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ABSTRACT

Deep Neural Network (DNN) frameworks use distributed training to enable faster time to con-
vergence and alleviate memory capacity limitations when training large models and/or using high
dimension inputs. With the steady increase in datasets and model sizes, model/hybrid parallelism
is deemed to have an important role in the future of distributed training of DNNs. We analyze the
compute, communication, and memory requirements of Convolutional Neural Networks (CNN5s)
to understand the trade-offs between different parallelism approaches on performance and scala-
bility. We leverage our model-driven analysis to be the basis for an oracle utility which can help in
detecting the limitations and bottlenecks of different parallelism approaches at scale. We evaluate
the oracle on six parallelization strategies, with four CNN models and multiple datasets (2D and
3D), on up to 1024 GPUs. The results demonstrate that the oracle has an average accuracy of about
86.74% when compared to empirical results, and as high as 97.57% for .
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1 Introduction

DNNSs are achieving outstanding results in a wide range of applications, including image
recognition, video analysis, natural language processing [ST14], and drug discovery [W*15],
among many others. In the quest to increase solution accuracy, researchers are increasingly
using larger training datasets as well as larger and deeper DNN models [B*18, Y*18, H"18].
In addition, applying Deep Learning (DL) in new domains, such as health care and scien-
tific simulations, introduce larger data samples and more complex DNN models [K*18].
Those trends make the DNN training computationally expensive for a single node. There-
fore, large-scale parallel training on high-performance computing (HPC) systems or clusters
of GPUs is becoming increasingly common to achieve faster training times for larger models
and datasets [B*18].
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Table 1: Computation, Communication, and Memory Analysis Summary (per epoch)
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In this work, we focus on the HPC aspects of scaling six different strategies for model and
hybrid parallelism in CNNs distributed training. While most works in the literature focus
on improving the performance of one single parallelism strategy for one specific framework;
our study functions as the basis for a tool, named ParaDL, capable of modeling and predict-
ing the performance of a large set of configurations for CNN distributed training at scale. In
addition, ParaDL also helps to reveal the practical limits and bottlenecks of different parallel
strategies in CNN training .

2 Performance and Memory Projection

In this section we introduce our oracle (ParaDL). Through the information that we can get
beforehand, such as the dataset, model, supercomputer/cluster system specification, and
user’s constraints (e.g., maximum number of involved PEs), ParaDL calculates the compu-
tation and communication time to project the overall performance. ParaDL can be used for
the following purposes:

* Suggesting the best strategy for a given CNN, dataset, and resource budget
¢ Identifying the time and resources to provision from a system
¢ Comparison of projections with measured results to detect abnormal behavior

¢ Identifying limitations of parallel strategies, shortcomings of frameworks, and bottle-
necks in systems

¢ As an education tool of the parallel strategies that would improve the understanding
of parallelism in DL

Frameworks that are used for DL are comprised of complex and interleaved layers of op-
timized functions. A pure analytical model of parallel strategies in CNNs would, therefore,
be impractical. In this paper we adopt a hybrid analytical/empirical modeling approach at
which we: (i) use analytical modeling for functional requirements driven by the parallelism
strategies, and (ii) empirical parametrization for functions not related to the parallel strategy
being deployed. We summarize our analytical model in Table 1 . Finally, we quantify the
accuracy of the oracle with a large empirical evaluation in Section 3.
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3 Evaluation and Results

We conduct a wide range of experiments to show the accuracy and utility of ParaDL in pro-
jecting the performance. We choose different CNN models and datasets with different char-
acteristics that affect performance and memory requirements. Experiments are performed
on a multi-petaflop supercomputer, with two Intel Xeon Gold 6148 Processors and four
NVIDIA Tesla V100 GPUs (16GB of memory per GPU) on each compute node. The GPUs
are connected intra-node to the CPUs by PLX switches and PCle Gen3 x16 links (16 GBps),
and together by NVLink (20 GBps). The compute nodes are connected in a 3-level fat-tree
topology which has full-bisection bandwidth, and 1:3 over-subscription for intra-rack and
inter-rack, respectively (two InfiniBand EDR, e.g., 12.5 GBps, per compute node and 17 com-
pute nodes per rack).

Figure 1 shows the oracle’s projections versus the measured runs for different parallel
strategies using three different models. The figure is divided in three rows, one for each
CNN model, and six columns, one for each parallelism strategy. The parameter b shows
the mini-batch size for each case. The x-axis shows the number of GPUs, up to the scaling
limit of the specific parallel strategy (e.g., maximum number of filters). More specifically,
we scale the tests from 16 to 1024 GPUs for data and hybrid parallelism, from 4 to 64 GPUs
for filter /channel parallelism, and up to 4 GPUs for pipeline parallelism. The y-axis shows
the iteration time for each case. The iteration time is calculated as an average of 100 itera-
tions excluding the first iteration which normally involves initialization tasks. To get a more
detailed analysis, we decompose the execution time into computation and communication.
The oracle prediction is shown in blue as stacked bars, i.e., computation+communication,
and the measured empirical results are shown in orange. In this figure, we report the best
communication times obtained during our experiments, as this represents the peak perfor-
mance the hardware can deliver and leave aside occasional delays due to external factors
such as network congestion coming from other apps, system noise and, overheads due to
correctable errors, among others. The labels above each column show the projection accuracy
in percentage, i.e., 1 - ratio of the absolute value of the difference with respect to the total
measured time.

The accuracy of ParaDL predictions for the different parallel strategies are 96.10% for
data parallelism, 85.56% for Filter, 73.67% for Channel, 91.43% for Data+Filter, 83.46% for
Data+Spatial and 90.22% for pipeline across all CNN models. In general, this represents an
overall accuracy of 86.74% for ParaDL, across all parallelism strategies and CNN models,
and up to 97.57% for on VGGL6.

4 Conclusion

We propose an analytical model for characterizing and identifying the best technique of dif-
ferent parallel strategies for CNN distributed training. We run a wide range of experiments
with different models, different parallel strategies and different datasets for up to 1,000s
of GPUs and compare with our analytical model. The results demonstrate the accuracy of
ParaDL, as high as 97.57% , and 86.74% on average accuracy across all parallel strategies on
multiple CNN models and datasets on up to 1K GPUs.
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Figure 1: Time breakdown of our analytical model (ParaDL) in comparison with measured
runs. The label above each column shows the projection accuracy. The x-axis is the number of
GPUs. Filter/channel are strong scaling.)Values are total time since pipeline parallelism [K*20]
overlaps the computation and communication.
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