISCU combines
the powerful SCU optimizations obtained by offloading stream
compaction operations with the efficient hashing mechanism used
in the IRU. Figure 6 showcases a GPGPU architecture featuring the
ISCU and IRU partitions located in the GPGPU Memory Partitions
(MP). The ISCU extension is motivated by SCU’s bottleneck
experienced when performing pre-processing filtering and grouping
optimizations for graph processing applications.

3.1 SCU and IRU Synergies
SCU’s main bottleneck arises from the limited interconnection
throughput to the L2 and due to the memory accesses required
to perform filtering/grouping operations through the in-memory
hash table. Figure 7 shows the utilization of the filtering/grouping
unit, measured as the percentage of cycles this data pre-processing
unit is being utilized over the total execution, and the percentage
of Network-on-Chip (NoC) traffic generated by it. Utilization of
this component is high during the execution of the compaction
operations, reaching 92% of the execution for BFS and an average
of 51% for the different graph algorithms. Furthermore, it is
responsible for a significant amount of traffic and accesses to the
interconnection, as much as 80% for BFS and an average of 58%
for the different graph algorithms. Consequently, this component’s
high utilization of the pipeline and NoC limits performance and
provides an opportunity for optimization.

0.0
0.2
0.4
0.6
0.8
1.0

Pe
rc

en
ta

ge
 (%

)

BFS SSSP PR AVG

Utilitzation NoC

Fig. 7: Utilization of the SCU pre-processing component (i.e.
filtering/grouping unit) and the percentage of NoC traffic devoted
to filtering/grouping operations. The utilization is the percentage of
cycles that the filtering/grouping unit is active over total execution.
The SCU invests a large number of cycles and NoC transactions in
the data pre-processing operations.

The memory accesses that saturate NoC throughput come from
several sources. First, from fetching the sparse data and then writing
the elements in the compacted array. Second, from the parameters
used in the operations. Finally, when doing pre-processing, several
accesses are required to retrieve and operate with the in-memory
hash table. Nonetheless, the high filtering efficiency achieved,
reaching up to 76% of the workload, reduces significantly the
accesses required for the data compaction operations themselves,
consequently accesses to the in-memory hash table represent a
larger split and become a significant bottleneck.

Insertion of elements to the in-memory hash table requires
several accesses. For filtering, first it requires fetching the tag
entry, and performing the corresponding comparison. In case of
a miss, tag and data entries have to be updated. Consequently,
processing an element (edge or node) incurs in multiple accesses
to the L2. Although the SCU in-memory hash table design is multi-
banked, the throughput to L2 is limited to a single access from
the Filtering/Grouping component per cycle, severely affecting the
performance of hash insertions.

We propose to use the IRU efficient distributed hash table
as a replacement of the in-memory hash used for the SCU pre-
processing, additionally increasing the throughput of requests to
the IRU. The resulting system that we term ISCU contains both
SCU and IRU hardware extensions with our modifications to fit the
requirements of the end system.

Finally, ISCU synergistic use of both SCU and IRU systems
not only addresses the SCU overheads previously mentioned but
also enable further improvement of targeted graph processing
GPGPU algorithms. The ISCU allows to perform more efficient
data compaction utilizing the whole ISCU hardware, while reducing
memory divergence with the IRU.

3.2 Hardware Enhancements
The main changes in the SCU are modifications to the Data
Fetch and Filtering/Grouping component shown in Figure 2.
Due to the data path changes reviewed in Section 3.3, Data
Fetch is only required to issue the fetch operation, yet the IRU
is the hardware receiving that data, avoiding unnecessary data
movements. Similarly, the Filtering/Grouping component logic is
largely removed since it was responsible to manage request to the
in-memory hash table. Additionally, the coalescing unit attached

IEEE TRANSACTIONS ON COMPUTERS 6

 IRU #0

Prefetcher

Reordering
Hash

Ring

Data
Replier

IRU
Controller

ISCU

L2 Cache Mem. Controller

Data
Processing

Data
Store

 MP
 #0

Address
Generator

Data
Fetch

Ê

Ë

Ì

Í

Fig. 8: Behavior and data-flow of a regular ISCU operation on the
ISCU hardware extension.

to this component is no longer required as it was used to merge
request to tag and data entries.

Similarly, adapting the IRU requires minor hardware changes.
Additional control logic is required to support configuring the
IRU to perform SCU pre-processing. This control logic modifies
the data-path, so compaction operation are performed at different
locations in the system: the SCU will initiate the requests to the
data, but the replies from the memory controller will be directly
passed to the IRU, that is located inside the L2 partition. In this
manner, data can be filtered and reordered in the IRU without being
transferred to the SCU through the NoC, saving NoC bandwidth by
a large extent. In our system, the IRU does not use the prefetcher
to gather data, since the SCU is in charge of orchestrating the
stream compaction operation and it takes care of generating the
read requests to the memory controller. Additionally, the Data
Replier does no longer require to gather requests, and can send
replies back directly when data from the Reordering Hash is ready.
Although the Prefetcher is not utilized for the ISCU, this structure
is maintained to provide the IRU improvements in other kernels.

The hash table mechanism of the original SCU is not bound by
on-chip memory size as it is stored in main memory and cached in
the L2. In comparison, the IRU includes limited on-chip storage
for the hash table. This reduces memory bandwidth usage at the
cost of less accurate filtering of duplicated nodes, since in case
of conflicts in the hash table the old data is evicted. We have
observed that with a modest size of 80KB per memory partition
the filtering mechanism is highly effective, as it is able to avoid the
vast majority of duplicated elements.

3.3 Detailed Data Processing

The ISCU has two main internal processing data-flows which are
represented in Figure 8 for regular operations, and in Figure 9 for
data pre-processing, both corresponding to the different operations
listed in Section 4.

 IRU #0

Prefetcher

Ring

ISCU

L2 Cache Mem. Controller

IRU
Controller

Reordering
Hash

Data
Replier

Data
Store

Data
Processing

 MP
 #0

Address
Generator

Data
Fetch

Ê

Ë

Ì
Í

Î

Ï Ð

Fig. 9: Behavior and data-flow of a pre-processing ISCU operation,
i.e. filtering/grouping.

3.3.1 Regular ISCU operations

The internal processing and data-flow of regular ISCU operations
is shown in Figure 8. Initially, an operation is issued from the
host which configures the ISCU with the required parameters and
starts the execution Ê. This initializes the Address Generator to
fetch parameters and start fetching from L2 the sparse data to
compact Ë. Afterwards, according to the corresponding operation,
some processing is applied to the data, such as replication or
indirection Ì. Finally, the sparsely gathered data is compacted and
written directly to main memory Í.

3.3.2 Pre-processing ISCU operations

The behavior and data-flow of pre-processing ISCU operations is
shown in Figure 9. The initial configuration Ê and fetching of the
sparse data Ë is done the same way as regular ISCU operations.
Additionally, the ISCU pre-processing operation configures the
IRU Controller to receive and process data from the ISCU.

The processing and data-flow changes with respect to the
SCU start in the Data Fetch component. The data fetched by the
ISCU is directly sent to the IRU Ì. In this manner, duplicated
and already visited nodes/edges are not transferred to the ISCU
since they are removed in the memory partition, saving NoC
bandwidth by a large extent. The elements used for pre-processing
are then forwarded to the corresponding IRU through the Ring,
if the hashing function dictates it. Afterwards, these elements are
inserted into the hash table performing the corresponding filtering
or reordering operation Í. When a hash entry is ready or no
more data is to be inserted, the pre-processed data is forwarded
to the Data Replier Î, which sends a reply to the ISCU. Since
the resulting pre-processed data has to be written to main memory,
it might be destined to a different memory partition and so the
ISCU handles the final writing. Finally, the ISCU creates the
corresponding filtering/grouping vectors Ï which are then written
in memory directly by the Data Store Ð.

IEEE TRANSACTIONS ON COMPUTERS 7

Index

Count

Bitmask ✓ ✗ ✓ ···

Compacted
Data

Source
Data

Bitmask
Constructor

A B C ··· A B C ···

B C ···

Access
Compaction

1 7 2 ···

✓✗ ✓ ···

A B C ···

B B ···

Replication
Compaction

4 2 1 ···

C

A B C ···

A B ···

Access Expansion
Compaction

3 2 1 ···

C

5 0 2 ···

✓ ✗ ✓ ···

Data
Compaction

A B C ···

A C ···

Comparison
against value

✓ ✗ ✓ ✓✗ ✓ ······

Fig. 10: SCU operations required to implement stream compaction capabilities, illustrated with the data that each operation uses and
generates. Arrow direction indicates flow of data.

4 ISCU PROGRAMMABILITY

The modifications introduced to the ISCU hardware are architec-
tural so the programming model remains unaffected. This section
describes the complete ISCU programming model with the SCU
and IRU operations and shows how graph applications can be
instrumented to utilize the new hardware.

4.1 ISCU Compaction Operations
The compaction operations supported by the ISCU are listed in
Figure 10. These operations have several parameters which are
omitted in the figure for the sake of simplicity: the size of the
data and the number of elements on which to operate. The ISCU
implements the following operations:

• Bitmask Constructor: Generates a bitmask vector used
by other operations. It requires a reference value and a
comparison operation. It creates a bitmask vector for which
each bit is set to one if the element in the input data
evaluates to true, using the comparison operator and the
reference value, and to zero otherwise.

• Data Compaction: Accesses sparse data sequentially and
filters out the unwanted elements using the bitmask vector.
The output at the destination contains only valid elements
preserving the original order.

• Access Compaction: Accesses a sparse index vector
sequentially and filters out the unwanted elements with
a bitmask vector. The output at the destination contains
only valid elements preserving the original order.

• Replication Compaction: Extension of the Data Com-
paction operation, which operates with the count vector.
This vector is used to indicate how many times each element
in the sparse data will be replicated in the output destination.
The output destination contains only the valid elements, but
each element is replicated by the amount of times indicated
by its corresponding counter.

• Access Expansion Compaction: Uses both the indexes
and count vectors. It is an extension of the Access
Compaction operation, that copies a number of consecutive
elements instead of only one element from the sparse
data indicated by the corresponding indexes vector entry.
The number of elements to gather is determined by the
corresponding entry in the count vector.

4.2 Graph Processing Instrumentation
We instrument state-of-the-art implementations of BFS, SSSP and
PR to utilize the optimizations offered by the ISCU.

4.2.1 Breadth-First Search ISCU instrumentation
Filtering out duplicated elements is beneficial for both the expan-
sion and contraction phases of the BFS algorithm. Grouping is also
applicable, but interferes with the warp culling filtering efforts done
in the GPU processing, which lowers its effectiveness and results
in increased workload, largely reducing the performance benefits
due to the improved memory coalescing. Shown on Figure 11, the
required changes are the following:

1 // nF: node_frontier , eF: edge_frontier
2 void BFS_Expand (nF) {
3 indexes ,count = BFS_preparationGPU (nF);
4 eF = accessExpansionCompactionSCU
5 (edges , indexes , count , do_filter);
6 return eF;
7 }
8

9 void BFS_Contract (eF) {
10 bitmask = BFS_contractionGPU (eF);
11 node_frontier = dataCompactionSCU
12 (ef, bitmask , do_filter);
13 return nF;
14 }

Fig. 11: Pseudo-code of the additional operations for a GPGPU
BFS program to use the ISCU.

The Expansion phase performs the filtering directly when
processing the data, generating the filtered edge frontier. It does not
require the use of the filtering vector, which would be employed to
apply the filtering to multiple compaction operations.

The Contraction phase also performs the filtering directly when
processing the data and generates the final filtered node frontier.
Note that this filtering is applied because the filtering done by BFS
is not complete (as in SSSP).

Furthermore, the IRU is used on its own to provide irregular
accesses improvement to the BFS contractionGPU kernel, as
seen in Figure 5, where a simple one LOC modification achieves
improved irregular access coalescing employing the IRU.

4.2.2 Single-Source Shortest Paths ISCU instrumentation
Filtering out of duplicated elements is beneficial for both the expan-
sion and contraction phases of the SSSP algorithm. Additionally,
unlike BFS, the grouping does not interfere with the GPU filtering,
and the coalescing improvement results in a net gain in performance.
Figure 12 shows the following required changes.

For the Expansion phase two additional Access Expansion Com-
paction are required. One operation is responsible for constructing

IEEE TRANSACTIONS ON COMPUTERS 8

1 // nF: node_frontier , eF: edge_frontier ,
2 // wF: weight_frontier
3 void SSSP_Expand (nF) {
4 indexes ,count = preparationGPU (nF);
5 filtering = accessExpansionCompactionSCU
6 (edges ,indexes ,count ,do_filter);
7 grouping = accessExpansionCompactionSCU
8 (edges ,indexes ,count ,do_grouping);
9

10 eF = accessExpansionCompactionSCU
11 (edges , indexes , count , filtering ,
12 grouping);
13 wF = accessExpansionCompactionSCU
14 (weights , indexes , count , filtering ,
15 grouping);
16 wF += replicationCompactionSCU
17 (weights , count , filtering ,
18 grouping);
19 return eF, wF;
20 }
21

22 void SSSP_Contract (eF, wF, threshold) {
23 bitmask_near ,bitmask_far =
24 SSSP_contractionGPU (eF, wF, threshold);
25 grouping = dataCompactionSCU
26 (eF, bitmaskNear);
27

28 node_frontier = dataCompactionSCU
29 (eF, bitmask_near , grouping);
30 farPileEdges = dataCompactionSCU
31 (eF, bitmask_far , grouping);
32 farPileWeights = dataCompactionSCU
33 (wF, bitmask_far , grouping);
34 return nF;
35 }

Fig. 12: ISCU-enhanced SSSP with needed pseudo-code operations.

the filtering vector and the other for generating the grouping vector.
The following operations use the previously generated vectors to
filter and group the compacted data of the new edge frontier.

The first contraction phase operates on the “near” elements
at each iteration of the algorithm. For this phase, only grouping
is applicable, since the filtering done on the GPU is complete,
and doing ISCU filtering would result in no benefit. The grouping
information is only used by the subsequent operation that processes
“near” elements, which result in the new grouped node frontier.

The second contraction phase operates on the “far” elements
when there are no more “near” elements. For this phase both
grouping and filtering are beneficial, since elements on the “far”
pile are not filtered beforehand. Two additional Data Compaction
operations are used to create the filtering and the grouping informa-
tion for the “far” elements, which will be used by the subsequent
operation that processes the “far” elements and generates the new
filtered and grouped node frontier.

Furthermore, the IRU is used on its own to improve irregular
memory accesses in the SSSP contractionGPU kernel. The op-
timization is similar to the one performed for BFS in Figure 5,
but additionally, the weight element and the original position are
retrieved from the IRU.

4.2.3 PageRank ISCU instrumentation
Removing duplicated or already visited nodes is not an option
for PR since it requires to consider all the nodes’ ranks on every
iteration of the algorithm. The Update phase of the PR requires the
use of atomic operations to correctly add the weights, a mechanism
which is very costly, especially in large graphs. The filtering

operation of the ISCU can be employed to compute the new ranks
instead of using a large number of expensive atomic operations
in the GPU. In other words, the filtering hardware in the IRU can
be used to perform a reduction operation, adding the weights of
duplicated nodes. Figure 13 shows the following required changes.

1 // eF: edge_frontier , wF: weight_frontier
2 void PR_Expand (nodes) {
3 indexes , count = preparationGPU (nodes);
4 filtering = accessExpansionCompactionSCU
5 (edges , indexes , count);
6

7 eF = accessExpansionCompactionSCU
8 (edges , indexes , count , filtering);
9 wF = replicationCompactionSCU

10 (weights , count , filtering);
11 return eF, wF;
12 }

Fig. 13: ISCU-enhanced PR with needed pseudo-code operations.

For the expansion phase we include an additional ISCU
operation with the filtering mechanism that generates the filtering
vector. Furthermore, the IRU is used standalone to provide irregular
accesses improvement to other PR kernels. The optimization is
similar to the one performed for BFS in Figure 5, but additionally,
the weight element is retrieved from the IRU and the filtering is
enabled to further reduce workload.

5 EVALUATION METHODOLOGY

We model four different systems: the GPU (NVIDIA GTX
980 [17]), the GPU+SCU [8], the GPU+IRU and the GPU+ISCU
presented in Section 3. To obtain GPU execution time we use
GPGPU-Sim 3.2.2 [18], whereas GPU power, energy and area esti-
mations are obtained with GPUWattch [19]. The GPU parameters
used for the experiments are listed in Table 3, trying to accurately
track the architecture of the NVIDIA GTX 980. To evaluate the
SCU as presented in [8], we use a cycle-accurate simulator named
SCU-sim, whereas we leverage a Verilog implementation to obtain
SCU power and area. To obtain performance of the IRU, we extend
the memory partitions in GPGPU-Sim as described in. IRU’s
area and power dissipation are estimated by using CACTI [20].
Finally, to evaluate our GPU+ISCU, we integrate both GPGPU-Sim
with the IRU extension and SCU-sim. We model all the hardware
changes described in Section 3. Figure 14 illustrates the simulation
infrastructure employed in this paper.

The configuration parameters of the SCU are shown in Table 4.
We set the SCU clock rate at 1.27 GHz in order to match the GPU
frequency, and we configure the SCU to process 4 elements/cycle.
We use a 5 KB FIFO to buffer the vector parameters of the SCU
operations, while the Data Fetch component includes a 38 KB
FIFO requests buffer and the Filtering/Grouping a 18 KB buffer.
Finally, the coalescing units hold up to 32 in-flights requests with
a merge window of 4 elements.

The SCU architecture is implemented in Verilog. In order
to obtain area and energy consumption we synthesize the RTL
code using the Synopsis Design Compiler [23] and the technology
library of 32 nm from Synopsys with low power configured at
0.78V. Additionally, we use CACTI [20] to characterize cache and
interconnection components.

Finally, we use the recent DRAMSim3 [24] main memory
simulator, which provides improved and more accurate evaluation

IEEE TRANSACTIONS ON COMPUTERS 9

TABLE 2: Diverse benchmark graph datasets collected from well-known repositories.

Graph Name Description Nodes (103) Edges (106) Avg. Degree
ca [21] California road network 710 3.48 9.8
cond [21] Collaboration network, arxiv.org 40 0.35 17.4
delaunay [22] Delaunay triangulation 524 3.4 12
human [21] Human gene regulatory network 22 24.6 2214
kron [22] Graph500, Synthetic Graph 262 21 156
msdoor [21] Mesh of 3D object 415 20.2 97.3

GPUWattch

GPU

IRU

CACTI
(IRU)

SCU-sim

DRAMSim3

HDL
(SCU)

ISCU

GPGPU-Sim

Fig. 14: ISCU complete simulation system comprising IRU-
extended GPU simulation and SCU simulation. The darker color
shows our contributions to the simulation system.

TABLE 3: GPGPU-Sim parameters to model GTX 980.

Characteristic Configuration
GPU, Frequency NVIDIA GTX 980, 1.27GHz

Streaming Multiproc. 16 (2048 threads), Maxwell
L1, L2 caches 32 KB, 2 MB. 128 B lines

L1, L2 MSHRs 32/32 assoc, 8/4-merge
Memory Partitions 4 (4 channel GDDR5)

Main Memory 4 GB GDDR5, 224 GB/s

TABLE 4: SCU hardware parameters.

Component Requirements
Frequency 1.27GHz

Technology 32 nm
Pipeline Width 4 elements/cycle

Vector Buffering 5 KB
FIFO Requests Buffer 38 KB
Hash Requests Buffer 18 KB

Coalescing Unit 32 assoc, 4-merge

TABLE 5: IRU hardware requirements per partition.

Component Requirements
Requests Buffer 2 KB
Classifier Buffer 1.2 KB

Ring Buffer 2.8 KB
Hash Data 80 KB

of main memory allowing us to evaluate a GDDR5 configured with
4 channels and 224 GB/s of bandwidth.

On the other hand, we have implemented the IRU architecture
in GPGPU-Sim. To properly integrate the IRU into the GPGPU-
Sim simulator the decoding is modified to extend the ISA. We also
include small modifications to the LD/ST unit to handle the IRU
instructions. The IRU is distributed among the memory partitions
of the GPU. Each partition of the IRU uses a 2 KB FIFO to buffer
requests. A buffer of 1.2 KB is used in the Classifier block to
determine the data destination. The ring requires a total of 2.8 KB
space for buffering. The main component of the IRU is the hash
table, which is a direct mapping hash table with 1024 sets, split in
4 physical partitions. Each IRU partition consists of two banks that
store 256 sets in total, which represent 80 KB of on-chip storage,
significantly smaller than the 512 KB of the L2 partition. Table 5

summarizes the components of an IRU partition. Since the IRU
is mostly comprised of SRAM elements without complex logic
or execution unit we model area and energy consumption using
CACTI [20] with a node technology of 32 nm.

Finally, to evaluate our proposal we use state-of-the-art GPGPU
implementations of BFS [10], SSSP [16], and PageRank [4] graph
algorithms evaluated with benchmarks datasets in Table 2, collected
from well-known repositories of research graph datasets [21], [22].
These graphs are representative of different application domains
with varied sizes, characteristics and degrees of connectivity.

6 EXPERIMENTAL RESULTS

In this section, we evaluate the improvements in performance and
energy consumption achieved by our ISCU scheme. We evaluate
four different configurations. Configuration GPU represents a pure
software CUDA implementation of the graph algorithms running on
an NVIDIA GTX 980. Configuration SCU is the system presented
in [8] that combines the GPU and the SCU. The system IRU is the
GPU extended with the IRU hardware as described in Section 2.
Finally, configuration ISCU is our scheme as described in Section 3.

We first evaluate the energy consumption and performance of
the ISCU in sections 6.1 and 6.2 respectively, using as the baseline
the NVIDIA GTX 980. Afterwards, we compare the performance
and energy of the ISCU with the SCU and the IRU in Section 6.3.
Finally, we analyze the memory improvements of the ISCU in
Section 6.4 and discuss its area requirements in Section 6.5.

6.1 Energy Evaluation
Offloading compaction operations to our ISCU provides consistent
and large energy savings. Figure 15 shows the normalized energy
consumption achieved by the ISCU over the baseline GPU system
for all graphs and datasets. Additionally, the figure indicates
the source of the remaining energy consumption distinguishing
between the GPU, the majority, and the ISCU. On average, the
ISCU delivers a reduction of 90% in energy consumption, achieving
an energy reduction of 92%, 91% and 85% for BFS, SSSP and
PR respectively. Several sources contribute towards energy savings.
First, stream compaction offloading to the ISCU efficient hardware
reduces static and dynamic energy consumption required to perform
compaction operations. Second, workload filtering and memory
coalescing provided by the ISCU improves GPGPU resources
utilization, which lowers overall GPGPU energy consumption.
Third, irregular access optimization enabled by the IRU further
reduces memory contention. Finally, performance speedup further
reduces static energy consumption of the system. Note that graph
datasets with higher inter-connectivity see more energy savings due
to higher computation offloading and increased workload filtering.

6.2 Performance Evaluation
The ISCU delivers significant speedups across different graph
algorithms and datasets as seen in Figure 16, which shows

IEEE TRANSACTIONS ON COMPUTERS 10

0.0 0.0
0.2 0.2
0.4 0.4
0.6 0.6
0.8 0.8
1.0 1.0

No
rm

al
ize

d
En

er
gy

ca cond

delaunay
human

kro
n
msdoor ca cond

delaunay
human

kro
n
msdoor ca cond

delaunay
human

kro
n
msdoor

total

BFS SSSP PR AVG

GPU ISCU

Fig. 15: Normalized energy consumption of the ISCU-enabled GPU compared to the GPU system (GTX 980), showing the split between
GPU and ISCU energy consumption. Significant energy savings achieved across BFS, SSSP and PR graph algorithms and every dataset.

0.0 0.0
0.2 0.2
0.4 0.4
0.6 0.6
0.8 0.8
1.0 1.0

No
rm

al
ize

d
Ti

m
e

ca cond

delaunay
human

kro
n
msdoor ca cond

delaunay
human

kro
n
msdoor ca cond

delaunay
human

kro
n
msdoor

total

1.33 1.12

BFS SSSP PR AVG

GPU ISCU

Fig. 16: Normalized execution time of the ISCU enabled GPU compared to the baseline GPU system, showing the split between GPU
and ISCU execution time. Significant speedups are achieved across BFS, SSSP and PR graph algorithms and the majority of the datasets.

normalized execution time using the ISCU over the baseline
GPU system. Additionally, the figure indicates the split of the
execution time between the GPU and the ISCU, highlighting the
high performance improvements over GPU execution of the higher
inter-connectivity graphs. On average, the ISCU achieves a speedup
of 2.2x with average speedups of 2.8x, 2.56x and 1.44x for BFS,
SSSP and PR respectively. The efficiency of the ISCU is not as high
for PR which in some cases incurs in overheads, a consequence of
the large frontiers due to PR exploring the entire graph at every
iteration. For PR, since every element is accessed on each iteration,
all the data in the graph dataset is accessed incurring in less sparse
accesses and higher locality. Nonetheless, the overheads observed
are compensated by the high reduction in energy achieved due to
the offloading of the compaction operations.

Overall, performance improvements are obtained from several
sources. First, the efficient execution on hardware tailor-made
for stream compaction operations delivers better performance
than GPU architectures. Second, the ISCU pre-processing reduces
GPGPU workload, additionally reducing GPGPU atomic synchro-
nization overheads and improving memory coalescing. Third, the
irregular accesses optimization enabled by the IRU further improves
GPGPU performance by increasing memory coalescing.

6.3 Comparison with SCU and IRU
We compare the energy savings and speedups achieved with the
ISCU against previous GPGPU architectural extensions for graph
processing. Figure 17 shows how by combining in the ISCU the
strengths of the SCU and IRU we are able to achieve a synergistic
energy improvement, reaching on average a huge 10x improvement

0
2
4
6
8

10
12
14

En
er

gy
 S

av
in

gs

BFS SSSP PR AVG

SCU IRU ISCU

Fig. 17: Energy savings of the SCU, IRU and ISCU with respect
to the baseline GPU system. The ISCU synergetically improves
energy savings achieved with SCU and IRU.

in energy consumption compared to the GPU baseline, even though
the SCU and IRU achieved on average 6x and 1.13x respectively.
The big factor contributing to energy savings is delegating stream
compaction operations to our specialized compaction hardware,
as such the IRU optimizations do not deliver such huge energy
savings. Note that the less sparse exploration performed by PR
reduces its the energy savings. Furthermore, the ISCU avoids a
large percentage of NoC transactions compared to the SCU, as the
filtering is performed directly in the memory partitions.

We obtain synergistic performance improvements as seen in
Figure 18, where the ISCU achieves on average a important 2.2x
speedup compared to the baseline GPU, while the SCU and IRU

IEEE TRANSACTIONS ON COMPUTERS 11

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Sp
ee

du
p

BFS SSSP PR AVG

SCU IRU ISCU

Fig. 18: Speedup of the SCU, IRU and ISCU with respect to the
Baseline GPU system. The ISCU synergetically improves speedups
achieved with SCU and IRU.

deliver on average 1.37x and 1.33x speedups respectively. The
ISCU manages to overcome the overheads that impact PR filtering
enhanced SCU instrumentation, which enable higher performance
and energy savings. Although the IRU achieves a better speedup
for PR than the ISCU, the minimal performance difference is more
than made up by the significant difference in energy efficiency
reaching 6.66x for ISCU against a 1.08x for the IRU.

6.4 Memory Improvements Evaluation
The ISCU significantly contributes to reduce memory accesses
performed by graph processing applications as seen in Figure 19.
The ISCU achieves on average a reduction of 78% in the total
memory accesses performed by the baseline GPU, while the
SCU and IRU achieve a reduction of 58% and 1% respectively.
Although IRU memory accesses reduction is low, it significantly
contributes to reduce intra-GPU memory resource utilization and
interconnection traffic.

6.5 Area Overhead Evaluation
We evaluate the overhead of the complete ISCU which contains
the improved SCU and the IRU hardware extensions. We do
so by synthesizing and characterizing the different components,
which require a total of 37.17 mm2 additional area for the system.
Considering the overall GPU system, the ISCU represents a 8.5%
of the total GPU area. The ISCU area overhead is very low given
the high energy savings and speedups achieved. In terms of both
performance/area and energy, the ISCU results in very high benefits
compared with the baseline and the SCU and IRU solutions.

7 RELATED WORK

GPGPU graph-based applications face many challenges that steam
from sparse and irregular memory access patterns and high
memory divergence. Nonetheless, due to GPGPU architecture
high-throughput many works have explored graph processing.

Software optimization approaches have explored branch di-
vergence load balancing [10], [25], improved stream compaction
implementations [11] and overall data structure optimizations [26],
[27]. Many of these approaches incur in costly software optimiza-
tions or significant programming effort to overhaul an application.
In contrast, our solution provides efficient optimizations with light
amenable modifications improving overall GPGPU efficiency.

Graph framework approaches have been thoroughly explored
with works such as Gunrock [12] implementing data-centric

0.0
0.2
0.4
0.6
0.8
1.0
1.2

M
em

. a
cc

es
se

s r
ed

uc
tio

n

BFS SSSP PR AVG

SCU IRU ISCU

Fig. 19: Normalized memory accesses of the SCU, IRU and ISCU
with respect to the baseline GPU system.

abstraction centered on operations on a node or edge frontier,
HPGA [14] sparse matrix mappings, MapGraph [15] dynamically
scheduling strategies and NVIDIA nvGRAPH [13]. Efficient
GPGPU graph processing is challenging as many implementa-
tions show significant under-utilization and inefficiencies that we
improve with the ISCU.

Many works propose the entire replacement of the GPU with
custom-made accelerators for graph processing, setting aside the
GPU due to its irregular execution limitations and inefficiencies.
Proposals include standalone approaches such as TuNao [28],
Dram-based Graphicionado [29], PIM-based GraphH [30]. In
contrast, our solution leverages the popularity of GPU architectures
while providing architectural improvements ameliorating irregular
graph processing shortcomings.

Finally, this work is based on two previous GPGPU architec-
tural extensions for graph processing, the SCU [8] and the IRU. We
provide a detailed quantitative comparison with these two previous
proposals in Section 6, showing that the ISCU achieves significant
improvements in performance and energy consumption.

8 CONCLUSIONS

In this paper, we propose the IRU-enhanced SCU (ISCU), a GPGPU
hardware extension that efficiently performs stream compaction
operations commonly used by graph-based applications. The ISCU
combines the strengths of the SCU and IRU hardware extensions
to synergistically achieve high performance and energy-efficiency
for GPGPU graph-based applications.

The ISCU solves the bottlenecks caused by the in-memory hash
table used in the SCU to filter duplicated elements, that requires
a large amount of traffic in the NoC. We propose to leverage the
efficient IRU hash mechanism to perform filtering operations in
the memory partitions, saving NoC traffic by a large extent and
achieving significant speedups and energy savings.

The ISCU optimizations for graph processing operations deliver
on average a 2.2x speedup and a reduction of 90% in energy
consumption for a diverse set of graph-based applications and
datasets, while achieving a high reduction of 78% in memory
accesses, at the expense of a 8.5% GPU area overhead.

ACKNOWLEDGMENT

This work has been supported by the the CoCoUnit ERC Advanced
Grant of the EU’s Horizon 2020 program (grant No 833057), the
Spanish State Research Agency under grant PID2020-113172RB-
I00 (AEI/FEDER, EU), and the ICREA Academia program.

IEEE TRANSACTIONS ON COMPUTERS 12

REFERENCES

[1] C. Root and T. Mostak, “Mapd: a gpu-powered big data analytics and
visualization platform,” in ACM SIGGRAPH 2016 Talks, 2016, pp. 1–2.

[2] M. Yan, Z. Chen, L. Deng, X. Ye, Z. Zhang, D. Fan, and Y. Xie, “Char-
acterizing and understanding gcns on gpu,” IEEE Computer Architecture
Letters, vol. 19, no. 1, pp. 22–25, 2020.

[3] S. Kato, S. Tokunaga, Y. Maruyama, S. Maeda, M. Hirabayashi, Y. Kit-
sukawa, A. Monrroy, T. Ando, Y. Fujii, and T. Azumi, “Autoware on
board: Enabling autonomous vehicles with embedded systems,” in 2018
ACM/IEEE 9th International Conference on Cyber-Physical Systems
(ICCPS). IEEE, 2018, pp. 287–296.

[4] A. Geil, Y. Wang, and J. D. Owens, “Wtf, gpu! computing twitter’s who-
to-follow on the gpu,” in Proceedings of the second ACM conference on
Online social networks. ACM, 2014, pp. 63–68.

[5] A. Segura Salvador, “Characterization of speech recognition systems on
gpu architectures,” Master’s thesis, Universitat Politècnica de Catalunya,
2016.

[6] D. Reinsel, J. Gantz, and J. Rydning, “The digitization of the world from
edge to core,” IDC White Paper, 2018.

[7] A. Lumsdaine, D. Gregor, B. Hendrickson, and J. Berry, “Challenges in
parallel graph processing,” Parallel Processing Letters, vol. 17, no. 01,
pp. 5–20, 2007.

[8] A. Segura, J.-M. Arnau, and A. González, “Scu: A gpu stream compaction
unit for graph processing,” in Proceedings of the 46th International
Symposium on Computer Architecture, ser. ISCA ’19. New York, NY,
USA: Association for Computing Machinery, 2019, p. 424–435. [Online].
Available: https://doi.org/10.1145/3307650.3322254

[9] N. Bell and M. Garland, “Implementing sparse matrix-vector multiplica-
tion on throughput-oriented processors,” in Proceedings of the conference
on high performance computing networking, storage and analysis. ACM,
2009, p. 18.

[10] D. Merrill, M. Garland, and A. Grimshaw, “High-performance and
scalable gpu graph traversal,” ACM Transactions on Parallel Computing
(TOPC), vol. 1, no. 2, pp. 1–30, 2015.

[11] M. Billeter, O. Olsson, and U. Assarsson, “Efficient stream compaction
on wide simd many-core architectures,” in Proceedings of the conference
on high performance graphics 2009, 2009, pp. 159–166.

[12] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens,
“Gunrock: A high-performance graph processing library on the gpu,” in
Proceedings of the 21st ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, 2016, pp. 1–12.

[13] NVIDIA. nvgraph. [Online]. Available: https://developer.nvidia.com/
nvgraph

[14] H. Yang, H. Su, M. Wen, and C. Zhang, “Hpga: A high-performance graph
analytics framework on the gpu,” in 2018 International Conference on
Information Systems and Computer Aided Education (ICISCAE). IEEE,
2018, pp. 488–492.

[15] Z. Fu, M. Personick, and B. Thompson, “Mapgraph: A high level api
for fast development of high performance graph analytics on gpus,” in
Proceedings of Workshop on GRAph Data management Experiences and
Systems, 2014, pp. 1–6.

[16] A. Davidson, S. Baxter, M. Garland, and J. D. Owens, “Work-efficient
parallel gpu methods for single-source shortest paths,” in Parallel and
Distributed Processing Symposium, 2014 IEEE 28th International. IEEE,
2014, pp. 349–359.

[17] N. G. GTX, “980 whitepaper,” NVIDIA Corporation, 2014.
[18] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and T. M. Aamodt,

“Analyzing cuda workloads using a detailed gpu simulator,” in Performance
Analysis of Systems and Software, 2009. ISPASS 2009. IEEE International
Symposium on. IEEE, 2009, pp. 163–174.

[19] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M.
Aamodt, and V. J. Reddi, “Gpuwattch: enabling energy optimizations in
gpgpus,” in ACM SIGARCH Computer Architecture News, vol. 41. ACM,
2013, pp. 487–498.

[20] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P.
Jouppi, “Mcpat: an integrated power, area, and timing modeling framework
for multicore and manycore architectures,” in Microarchitecture, 2009.
MICRO-42. 42nd Annual IEEE/ACM International Symposium on. IEEE,
2009, pp. 469–480.

[21] T. A. Davis and Y. Hu, “The university of florida sparse matrix collection,”
ACM Transactions on Mathematical Software (TOMS), vol. 38, no. 1, p. 1,
2011.

[22] DIMACS. (2010) 10th dimacs implementation challenge - graph
partitioning and graph clustering. [Online]. Available: https://www.cc.
gatech.edu/dimacs10/

[23] D. Compiler, “Synopsys inc,” 2000.

[24] S. Li, Z. Yang, D. Reddy, A. Srivastava, and B. Jacob, “Dramsim3: a cycle-
accurate, thermal-capable dram simulator,” IEEE Computer Architecture
Letters, 2020.

[25] F. Khorasani, R. Gupta, and L. N. Bhuyan, “Scalable simd-efficient
graph processing on gpus,” in 2015 International Conference on Parallel
Architecture and Compilation (PACT). IEEE, 2015, pp. 39–50.

[26] A. Gharaibeh, T. Reza, E. Santos-Neto, L. B. Costa, S. Sallinen, and
M. Ripeanu, “Efficient large-scale graph processing on hybrid cpu and
gpu systems,” arXiv preprint arXiv:1312.3018, 2013.

[27] A. H. Nodehi Sabet, J. Qiu, and Z. Zhao, “Tigr: Transforming irregular
graphs for gpu-friendly graph processing,” ACM SIGPLAN Notices,
vol. 53, no. 2, pp. 622–636, 2018.

[28] J. Zhou, S. Liu, Q. Guo, X. Zhou, T. Zhi, D. Liu, C. Wang, X. Zhou,
Y. Chen, and T. Chen, “Tunao: A high-performance and energy-efficient
reconfigurable accelerator for graph processing,” in 2017 17th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CC-
GRID). IEEE, 2017, pp. 731–734.

[29] T. J. Ham, L. Wu, N. Sundaram, N. Satish, and M. Martonosi, “Graphi-
cionado: A high-performance and energy-efficient accelerator for graph
analytics,” in 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 2016, pp. 1–13.

[30] G. Dai, T. Huang, Y. Chi, J. Zhao, G. Sun, Y. Liu, Y. Wang, Y. Xie, and
H. Yang, “Graphh: A processing-in-memory architecture for large-scale
graph processing,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 38, no. 4, pp. 640–653, 2018.

Albert Segura received his B.Sc. degree in Com-
puter Engineering in 2014, and his M.Sc. degree
in MIRI: High Performance Computing in 2016,
both from Universitat Politècnica de Catalunya
(UPC - BarcelonaTech). He joined the ARCO
(ARchitecture and COmpilers) research group
at UPC in September 2015 and he is currently
pursuing a Ph.D. in Computer Architecture at the
UPC. His research focuses on the area of Graph
processing on GPGPU Architectures. Contact
him at asegura@ac.upc.edu.

Jose-Maria Arnau received Ph.D. on Computer
Architecture from the Universitat Politècnica de
Catalunya (UPC) in 2015. He is a postdoctoral
researcher at UPC BarcelonaTech and a mem-
ber of the ARCO (ARchitecture and COmpilers)
research group at UPC. His research interests
include low-power architectures for cognitive com-
puting, especially in the area of automatic speech
recognition and object recognition. Contact him
at jarnau@ac.upc.edu.

Antonio González (Ph.D. 1989) is a Full Pro-
fessor at the Computer Architecture Depart-
ment of the Universitat Politcnica de Catalunya,
Barcelona (Spain), and the director of the Microar-
chitecture and Compiler research group. He was
the founding director of the Intel Barcelona Re-
search Center from 2002 to 2014. His research
has focused on computer architecture, compilers
and parallel processing, with a special emphasis
on microarchitecture and code generation. He
has published over 370 papers, and has served

as associate editor of five IEEE and ACM journals, program chair for
ISCA, MICRO, HPCA, ICS and ISPASS and general chair for MICRO
and HPCA. He is an IEEE Fellow. Contact him at antonio@ac.upc.edu.

https://doi.org/10.1145/3307650.3322254
https://developer.nvidia.com/nvgraph
https://developer.nvidia.com/nvgraph
https://www.cc.gatech.edu/dimacs10/
https://www.cc.gatech.edu/dimacs10/

	Introduction
	GPGPU Graph Processing
	Graph Processing and SCU Hardware Extension
	SCU Architecture Overview
	SCU Programming Model

	Graph Processing and IRU Hardware Extension
	IRU Architecture Overview
	IRU Programming Model

	IRU-enhanced SCU (ISCU)
	SCU and IRU Synergies
	Hardware Enhancements
	Detailed Data Processing
	Regular ISCU operations
	Pre-processing ISCU operations

	ISCU Programmability
	ISCU Compaction Operations
	Graph Processing Instrumentation
	Breadth-First Search ISCU instrumentation
	Single-Source Shortest Paths ISCU instrumentation
	PageRank ISCU instrumentation

	Evaluation Methodology
	Experimental Results
	Energy Evaluation
	Performance Evaluation
	Comparison with SCU and IRU
	Memory Improvements Evaluation
	Area Overhead Evaluation

	Related Work
	Conclusions
	References
	Biographies
	Albert Segura
	Jose-Maria Arnau
	Antonio González

