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Abstract

Sports analytics is an emerging field focused on the application of advanced
data analysis for assessing the performance of professional athletes and
teams. In soccer, the integration of data analysis is in its initial steps, pri-
marily due to the difficulty of making sense of soccer’s complex spatiotem-
poral relationships and effectively translating findings to practitioners. Re-
cently, the availability of spatiotemporal data has given rise to applying
statistical approaches to address problems such as estimating passing and
scoring probability, or the evaluation of players’ mental pressure. However,
most of these approaches focus on isolated aspects of the sport, while coaches
tend to focus on the broader interplay of all 22 players on the pitch. To ad-
dress the non-stop flow of questions that coaching staff deal with daily, we
identify the need for a flexible analysis framework that allows us to answer
these questions quickly, accurately, and in a visually-interpretable way while
capturing the complex spatial and contextual factors that rule the game.

We propose developing such a comprehensive framework through the
concept of the expected possession value (EPV). First introduced in basket-
ball, EPV constitutes an instantaneous estimate of the expected points to
be scored at the end of a possession. However, aside from a shared high-
level goal, our focus on soccer necessitates a drastically different approach
to account for the sport’s nuances, such as looser notions of possession,
the ability of passes to happen at any location, and space-time dependent
turnover evaluation. Following this, we propose modeling EPV in soccer by
addressing the question, ”can we estimate the expectation of a team scoring
or conceding the next goal at any time in the game?” From here, we address
a series of derived interrogations, such as how should the EPV expression be
structured so coaches can more easily interpret it? Can we produce calibra-
ted and interpretable estimates for each of its components? Can we develop
representative and soccer-specific features with the aid of coaches? Is it pos-
sible to learn complex features from raw level spatiotemporal data? Finally,
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and most importantly, can we produce compelling practical applications?

These questions are successfully addressed in this thesis, where we present
a series of contributions for both the machine learning and soccer analytics
fields related to the modeling and practical interpretation of complex spa-
tiotemporal dynamics. We propose a decomposed modeling approach where
a series of foundational soccer components can be estimated separately and
then merged to provide a single EPV estimation, providing flexibility to this
integrated model. From a practical standpoint, we leverage several function
approximation approaches to exploit complex relationships in spatiotempo-
ral tracking data. An essential contribution of this work is the proposal
of SoccerMap, a flexible deep learning architecture capable of producing
accurate and visually-interpretable probability surfaces in a broad range of
problems. Based on a large set of spatial and contextual features here devel-
oped, we model and provide accurate estimates for each of the components of
the EPV components. The flexibility and interpretation capabilities of the
proposed model allow us to produce a broad set of practical applications
related to on-ball performance, off-ball performance and match analysis.
Based on the proposed functional framework, future developments can eas-
ily incorporate a set of improvements for performing sophisticated analysis
of unexplored soccer problems and translating this modeling approach to
other team sports.

This thesis was developed under the support of the “plan de doctorados
industriales del departamento de investigación y universidades de la Gen-
eralitat de Catalunya” and carried out entirely at Fútbol Club Barcelona,
which promoted a close collaboration with professional coaches. As a result,
a vast part of the ideas developed in this thesis is now part of the club’s
daily player and team performance analysis pipeline.
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proactive spirit was key to unblocking this work in many opportunities. I
am also grateful to my tutor Marta Arias, who has been of great help in this
thesis’s delivery and validation process.
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Chapter 1

Introduction

Sports analytics is a fast-growing research field focused on the data-driven
performance analysis of professional athletes and teams. In the last decade,
data analysis has started to provide a competitive advantage to professional
teams in a wide range of sports, particularly in basketball and baseball,
where most teams in the National Basketball Association (NBA) and Ma-
jor League Baseball (MLB) have a dedicated analytics department. Soccer,
however, has been a late bloomer in the integration of advanced data anal-
ysis, despite being considered the world’s most-watched and practiced sport
in the world. One of the reasons for this is the difficulty of making sense of
the complex spatiotemporal relationships of this game, which are intensified
by the high number of players, the large size of the field, and, in particular,
the low frequency of goals. As a reference to the difficulty of scoring goals,
we find that for the 2014 World Cup, only 10% of the shots were converted
from the 1236 shots that were attempted. Also, near 85% of those goals were
scored from 15 meters radius from the goal location (Goldsberry, 2019).

Analytical work to date in soccer has focused on isolated aspects of the
sport, while coaches tend to focus on the broader tactical interplay of all
22 players on the pitch. Although professional soccer teams are starting
to incorporate new data sources and creating data analysis departments,
soccer analytics still lacks a comprehensive approach that can start to ad-
dress performance-related questions that are closer to the game’s language.
This language poses questions such as “which were the most relevant ac-
tions leading to goal-scoring chances?”, “are teammates creating valuable
space?”, “when and how should a backward pass be taken?”, “how risky is
a team attacking strategy?”, “what is a player’s decision-making profile?”,
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“how should we defend against our next opponent to concede fewer spaces
in the midfield?” – questions currently unanswered in the soccer analyt-
ics literature. To answer these kinds of questions and make an impact on
key decision-makers within the sport, we identify two critical demands for
successful soccer analytics applications:

1. To capture the dynamic spatiotemporal relationships between the twenty
two players and the ball with a level of precision on par with expert
practitioners.

2. To provide interpretable models that allow practitioners to conduct
fine-grained analysis of game situations both visually and analytically.

Capturing soccer’s complex dynamics requires approaches that can ro-
bustly approximate non-linear interactions between the different actors of
the game, considering its variations in space and time. While either counting
events directly or employing rule-based algorithms can provide some general
statistics about a game, such as the number of goals, shots, passes, posse-
ssion ending in shots, recovery balls or fouls, among others, this information
is insufficient to assess player and team performance with the level of detail
that a professional coach would. However, the recent availability of event
and optical tracking data in soccer has provided the opportunity to develop
a more sophisticated analysis of this sport’s spatiotemporal dynamics.

Tracking data consists of the location of the 22 players and the ball at a
frequency rate ranging from 10Hz to 25Hz, and is usually accompanied by
event data, which consists of the time and location of on-ball events such
as goals, shots, passes, and stop-ball events, among many others (Rein and
Memmert, 2016; Stein et al., 2017). In order to approach more complex and
useful concepts employing event and tracking data, such as space creation,
decision-making, or team-dominance, artificial intelligence (AI) techniques
and methods stand as an especially appropriate solution to approximate
complex functions from observed data. Tracking and event data have been
recently used for inspecting a variety of specific game situations in soccer,
with particular emphasis on the use of machine learning and statistical in-
ference approaches. Some of these applications include the quantification
of pass risk and quality (Power et al., 2017; Rein et al., 2017; Spearman
et al., 2017), estimating goal expectation from shots (Lucey et al., 2014;
Link et al., 2016), predicting the value of individual actions (Decroos et al.,
2019; Singh, 2019; Gyarmati and Stanojevic, 2016), assessing the off-ball po-
sitioning quality in shooting opportunities (Spearman, 2018), estimating the
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expected value of a possession (Rudd, 2011), predicting of players’ movement
in time (Le et al., 2017; Dick and Brefeld, 2019), and even the quantification
of mental pressure (Bransen et al., 2019).

The usual approaches found in the literature use standard machine learn-
ing algorithms and handcrafted features directly derived from data. Most
of these feature sets are comprised of spatial and contextual information,
with different levels of sophistication. The most used features include the
action’s location, the distance and angles between players, the goal and the
ball, the players’ velocity, and information about the event type and the
time it takes place. More elaborated features have been developed from
tracking data and event data such as defenders’ proximity and speed of play
(Lucey et al., 2014), time from regaining possession, first-time pass (Power
et al., 2017) and the expected time to intercept the ball (Spearman et al.,
2017). While we can intuitively recognize that these features might provide
value for each of these problems, collaboration with coaches and soccer ex-
perts would allow us to identify with much more precision other aspects that
might considerably enrich the data analysis process. However, these studies
are rarely supported by these experts. On the other hand, only few of these
approaches attempt to learn representations directly from the raw data (Le
et al., 2017; Dick and Brefeld, 2019; Hubáček et al., 2018), which can lead
to losing sight of relevant spatiotemporal information.

An important additional issue to existing approaches is that while most
of these seek to produce a quantitative evaluation of observed events, they
usually lack visual interpretation of the expected outcome of other potential
decisions or the effects of each of the models’ parameters. Beyond the accu-
racy of quantitative analysis of questions of interest, a necessity for effective
communication of most of these insights is the ability to provide a visual
and interpretable understanding of underlying models. A significant part of
the effective communication between data analysts and coaches resides in
presenting results that relate to the way the latter analyze and understand
the game. The added capacity of visual interpretation of data-driven models
for observed actions and unobserved potential actions during the game is an
as-yet little-explored area in sports analytics.

If we think about predicting the probability of making a successful pass,
for example, one way to provide visual interpretation is to produce a proba-
bility surface that shows the passing probability for each field’s location. De-
spite the interpretive capacity that a visual representation of this type would
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provide, few studies focus on providing this type of information (Spearman
et al., 2017; Spearman, 2018). For example, Spearman et al. (2017) presents
a physics-based model where two main elements, the time to reach the ball
and the time to intercept the ball, are combined to predict pass probabil-
ity surfaces. However, the disadvantage of this type of approach is that it
requires tailored variables and conditioning factors to be designed for each
specific problem, which slows down development and its practical imple-
mentation. There is still no approach in the literature capable of generating
probability surfaces that can be flexibly adapted to different types of prob-
lems and learn from raw tracking data.

While in the current state of soccer analytics approaches to solve specific
soccer-related tasks abound, there is no clear path on how we could join such
models together into a more comprehensive framework of analysis.

1.1 Motivation

The difficulty of making sense of soccer’s complex spatiotemporal relation-
ships and effectively translating findings to practitioners is one of the most
significant barriers for integrating data analytics within the coaching staff.
To address the nonstop flow of questions that coaching staff deal with daily,
we require a flexible analysis framework that allows us to answer these ques-
tions quickly, accurately, and interpretably while capturing the complex spa-
tial and contextual factors that rule the game. Such a framework should also
allow us to analyze not only actions observed in past matches but also the
expected impact of other potential actions available from one situation to
another.

A framework of this kind should associate the spatiotemporal charac-
teristics of a game situation with objective indicators of success, so models
built on past data can be adequately learned. In soccer, there is an unap-
pealable indicator of success: goals. An effective way to evaluate any game
situation’s current state would be to answer the question: how likely is that
a team scores or concede a goal in the long-term given the current situation?
The first work of this kind is found in basketball, where the concept of EPV
was first introduced (Cervone et al., 2016b). In the mentioned work, EPV is
defined as the number of points that a team in control of the ball is expected
to obtain at the end of possession, considering three possible events that can
occur at any time: shots, passes, and turnovers. We can directly see that
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Figure 1.1: Evolution of the expected possession value (EPV) from the perspective of FC
Barcelona during a match against Real Betis in La Liga season 2019/2020

a similar approach could be applied to soccer, where an EPV model would
focus on estimating the likelihood of observing a goal within a possession.
However, aside from a shared high-level goal, our focus on soccer necessi-
tates a drastically different approach to account for the nuances of the sport,
such as looser notions of possession, the ability of passes to happen at any
location, and space-time dependent turnover evaluation. As one concrete
example, in soccer, we cannot assume that passes are played directly to a
player’s location, as the ball can be played into open space in front of or
behind the intended receiver; as such, we need to consider the full space of
potential destination locations. As another example, there is no time limit
for soccer possessions (aside from the 45 minute half), with complex and
often blurred dynamics between offense and defense.

Modeling EPV so that we can estimate which team will score the next
goal, given all the spatiotemporal information available, would present a first
step towards the comprehensive analysis framework we seek. The frame-by-
frame estimation of EPV constitutes a one-dimensional time series that pro-
vides an intuitive description of how the possession value changes in time,
as presented in Figure 1.1. However, while this value alone can provide pre-
cise information about the impact of observed actions, it does not provide
sufficient practical insight into either the factors that make it fluctuate or
which other advantageous actions could be taken to boost EPV further. To
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reach this granularity level, EPV should be modeled to provide fine-grained
information about the impact that the game situation’s spatial and contex-
tual characteristics have on the final estimate. Moreover, EPV could be
expressed in terms of a finite subset of action types that could be taken at
any given time, such as passes, ball drives, and shots, which represent a wide
range of potential decisions for the team in control of the ball, and whose
impact would depend heavily on the spatiotemporal dynamics of the players
and the ball.

To capture these dynamics in detail, a model like this would benefit
from being developed on top of high-frequency tracking data and making
the most of the information available at each location in the field. The use of
standard machine learning algorithms could accurately approximate parts
of the EPV framework if we incorporate rich spatial and contextual features
developed from expert knowledge. On the other hand, from raw tracking
data, we could exploit convolutional networks’ ability to make sense of spa-
tial regions to learn high-level features and generate full probability surfaces
directly.

An EPV framework with the ability of both estimating the EPV itself
and providing information about the impact that each of its compounding
elements has on the final estimate would provide coaches with more sig-
nificant analytical insights into the game, especially if this information is
provided in a visually-interpretable way.

1.2 Objectives

In the introductory part of this chapter, we present the context for soccer
analytics’s current state. We argue that while this is a growing research
field, the work developed so far addresses isolated aspects of this sport, and
there is no existing approach that joins these applications together into a
single analysis framework. In Section 1.1 we introduce the development of a
comprehensive framework as the main motivation of this work, where spa-
tiotemporal data is exploited to grasp the complex relationships that arise
from the interaction of all the players and the ball and produce analytical
and visual interpretations that can help coaches to address specific game
situations better. We argue that we could obtain the desired framework by
modeling the expected possession value and expressing this into a series of
familiar concepts. Based on this, the main question addressed in this work
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is the following:

• Can we estimate the expectation of a team scoring or conceding the
next goal, at any time in the game (EPV)?

From this interrogation, a series of derived research questions arise re-
lated to the structure that this expression must-have, the ability to generate
calibrated estimates, the ability to produce results that allow the interpre-
tation of its different components, and, above all, the possibility to use the
desired model in a practical way. Specifically, these are the other questions
addressed in this work:

• Can we express this expectation in terms of a series of smaller compo-
nents, akin to coaches’ language, so they can be estimated and inter-
preted separately?

• Can the models built for these components produce calibrated proba-
bility estimates?

• Can soccer-specific features developed with experts contribute to the
models’ estimations?

• Can we develop a model capable of ingesting raw tracking data and
producing probability surfaces in a way that is easily adaptable to
other problems? Can this model be developed through a spatial-aware
deep learning architecture?

• Can we produce practical applications from the developed models so
the set of EPV components can be understood as an analysis frame-
work?

1.3 Contributions

This section presents the main contributions of this work and indicates the
published papers related to each contribution. This thesis was developed as
an industrial Ph.D. under the support of the “plan de doctorados industri-
ales del departamento de investigación y universidades de la Generalitat de
Catalunya” and carried out entirely at Fútbol Club Barcelona. The work
was developed in close collaboration with a series of professional coaches
who provided ideas and feedback on numerous aspects of the design, de-
velopment, and practical applicability of the concepts presented here. A
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vast part of the ideas developed in this thesis are now integrated within the
club’s data analysis methodology and have been adapted to provide team
and player performance information on a daily basis.

1.3.1 EPV for soccer as a decomposed model

One of this work’s critical contributions is the proposal of a complete theo-
retical framework for modeling EPV in soccer. We describe the fundamental
elements that must be considered to translate EPV effectively into soccer.
Specifically, we address considerations such as the scarcity of goals, the fluid
nature of soccer possessions, the necessity of considering any location as the
potential destination of actions, and selecting a finite but comprehensive set
of actions. These considerations constitute the foundations for implement-
ing any EPV model in soccer.

Additionally, we address a challenging problem: how can we employ ad-
vanced machine learning algorithms to grasp the complex relationships of
soccer dynamics and provide practitioners with non-scientifical backgrounds
with the ability to interpret the outputs of the model. We propose a novel
decomposed approach to modeling the EPV expression into a series of esti-
mated subcomponents separately. By doing this, the decomposed approach
provides a framework for modeling EPV through a series of essential build-
ing blocks that allow us to understand the EPV estimates through a set
of more easily understandable pieces, which are closer to the language of
the coaches. Even if any of the models are difficult to interpret themselves
(e.g., black-box models or a high number of parameters), their output can
still be interpreted within the context of the EPV expression. An important
characteristic of this approach is that any of the components can be easily
adapted or retrained when new data is available or when the model needs
to be adjusted to specific practical requirements (e.g., adjust pass selection
likelihood to a specific team pattern).

We also consider this approach of decomposing a single complex concept
into more easily understandable components that are estimated separately
and then joined to produce a single estimate contributes to the field of in-
terpretable machine learning.

The publications related to this contribution are the following:

• Fernández J, Bornn L, Cervone D (2019) Decomposing the immeasur-
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able sport: A deep learning expected possession value framework for
soccer. In: the 13th MIT Sloan Sports Analytics Conference.

• Fernández J., Bornn L., Cervone D. (2021). A framework for the
fine-grained evaluation of the instantaneous expected value of soccer
possessions. Machine Learning.

1.3.2 The SoccerMap deep learning architecture

We introduce the SoccerMap architecture, a novel application of deep con-
volutional neural networks that allows calculating full probability surfaces
for developing fine-grained analysis of game situations in soccer. While the
majority of existing research in soccer analytics has focused on using hand-
crafted features for solving soccer-specific problems, few have approached
the use of convolutional neural networks for making sense of the full extent
of spatiotemporal information. Also, most approaches lack from visual in-
terpretability of the outcomes.

The SoccerMap architecture is a fully convolutional neural network that
receives layers of spatiotemporal information and can produce a probability
map covering the full extent of a soccer field. The network creates a fea-
ture hierarchy by learning convolutions at different sampling scales, allowing
it to learn features capturing both global and local relationships. Predic-
tions are produced at each of these scales and then merged into a single
probability surface estimation. We show how this architecture can ingest a
flexible structure of layers of spatiotemporal data and that it can be easily
adapted to provide practical solutions for challenging problems such as the
estimation of pass probability, pass selection likelihood, and pass expected
value surfaces. We show that networks built for the problems mentioned
above also produce calibrated probability estimates. In general, for adapt-
ing SoccerMap to any problem, one only has to define the layers of input
information, an appropriate activation function for the prediction layer, and
the loss function that is better suited to the specific problem (e.g., binary
cross-entropy when dealing with pass success or mean squared error when
dealing with pass expected reward).

The architecture deals successfully with a challenging learning set-up:
learning from single-location labels. For most soccer problems, such as
estimating the passing probability or the expected value from passes, there
is no ground-truth data covering the extent of a soccer field. Instead, event
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data provides only the destination location of the observed event. This poses
a learning set-up where we aim to estimate, for example, a 104×68 prediction
matrix, but only a single ground-truth value from that matrix is available.
We show that selecting only the predicted value at the event destination lo-
cation, and propagating the loss at that single-element level, is sufficient to
tune the network parameters producing accurate and calibrated predictions.

The estimation of full probability surfaces provides a new dimension for
soccer analytics. This approach offers a new way of providing coaches with
rich information in a visual format that might be easier to be presented to
players than the usual numerical statistics. We also consider this approach
could also be applied directly in many other team sports, where the visual
representation of complex information can bring the coach and the data an-
alyst closer.

The publications related to this contribution are the following:

• Fernández J., Bornn L. (2021) SoccerMap: A Deep Learning Architec-
ture for Visually-Interpretable Analysis in Soccer. In: Dong Y., Ifrim
G., Mladenić D., Saunders C., Van Hoecke S. (eds) Machine Learn-
ing and Knowledge Discovery in Databases. Applied Data Science
and Demo Track. ECML PKDD 2020. Lecture Notes in Computer
Science, vol 12461. Springer, Cham.

• Fernández J., Bornn L., Cervone D. (2021). A framework for the
fine-grained evaluation of the instantaneous expected value of soccer
possessions. Machine Learning.

1.3.3 Pitch influence, pitch control, and other spatial and
contextual features

For the framework components where we do not require to produce proba-
bility surfaces, we develop a broad set of soccer-specific features to be used
as informed inputs for the different machine learning algorithms used. By
incorporating these features, we produce point estimates for challenging and
yet-unexplored problems, such as estimating the success probability and ex-
pected long-term outcome of ball drives and the probability of selecting
specific actions in any given situation. We also improve the existing xG
model by incorporating knowledge derived from tracking data. We devel-
oped these features in close collaboration with professional soccer coaches,
which provided meaningful insights regarding the spatiotemporal elements
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involved in each of these problems.

In general, we group the developed features into two main types: spatial
and contextual features. The spatial features type refers to those directly
derived from the location and velocity of players and the ball and considers
the soccer field’s full extent. Within the spatial features, we propose a new
approach for calculating pitch influence and pitch control surfaces, repre-
senting a frame-by-frame estimation of the degree of ownership that either
a player or a team has on any field location. The pitch influence model
provides a way of quantifying the reachability of degree of influence that a
player has for every location, based on its current location, its velocity, and
the location of the ball. We propose to model this influence as a bivariate
Gaussian distribution, where the spread and direction of each of the princi-
pal components of the distribution are conditioned to the mentioned players’
motion information. From this concept, we develop a pitch control model as
an aggregation of the influence that both teams’ players have at any loca-
tion on the field. Essentially, our formulation represents the probability of
control of a given team, where a kernel-based non-parametric point process
captures each team’s latent surface. Specifically, the pitch control estima-
tion provides an estimation of the degree of control that a given team has on
any location, considering the 22 players, the ball, and the field’s full extent.
From this model, we provide the first known quantification of a popular
concept among coaches and soccer experts: space creation. Here, we iden-
tify the impact of player’s movement at different speeds (even standing) to
create open spaces to receive the ball and further the possession towards the
goal and provide an analytical approach to evaluate coordinative behavior
between pairs of players. Additionally, an entire surface of space-ownership
can be calculated in real-time and provide immediate visual feedback of the
dynamics of creation and closure of spaces. In general, the pitch influence
and pitch control features provides rich information related to ball pressure
and players’ density, two critical factors influencing the long-term expected
outcome of a possession.

On the other hand, the contextual features are designed to weigh game
situations according to the two teams’ location relative to the ball. For ex-
ample, two game situations where a team in the midfield controls the ball
are approached very differently by coaches depending on the opponents’ rel-
ative location. If all the opponent players are still in front of the ball, this
situation is considered a buildup or start-of-play situation and less threaten-
ing than an alternative situation where only two opponents are left between

Chapter 1 Javier Fernández 33



A framework for the interpretation of spatiotemporal dynamics in soccer

the ball and the goal. We expect the behavior of the players to be sub-
stantially different for each of the cases. The contextual factors are then
aimed at capturing the difference in spatiotemporal dynamics that occur in
two apparently similar situations according to the ball’s position. Estima-
ting players’ aggregate impact on on-ball actions has also been explored by
employing deep reinforcement learning to learn an action-value Q-function,
based on event data Liu et al. (2020).

In this work, we propose, to our knowledge, the first approach for cal-
culating teams’ dynamic formation lines (or lines of pressure). We employ
tracking data and unsupervised learning to find clusters in the x and y-axis
to produce vertical and horizontal formation lines. From this information,
we can identify situations such as the ball being behind the first line of
pressure of an opponent, a pass attempted towards the inside of the for-
mation block, or the lines of defenders potentially being surpassed by an
action. Additionally, we incorporate knowledge from previous research and
expand the concepts of “packing” and “impect” (Schaper, 2021), and create
a broader concept addressing outplayed players (i.e., the number of players
that are surpassed after an action is attempted). Lastly, we develop a ca-
librated xG model from a large set of event data to be used as a baseline
model for several of the models here developed.

We present an analysis of the importance of these features within the
context of the developed EPV framework, through the use of SHAP values
Lundberg and Lee (2017). Additionally, we present how these can be used
separately to obtain rich information for analyzing players’ and teams’ per-
formance.

The publications related to this contribution are the following:

• Fernández J., Bornn L. (2018) Wide open spaces: A statistical tech-
nique for measuring space creation in professional soccer. In: the 12th
MIT Sloan Sports Analytics Conference.

• Bornn, L., Cervone, D., Fernández, J. (2018). Soccer analytics: Un-
ravelling the complexity of “the beautiful game”. Significance, 15(3),
26-29.

• Fernández J., Bornn L., Cervone D. (2019) Decomposing the immea-
surable sport: A deep learning expected possession value framework
for soccer. In: the 13th MIT Sloan Sports Analytics Conference.
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• Fernández J., Bornn L., Cervone D. (2021). A framework for the
fine-grained evaluation of the instantaneous expected value of soccer
possessions. Machine Learning.

1.3.4 Implementation of the EPV framework

We provide an implementation of the proposed EPV framework, where each
of the ten components is estimated separately, producing an ensemble of mo-
dels whose outputs can be merged to produce a single EPV estimate. Specif-
ically, we provide functioning models providing estimates for the following
problems: pass and ball drive success probability, expected value in long-
term for both successful and missed passes and ball drives, joint-estimation
of passes and ball drives expected value, location-wise pass selection prob-
ability, action selection probability, and the final joint-estimation of EPV.
For developing such models, we follow two main learning approaches:

• Learning from soccer-specific spatial and contextual features, devel-
oped with professional soccer coaches’ aid, and applying standard ma-
chine learning algorithms.

• Learning from raw spatiotemporal data to produce full probability sur-
faces through a novel deep learning architecture based on fully convo-
lutional neural networks (SoccerMap).

We show that both the models built for the different components and
the joint EPV model produce calibrated estimations. Additionally, the set
of probability surfaces generated from the SoccerMap-based components are
shown to provide visual interpretability of the expected impact of potential
actions, allowing the framework to provide live question-answering dynam-
ics with coaches.

The publications related to this contribution are the following:

• Fernández J., Bornn L. (2018) Wide open spaces: A statistical tech-
nique for measuring space creation in professional soccer. In: the 12th
MIT Sloan Sports Analytics Conference.

• Bornn, L., Cervone, D., Fernández, J. (2018). Soccer analytics: Un-
ravelling the complexity of “the beautiful game”. Significance, 15(3),
26-29.
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• Fernández J., Bornn L., Cervone D. (2019) Decomposing the immea-
surable sport: A deep learning expected possession value framework
for soccer. In: the 13th MIT Sloan Sports Analytics Conference.

• Fernández J., Bornn L. (2021) SoccerMap: A Deep Learning Architec-
ture for Visually-Interpretable Analysis in Soccer. In: Dong Y., Ifrim
G., Mladenić D., Saunders C., Van Hoecke S. (eds) Machine Learn-
ing and Knowledge Discovery in Databases. Applied Data Science
and Demo Track. ECML PKDD 2020. Lecture Notes in Computer
Science, vol 12461. Springer, Cham.

• Fernández J., Bornn L., Cervone D. (2021). A framework for the
fine-grained evaluation of the instantaneous expected value of soccer
possessions. Machine Learning.

1.3.5 Broad set of practical applications

In this work, we present over ten different practical applications derived from
this work where we exploit the soccer-specific features developed, the visual-
interpretability of the probability surfaces provided by the SoccerMap-based
models, and, in general, the information-rich components of the EPV frame-
work developed. Specifically, we structure the proposed practical applica-
tions into three main groups: match and team analysis, off-ball performance,
on-ball performance.

For the match and team analysis category, we present a real-time control
room where the framework’s different components are employed to provide
dynamic inspection into actual game situations on a frame-by-frame basis.
We also show how we can generate video summaries of matches and player
performance by either querying possession ending with a high EPV value or
by identifying abrupt changes in the EPV curve during a possession. Addi-
tionally, we show how the pass selection component can be directly adapted
to grasp team-based passing tendencies, allowing for a finer inspection of a
teams’ playing strategy. Lastly, we show how by summarizing the on-ball
and off-ball added value between pairs of players, we can identify optimal
lineups boosting a team’s key player performance.

Despite being one of the most attractive application areas for coaches,
off-ball performance analysis is one of the least explored soccer analytics
areas. We present novel applications exploiting the information-rich prob-
ability surfaces of the passing components. First, we present a defensive
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analysis tool, allowing coaches to decide how to defend against a given time
in specific game situations. Specifically, we focus on the tactical analysis
of buildup phases and show how the pass expected value surface could be
used to decide the optimal defending formation against Brendan Rodgers’
2014-2015 Liverpool team. Second, we present a methodology to calculate
player’s potential positioning in game situations that optimize pass recep-
tion. Lastly, we introduce the space occupation and space creation metrics
to understand a player’s off-ball game. A critical characteristic of these ap-
plications is that, rather than providing coaches with a single evaluation of
past situations or a single best option, we present a visually interpretable tac-
tical analysis whiteboard that empowers coaches to conduct data-informed
analysis and customize their strategies.

We also present practical applications in the on-ball performance cate-
gory. Since these types of applications are the most covered in soccer analyt-
ics, we focused on providing new analysis approaches. We present a different
perspective on how to present passing networks by shifting the focus from
the frequency of passes between players to the assessment of value added
by passes. Additionally, we employ the dynamic formation lines features
to analyze player’s passing tendencies according to context, which would
provide practitioners with more detailed information about specific players’
passing tendencies. Finally, similarly to the calculation of optimal locations,
we assess the optimal passing locations for specific situations. From here,
we assess a player’s passing skill based on the difference between the ex-
pected probability of optimal passing locations and the observed accuracy
of attempted passes.

With this broad set of applications, we intend to show how a comprehen-
sive approach for the EPV concept, like the one presented in this work, can
be applied in a versatile and agile way to support coaches in their analysis
work on an ongoing basis.

• Fernández J., Bornn L. (2018) Wide open spaces: A statistical tech-
nique for measuring space creation in professional soccer. In: the 12th
MIT Sloan Sports Analytics Conference.

• Fernández J., Bornn L., Cervone D (2019) Decomposing the immea-
surable sport: A deep learning expected possession value framework
for soccer. In: the 13th MIT Sloan Sports Analytics Conference.

• Fernández J., Bornn L. (2021) SoccerMap: A Deep Learning Architec-
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ture for Visually-Interpretable Analysis in Soccer. In: Dong Y., Ifrim
G., Mladenić D., Saunders C., Van Hoecke S. (eds) Machine Learn-
ing and Knowledge Discovery in Databases. Applied Data Science
and Demo Track. ECML PKDD 2020. Lecture Notes in Computer
Science, vol 12461. Springer, Cham.

• Fernández J., Bornn L., Cervone D. (2021). A framework for the
fine-grained evaluation of the instantaneous expected value of soccer
possessions. Machine Learning.

1.4 Structure of the thesis

In this section, we describe the structure of this thesis. The current Chapter
presents the introduction, covering this work’s context within the framework
of sports analytics, the motivation, and the research questions addressed.
Additionally, we describe the main contributions and publications. Chapter
2 describes the background and literature review focusing on two aspects:
existing soccer analytics research and the technical background of AI meth-
ods and techniques applied in this work. Chapter 3 proposes a theoretical
framework for modeling the expected possession value in soccer and intro-
duces the decomposed EPV approach that constitutes the common thread of
this work. In Chapter 4 we describe in great detail the different spatial and
contextual features developed in this work in collaboration with professional
soccer coaches. Additionally, we present a series of practical applications di-
rectly derived from these features and the methodology’s details followed
for the mentioned collaboration. Chapter 5 introduces the SoccerMap deep
learning architecture that generates probability surfaces from raw spatiotem-
poral data. In Chapter 6 we present the technical details for learning mo-
dels for all the components of the proposed EPV framework from a large
tracking data set. We show the models produce calibrated probability esti-
mations and present a finer inspection into the different features’ influence
on each model’s predictions. Chapter 7 presents a broad series of practical
applications directly derived from the presented framework and the devel-
oped soccer-specific features. These include applications in match and team
analysis, off-ball performance, and on-ball performance assessment. Finally,
Chapter 8 presents a discussion of the main contributions, conclusions, and
limitations of this work and guidelines for future work.
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1.5 Publications

In this section, we present the different publications produced during this
work. First, we present the list of publications in scientific journals and
conferences directly related to this work and where the author is listed as
the principal author. We indicate the different chapters of this thesis in
which each of the publications contributed. Then we present other research
conducted during this thesis directly related to soccer analytics research.
Additionally, we present a series of master in Science’s thesis where the
author acted as an industrial supervisor.

1.5.1 Scientific journal and conference publications

• Fernández J., Bornn L. (2018) Wide open spaces: A statistical tech-
nique for measuring space creation in professional soccer. In: the 12th
MIT Sloan Sports Analytics Conference. Awarded third place in the
research papers competition.

– Chapter 1, 4, 6, 7, and 8

• Bornn, L., Cervone, D., Fernández, J. (2018). Soccer analytics: Un-
ravelling the complexity of “the beautiful game”. Significance, 15(3),
26-29.

– Chapter 1, 2, and 4

• Fernández J., Bornn L., Cervone D (2019) Decomposing the immeasur-
able sport: A deep learning expected possession value framework for
soccer. In: the 13th MIT Sloan Sports Analytics Conference. Awarded
first place in the research paper competition, being the first soccer paper
to win this competition.

– Chapter 1, 3, 4, 6, 7, and 8

• Fernández J., Bornn L. (2021) SoccerMap: A Deep Learning Architec-
ture for Visually-Interpretable Analysis in Soccer. In: Dong Y., Ifrim
G., Mladenić D., Saunders C., Van Hoecke S. (eds) Machine Learn-
ing and Knowledge Discovery in Databases. Applied Data Science
and Demo Track. ECML PKDD 2020. Lecture Notes in Computer
Science, vol 12461. Springer, Cham.

– Chapter 1, 2, 5, 6, 7, and 8
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• Fernández J., Bornn L., Cervone D. (2021). A framework for the
fine-grained evaluation of the instantaneous expected value of soccer
possessions. Machine Learning.

– Chapter 1, 2, 3, 4, 6, 7, and 8

1.5.2 Other research conducted

• Arbues-Sanguesa, A., Martin, A., Fernández, J., Ballester, C., Haro,
G. (2020). Using Player’s Body-Orientation to Model Pass Feasibility
in Soccer. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (pp. 886-887).

– Chapter 8

• Arbués-Sangüesa, A., Mart́ın, A., Fernández, J., Rodŕıguez, C., Haro,
G., Ballester, C. (2020, October). Always Look on the Bright Side of
the Field: Merging Pose and Contextual Data to Estimate Orientation
of Soccer Players. In 2020 IEEE International Conference on Image
Processing (ICIP) (pp. 1506-1510). IEEE.

– Chapter 8

• Llana, S., Madrero, P., Fernández, J. (2020). The right place at the
right time: Advanced off-ball metrics for exploiting an opponent’s spa-
tial weaknesses in soccer. In: the 14th MIT Sloan Sports Analytics
Conference.

• Peralta, F., Pinones, P., Sumpter, D., Fernández, J.,(2020). Seeing
in to the future: using self-propelled particle models to aid player
decision-making in soccer. In: the 14th MIT Sloan Sports Analytics
Conference.

• Camenforte, I., Casamichana, D., Cos, F., Castellano, J., Fernández,
J. (2020). Diseño y validación de una herramienta de valoración del
nivel de especificidad de las situaciones simuladoras preferenciales en
fútbol.[Design and validation of a Specificity level assessment tool for
preferential simulation situation in football]. RICYDE. Revista Inter-
nacional de Ciencias del Deporte. doi: 10.5232/ricyde, 17(63), 69-87.

Chapter 1 Javier Fernández 40



A framework for the interpretation of spatiotemporal dynamics in soccer

• Schelling, X., Fernández, J., Ward, P., Fernández, J., Robertson, S.
(2021). Decision support system applications for scheduling in profes-
sional team sport. The team’s perspective. Frontiers in Sports and
Active Living, 3, 142.

1.5.3 Master thesis industrial supervision

• Daykin E., Fischer N., Ramirez S. (2018) Using Observational Event
Data to Uncover Football Players’ Inherent Abilities. Barcelona Grad-
uate School of Economics.

• Soares Afonso, M. M. (2019). Learning state representations and
Markov models in football analytics. Thesis for the title of Master
in Intelligent Interactive Systems. Pompeu Fabra University.

• Madrero P. (2020). Creating a model for expected goals in football
using qualitative player information. Thesis for the title of Master
in Innovation and Research in Informatics. Polytechnic University of
Catalonia.
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Chapter 2

Background and literature
review

2.1 Spatiotemporal data in soccer

The rise of sports analytics has been primarily due to the development of
semi-automated methods for capturing spatiotemporal data in scale. We
will refer as spatiotemporal data to those data sources, including informa-
tion about the location of players, the ball, or actions, and the time where
any of these are observed during a given match. More specifically, we will
differentiate the available spatiotemporal data in soccer into two main types,
event data and tracking data.

Event data consists of a series of annotated events observed during
matches, which include the location and time of the start and end of the
event, the name of the player attempting and receiving the action (when it
applies), as well as a large set of additional game-related labels, depending on
the event. Usually, event data includes on-ball actions such as goals, passes,
shots, aerial duels, crosses, set-pieces, tackles, dribbles, or many other typ-
ical soccer actions. Additionally, some specialized sources might include
off-ball actions, such as ball pressure, or team-related information such as
lineups and formations. On the other hand, tracking data consists of all the
players’ locations on the field and the ball. This data is usually provided at
a frequency ranging from 10Hz to 25Hz and captured using computer-vision
algorithms on top of soccer match videos. This type of spatiotemporal data
is typically obtained through a semi-automated process. First, ball and
player locations are automatically recognized and then manually verified
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and corrected in the case of misidentification. For both data types, the lo-
cations are usually normalized according to the team in possession of the
ball (e.g., left to right) and are provided in 2-dimensional (or 3-dimensional)
coordinate systems that can be transformed following the length and width
of the field dimensions. In the following link, tracking data 2d example, we
present a video example of spatiotemporal tracking data, where the yellow
and blue dots represent the attacking and defending teams, respectively,
and a green dot represents the ball location. The arrows represent the ve-
locity vector of each player, based on the players’ location the second before.

These two data sources present an uneven balance regarding richness
in detail and availability. While tracking data provides greater detail and
volume of information per match, it is considerably more challenging to gain
access to it, given its high costs and low availability for its acquisition. On
the other hand, event data has a lower level of detail but a considerably
broader availability in competition coverage and existing vendors. Usually,
to develop spatiotemporal analysis on top of tracking data, we require the
latter to be integrated with event data to make sense of human-annotated
observed actions and events, such as passes, ball drives, shots, and goals,
among many others.

2.2 Soccer analytics

2.2.1 Spatial dominance

Spatial dominance models seek to estimate the degree of control a given
player or team has on any given location in a continuous or discrete space.
Its application in soccer analytics comes from the necessity of finding mech-
anisms to quantify the ownership of space, a recurring concept in soccer
tactical analysis. A soccer field has an average dimension of 105 x 68 meters
and involves 22 players, providing a wide range of complex dynamics to arise
from the interaction of these players in such a vast space. The ability to
effectively quantify space ownership opens the door to approach the impact
of off-ball actions, understood as the behavior and actions of players that are
not in control of the ball. Being that the average amount of ball possession
for every player is nearly 3 minutes per match, this becomes a fundamental
element to master to thrive in this game.

We split the spatial dominance models found in the literature into two
groups: distance-based and physics-based models. Distance-based domi-
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nance models are those considering the distance of players exclusively to
every given point as the determinant factor to decide who controls space.
Most of these models make heavy use of the concept of Voronoi tessellations.

Voronoi A Voronoi tessellation partitions space by assigning every loca-
tion to the closest player. Provided a distance function dim(t) between player
i’s location and a given location m on the field at time t, the level of control
of player i over any given location can be defined as in Equation 2.1.

Cim(t) =

{
1 i = argminj d

j
m(t)

0 otherwise
(2.1)

When using Voronoi tesselations, a region is assigned to a player if that
player is the closest to that region, independently from the player’s velocity
or any other spatial or contextual factor. A region can also be assigned to
a team if a player belonging to that team owns the region, following the
previous definition. Voronoi tessellations have been extensively applied in
sports for characterizing the continuous space ownership of players (Kim,
2004; Memmert et al., 2017), to characterize the spatial control dynamics of
teams (Fonseca et al., 2012; Perl and Memmert, 2016; Masheswaran et al.,
2014), and even for understanding the cooperative behavior of robots trained
for playing soccer (Kaden et al., 2013; Schiffer et al., 2006; Prokopenko et al.,
2014; Law, 2005). A variation of distance-based models uses a weighted ver-
sion of Voronoi tesselation, where a weighting function is used to account for
the relative level of influence in a given location (Cervone et al., 2016a). Fo-
llowing the definition presented in Bornn et al. (2018) we express a weighted
Voronoi pitch control model as in Equation 2.2, where wim(t) is the weight-
ing function.

Cim(t) =

{
1

1+wm
i (t) i = argminj w

j
m(t)

0 otherwise
(2.2)

On the other hand, a physics-based model seeks to calculate the owner-
ship of space, taking into account physical dynamics related to players’ and
ball movement. One approach presents a player-acceleration-based model
(Taki and Hasegawa, 2000). A similar one extends from this concept and
includes a force model to consider both accelerations and decelerations, and
also provides bounds for players’ maximum speed (Fujimura and Sugihara,
2005; Gudmundsson and Horton, 2017). Another approach defines a statis-
tical model for determining the player that most likely will reach the ball if
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it travels to a certain location dependent on the time it would take a player
to reach that location, and the time it would take to intercept the ball by
the opponent (Spearman et al., 2017). The parameters of the model are
learned from observed passes in professional soccer matches.

2.2.2 Pass probability

Passes are the most frequently observed event during soccer matches, with
an average of 1000 passes per game. Passes allow transferring the ball control
from one player to another, allowing the ball to travel both short and long
distances effectively and quickly. A pass probability model seeks to estimate
the likelihood of a given pass being successful, usually provided information
related to the origin and destination location of the pass. Pass probability
has been modeled following different approaches. A physics-based modeling
of pitch control has been built from observed passes and was used to calculate
the probability of successful passes employing spatiotemporal tracking data
(Spearman et al., 2017). First-order logic and logic programming have been
used to calculate pass probabilities based on a series of constraints derived
from qualitative reasoning about the factors involved in the execution and
success of passes (Vercruyssen et al., 2016). Other approaches include the
use of dominant regions to determine which player is most likely to control
the ball after a pass (Gudmundsson and Horton, 2017), and the application
of machine learning algorithms on top of handcrafted features to predict
pass probabilities, otherwise referred to as pass risk (Power et al., 2017).

2.2.3 Pass selection

Action selection refers to the problem of predicting the following action to
be taken by a given player. An extension of this definition is to consider
the action destination of the action based on a coarse representation of
all the possible destination locations towards which the pass can be taken.
Regarding passes, we define the estimation of pass selection as a prediction of
the probability of a pass being chosen as a subsequent action. Additionally,
some pass selection models include the estimation of the pass destination
location, being this either the location of one of the teammates or any other
given location of the field. Very few approaches can be found in the literature
regarding action selection in soccer and team sports. One approach uses
deep convolutional networks from low-level information and structured to
consider the location of teammates, opponents, and the level of pressure on
each of the teammates (Hubáček et al., 2018). The output of this model
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is the probability of passing towards the location of one of the other ten
teammates of the team in possession of the ball. Since this model is designed
as a multinomial classification problem, there is an inherent difficulty of
properly learning pass selection from this approach which is in the choice of
teammates order in the output vector. This ordering might be set by the
distance of players to the ball handler or the position of the players, among
other few qualitative reasons. However, the intricacies of the spatiotemporal
dynamics of soccer provide reasons to believe that any ordering of this kind
can be prone to overfitting or improper learning. Also, the model does
not consider the usual nature of passes to be taken towards a location in
the space and not the exact location of players. A different approach in
basketball uses a coarsened process for modeling macro-transitions, defined
as the prediction of occurrence of discrete actions in basketball within the
next interval of time (Cervone et al., 2016b).

2.2.4 Expected goals

Arguably, the most popular metric in soccer analytics is the estimation of
the goal expectation, or xG. The xG is usually modeled as the probability
of observing a goal after a shot is taken at a given game situation. Given
the assumption that a shot is attempted from a given location, the main
conceptual challenge of xG models resides in the selection of the factors in-
fluencing the outcome of a shot action. Despite its popularity, xG literature
is scarce, especially in scientific publications. xG models can be split into
two groups: event data-based models (Analysis, 2017; 11Tegen11, 2015; Ca-
ley, 2015b,a) and tracking data-based models (Lucey et al., 2014; Eggels,
2016). Most models within these two groups make strong use of features
derived from spatial information, and some contextual features. For event
data-based models, spatial information is limited to the location of observed
on-ball events. On the other hand spatio-temporal data-based events extend
the event data location information with rich handcrafted features based on
the location of the 22 players and the ball, allowing to produce features
related to spatial pressure and density, shot interceptability and player mo-
tion information. Both event data and spatio-temporal data sources usually
include information about contextual situations preceding the shot such as
corners, direct or indirect free kicks, open-play or penalty kicks, or specific
events such as dribble, cross pass, long pass, rebound or possession regain
(Eggels, 2016). Also, contextual features can be extracted from the full res-
olution spatio-temporal data to provide information about more specialized
game dynamics at time steps close to the moment of the shot, such as the
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identification of the attack types including counterattack, fast-attack and
organized attack (Lucey et al., 2014). Additionally, player-related summary
statistics have been included in order to condition the model to individual
player skills (Eggels, 2016).

2.2.5 Player movement estimation

Another area of interest is the estimation of player movement in time, based
on spatial and contextual information. The challenge of this task resides in
the consideration that the estimation of the next locations where a player
can move to is expected to be influenced by a broad set of complex factors
such as the positioning of the rest of the players and the ball, the current
context of the game, player’s role within the team, the score at a given time,
and the evaluation of the impact of future actions by the player depen-
dent on the action to be taken next. A recent study approaches the credit
assignation to player movements in a continuous time-scale, associated with
the likelihood of the attacking team reaching specific locations on the field
thanks to these off-ball actions (Dick and Brefeld, 2019). Another approach
attempts to find similar player movements using tracking data and through
the development of scale, translation, and rotation-invariant representations
of movement, and dynamic time warping for comparing trajectories (Haase
and Brefeld, 2013).

The estimation of players’ movement has also been focused from a team-
perspective in a model referred as “ghosting”, applied both in soccer and
basketball (Le et al., 2017; Seidl et al., 2018). Here, the idea is to predict
collective team behavior in a continuous-time scale based on historical infor-
mation of players’ trajectories and dependent on the spatial and contextual
game situation at a given time. The problem is modeled through a recurrent
neural network using long short-term memory units to learn a single-player
behavioral model based on the player’s position and a multi-player model
to estimate team-level movement behavior.

2.2.6 Action-value and EPV models

The value estimation of individual actions in relation to the future outcome
of ball possession has recently gained attention within sports analytics re-
search, especially in soccer. Given the relatively low frequency of goals in
soccer in comparison with match duration and the frequency of other events
such as passes and turnovers, it becomes very challenging to evaluate indi-
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vidual actions within a match. Different approaches have been attempted to
learn a valuation function for both on-ball and off-ball events related to goal-
scoring. Here, we refer to two types of modeling approaches, action-value,
and EPV models. Conceptually, both approaches attempt estimating a long-
term expected reward, typically the probability of scoring a goal, given a
state representation. When the state representation consists of information
specifically related to an observed action, many times including the destina-
tion location and action type, we will call these models action-value models.
On the other hand, when the state representation is not dependent on the
action being taken, but it consists of action-agnostic spatiotemporal infor-
mation describing the current game situation (i.e., the possession’s game
state representation), we will refer to these as expected possession value
models.

Handcrafted features based on the opinion of a committee of soccer ex-
perts have been used to quantify the likelihood of scoring in a continuous
time range during a match (Link et al., 2016). The designed features in
this approach consider four main aspects for a given game situation: zone,
control, pressure, and density. These features are combined through an
empirically designed linear equation to produce a valuation of actions du-
ring a match. Another approach uses event data also to estimate the value
of individual actions during the development of possession (Decroos et al.,
2019). Here, the game state is represented as a finite set of consecutive
observed discrete actions and, a Bernoulli distributed outcome variable is
estimated through standard supervised machine learning algorithms. In a
similar approach, possession sequences are clustered based on dynamic time
warping distance, and a gradient boosting model (Friedman et al., 2000;
Chen and Guestrin, 2016) model is trained to predict the expected goal
value of the sequence, assuming it ends with a shot attempt (Bransen and
Van Haaren, 2018). A different approach creates a coarsened representation
of a soccer field that is learned in an unsupervised way, and then each clus-
ter within the representation is assigned a field value based on pass, shots,
and turnover actions observed in a vast dataset of event data. Gyarmati
and Stanojevic (2016) calculate the value of a pass as the difference of field
value between different locations when a ball transition between these oc-
curs. The estimation of the expectation of a shot within the next 10 seconds
of a given pass event has also been used to estimate the reward of a pass,
based on spatial and contextual information is used to represent the state
in any given game situation Power et al. (2017). Rudd (2011) uses Markov
chains to estimate the expected possession value using discrete transition
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matrix of 39 states, including zonal location, defensive state, set pieces, and
two absorbing states (goal or end of possession), and considering a finite set
of on-ball actions. A similar approach named expected threat uses Markov
chains and a coarsened representation of field locations to derive the ex-
pected goal value of transitioning between discrete locations (Singh, 2019).
Beyond the quantification of on-ball actions, off-ball position quality has
also been quantified based on the goal expectation. In Spearman (2018), a
physics-based statistical model is designed to quantify the quality of players’
off-ball positioning based on the positional characteristics at the time of the
action that precedes a goal-scoring opportunity. This model allows to rank
the quality of opportunities, highlight individual player off-ball positioning,
and highlight available potential regions to take advantage of in similar sit-
uations.

All of these previous attempts on quantifying action value in soccer as-
sume a series of constraints that reduce the scope and reach of the solution.
Some of the limitations of these past works include simplified representations
of event data (consisting of merely the location and time of on-ball actions),
using strongly handcrafted rule-based systems, or focusing exclusively on
one specific type of action. However, a comprehensive EPV framework that
considers both the full spatial extent of the soccer field and the space-time
dynamics of the 22 players and the ball has not yet been proposed and fully
validated. In this work, we provide such a framework and go one step further
estimating the added value of observed actions by providing an approach for
estimating the expected value of the possession at any time instance.

Action evaluation has also been approached in other sports such as bas-
ketball and ice hockey by using spatiotemporal data. The expected posse-
ssion value of basketball possessions was estimated through a multiresolution
process combining macro-transitions (transitions between states following
coarsened representation of the game state) and micro-transitions (poten-
tial player movements), capturing the variations between actions, players,
and court space (Cervone et al., 2016b). Also, deep reinforcement learning
has been used for estimating an action-value function from event data of
professional ice-hockey games (Liu and Schulte, 2018). Here, a long short-
term memory deep network is trained to capture complex time-dependent
contextual features from a set of low-level input information extracted from
consecutive on-puck events.
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2.3 Deep neural networks

2.3.1 Deep feedforward network

A feedforward network defines a mapping y = f(x; θ), where f is a function
approximation of some function y = f∗(x) and θ is a set of parameters re-
sulting in the best function approximation (Goodfellow et al., 2016). This
type of model is essentially a composition of functions where a piece of given
input information, corresponding to noisy approximations of f∗, is passed
through a layered chain of functions (network) and produces an output that
is close to y. These different components are commonly referred to as in-
put, hidden, and output layers, respectively. The length of that chain of
function compositions representing the hidden layers is commonly referred
to as the depth of the network. Each hidden layer is represented by a vector
of elements that loosely resembles the current neuroscientific understanding
of the role of neurons in the human brain. These elements are referred to
as units and resemble neurons in the sense of receiving input from many
other neurons and computing its own activation value (Goodfellow et al.,
2016). The deep learning term typically refers to network architectures with
a depth higher than one. The main objective of this consecutive stack of
layers is to map the original input to a more meaningful representation for
the specific problem by applying non-linear transformations. The transfor-
mation of the original data obtained at the last hidden layer is intended to
be a more rich feature set that can then be made sense of through a linear
model, following a conceptually similar process than that of the kernel trick
(Schölkopf, 2001; Roth and Steinhage, 2000).

Formally, a deep feedforward network is composed by neurons computing
the expression σ(w>x + b) where σ is an activation function and w and b
are parameters. The network consists of stacked layers of neurons where
the output of each layer can be represented as σ(W>x + b) where W is
the matrix of weight parameters corresponding to each neuron (Goodfellow
et al., 2016). When sequentially connecting the layers in a network for k
number of layers, where k ≥ 2, the output of the network can be expressed
as

σk(W
>
k σk−1(W>k−1 . . . σ2(W>2 σ1(W>1 x+ b1) + b2) . . .+ bk−1) + bk) (2.3)

where Wi, bi and σi are parameters of the i-th layer, for a network of
depth k (Shamir, 2018).
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The parameter set θ of deep feedforward networks is usually learned
through iterative non-convex gradient-based optimization procedures, where
the network parameters are updated according to the negative direction of
the gradient of the loss curve. Gradient-descent can be conceptually struc-
tured in three types: batch gradient-descent, where the network is updated
only after all training samples are fed; stochastic gradient descent, where
updates are performed after each example is passed through the network;
and mini-batch gradient descent, where the update occurs after batches
of examples are passed through the network. Different algorithms apply
different strategies to overcome learning-related issues of gradient-descent.
The most popular are: stochastic gradient descent (SGD) with momentum,
which helps to accelerate gradient-descent by following the vector direction
of persistent reduction of the error, Nesterov accelerated gradient, which
controls the vector magnitude of momentum (Dozat, 2016), and Adagrad,
Adadelta and adaptive moment estimation (ADAM) (Duchi et al., 2011;
Zeiler, 2012; Kingma and Ba, 2014), all variations of methods that provide
adaptive modifications of the learning rate through the learning process.

When designing a deep neural network, we need to decide about the
architecture of the network, the optimization method, the types of units in
each layer, and the loss function deciding how to measure the difference be-
tween f and f∗ at each step. In the following sections, we describe a broad
set of components that have been successfully incorporated in neural net-
works for learning complex spatial-aware representations for spatiotemporal
problems, which are strongly related to the methods used in this work.

2.3.2 Convolutional neural networks

Convolutional neural networks (convnets) are a structured type of neural
network specifically designed to capture spatial structures in data that has
been proven to be particularly effective for problems where such spatial
structures are expected to exist, such as images, speech, and time-series
(Scherer et al., 2010; LeCun et al., 1995). Also, address the incapacity of
non-structured networks to deal with translation invariance or local distor-
tions of the input (LeCun et al., 1995). More specifically, convnets provide
a way of learning complex spatial local features that preserve the topol-
ogy of the input by restricting the receptive fields to be local. In general,
convnets have proven to be successful in data sources with a Euclidean struc-
ture, which makes them an appealing approach for reaching a better level
of understanding of the complex spatial interactions of players in soccer.
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Meaningful features in a local subspace are expected to also be helpful in
other regions of an input matrix. Because of this, convnets reuse a broad set
of parameters, allowing a considerable decrease in the size of the network,
which makes learning feasible.

One of the main objectives of this work is to provide a clear visual in-
terpretation of the models and their results. convnets have been proven to
learn what are sometimes more powerful visual features than handcrafted
ones, even given large receptive fields and weak label training Long et al.
(2014). In most common applications of convnets in images, the final layer
of spatially aware features is condensed into a fully connected feedforward
network for classification. Such is the case of object recognition, action
recognition, object detection, and object tracking. In these cases, convo-
lutional filters are used as powerful spatial feature extractors, but in the
end the spatial relationships are lost by merging them to form the input of
standard feedforward networks. Nevertheless, other problems, such as im-
age segmentation, require a pixel-level or location-label labeling of the input
data. One type of convnet approaching this problem is the family of fully
convolutional networks that replace the last fully-connected layers with 1-d
convolutions and can produce a full prediction surface. Fully convolutional
networks have been extensively applied to semantic image segmentation,
specifically for the pixel-labeling problem (Long et al., 2015; Ronneberger
et al., 2015; Chen et al., 2017; Badrinarayanan et al., 2017; Papandreou et al.,
2015) to successfully detect wide pixel areas associated with an object in im-
ages. These types of networks are particularly interesting for our work in
the sense that they provide a comprehensive framework for approaching a
two-fold problem: accurate prediction of actions and a visually interpretable
surface of predictions that can be mapped to 2d soccer field.

2.3.3 Problem-specific components in neural networks

Several processing components have been built to solve a broad set of specific
issues related to neural networks, such as avoiding over-fitting and improve
generalization in large architectures, achieving invariance to translation, ro-
tation, and local noise, obtain features at different spatial scales, dealing
with the input resizing caused by the application of convolutional filters,
and obtaining robust upsampling. In this section, we describe the compo-
nents most related to the problems addressed in this work.
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Pooling

Pooling is an operation performed over convolutional filters that seek to
provide representations with invariance to a small translation of the input.
Essentially, it provides an aggregation of low-level features over a small
neighborhood (Scherer et al., 2010), by replacing the output of the net at a
certain location with a summary statistic of the nearby outputs (Goodfellow
et al., 2016). There are several types of pooling operations depending on
the type of aggregation performed. Given a rectangular neighborhood, max-
pooling outputs the maximum value of every pixel, average-pooling produces
an average of each value in the neighborhood, which in case of being weighted
is called weighted-average pooling (typically regarding the distance to the
central pixel) and L2 norm pooling returns the L2 norm of the neighborhood.

Upsampling

While pooling can help learn features at different scales, it also reduces
the dimension of the original input. However, specific problems require the
outputs at different architecture steps to have a greater size than the down-
sampled one, for example, to match the original input dimensions. Also,
either the down-sampled feature set might be too small to be visually eval-
uated, or an eye-pleasing surface is desired to be produced. We can learn a
composition of convolutions to perform linear or non-linear upsampling for
all of these cases. A common choice is to use transposed convolutions or
deconvolutions, which refer to an operation in the opposite direction of a
convolution that maintains its connectivity patterns (Dumoulin and Visin,
2016). A transposed convolution upsamples the size of a rectangular neigh-
borhood by using a larger region where the missing locations are typically
filled with zeros (zero-padding) and applying an analogous operation than
that of convolution (Shi et al., 2016). Despite their popularity in problems
requiring an output of larger resolution than previous inputs, it has been
shown how transposed convolutions are prone to produce visual artifacts
that can hurt both the prediction capacity and the visual results of the
model (Odena et al., 2016). A usually better working solution is to ap-
ply a linear upsampling method such as nearest neighbors upsampling and
passing the output through a stack of convolutional layers of arbitrary re-
ceptive fields. This stack of convolutions will learn a smoothing function on
top of the previously upsampled output. If non-linear activation functions
are used, a non-linear upsampling operation can be learned directly (Odena
et al., 2016).
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Skip connections

The first introduction of skip connections in deep learning architectures is
presented within an architecture designed for achieving image segmentation
through fully convolutional neural networks (Long et al., 2015). The concept
of skipping refers to combining outputs of the network produced different
depths within the architecture. The original idea for image segmentation
was to merge coarse and finer features at different scales to combine diffe-
rent detail levels. Basically, lower layers skip to higher ones, resulting in
more nuanced layers making sense of finer-scale predictions and coarse lay-
ers making sense of higher scale predictions, managing to find a tradeoff
in the preservation of both local and global structure (Long et al., 2015).
Recently, skip connections have been incorporated in other architectures to
achieve to provide an easier gradient flow from output layers to layers closer
to the input (Wang et al., 2017; He et al., 2016; Goodfellow et al., 2016).

Dropout and Batch normalization

The concept of dropout has become a popular component in modern deep
neural network architectures as a mechanism for addressing overfitting. In
the original paper, it was shown to provide performance improvement for a
wide range of applications in supervised learning, including computer vision,
speech recognition, document classification, and computational biology (Sri-
vastava et al., 2014). Applying dropout means temporarily removing units
from the network by randomly sampling from a binomial distribution of
fixed probability p. Dropout can be considered as a stochastic regulariza-
tion approach, where the expected loss function is minimized under a noise
distribution (Srivastava et al., 2014).

An alternative regularization method that has been increasingly incorpo-
rated in recent convolutional neural networks is batch normalization. Batch
normalization addresses the internal covariate shift problem, which consists
on changing the distribution of each layer’s input during training, which
slows down training and increases the need for careful parameter initial-
ization (Ioffe and Szegedy, 2015). This mechanism learns normalization
parameters that modify the mean and variance of layer inputs, allowing to
normalize the input of subsequent layers and also reducing the dependence
of gradients on the scale of the parameters or initial values provided (Ioffe
and Szegedy, 2015). In mini-batch gradient descent, normalization param-
eters are learned by mini-batch but can be further generalized to unique
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parameters after training, so it is not batch-dependent during inference.

2.3.4 Loss functions

A critical component of any machine learning algorithm is the loss or cost
function L(f(x; θ), y), providing a numerical estimation of the difference be-
tween the predicted and ground-truth values. Through an optimization pro-
cedure, we attempt to either minimize or maximize a loss function, whose
overall estimate for the available data provides a numerical evaluation of
the model’s predictive ability. The selection of the loss function has di-
rect implications on how the model parameter’s θ are learned and how the
overall performance of the model is evaluated. In this section, we describe
the characteristics of a set of loss functions that are used throughout this
work. For defining these functions, we will assume that ŷ represents the
set of predictions resulting from the learned model f(x; θ), y represents the
corresponding set of observed outcomes for each example of a set of N ex-
amples, and M represents a set of discrete outcome classes.

Cross-entropy

When we train our model using maximum likelihood estimation, a stan-
dard approach in modern neural networks, we are essentially minimizing the
cross-entropy between the distributions of the training data and the models’
output (Goodfellow et al., 2016). The cross-entropy function is usually re-
ferred to as the negative log-likelihood and can be defined as a loss function
following Equation 2.4.

L(ŷ, y) = H(ŷ, y) = − 1

N

N∑
i=1

M∑
j=1

(yij · log(ŷij)) (2.4)

Logarithmic loss or binary cross-entropy

When we have binary outcomes, a commonly used function is the log-loss,
which is essentially the cross-entropy function for M = 2. The binary cross-
entropy can then be expressed as in Equation 2.5.

L(ŷ, y) = logloss(ŷ, y)− 1

N

N∑
i=1

(y · log(ŷ) + (1− y) · log(1− ŷ)) (2.5)
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The binary-cross-entropy is often optimized in machine-learning models
when we aim to produce probabilistic predictions for a discrete set with
binary outcomes. A usual case is the logistic regression, a type of generalized
linear model where the outputs are constrained to a [0, 1] range by applying
the logistic function to the linear combination of coefficients and inputs.
Here, the coefficients are estimated using maximum likelihood estimation,
minimizing the binary cross-entropy.

Mean squared loss

A commonly used loss function in regression problems is the mean squared
loss, where we compute the average of the squared difference between ob-
servations and predictions.

L(ŷ, y) = MSE(ŷ, y) =
1

N

N∑
i

(yi − ŷi)2 (2.6)

The mean squared error (MSE) assumes the outcomes are normally dis-
tributed. This loss function is sensitive toward outliers and penalizes the
larger errors more than, the smaller ones.

2.3.5 Activation functions

In Section 2.3.1 we described how activation functions are used to produce
the output of the neurons in both the hidden and output layers in feed-
forward neural networks. Activation functions can be either linear or non-
linear. While linear activations are helpful for providing an exact mapping
of the inputs and weights in each layer, the selection of non-linear activations
allows producing non-linear transformation of the inputs, thus providing the
neural network the capacity of approximating complex non-linear functions.
A critical aspect of a non-linear activation function is that it has to be dif-
ferentiable so it can be used for calculating and propagating the loss within
gradient descent-based optimization methods Nwankpa et al. (2018). Here,
we refer exclusively to the family of ridge activation functions, where the
function is applied to a linear combination of the input variables, unlike
other classes of functions such as radial basis functions.

The selection of the activation functions in each layer plays a fundamen-
tal role in ensuring the proper propagation of the gradient and fine-tuning
of the weights across the network to ensure better generalization. Additio-
nally, the capacity of selecting activation functions provides neural networks

Chapter 2 Javier Fernández 56



A framework for the interpretation of spatiotemporal dynamics in soccer

with higher customization capabilities than standard machine learning mo-
dels. This is particularly important for the output layer, where different
activation functions allow different outcome distributions and thus higher
flexibility for using appropriate loss functions.

In this section, we describe the set of activation functions used across
this work. We will refer to each function as σ(x), where x represents the
linear combination of weights and inputs wTx+ b and σ corresponds to the
activation function, following the definition presented in Section 2.3.1.

Linear activation

Equation 2.7 presents the linear activation function, often called the identity
function. Following the expression, we can see that the function produced an
output identical to the linear combination of the inputs and weights received.
This function becomes particularly useful when no additional transformation
needs to be applied to a given layer’s inputs.

σ(x) = x (2.7)

Sigmoid activation

The sigmoid activation consists in applying the logistic function defined in
Equation 2.8. This type of function is usually called a “squashing function”
since the input is limited to a defined range of values. In the case of the
sigmoid activation, the output is constrained to the [0, 1] range.

σ(x) =
1

1 + e−x
(2.8)

The main characteristics of the function are being a differentiable func-
tion accepting real values and with positive derivatives at every point Nwankpa
et al. (2018). Sigmoid activations are often discouraged for its use in hid-
den layers of deep neural networks, for presenting issues such as gradient
saturation and slow convergence, among other problems (Nwankpa et al.,
2018).

Softmax activation

The softmax activation uses the softmax function defined in Equation 2.9.
The function receives a vector v of real numbers, and produces a vector
of the same size where each value is transformed into the [0, 1] range, and
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such that the sum of all the values in the vector is equal to 1. Essentially,
the softmax function “squeezes” a real-valued vector of arbitrary size into a
probabilistic representation of its inputs.

softmax(v)i =
evi∑K
j=1 e

vj
for i = 0, . . . ,K (2.9)

The softmax function is often used in multi-class classification as an
activation function for the output layer, with each value of the output vector
representing the probability of the example to belong to the corresponding
class. The softmax function becomes particularly useful for calibrating the
output of neural networks when using the temperature scaling calibration
method, presented in Section 2.5.

Rectified Linear unit (ReLu) activation

The ReLu activation function is defined in Equation 2.10. Since its in-
troduction by Nair and Hinton (2010) it has become a widely popularized
activation function within deep learning literature. Especially effective as
an activation function for the hidden layers, the ReLu function has been re-
ported to present a better gradient propagation and allowing faster training
of deep networks (Dahl et al., 2013)

σ(x) = max(0, x) (2.10)

2.3.6 Stochastic gradient descent

One of the main advantages of using deep learning models for approaching
complex problems is the capacity of these networks to approximate nonlin-
ear functions. In most linear models and other machine learning approaches,
we are able to achieve convergence to optimal solutions after optimization,
either through linear equation solvers or using convex optimization methods
Goodfellow et al. (2016). However, the non-linearity of neural networks in-
volves loss functions that are usually non-convex, where global convergence
can not be guaranteed. Based on this, iterative gradient-based optimization
methods have been successful for training deep neural networks, where the
network parameters are iteratively updated in proportion with the gradient
of the loss function selected. Essentially, gradient-descent methods calcu-
late the derivative of the loss function and move small steps in the opposite
direction of the derivative, to produce slight changes towards the minimiza-
tion of the function. For deep learning architectures, where the number
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of input parameters is expected to be greater than one, we calculate the
partial derivatives, according to each input variable, which is generalized in
the concept of gradient, which composes the derivative relative to a vector
Goodfellow et al. (2016). The proportion of the step down the gradient is
known as the learning rate, a critical parameter to be tuned when training
neural networks. In principle, when optimizing this function, we aim to ob-
tain a global minimum or the point where we obtain the lowest value of the
function. However, depending on the initialization of the network’s weights,
the selection of the learning rate, and other conditions of the learning pro-
cedure, the optimization is subtle to reach local minimum points. At these
local minima, the optimization is not able to further decrease the function
by making infinitesimal steps.

Usually, we require large training sets for training deep learning models
and achieving a good generalization, especially given the high number of
parameters. However, this increasingly high number of examples and op-
erations becomes training more computationally expensive, up to the point
where propagating the loss for each example because infeasible. For dealing
with this scenario, we can estimate an expectation of the error with a smaller
set of examples instead of using the entire dataset, which conforms the ba-
sis of the SGD method. For doing so, we can sample a subset of examples
(usually referred to as minibatch) drawn uniformly from the training set and
propagate the average of the gradient for the minibatch only (Goodfellow
et al., 2016). This approach allows training larger networks and increasing
the number of examples in the training set while keeping the training times
feasible.

2.4 Markov decision process

The concept of Markov Decision Process (MDP) provides a mathematical
framework for modeling the decision-making of an agent in a given environ-
ment. A MDP is formally defined by a tuple (S,A, π, V ) representing a set
of states S and actions A, a transition probability function π and a function
V evaluating the expected value of transitioning from one state to another
by taking a given action. Let A be the set of actions an agent can take from
any state of the set S; the objective is to learn the optimal policy π(s, a) (i.e.,
the probability of taking action a ∈ A at the state s ∈ S) that maximizes the
long-term reward from the current state, assuming the Markov property. A
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state-value function V (s) is then defined as the expected return (sum future
discounted reward) from state s, based on policy π, while action-values can
be defined as the expected return of taking action a, at state s, Q(s, a).

Temporal difference learning methods have shown to be successful for
learning Q(s, a) (from now on Q), specifically by addressing problems with
large and non-finite states by using function approximation methods. Ap-
proaches found in literature usually rely on the Bellman equation, which
expresses the value of a decision in a given state as an aggregation between
the value at that state and the expected value of its successors states (Sutton
et al., 1998). The two main learning approaches for finding optimal policies
are policy iteration and value iteration. Both use a form of the Bellman
equation, following Bellman’s principle of optimality by breaking the deci-
sion problem into optimal sub-problems. The main difference is that in value
iteration, the value function is iteratively updated, and the optimal policy
is derived from the optimal value function, while in policy iteration, the
policy is iteratively updated and reused while updating the value function
(which applies the updated policy). Value-iteration gave rise to the concept
of Q-learning, where the Q function estimation is adjusted based on a bal-
ance between immediate reward obtained by the action and the estimation
of future reward, weighted by a discount factor. In practice, this equation is
used as an update rule or loss within a function approximation procedure.

In practice, reinforcement learning is typically applied to problems where
one of a pre-defined set of actions at a given state can be tested, and rewards
can be observed. Based on this, the future expected reward can be calculated
by applying the function’s current parameterization to obtain the expected
value of each pre-defined action and the next state. Ideal problems that
account for these characteristics are found in most board games and video
games, where game simulators can be used to explore the search space in
this way. These kinds of environments have been exploited in recent years
for research on reinforcement learning approaches (Mnih et al., 2013; Silver
et al., 2016, 2017). However, when dealing exclusively with historical data,
as in the case of soccer tracking data, we need to figure out a way of learning
the desired distribution (Q, π or V depending on the objective) with a
finite set of observed actions and rewards, which are expected to be a less
comprehensive set of events. Additionally, the selection of long-term and
short-term rewards from data is less straightforward in soccer than in other
games. The difficulty resides in finding an objective metric of success, so the
reward is expressed accordingly. While the long-term reward can be defined
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based on the observed goals or shots in the future, the short-term reward is
more challenging to define since fewer observed actions can be attributed to
a numerical reward value as objective as scoring or conceding goals.

2.5 Probability calibration

Probability calibration deals with the task of producing reliable estimates
that the examples of a distribution belong to a given class (Rüping, 2006).
Depending on the complexity of the problem being modeled, the direct clas-
sification of an example with a class might be insufficient or uninformative
from a practical standpoint. This situation can be even more pressing in
problems where the classes in the target distribution are unbalanced. For
example, in a sport like soccer, where goals are scarce, the task of predict-
ing whether a shot will produce a goal lacks practical value for coaches. A
more helpful outcome would be to understand the probability of that shot
producing goal, which, on the other hand, will allow evaluating situations as
highly advantageous, despite producing seemingly low probabilities. Here,
we address two concepts related to producing calibrated probabilities: eval-
uating a model’s calibration and the post-hoc application of methods for
calibrating a model once trained.

2.5.1 Assessing model calibration

Regarding the evaluation of the calibration of a model producing probabilis-
tic outputs, a common approach is using a calibration reliability plot, also
referred to as reliability diagram (Wilks, 1990). These kinds of plots compare
the average predicted probability for a set of values in several ranges within
the extent of the outcome distribution and the average observed outcome or
class. Typically, the predicted values are grouped into sets of bins, following
either a uniform or a quantile-based binning approach. These diagrams are
usually validated visually, where the objective is to assess how far the points
are plotted in a 2-dimensional (2D)-axis diagram from the ideal calibration
line described by the function y = x. While this visual validation might
be useful to obtain a quick assessment of the segments where the predicted
probabilities range might differ from the average outcome, having a quan-
titative metric for calibration becomes useful to compare calibration across
different models. One metric of this kind that has been used successfully
for evaluating the calibration of neural networks (Guo et al., 2017; Nixon
et al., 2019) is the expected calibration error (ECE) presented in Naeini
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et al. (2015). ECE measures the weighted average of the difference between
the accuracy and confidence of the predictions and observed outcomes across
a series of bins. Borrowing notation from Nixon et al. (2019), let nb be the
number of predictions in bin b, acc(b) and conf(b) the accuracy and confi-
dence of bin b, respectively, and N the number of examples, the ECE metric
can be expressed as in Equation 2.11.

ECE =
B∑
b=1

nb
N
|acc(b)− conf(b)| (2.11)

2.5.2 Post-hoc model calibration

After a model is trained, a model’s calibration assessment might show poorly
calibrated probabilities along with the set of bins. A common approach for
dealing with this is performing a post-hoc calibration, where the predicted
probabilities and the observed outcomes are employed to train a model that
learns how to transform the predicted probabilities to improve calibration.
Two methods have become increasingly popular in machine learning litera-
ture, Platt calibration (Platt et al., 1999) and isotonic regression (Niculescu-
Mizil and Caruana, 2005). Platt’s method applies a sigmoid transformation
on the predictions, which can essentially be approached as learning a logistic
regression on top of the predicted probabilities (Niculescu-Mizil and Caru-
ana, 2005). Literature shows that this kind of calibration has been proved
useful when the calibration reliability plot shows an s-shaped calibration
curve. On the other hand, isotonic regression aims to find a transforma-
tion function that has to be monotonically increasing (i.e., isotonic). An
example of this is the pair-adjacent violators’ method (Niculescu-Mizil and
Caruana, 2005) which finds a step-wise non-decreasing function that trans-
forms ranges of predicted probabilities into single values.

Regarding deep neural networks, Guo et al. (2017) show that many archi-
tectures larger than standard two-layer feedforward networks produce poorly
calibrated models. Specifically, they identify that depth, width, weight de-
cay, and Batch Normalization considerably influence the calibration of the
final learned models. To deal with this problem, Guo et al. (2017) introduce
the temperature scaling method, which can be applied to networks having
a softmax activation as output. Temperature scaling consists of dividing
the vector of logits passed to a softmax function by a constant temperature
value Tp. This product modifies the scale of the probability vector produced
by the softmax function. However, it preserves each element’s ranking, im-
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pacting only the distribution of probabilities and leaving the classification
prediction unmodified.

An important observation for performing post-hoc model calibration is
that the calibration functions or models should not be learned directly from
the training data to avoid bias between the predictions and observed data.
A hold-out dataset should be used instead.

2.6 SHAP (Shapley additive explanations)

The ability to interpret the predictions of a model becomes a critical factor
when the results of a model are intended to be used in practice by field
experts with a non-scientific background. This is particularly important
in sports analytics, where most complex statistical models being built ad-
dress questions or concerns elevated by practitioners, and its results are
intended to be applied by these in practice. This set of practitioners include
coaches, game analysts, physical coaches, sports executives, and even play-
ers. However, to grasp most team sports’ complex relationships, we usually
require to build models with increasing complexity in its structure, which
often produce accurate predictions but lower interpretability. Additionally,
a deep understanding of the factors impacting the models’ outcomes would
support the development of improvements or refinements in the modeling
process.

Lundberg and Lee (2017) present a unified framework for interpreting
model predictions, named SHAP. The authors identified that a set of six
different methods used for providing explanations on different types of mo-
dels, are strongly framed within the additive feature attribution group of
methods. The main approach followed in this methods is constructing an
explanation model such that each feature gets attributed an effect and the
sum of all these effects approximate the output the model, thus providing a
simplified approach for understanding the size of the effect of each feature
(Lundberg and Lee, 2017). The authors introduce the concept SHAP values
which are strongly based on the other concept of Shapley values (Shapley,
2016), an approach strongly based on game-theory for estimating the men-
tioned effects that comply with the properties of local accuracy, missingness,
and consistency, all critical element for additive feature attribution models,
and further explained in (Lundberg and Lee, 2017). Essentially, SHAP val-
ues consist of Shapley values that attribute a weight to a feature based
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on the observed change in the model prediction when only that feature is
available. Interestingly, we can learn how much the model deviates from
the expected value of the model (average prediction) when that feature is
available, providing a deeper understanding of the impact of each specific
feature on the model’s predictions.

In this work, we use the Kernel SHAP method, a model-agnostic approach
for estimating SHAP values on any prediction model. The technical imple-
mentation is borrowed from the Github repository developed by the authors
of the original paper (Lundberg, 2020). From the calculation of SHAP val-
ues for each feature and sample, we make substantial use of two different
plots. One of these visualizations represents the average impact of a feature
on a model’s output, presented through a horizontal bar plot, which essen-
tially represents a feature importance plot. The average importance of each
feature is a valuable piece of information for understanding the relevance of
each feature, identifying features that might not be needed (or redundant),
or even identifying a solid focus (and sometimes bias) of the model to certain
types of features. An additional visualization used is the representation of a
bee swarm plot where for each feature and sample on the hold-out dataset,
we represent the SHAP value of the feature for that example.
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Chapter 3

A theoretical framework for
the expected possession
value (EPV)

This chapter presents a theoretical framework for modeling EPV in soccer.
We first provide a general definition of EPV and introduce a series of crucial
aspects that must be clearly defined when developing an EPV model. Then,
we propose a modeling approach where EPV is addressed as a Markov de-
cision process, and the primary EPV expression is decomposed into a series
of soccer-specific components to gain greater interpretability of the model
for practical purposes. Finally, we provide an overview of how the different
chapters of the thesis contribute to theoretical and experimental work for
modeling the proposed EPV framework, using spatiotemporal tracking data
from professional soccer matches.

3.1 Defining the expected possession value

The expected possession value is essentially an estimate of which team will
score the next goal at any given time. Let G ∈ {1,−1, 0}, where the values
represent the team in control of the ball scoring next, the other team scoring
next, or the match half ending, respectively; the EPV corresponds to the
expected value of G. This value can be seen as an instantaneous estimate of
the future reward that a team can expect to receive, given all the information
available at a given time. Having this, it becomes critical to decide what
kind of soccer-related information would be necessary to provide accurate
estimates of EPV, ensuring that it encompasses the essential concepts taken

65



A framework for the interpretation of spatiotemporal dynamics in soccer

into account by soccer experts (e.g., coaches) when interpreting the game.
While many factors might be considered to influence EPV to a certain degree
(e.g., weather, teams’ physical condition, historical rivalry, teams’ strength,
among others), we consider that the spatiotemporal information derived
from players and ball’s locations is the fundamental piece of knowledge for
successfully modeling EPV. The presented model is designed to be applied on
top of spatiotemporal tracking data and assuming the data is accompanied
and synchronized with event data, consisting of annotated events observed
during the match, indicating the location, time, and other possible tags.

3.1.1 EPV as a Markov decision process

This problem can be framed as a MDP. Let a player with possession of
the ball be an agent that can take any action of a discrete set A from any
state of the set of all possible states S; we aim to learn the state-value
function EPV (s), defined as the expected return from state s, based on a
policy π(s, a), which defines the probability of taking action a at state s.
By approaching EPV in this way, we are essentially focusing on the problem
of estimating the long-term reward (EPV) that a team in possession of the
ball might expect, according to the game situation (state) at any given
time. To estimate this, we need to represent the game state with soccer
spatiotemporal data, define the series of discrete actions that a player can
take at any time (A), and estimate how probable it is that a player takes
that action (π(s, a)), given the game state. In contrast with typical MDP
applications, our aim is not to find the optimal policy π (i.e., what is the
best action the player can take), but to estimate the expected possession
value from an average policy learned from historical data (i.e., which are
the most likely actions).

Let Γ be the set of all possible soccer possessions, and r ∈ Γ represents
the full path of a specific possession. Let Ψ be a high dimensional space, in-
cluding all the spatiotemporal information and a series of annotated events,
Tt(r) ∈ Ψ is a snapshot of the spatiotemporal data after t seconds from the
start of the possession. And let G(r) be the outcome of a possession r, where
G(r) ∈ {1,−1, 0}, with 1 being a goal is scored by the team in control of the
ball, −1 being a goal is conceded, and 0 being that the match half ends.

Definition 3.1.1. The expected possession value of a soccer possession at
time t is EPVt = E[G|Tt]

Following Definition 3.1.1, we can observe that EPV is an integration

Chapter 3 Javier Fernández 66



A framework for the interpretation of spatiotemporal dynamics in soccer

over all the future paths a possession can take at time t, given the avai-
lable information at that time, Tt. Here, Tt is essentially a subset of data
from all the possible spatiotemporal information that could be available
(Ψ), taken at time t. At this modeling stage, we want to express that, while
Tt(r) could take many different shapes depending on the implementation
and data sources available, it essentially represents the available data that
the outcome of the possession G will be conditioned to, when estimating
EPVt = E[G|Tt]. Note that since the probability of a team scoring equals
the opponent team conceding probability and vice versa, we can estimate
and express the EPV from either team’s perspective. Following this, G could
equivalently be parameterized as the home team scoring next, the away team
scoring next, or the half ends. However, we stick to the perspective of the
controlling team throughout for ease of narrative.

This model design approach of EPV as a MDP shares similarities with
previous approaches in other sports, such as basketball (Cervone et al.,
2016b), American football (Yurko et al., 2020), and ice-hockey (Schulte
et al., 2017). Aside from a shared high-level goal, our approach is dras-
tically different from these others, driven by the underlying differences be-
tween the mentioned sports. In Section 3.1.2 and Section 3.2 we present the
particularities of our proposed approach for EPV in soccer.

3.1.2 The foundational elements of the EPV for soccer

Before designing a theoretical framework for EPV in soccer, we need to
understand the game’s main characteristics and how these impact the like-
lihood of scoring or conceding goals. Below we list a series of considerations
that drive the selection of critical components of the model, such as the
definition of the state space, the action space and the reward function, the
type of data to use during the learning and inference stages, and the factors
that condition the overall EPV expression.

3.1.3 Goals are objective but scarce

The only unobjectionable metric of success in soccer is scoring goals. How-
ever, observing a goal is a rare event, typically expected to happen in the
range of [2, 2.6] times per match, or once every 60 times after a team regains
ball control. This is a considerably lower frequency of the score in compar-
ison with other sports such as basketball, where the likelihood of scoring
points is considerably higher, and the game rules impose a time-constraint
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to possessions. In the initial definition of EPV presented in Section 3.1 we
are implictly associating a higher “value” of a possession with a higher like-
lihood of scoring a goal. More specifically, we are focusing on the estimating
the expectation of observing goals in the future. Following this, the men-
tioned imbalance and scarcity of goals must be considered when defining an
estimand for the long-term reward of a possession. Alternative metrics of
success could be considered, other than goals, with the advantage of increas-
ing the number of positive outcomes but with an added risk of introducing
noise. Some examples of these metrics are: observing a shot within the po-
ssession(Power et al., 2017) or after fixed amount of on-ball actions (Decroos
et al., 2019), or the estimated xG of a shot observed within the ball control
of a given team (Bransen and Van Haaren, 2018).

3.1.4 Soccer possessions and long-term rewards

Although there is no definition of possession within soccer rules, this con-
cept is frequently used in game analyses as units encompassing sequences of
actions. The standard approach is to consider possessions the time slots in
which a team controls the ball. However, this definition may vary depend-
ing on the problem and the analysis approach. To estimate the expected
possession value, we need to provide a clear definition of soccer possessions.
In the context of the EPV, we require possessions to have three well-defined
elements: the starting time, the ending time, and an observed outcome. Let
Q be a directed acyclic graph that has a set of possible initial states and
absorbing states (i.e., a state that, once entered, cannot be left), we will say
that a soccer possessions is represented by a finite directed path q, generated
from Q. The starting and ending time of the possession is defined by the
time either an initial or absorbing state is reached, respectively. When we
reach an absorbing state, we will say the possession resets, and the outcome
or reward of the possession is defined by the absorbing state.

In this work we assume that possessions start from a single initial state
represented by kick-offs (i.e., the first event taking place after a half starts
or a goal is scored). Regarding the outcome, we assume three main possible
absorbing states: one of the two teams scores a goal or that a match half
ends. To facilitate the learning process, we consider an additional absorbing
state that is reached when a goal is not observed after a fixed amount of
time ε, from the start of the possession. The value of ε limits the time
span in which an observed action influences a future reward. Notice that
when ε =∞ we return to the original definition of three absorbing states. In
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other action-value approaches related to the EPV , possessions are defined as
consecutive sets of actions of the same team and assume narrower absorbing
states (Power et al., 2017; Decroos et al., 2019; Bransen and Van Haaren,
2018), such as the alternative definitions of long-term rewards described
above in Section 3.1.3. We propose a broader definition of possessions,
where both teams’ on-ball actions can be included within the possession
time range, and the outcome of the possession is set according to the next
team scoring a goal or a match halve ending.

3.1.5 Selecting a finite set of actions

In theory, the set of possible actions that a player with the ball can take
at any time instance is infinite. There is, however, a small and discrete set
of actions that soccer practitioners frequently refer to when describing the
game, including passes, shots, ball touches, take-on, and aerial duels, among
many others. Additionally, human-annotated events for these and other ac-
tion types are easily accessible for professional soccer matches. To achieve
model tractability and increase the understanding of the model by using
familiar terms for coaches, the definition of a finite action-space becomes
useful. While a large set of events might provide a more fine-grained EPV
model, it might also be more challenging to learn and interpret the model.

In this work, the action space is composed by three main types of actions:
passes, ball drives and shots. We will consider a pass any action where a
player intends to transfer the ball’s control to a teammate (including suc-
cessful and missed passes). Shots are all the actions where a player kicks
the ball intending to score a goal. We will broadly define a ball drive as the
action of a player maintaining control of the ball before the next action is ob-
served or the game stops (e.g., dead ball or half end). In general, we consider
that these three represents the smaller set of actions that encompasses most
observable soccer actions. The vast majority (if not all) of named soccer
actions are derived from these three main actions. For example, crosses can
be seen as a type of pass that origins near the opponent’s box and attempted
toward the box. Similarly, other types of passes that coaches usually refer
to, such as passes breaking a formation line, long passes, or a pass back,
can be seen as different types of passes with different contextual conditions.
Similarly, ball drives are expected to encompass more specific types of ball
carries, such as dribbles, ball drives breaking lines, and the long or short ball
carries, in general. A similar explanation follows shots. In general, we con-
sidered that a finite and reduced set of actions would facilitate the model’s

Chapter 3 Javier Fernández 69



A framework for the interpretation of spatiotemporal dynamics in soccer

interpretation for the decomposed model approach presented in Section 3.2.

3.1.6 Comprehensive spatiotemporal information

Given the large dimensions of the soccer field (up to 104m× 68m) and the
high number of players (twenty field players and the two goalkeepers), the
success in a soccer game is highly influenced by the off-ball dynamics of the
players. The legendary player and coach Johan Cruyff once said that “play-
ers only have the ball three minutes on average in a match, what matters
most is what they do when they do not have the ball”. Following this, a
complete EPV model should make sense of soccer’s complex spatiotempo-
ral dynamics, including the player’s positioning, motion information, team-
structure, ball-pressure, and spatial dominance. For doing so, the state
representation of the model must be as comprehensive as possible, including
both spatial and contextual information capturing the mentioned dynamics.
In this sense, spatiotemporal tracking data, providing the location of play-
ers and the ball at a high frequency rate, would allow to extract seemingly
meaningful information that is missing in on-ball event data. Additionally,
event data is a fundamental source to include the observed on-ball actions
and add completeness when learning an EPV model. In this work, we will
make a strong focus on leveraging both tracking and event data to obtain a
comprehensive EPV model.

3.1.7 Passes can go anywhere on the field

A fundamental concept in soccer practice is that, most often than not, passes
are attempted toward an unoccupied space on the field rather than directly
to a player’s location. Given the large size of the field and the difficulty of
being precise either when passing or controlling the ball, the management
of the changing space dynamics becomes a critical factor influencing a po-
ssession’s outcome. Specifically, regarding passes, the success and expected
reward of two passes with the same origin and destination location may vary
drastically depending on factors such as the pressure on the ball carrier, the
density near the destination location, or the motion dynamics of the players
at the moment of the pass. Beyond the evaluation of observed passes, an
EPV model capable of considering every other possible destination location
would provide rich information for assessing off-ball performance, evaluate
risk and reward balance on decision-making, and identify potential actions
with a better expected outcome.
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3.2 A decomposed approach

Both the estimation of the EPV at a given time instance and the time-series
of EPV values during a time range can provide useful information for soc-
cer practitioners. Some examples are evaluating the goal-scoring probability
created during an attack, identifying valuable actions during a possession
(by detecting large slope changes), or even the generation of highlight reels.
However, beyond the single-value estimation of EPV, practitioners would
benefit from gaining more detailed information about the factors that in-
fluence a certain EPV value to be higher or lower. More specifically, and
in order to comply with the fundamental soccer characteristics presented
in Section 3.1.2, we seek an interpretable model that provides rich analyt-
ical information about the impact that players’ positioning in space and
both observed and potential on-ball actions have on the overall EPV esti-
mate. Additionally, being soccer a game where space and time management
is critical, a comprehensive EPV model should contemplate the informa-
tion available at every location on the field. To reach this granularity, we
propose to express EPV as a decomposed model, where the different compo-
nents represent a series of fundamental concepts that influence the long-term
expected value of the possession. By doing so, we can take into account the
different spatiotemporal considerations mentioned above and gain greater
insight into the impact that smaller parts have on the EPV estimate.

Formally speaking, to obtain this desired structured modeling, we will
further decompose Definition 3.1.1 following the law of total expectation and
considering a discrete set of on-ball actions. We assume that the space of
possible actions A = {ρ, δ, ς} is a discrete set where ρ, δ, and ς represent pass,
ball drive, and shot attempt actions, respectively. We can rewrite Definition
3.1.1 as in Equation 3.1, where the expected value of G is conditioned to
the set of possible actions A, and weighted according to the probability of
selecting an action, expressed by P(A = a|Tt).

EPVt =
∑
a∈A

E[G|A = a, Tt]

Action selection
probability︷ ︸︸ ︷

P(A = a|Tt)
(3.1)

Additionally, to consider that passes can go anywhere on the field, we
define Dt to be the selected pass destination location at time t and P(Dt|Tt)
to be a transition probability model for passes. Let L be the set of all the
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possible locations in a soccer field, then Dt ∈ L. On the other hand, we
assume that ball drives (δ) and shots (ς) have a single possible destination
location (the expected player location in the next second and the goal line
center, respectively). Following this, we can rewrite Equation 3.1 as pre-
sented in Equation 3.2. This expression ensures that both the components
estimating the expected value of passes and the pass selection probability
are conditioned to consider every possible destination location on the field.

EPVt = (
∑
l∈L

Joint expected value
surface of passes︷ ︸︸ ︷

E[G|A = ρ,Dt = l, Tt]

Pass selection
probability︷ ︸︸ ︷

P(Dt = l|A = ρ, Tt))P(A = ρ|Tt)

+

Expected value
of ball drives︷ ︸︸ ︷

E[G|A = δ, Tt]P(A = δ|Tt)

+

Expected value
from shots︷ ︸︸ ︷

E[G|A = ς, Tt]P(A = ς|Tt)

(3.2)

The expected value of passing actions, E[G|D,A = ρ], can be further
extended to include the two scenarios of producing a successful or a missed
pass (turnover). We model the outcome of a pass as Oρ, which takes a
value of 1 when a pass is successful or 0 in case of a turnover. We can then
rewrite this expression as in Equation 3.3. In this step, we are enforcing
the expression to consider the impact of the action-outcome, as well as
conditioning this outcome to the selected destination location.

E[G|A = ρ,Dt, Tt] =

Expected value of
successful/missed passes︷ ︸︸ ︷

E[G|A = ρ,Oρ = 1, Dt, Tt]

Probability of
successful/missed passes︷ ︸︸ ︷

P(Oρ = 1|A = ρ,Dt, Tt)

+E[G|A = ρ,Oρ = 0, Dt, Tt]P(Oρ = 0|A = ρ,Dt, Tt)

(3.3)

Equation 3.4 represents an analogous definition for ball drives, having
Oδ be a random variable taking values 0 or 1, representing a successful ball
drive or a loss of ball control following that ball drive, which we will refer
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as a missed ball drive.

E[G|A = δ, Tt] =

Expected value of
successful/missed

ball drives︷ ︸︸ ︷
E[G|A = δ,Oδ = 1, Tt]

Probability of
successful/missed

ball drives︷ ︸︸ ︷
P(Oδ = 1|A = δ, Tt)

+E[G|A = δ,Oδ = 0, Tt]P(Oδ = 0|A = δ, Tt)

(3.4)

Finally, the expression E[G|A = ς] is equivalent to an xG model, de-
scribed in detail in Section 2.2.4. In Figure 3.1 we present how the outputs
of the different components presented in this section are combined to pro-
duce a single EPV estimation, while also providing numerical and visual
information of how each part of the model impacts the final value. All the
proposed components represent concepts that are familiar to soccer practi-
tioners. Ideas such as identifying that a particular pass might have higher
scoring value or lower likelihood to be completed, that certain shot attempts
are more likely to become goal than others, or that the next action to se-
lect might be impacted by the location of the 22 players and the ball, are
part of the analysis mindset of professional soccer coaches. By providing
coaches with a tool for both analytical and visual interpretation capabilities
that considers these familiar concepts, we expect to ease the integration of
data-driven analysis within professional coaching staff.

Essentially, this structured approach allows us to express the future ex-
pected outcome of a possession as a combination of the expected impact
of taking a pass, attempting a ball drive, or shooting to the goal. Addi-
tionally, by further decomposing the model considering both successful and
unsuccessful outcomes for any of these actions, we provide our EPV frame-
work with capabilities for assessing the risk associated with every possible
action. This granular structure enables one to develop separated and more
fine-grained models for each of the problems comprised in these components.
This decomposed nature allows the models to be extended or adapted inde-
pendently, which becomes a useful feature for integrating new data sources
or usage-specific constraints without re-estimating the full model. For in-
stance, the xG component, E[G|A = ς], could be re-estimated when there is
the availability of new observed shot events, without needing to re-estimate
the rest of the models related to passes and ball drive actions. In other
examples, the action selection probability might be re-calculated to account
for team-specific passing tendencies (e.g., short pass vs. long pass playing
styles), or the pass probability component could be extended to include new
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Figure 3.1: Diagram representing the estimation of the EPV for a given game situation.
The final EPV estimation of 0.0239 is produced by combining the expected value of three
possible actions the player in possession of the ball can take (pass, ball drive, and shot)
weighted by the likelihood of those actions being selected. Both pass expectation and
probability are modeled to consider every possible location of the field as a destination.
The predicted surfaces for successful and unsuccessful potential passes and the surface of
destination location likelihood are presented.
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features related to players’ body orientation when passes are taken (Arbués-
Sangüesa et al., 2020a).

3.3 Developing a comprehensive model

To develop a functional model for the EPV framework presented in this
chapter, we need to estimate each of the separated components presented
in Section 3.2. In Section 3.1 and Section 3.1.2, we argued that a compre-
hensive EPV model that can be used in practice to provide information to
coaches necessarily requires capturing a set of fundamental spatiotemporal
dynamics of soccer. For any game situation, this includes considering the
location of the 22 player and the ball, the idea that passes can be attempted
towards any location on the field and incorporating contextual information
that is expected to impact the player’s decision making.

In the following chapters, we present the development process followed
in this thesis to estimate each of the proposed decomposed approach compo-
nents, using machine learning and statistical models on top of spatiotempo-
ral tracking data from professional soccer matches. In Chapter 4 we develop
a statistical model for estimating the spatial control from both teams’ and
players’ perspectives. From this approach, we derive a set of spatial fea-
tures, including the ball-carrier pressure and player’s relative density across
the field, used for estimating several of the EPV components. In Chapter 5
we introduce a deep learning architecture, named SoccerMap, that provided
the groundwork to estimate full probability surfaces for the pass probability,
pass selection likelihood, and pass expected value components. In Chapter
6 we first present a set of novel spatial and contextual features derived from
spatiotemporal tracking data that are used as representative features for
estimating each of the components. We then present the learning method-
ology and the experiments carried out to build calibrated models for all the
EPV components and the joint EPV estimation. Between these chapters
and Chapter 7 we present over ten different practical applications derived
from this framework providing detailed examples of how a soccer practi-
tioner can develop a fine-grained analytical and visual interpretation of real
soccer situations.
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Chapter 4

Developing spatiotemporal
features for soccer

In this work, we approach the estimation of EPV by following the compre-
hensive framework presented in Chapter 3, where EPV is defined based on
a series of components. Estimating these components necessitates thorough
game state representations to capture the complex spatiotemporal relation-
ships involved in each of these problems. For example, the pass probability
component would benefit from features providing information about all the
players’ location and their velocity to estimate the probability of attempting
a pass into an open space. Similarly, the shot expected value component
could produce better estimations if we provide information about the num-
ber of players potentially blocking the shot or opponents’ density in the
shooting area. Following this idea, ball drives success might be influenced
by the level of spatial pressure on the ball carrier, and the expected value
from ball drives might vary drastically depending on the relative location of
the opponent team.

This chapter presents a detailed definition of a comprehensive set of fea-
tures derived from tracking and event data. Figure 4.1 presents a visual
representation of the main features described in this section. These fea-
tures constitute the essential building blocks for game representations used
across the different models built for estimating the expected possession value
framework (presented in Chapter 5 and Chapter 6). The features developed
can be either low-level or high-level. Low-level features are those that can be
directly derived from tracking and event data, such as the locations and ve-
locity of players or the distance and angle between the players and the event
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or goal location. On the other hand, high-level features comprised a series
of soccer-specific knowledge and were developed in close collaboration with
a group of professional soccer analysts from FC Barcelona. Conceptually,
we group all the developed features into two groups: spatial and contextual
features. In this chapter, we present the technical details followed for devel-
oping these features and a series of practical applications where these can be
used independently for advanced analysis of soccer situations. Finally, we
present the methodology followed within the collaboration with the soccer
analysts that contributed to this work.

Figure 4.1: Visual representation of a series of spatial and contextual features in a soccer
match situation. Blue and red dots represent the attacking and defending team players,
respectively, while the green dot represents the ball location. The blue and red surface
represents the pitch control of each team along the field. The grey rectangle covering
the red dots represents the defending team’s formation block. The green vertical lines
represent the defending team’s vertical dynamic formation lines, while the polygons with
solid yellow lines represent the players clustered in each pressure line. The black dotted
rectangles represent the relative locations between dynamic formation lines. Dotted yellow
lines and associated text describe the main extracted features
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4.1 Normalizing spatiotemporal data

The different models presented in this work are developed on top of two
main types of spatiotemporal data in soccer: tracking data and event data.
The main characteristics of both data types are explained in detail in Section
2.1. While the specific sampling rate and event types available might vary
from one data provider to another, we will assume that a set of minimum
information is provided for both data sources. For event data, we assume
that the origin location, the event type, and the time the event occurs are
available. Additionally, we will assume that the destination location is avai-
lable for passes. In the case of tracking data, we assume the data includes
the location of all the players and the ball, the team to which player belongs,
and that the data is provided at least once for every second. For both data
sources, we assume the x and y location take values in a [0, 1] interval, and
the dimensions of the soccer field where the match took place are available
(normally available in public sources as well). Also, the data must include
a “half start” event indicating the start of every half of the match. We will
refer to both data sources as spatiotemporal data.

Following the decomposed model presented in Section 3.2 we are ap-
proaching the estimation of the expected possession value from the team’s
perspective in possession of the ball. Specifically, we are evaluating the long-
term reward of the possession based on the actions that the player in control
of the ball can take at any moment. From the perspective of a given team,
we can easily observe that the perceived value of moving the ball close to
the opponent’s goal is different from moving the ball close to their own goal
in a mirror location. Based on this, we normalize the spatiotemporal data
from the perspective of the team carrying the ball at any given time, so the
defending team’s goal is always on the rightmost side of the field, and their
attacking team’s goal is on the leftmost side of the field. Following this, for
every available action, the data is normalized based on the perspective of
the team taking that action.

Note that to apply this normalization, we first need to identify each
team’s own goal, given that teams change side in every half of the game.
For every half start event, we count the number of players of each team
in both halves of the field and label each teams’ goal as the goal location
belonging to the half with a majority number of players. Figure 4.2 presents
three game situations of a match in the first half for two teams: yellow and
blue team. We can see that at the half starting time, the yellow team and
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blue teams defending goals are identified based on the count of players on
each side of the field. A pass event from the yellow team was observed at
minute 2, and data is normalized to ensure left to right attacking direction.
In the last image, a pass from the blue team was observed in minute 8 of
the same half, and the data is normalized to adjust the teams attacking
directions.

Figure 4.2: Three images representing the normalization of spatiotemporal data based on
the team attempting the next action. The left plot shows the identification of both teams’
goals based on their location at the time of the half-start event. The center and right
plots show how the locations are normalized based on the team taking the next action to
ensure left to right attacking direction. The reference system is represented by the two
axis on top of the left plot.

On the other hand, while all the spatiotemporal data locations are as-
sumed to be defined in a [0, 1] range, many of the features used in this work
would benefit from expressing the locations using a coordinate system eas-
ier to interpret. The allowed length and width in professional soccer fall in
the [90m, 120m] and [45m, 90m] ranges, respectively. Given that the soc-
cer field’s sizes can vary from one venue to another, it becomes critical to
consider this in the data transformation since this will considerably impact
the calculation of distances and velocities. In this work, we transform the
spatiotemporal locations to the metric system. Given the length and width
of a soccer field (w, h) and a given location (x, y) in the [0, 1] coordinate
system, we calculate the relative coordinates in meters xm and ym following
the expression (xm, ym) = (x× (w − 1), y × (h− 1)).

4.2 Spatial features

We consider spatial features directly derived from the players’ spatial loca-
tion and the ball in a given time range. These can be obtained for any game
situation regardless of the context and comprise mainly physical and spatial
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information. Table 4.1 presents the main types of spatial features explored
in this work, and from which the specific features used in Chapter 5 and
Chapter 6 are derived. The main spatial features obtained from tracking
data are related to the location of players from both teams, the velocity
vector of each player, the ball’s location, and the location of the opponent’s
goal at any time instance. From the player’s spatial location, we also pro-
duce a series of features related to the control of space and players’ density
along the field. In the following sections, we describe the technical details
for deriving features from each of these spatial concepts.

Table 4.1: Description of a set of spatial concepts derived from tracking data

Concept type Description

(x,y) location Location of a player, the ball, or attemp-
ted action, normalized in the [0,w) and
[0,h) ranges, respectively, where w and
h correspond to the length and width of
the soccer field. The location (0,0) corres-
ponds to the top-left corner.

Distance between locations Distance in meters between two locations.
Angle between locations Angle in degrees between two locations.
Player’s velocity Player’s velocity vector in the last second.
Pitch control Probability of controlling the ball in a spe-

cific location.
Pitch influence Degree of influence of a set of players in a

specific location.
Interceptability Features related to ball interception.

4.2.1 Distance, angle, and velocity

Before describing the approaches for calculating distances, angles and veloc-
ities, lets define the formal notation followed. Let p and q be two locations
in a soccer field such that p = (px, py) and q = (qx, qy) where px and qx
represent the x-axis coordinate and py represents the y-axis coordinate. Let
w and h be the length and height of a soccer field, then px, qx ∈ [0, w) and
py, qy ∈ [0, h).

We calculate the distance between two locations p, q in terms of the
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Euclidean distance d expressed in Equation 4.1.

d(p,q) = ‖p− q‖ =
√

(qx − px)2 + (qy − py)2 (4.1)

We will represent a player’s velocity in terms of the change of the loca-
tion in the x-axis and y-axis in the last second, relative to the opponent’s
goal. Let pt and pt−1 be the location of a player at time t and time t−1, rep-
resenting one second before, we express the velocity of v at time t following
Equation 4.2.

v = pt − pt−1 = (ptx − pt−1
x , pty − pt−1

y ) (4.2)

Another spatial feature used in this work is the angle between a player’s
location and the opponent’s goal. Let g = (w, h/2) be the location of
the opponent’s goal, and p the players’ location, the angle to the goal is
calculated as the angle between two locations in the plane z = (1, 0). This
calculation is expressed in Equations 4.3 and 4.4.

w =
g − p
‖g − p‖

(4.3)

θ = atan2(‖w × z‖,w · z) (4.4)

We also calculate the angle between a player’s velocity vector and every
other location on the field r. Let u be a player’s velocity vector centered at
a players’ current location p, and v be a vector such that v = r − p then
the angle between the two vectors is defined by Equation 4.5.

θ = atan2(‖u× v‖,u · v) (4.5)

4.2.2 Quantifying spatial influence and control

One of the most recurrent aspects in coaches’ analysis of soccer situations is
the concept of space. Being that the typical size of a soccer field is 7140 m2

and that the outcome of the game results on the interaction of 22 players
within this large area, one can understand that the management of space
in time is a critical aspect for successfully disentangling the complexity of
this game. The movement dynamics of players in space is one of the most
unexplored topics in soccer analytics, yet coaches consider this aspect a fun-
damental one. There is at least one statistical reason for that: on average,
players spend only 3% of their playing time without being in contact of the
ball. In the words of one of the most renowned players and coaches in the
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history of soccer, Johan Cruyff, “it is statistically proven that players have
the ball 3 minutes on average. So, the most important thing is: what do
you do during those 87 minutes when you do not have the ball? That is
what determines whether you are a good player or not”.

Either to measure the success probability of on-ball actions, to estimate
the goal expectation of a given play, or to understand the effect of players’
movement in time, among many others, almost any kind of spatiotempo-
ral analysis in soccer would greatly benefit from a model that can estimate
players’ influence and ownership of any location on the field, typically re-
ferred as pitch control. Pitch control is a recurrent concept in the analysis
of space dominance in team sports. It can be defined as the probability of
controlling the ball that a player has on a given location in time, as thor-
oughly explained in Section 2.2.1. Most of the models found in literature,
such as the Voronoi tesselation-based approaches, are designed based on the
assumption that a given location on the field is exclusively dominated or
influenced by only one specific player. This idea disregards the concept that
ownership of space is continuous, not discrete, with uncertainty in who con-
trols areas between players. The distance between players and the ball is
also believed to influence the relative positioning and degree of space con-
trol, especially for sports with wider playing spaces such as soccer; however,
this is not considered by the mentioned approaches.

We propose a novel pitch control model that considers the location, veloc-
ity, and distance to the ball for all the players, providing a smooth surface of
control for each team. Every player’s influence is computed and summarized
for any given location, resulting in a probability of control. An additional
objective of this approach was to provide a model that could be applied from
the information available in a single data frame without requiring any other
prior data for learning its parameters. Also, such a model would allow eas-
ier reproducibility. Regarding visual interpretation, this model can produce
entire pitch control surfaces at 140Hz (140 frames per second), allowing
coaches to receive a real-time visual representation of space ownership du-
ring a match.

In this section, we present the technical details of a pitch influence model,
measuring the degree of space reachability or ownership of individual players,
and a pitch control model quantifying a team-level degree of control for any
location on the field. These two models are used to produce spatial control,
and spatial pressure features used extensively in the models presented in
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Chapters 5 and 6.

Quantifying players’ spatial influence

Before calculating pitch control from a team perspective, we first define a
model for measuring individual player influence on the field. We approach
this concept of influence as the probability of a player reaching any location
on the field, conditioned to the ball’s location and player’s velocity. There
are several reasons to consider these two elements. Depending on their loca-
tion in time, players are expected to have different influence levels on nearby
zones. When a player is far away from the ball, his level of influence can be
understood as a wider area, based on the reasoning that if the ball moves
towards the player, he would have more time to reach the ball within a larger
space. On the opposite, when closer to the ball, the player has less possibili-
ties of reaching the ball if it moves away from its current location. Also, the
player’s velocity plays an essential role in defining this area of influence. A
player moving at running speed might have more influence in the direction
of speed than if they were walking or jogging. Furthermore, the player may
have higher levels of influence in nearby spaces than in farther spaces.

Based on this reasoning, we propose defining the player influence area
through a multivariate normal distribution, whose shape can be adjusted
to account for the player’s location, velocity, and relative distance to the
ball. A degree of influence or control can be calculated at any given location
through the distribution’s probability density function. As explained later
in Section 4.2.2 this model was developed in close collaboration with profes-
sional soccer coaches. The reason for deciding a prior distribution resides on
the need to provide a model as interpretable and flexible as possible, where
we could directly introduce the expert considerations on modeling the con-
trol of space.

For a given location in space p at time t, the probability density function
of player’s i reach is defined by a standard multivariate normal distribution
f , with mean µi(t) and covariance matrix

∑
i(t) given the player’s velocity

~s and angle θ. The mean and covariance matrix are calculated from the
player’s velocity and location and the ball’s location. The details of this
calculations are presented in Section 4.2.2. Once we have a model for a
players’ reach surface model, we define the player’s influence model I for
any location p, as the value of f at that location normalized by the value of
f at player’s current location pi, as shown in Equation4.6, which provides a
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degree of influence within a [0, 1] range.

Ii(p, t) =
fi(p, t)

fi(pi(t), t)
(4.6)

Figure 4.3 presents the player influence area in two different situations
regarding the player’s distance to the ball and velocity. Here we can observe
how depending on the ball’s distance, the player’s range of influence varies.
Also, the distribution of player influence is reshaped to be oriented according
to the direction of movement and stretched in relation to the speed. If
the player is in motion, the distribution is translated so the higher level
of influence is near points where the player can reach faster, according to
his speed. This model can easily be expanded to handle player-specific
movement characteristics, such as acceleration and maximum speed.

(a) Player influence area for player in
control of the ball and a speed of 1
m/s.

(b) Player influence area for player 12
meters away from the ball, running at
6.36 m/s in a 45 degrees angle

Figure 4.3: Two situations representing the player influence area.

Employing coach-led priors for estimating player influence

This model’s development was supported by the expert advice of a series of
professional coaches from FC Barcelona (see details on the work methodol-
ogy in Section 4.5). In this section, we provide technical details for calcu-
lating a player’s influence surface at any given time and explain the series
of soccer-specific considerations that were introduced in the model.
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As presented in Section 4.2.2, the influence degree Ii value presented in
Equation 4.6 is expressed in terms of the probability density function of a
bivariate Gaussian distribution defined by Equation 4.7

fi(p, t) =
1√

(2π)2 det Σi(t)
e(− 1

2
(p−µi(t))T Σi(t)

−1(p−µi(t))) (4.7)

Given this expression, we have two main parameters that can be adjusted
to model the player’s influence area: the mean (µ) and covariance matrix
(Σ) of the distribution. From a practical perspective, we are modeling the
probability of a player reaching a location before the ball. Based on this,
we want to model the µ and Σ parameters, so the reach distribution consid-
ers the distance of the ball and the player’s velocity vector. Specifically, we
want to consider that the farther away from the ball, the larger the influence
area of the player, and also that the direction and magnitude of the player’s
velocity will impact that angle and the magnitude of the principal axes of
the distribution.

We will first decompose the covariance matrix into a rotation and scale
matrix whose parameters are easier to interpret and customize. Using the
singular value decomposition algorithm, we can express the covariance ma-
trix as a function of its eigenvectors and eigenvalues as expressed in Equation
4.8, where W is the matrix whose columns are the eigenvectors of Σ, and
L is the diagonal matrix whose non-zero elements are the corresponding
eigenvalues (Spruyt, 2014). Let A = W and S =

√
L, we can define A as a

rotation matrix and S as a scaling matrix, allowing to express the covariance
as in Equation 4.9. Based on this, the rotation matrix and scaling matrix
can be defined as Equations 4.10 and 4.11, where θ is the rotation angle
of the velocity vector and, sx and sy are the scaling factors in the x and y
direction.

Σ = WLW−1 (4.8)

Σ = ASSA−1 (4.9)

A =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
(4.10)

S =

[
sx 0
0 sy

]
(4.11)
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Following this decomposition of the covariance matrix, we can now de-
cide the parameters influencing the distribution’s shape using soccer-specific
information. The rotation matrix is defined by a single angle parameter (θ),
which can be obtained by calculating the angle of the velocity vector with
respect to the x-axis. By defining θ in this way, the distribution orientation
will follow the velocity vector’s direction.

On the other hand, we need to define how to calculate the parameters
sx and sy which represent the spread of the distribution in its two principal
components. For defining these scaling factors, we want to take into account
both the player’s magnitude of speed Vi(t) (in meters per second) and the
distance to the ball di(t). We will say that both scaling factors are composed
by two main elements: a stationary reach function Ri(di, t) and a speed
expanding factor E(Ri(di, t), Vi(t)). Given two weighting parameters λx
and λy, then sx and sy are defined as in Equations 4.12 and 4.13.

sx = Ri(di, t) + λxE(Ri(di, t), Vi(t)) (4.12)

sy = Ri(di, t) + λyE(Ri(di, t), Vi(t)) (4.13)

The stationary reach function Ri estimates a player’s influence radius
when the player starts from rest, conditioned to the distance to the ball’s
distance di(t). Based on expert soccer analysts’ opinion and through exper-
imental observations, we set Ri(di, t) ∈ [4, 10] as the minimum and maxi-
mum distance in meters for the reach radius. Specifically, Ri(di, t) follows
the transformation function shown at Figure 4.4.

Once we have the stationary reach function, we need to decide how the
distribution spread changes according to the ball’s distance and the player’s
velocity. Following the observations of the soccer experts we will consider
an inversely proportional relationship between sx and sy, by setting λx = 1
and λy = −1. Intuitively, as the player’s speed increases, the higher the
reach in the direction of the velocity and the lower the spread of the y-axis,
representing an increased difficulty to changing direction. We will define
the expanding factor E(Ri(t), Vi(t)) so that it represents an estimate of how
much would the stationary reach increase in a given direction, provided the
player’s current speed. Setting 13m/s as the maximum possible speed reach-
able, we calculate the ratio between player’s speed and the maximum speed,
expressed by Srati(V, t), as shown in Equation 4.14. Finally, given the two

Chapter 4 Javier Fernández 86



A framework for the interpretation of spatiotemporal dynamics in soccer

Figure 4.4: Player influence radius relation with distance to the ball

weighting factors γx and γy, the scaling matrix is defined as in Equation 4.15.

The last parameter we need to define is the distribution mean value µi(t).
To take into account player’s velocity we will calculate µi(t) by translating
the players location pi at time t in the direction of the speed vector ~s,
weighted by constant factor γµ, as expressed in Equation 4.16.

Srati(V, t) = (
Vi(t)

13
)2 (4.14)

Si(di, t) =

[
Ri(di, t) + γx(Ri(di, t)Srati(Vi(t))) 0

0 Ri(di, t)− γy(Ri(di, t)Srati(Vi(t)))

]
(4.15)

µi(t) = pi(t) + γµ~si(t) (4.16)

In the final model, the remaining constant parameters are set in the
following way: λx = 1, λy = −1λx, γx = γy = 0.5, γµ = 0.5.

4.2.3 Estimating team-level pitch control

We then define pitch control as an aggregation of the influence that player’s
from both teams have at every location of the field, providing a value of
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control within a continuous range. Equation 4.17 presents a team’s pitch
control at location p and time t, where i and j refers to the index of the
player in each opposing team, σ is the logistic function, δa and δd are weight
parameters to allow balancing the overall influence of the attacking and
defending team, respectively, and γpc is an adjusting factor for the logistic
function. Here, the logistic function σ transforms the subtraction of each
team’s accumulated individual influence area into a degree of control within
the [0, 1] range. Figure 4.5 presents this probabilistic pitch control surface on
a given soccer situation, while Figure 4.6 presents the surface of influence of
each player in the attacking team. Pitch influence and pitch control provide
a rich summary of players’ spatial distribution and impact along the playing
surface and can enrich the information on locations where players might have
some influence, despite not being directly present. The model used along this
work sets the constant parameters to the following values: γpc = δa = δb = 1.

PC(p, t) = γpcσ(δa
∑
i

Ii(p, t)− δd
∑
j

Ij(p, t)) (4.17)

4.2.4 Space quality and value

While the control of space is a useful feature for understanding the level of
spatial dominance of player or a team, some concepts such as space creation
require to add an understanding of the quality of the controlled space. In
other words, the quality of positioning of a given player can be associated
with having the best possible control of the space, and doing so for spaces
with higher value. We could then express the quality of owned space Q as
a function of the level of ownership (control) PC and the value of space V ,
as presented in Equation 4.18.

Q(t) = PC(t)V (t) (4.18)

The level of ownership at any location of the field, PC, can be modeled
directly using the pitch control model presented in Section 4.2.3. On the
other hand, to model the pitch value V , we present in this section an early
approach for quantifying the value of any location on the pitch, relative to
the location of the defending team. Here we will focus only on the technical
characteristics of this model, and later in Section 7.2.3, we present a series
of practical applications employing the quality of space owned, Q, where we
introduce the concepts of space occupation and generation.
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Figure 4.5: A probabilistic pitch control surface for two teams in a soccer game situation.
The circle corresponds to the players’ location where the attacking team’s players appear
in blue and the opponent team’s players in red. White arrows show the direction of player’s
velocity vector, ending at the expected location in one second. Pitch control is calculated
from the attacking team’s perspective, so the higher the value, the higher the control of
the attacking team.
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Figure 4.6: The sum of player pitch influence in every location for every player in the
attacking team. The circles correspond to players’ location where the attacking team’s
players appear in blue and the opponent team’s players in red. White arrows show the
direction of player’s velocity vector, ending at the expected location in one second.

The sole fact of moving for finding better passing options is an advan-
tage itself. However, it can be easily argued that not every space has the
same value. A trivial method for determining the value of space is its dis-
tance to the opponent’s goal. Its well known that spaces near the goal have
an increased value, given the advantage that would provide to dominate
them. But exploring more deeply into the dynamics of soccer, and based
on the opinion from F.C. Barcelona expert analysts, it can be also argued
that the value of space changes dynamically depending on multiple posi-
tional factors, such as the location of the ball and the players. In order
to quantify in a detailed way the value of the space generated or occupied
we provide a model for finding the relative pitch value on every position of
the field, depending on the location of the ball. This link presents a video
where the dynamic evaluation of pitch value depending on the ball location
can be observed, following the pitch value model presented in this section:
http://www.lukebornn.com/sloan/field_value.mp4.

We base the development of this model in the following hypothesis: con-
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sidering a sufficiently high number of situations, the defending team dis-
tributes itself throughout the field in a manner which covers high value
spaces. Although it is clear that at any given point defenders will deviate
based on overloads, specific offensive player positioning, and other scenarios,
in general, most defenders will remain close to high value areas. Based on
this, we propose to develop a model capable of estimating the sum pitch
influence that a defensive team would have in a given location on the field,
given the location of the ball. Formally speaking, we want to learn a func-
tion f with parameters θ that is able to estimate the space value at any
given location pl(t), provided the ball location pb(t). The space value at
location V is expressed in Equation 4.19.

Vl(t) = f(pb(t), pl(t); θ) (4.19)

For learning such a model, we use a standard feed forward neural network
architecture, which is trained to estimate the defender’s team pitch influence
at given location pl, given the ball location pb(t). We employ Metrica Sports
tracking data for 20 matches of the first (La Liga) and third (Segunda B)
Spanish divisions, to build a dataset with 2.4 million examples, consisting of
the location of the ball and the pitch influence for the defending at any other
location in the field. The dataset is constructed in three steps. First, a series
of game situations are selected where a given team is in possession of the
ball, and the opponent team is identified as the defending team. Second, the
sum of pitch influence for every defending player at every location l within
a 21 × 15 grid representing the soccer field, is calculated. Finally, for each
of the locations in the field grid, one example of the dataset is produced,
consisting on the location of the ball at that time, and the calculated pitch
influence for the defending team at that location. To avoid a high correlation
between events close in time, we pick time instances within the possession
time, that are three seconds away from each other. The pitch influence
of the defending team at a location pl and time t, expressed by Dl(t), is
defined in Equation 4.20. The target pitch value V̂l(t) used during learning
is presented in Equation 4.21. This target value equals the defending team’s
pitch influence value, but is restricted to the [0, 1] range, by imposing a
maximum value of 1 to this density.

Dl(t) =
∑
d

Id(pb(t), pl(t)) (4.20)

V̂l(t) =

{
1 Dl(t) > 1

Dl(t) otherwise
(4.21)
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(a) Pitch value for ball vertically cen-
tered at the first quarter of the field

(b) Pitch value for ball at the center
of the field

(c) Pitch value for ball at the third
quarter of the field on top of the left
lane

(d) Pitch value for ball vertically cen-
tered in the fourth quarter of the field

Figure 4.7: Predicted pitch value in a [0,1] range for the ball location represented by a
white circle

We randomly sample the available data into a training and test set con-
sisting following a 3:1 ratio. We carry out a 10-fold cross-validation process,
using ADAM optimization, and minimizing the MSE loss. We set the β1 and
β2 parameters to 0.9 and 0.999, and perform a grid search on the learning
rate ({1e−3, 1e−4, 1e−5, 1e−6}), and batch size parameters ({16, 32}). We
select the model that minimizes the average error across the 10 folds. Given
a ball location, we can now query the model to predict the pitch value at any
location on the field. Figure 4.7 shows three different ball position scenarios
and the obtained field valuation.

This model has learned that nearby locations to the ball have increasing
value for a certain range, while understanding effectively how to translate
this value depending on ball position. The model still lacks from the nat-
ural intuition that the cumulative value of space is higher when further up
the field, closer to the opponent’s goal. In order to adapt to this intuitive
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(a) Distance to goal pitch value
normalization surface

(b) Normalized pitch value for
ball vertically centered at the
first quarter of the field

(c) Normalized pitch value for
ball at the center of field

(d) Normalized pitch value for
ball vertically centered the fourt
quarter of the field

Figure 4.8: Predicted pitch value in a [0,1] range for given ball location, represented by a
white circle, normalized by a distance to goal model

thinking we normalize the obtained pitch value by the distance to the goal of
every location normalized on a [0, 1] range. Figure 4.8 presents the normal-
ization surface and three different pitch value situations, where the results
still adapt to ball location but show a more consistent valuation of the pitch
which adjusts for the threat of the ball location, according to expert ana-
lysts. We see that when one’s own goalkeeper has the ball, the overall value
of space is limited, but when in the opponent’s box, space is much more
valuable alongside the looming threat of a shot on goal.

4.2.5 Block count and interceptability

The last spatial concept presented in Table 4.1 refers to the capacity of in-
tercepting the ball. The features derived from the interceptability concept
are expected to play an essential role in capturing the opponents’ spatial in-
fluence near shooting options, allowing us to produce a more detailed model
for estimating the expected value from shots. Here, we will focus on two
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interceptability features: shot blockage and shot pressing.

The shot blockage feature refers to the number of players blocking a
shooting option. We calculate this value by counting the number of defend-
ing players located inside the triangle formed by the two posts’ location and
the ball carrier’s location (i.e., the player attempting the shot). To calcu-
late the number of players located within the triangle, we use the point-
in-polygon ray casting algorithm described in Hacker (1962) and Haines
(1994). Following this algorithm, we say that a player located in a given
(x, y) location (for x, y ∈ [0, 1]) is inside the triangle, if the line constituted
by the player’s location and the point (1, 0) intersects any edge of the tri-
angle an odd number of times, otherwise we say the point is outside the
triangle. On the other hand, for the player pressing feature, we count the
number of defending players less than 3 meters away from the ball carrier.
The professional coaches selected the 3 meters value when being consulted
about the higher ball carrier distance considered ball pressure. Additionally,
since goalkeepers can touch the ball with their hands, we consider they show
different blocking and pressing dynamics, so we do not include then in either
of the features.

Figure 4.9 presents two game situations where a ball carrier attempts a
shot. In the left case, the defenders are located within the triangle between
the ball carrier and the two posts, producing a blockage count of three, while
there is no pressure on the ball. In the situation on the right, three players
are pressing the ball carrier, including a defender that is also potentially
blocking the shot. If we would employ only event data, these two situations
would only contain information about the ball carrier’s location and would
overestimate the expected value of the shot.

4.3 Contextual features

To provide more comprehensive state representations, we include a series of
features derived from soccer-specific knowledge, which provides contextual
information to the model. Table 4.3 presents the main concepts from which
multiple contextual features are derived.

The dynamic lines capture alignment groups between the players of a
given team and provide a way of contextualizing the pitch locations relative
to the players’ locations. For example, by identifying the defending team’s
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Figure 4.9: Two game situations where a shot event was observed. Yellow and blue
circles represent the attacking and defending team, respectively. A red contour indicates
a player is located within the triangle formed between the two posts and the ball and can
potentially block the shot. A green contour indicates the player is less than 3 meters away
from the ball and pressing the ball carrier. We do not show the location of the goalkeepers
in either plot.

formation lines at any given time, we can capture contextual information
such as potential passes breaking lines or the current phase of the possession,
which would allow differentiating spatiotemporal dynamics within a posse-
ssion. In Section 4.3.1 we present the technical details for calculating the
dynamic formation lines from tracking data, while in Section 4.4 we present
a series of practical applications that are directly derived from this concept.
From the concept of outplayed players, we can derive features such as the
number of opponent players to overcome after a given pass is attempted or
the number of teammates in front of or behind the ball, among many similar
derivatives. This is explained in more detail in Section 4.3.3. Additionally,in
Section 4.3.2 we present the technical details for developing the baseline xG
model used in Chapter 6.

4.3.1 Dynamic formation lines

The concept of dynamic formation lines refers to players being aligned with
their teammates within different alignment groups. For ease of narrative, we
will refer to a defending team’s formation lines as ”pressure lines.” A typi-
cal conceptualization of pressure lines in soccer would be the groups formed
by the defenders, the midfielders, and the attackers, which tend to keep a
consistent alignment. By identifying the pressure lines, we can obtain every
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Table 4.2: Description of a set of contextual concepts derived from tracking data

Concept type Description

Dynamic formation lines Relative positioning of players according
to the team’s current formation or the op-
ponents.

Baseline event-based models Models built on top of event data and
used as a baseline to enrich the learning
of tracking data-based models.

Outplayed players the number of players that are surpassed
after an action is attempted.

player’s opponent-relative location, which provides high-level information
about players’ expected behavior. For example, when a player controls the
ball and is behind the opponent’s first pressure line, we expect a different
pressure behavior and turnover risk than when the ball is close to the third
pressure line and the goal.

We will refer to two types of groups: vertical and horizontal formation
lines. Vertical formation lines are obtained by clustering players based ex-
clusively on the x-coordinate of their location, while horizontal formation
lines only uses the y-coordinate. We approach the identification of the for-
mation lines through a complete-linkage clustering, where the distance be-
tween clusters is given by the distance between the two farther away points
in each cluster. Formally, given a set of n player locations P = {p1, ..., pn},
and let d(p, q) be the Euclidean distance between p and q, and D(L1, L2)
the distance between clusters L1 and L2, the set L of dynamic formation
lines is conformed by the average locations of the player’s belonging to the
complete-linkage clustering of P in k partitions, such that for L1, L2 ∈ L
and D(L1, L2) = maxpL1 ,pL2 d(pL1 , pL2). When pi = (xi, yi) = (xi, 0) we call
L the set of vertical dynamic formation lines, and when pi = (xi, yi) = (0, yi)
we call L the set of horizontal formation pressure lines.

Figure 4.10 presents an example of three groups of vertical and horizon-
tal dynamic lines identified in a specific game situation. We can observe
that, in this situation, the vertical lines clustered four players in the back,
four in the middle, and two in the forward line. Typically, soccer coaches
might refer to this grouping as a ”4-4-2” formation, where the four players
in the back are expected to be defenders, and the two players in the front
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are expected to be forwards. However, in the changing dynamics of a soccer
match, players can change position indistinctively, such that a player in the
”left-back” defending position might appear close to the opponent’s goal,
aligned with the forwards. By identifying these groups of players at each
frame, we can provide instantaneous contextual information to our models.
On the other hand, the horizontal lines (specifically the first and third) pro-
vide a width boundary for the team’s formation. The block formed by the
first and third vertical and horizontal lines represents the “inside block” of an
opponent’s team, which coaches typically refer to as a valuable playing zone.

Figure 4.10: Three formation lines detected for the defending team (blue circles) in a
match situation. The dotted lines show the average position of three vertical formation
lines and two horizontal formation lines. The green, purple and red contour around the
defending team players indicate the vertical formation line where each player was clustered
in.

In this work, we set k = 3 to identify vertical formation lines, which
conceptually represent forwards, midfielders, and defenders. For horizontal
formation lines, we set k = 3, which will tend to define the breadth-wise
borderlines of the team formation block and split the inside of the block
into two parts. Note that while the optimal value of k could be learned for
each situation, using a constant value allows for more straightforward inter-
pretation from a practical perspective since coaches can directly understand
what each of the three vertical and formation lines represents.
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4.3.2 Baseline expected goals model

In Section 2.2.4, we describe the characteristics of existing xG models, rep-
resenting an estimation of the probability of scoring goals from shots. The
component of the EPV framework defined by the expression E[G|A = ς],
presented in Chapter 3, essentially represents an xG model. A subset of
the presented spatial and contextual variables, derived from tracking data,
are used in Chapter 6 to estimate this expression. However, a common lim-
itation for building xG models from tracking data is the reduced amount
of shot events available compared to larger and more easily available event
data sources. To provide robustness to our model estimating E[G|A = ς], we
developed a baseline xG model from a larger dataset based on event data,
presented in this section. This model’s objective is to produce a baseline
estimation of xG, which can be used as a strong prior for the tracking data-
based model. This baseline estimation is also introduced as a feature in the
action selection model presented in Chapter 6.

To produce a calibrated baseline estimation of xG, we use a wide dataset
of event data provided by OPTA, which contains 117, 948 shot events and
12, 266 goals as detailed in Table 4.3.2. This dataset is considerably larger
than the 13, 735 shots available in the tracking data dataset used in Chap-
ter 6. Event data has been used successfully in previous work to obtain a
calibrated estimation of xG (Eggels, 2016).

Table 4.3: Total count of matches and shot events included within the event data dataset

Data Type Source # Total # Training # Test % Goals

Match Event 4,679 3,509 1,170 -
Shot Event 117,948 87,980 30,645 10.4

We use a set of spatial features consisting of the event location and the
distance and angle between the ball location and the goal. Contextual fea-
tures are composed of a one-hot encoded vector indicating the attacking
type at the moment of the event (i.e.,open-play, set-piece, free-kick, corner,
penalty), and a boolean variable indicating whether the action is taken with
the head or not. The matches are split into a training and test set, and
model selection is performed through a K-fold cross-validation procedure on
the training set, with K = 10. For every shot in the dataset, we label the
outcome as 1 for the shots resulting in a goal, and 0 otherwise. We build the
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model using the extreme gradient boosting algorithm XGBoost (Chen and
Guestrin, 2016), and we perform an exhaustive grid-search on the following
hyper-parameters of the model: number of trees ({50, 100, 250}), learning
rate ({1e − 3, 1e − 2, 1e − 1}), and maximum depth ({3, 5, 10}). All the
features are standardized, obtaining a scaled feature set where each variable
has a mean of 0 and a unitary standard deviation.

The best model presented a log loss value of 0.2540 and a calibration ECE
value of 0.00594 in the test set. The parameters of the best model where:
100 trees, a maximum depth of 3, and a learning rate of 1e− 1. Figure 4.11
presents a calibration plot where the x-axis represents the average prediction
in a set of 10 equally-sized bins, and the y-axis the average number of goals
in the dataset for each bin. We can observe in this plot that the baseline
xG model produces calibrated estimations. Some slight deviations from the
optimal calibration line are observed due to small sample sizes in the later
bins.

Figure 4.11: Calibration plot of the baseline xG model. Values in the x-axis represent
the average prediction in a set of 10 equally-sized bins, while the y-axis represents the
average number of goals observed for the examples of each bin. The circle size represents
the percentage of examples contained in each bin with respect to the total.
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4.3.3 Outplayed players

Two of the first tracking data-derived metrics to be popularized where the
“packing” and “impect” (Schaper, 2021) metrics. Both metrics are related
to the number of players surpassed by a pass or a ball drive. To calculate
this metric in observed actions, the authors count the difference between the
number of players in front of the ball when the action is attempted and the
ball is received, respectively. When this count only includes player’s from the
defending team, the metric is called “packing”, while when only players from
the defending team considered to have the role of defenders (e.g., center-back
or left-back), the metric is called “impect”. In this work, we approach this
idea more broadly and refer to the features derived from counting the dif-
ference of players between locations in time as outplayed players-features.
Specifically, for the component estimating the expected value from passes,
we calculate the number of opponents to be surpassed (or ”outplayed”) for
every location of the field. We provide location-wise information indicating
the pass’s expected impact in terms of the number of opponents surpassed.
We produce an analogous metric indicating the number of team players that
would remain behind the ball since this would provide information relative
to the expectation of conceding goals (e.g., when a pass back leaves a player
as the last defender before the goal).

While the number of outplayed players might add some noise when in-
cluding players that are far away from the ball and whose influence might be
residual, this feature’s inclusion is expected to add more information when
combined with other contextual features. For example, in combination with
the opponent’s formation block location, we can obtain information about
whether the pass is headed towards the inside or outside of the formation
block and how many players are to be surpassed. Intuitively, a pass that
outplays several players and that is headed towards the inside of the oppo-
nent block is more likely to produce an increase of the EPV than a pass back
directed outside the opponent’s block that adds two more opponent players
in front of the ball.

4.4 Exploration of the developed features

In this Section, we provide a more profound exploration into the developed
spatial and contextual features. We focus on how these features can sep-
arately provide rich information about spatiotemporal dynamics in soccer,
such as the effect of pitch control in attempting a successful pass or ball
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drive, the relationship between pass distance and location to the long-term
expectation of scoring and receiving goals, and the value provided by the
identification of dynamic pressure lines. We also provide a series of practical
applications, showing how some of these features can allow gaining a deeper
understanding of player behavior and performance according to context and
space.

4.4.1 The long-term expected value from actions

The main focus of the proposed EPV framework is gaining a better under-
standing of the long-term expected value of actions in soccer. A significant
addition of our approach compared to previous EPV approaches is to ac-
knowledge that the outcome of actions is not only associated with the in-
crease of of the probability of scoring goals, but these also impact the proba-
bility of conceding goals. In other words, our approach considers the risk and
reward balance of decision-making. Here, we provide a broad exploration of
how the long-term expected value of actions is distributed along the soccer
field. Figure 4.12 presents a comparison of the long-term expected value of
successful and missed pass and ball drives. Specifically, the left plot shows
the average goals scored and conceded after a successful pass or ball drive
was attempted from that location. The right plot is analogous, showing the
average value at the destination location of missed passes and ball drives.
The average goals are calculated in the following way: if a goal is scored by
the team taking the action, at least 15 seconds after the action is attempted,
the action’s outcome is labeled 1. Otherwise, if a goal is conceded within
the next 15 seconds, the outcome is labeled as -1. If no goal is observed, the
action is labeled as 0. The average of those labels is calculated by each cell
in a coarsened representation of a soccer field, consisting of 26×17 locations.

We can observe that the long-term value of successful actions correlates
with the distance to the goal. The closest the action is to the opponent’s
box, and in particular, to the center of the goal, the higher the likelihood to
observe a goal after 15 seconds. We can also note that the expected value
of successful actions in the first third of the field tends to 0, while successful
actions near the penalty point negatively affect the average. On the other
hand, the average long-term outcome of missed actions presents a different
behavior. Missed actions in the first half of the field tend to produce a neg-
ative outcome on average (i.e., conceding a goal), particularly when the ball
is lost towards the center of the field and near the box. More interestingly,
missed actions in the last third tend to produce a positive outcome on av-
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Figure 4.12: Comparison of the average goals scored and conceded within 15 seconds after
a pass or ball drive is attempted, for the EPL seasons 13/14 and 14/15. The image on the
left shows the average value at the origin location of successful actions, and the image on
the right the average value at the destination location of missed actions

erage. This surprising scenario describes a well-understood soccer pattern:
teams that take risks close to the box might lose the ball but then counter-
press quickly to recover the ball and create scoring chances. This situation
might lead to scoring chances with high probability because when a team
recovers the ball, it gets wider to start attacking, and if they lose the ball
while starting this defense-attack transition, they might be more disordered
than when defending in an organized way. Another situation that explains
this observation is the case of teams that play long-balls towards the last
third: while the initial pass is often headed by an opponent, producing a
missed pass, the attacking team will apply intense pressure nearby the ball
to recover the ball quickly, and near the opponent’s box.

These observations provide an idea of the importance of defining EPV
taking into consideration that any action may produce an increase in the
probability of either scoring or conceding a goal (as presented in Chapter
3), regardless of whether it is successful or not. Most of the previous EPV
approaches in soccer and other sports constraint the long-term expected
reward of actions into a [0, 1] range, which difficult to make sense of the
intricacies of risk and reward according to context.

4.4.2 Exploring success and long-term outcome of passes

Passes are the most frequent actions in soccer and constitute a fundamen-
tal element for understanding how teams and players succeed in this sport.
This Section explores the relationship between pass distance and the success
and long-term average reward from passes. First, we cluster all the passes
available for the EPL seasons 13/14 and 14/15 into ten groups, according to
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pass distance, using a K-means clustering procedure. Figure 4.13 presents
the frequency and the average success of all the passes, grouped by distance.
We can observe that the longer the pass distance, the lower the expected
success probability of passes. Also, the frequency of attempted passes fol-
lows a similar distribution, where the majority of attempted passes have a
distance lower than 30 meters. This Figure essentially shows that passes of
short to medium distance (below 30 meters) present a considerably higher
success probability (from 80% to 90%) than long passes (above 30 meters),
which show to be more difficult. Note that 0 to 6 meters-long passes present
a lower success probability than those between 6 and 20 meters. This shows
an important characteristic of the observed data, where the vast majority in-
tercepted passes near the pass taker are clustered in the 0−6 group since the
destination location label is kept as observed in the actual matches. While
we could attempt predicting the expected location of passes, we considered
this could impact the development and analysis of the intended EPV model
and chose to leave the data as observed.

Figure 4.13: On top, a comparison of the average success of passes for the EPL seasons
13/14 and 14/15, clustered in ten groups according to pass distance. On the bottom, the
frequency of passes by cluster

Another interesting behavior is the relationship between pass distance
and the average long-term value, presented in Figure 4.14. At first glance,
we can observe that long passes can provide a considerably more significant
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likelihood of scoring a goal in the next 15 seconds when successful and a low
likelihood of conceding a goal when missed. However, as seen before, the
probability of success of such passes is relatively low. On the other hand,
passes below 30 meters present a stable tendency, where a goal is scored
after successful passes 0.75% of the time, while missed passes below this
threshold can lead to a probability of conceding a goal, down to 0.25% of
the time. Additionally, and following the discussion in Section 4.4.1, long-
distance passes (such as the case from 29 to 36 meters in the available data)
can even provide a higher probability of scoring than conceding when missed.

Figure 4.14: On top, a comparison of the average goals observed within 15 seconds for
passes in the EPL seasons 13/14 and 14/15, clustered in ten groups according to pass
distance. On the bottom, the frequency of passes by cluster

4.4.3 The effect of pressure in action success

One of the main contributions of the pitch control model presented in Section
4.2.3 is producing features that allow us to better understand the impact of
spatial pressure on the likelihood of successfully attempting an action. In
particular, the success of passes and ball drives is considered to be highly
influenced by the level of pressure received by the player carrying the ball.
When a player is marked closely by opponents, the likelihood of losing con-
trol of the ball or an attempted pass being intercepted is expected to increase
considerably. This likelihood of losing the ball is also expected to increase
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when the number of opponents pressing is high, and the distance to the ball
carrier is low. In Figure 4.15 we present two plots showing the distribution
of the pitch control of the ball carrier at the time a ball drive (left) or a pass
(right) is attempted conditioned to the outcome of the action.

Figure 4.15: Comparison of the distribution of pitch control of the ball carrier for successful
and unsuccessful actions at the time the action is taken. The plots show the distribution
for ball drives (left) and passes (right)

We can observe that the effect of pitch control is considerably high in the
likelihood of keeping control of the ball, where the higher the pitch control,
the higher the probability of attempting a ball drive successfully. We can
also observe that for lower values of pitch control (i.e., higher spatial control
of the opponent team), the frequency of ball drives attempts is reduced
considerably, and the probability of success drops to its lower values, possibly
reflecting that players avoid ball drives when the spatial pressure is high.
In the case of passes, a pitch control above 0.5 tends to favor attempting
successful passes, while values below 0.5 decrease the probability of success.
While the effect can be observed clearly, we can also see that the pitch
control of the ball carrier alone is not sufficient to predicting pass success
probability, where other factors such as the spatial control of destination
zone, the relative location in the field, and the velocity of players is expected
also to influence this probability.

4.4.4 Understanding context through dynamic pressure lines

The concept of dynamic lines presented in Section 4.3.1 allows one to con-
textualize the location and impact of actions according to the opponent’s
positioning at any given time. As explained in the mentioned section, two
passes with the exact origin and destination location, but attempted in two
different opponent formation configurations, may have a different meaning
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and interpretation. This section presents three practical examples of how
the frame-by-frame detection of dynamic pressure lines can allow one to
develop a more fine-grained and rich interpretation of players’ and teams’
passing dynamics.

Detecting player’s passing tendencies relative to the opponent

The origin and destination location of a player’s attempted and received
passes can provide information about the field zones that the player tends
to exploit, either on-ball or off-ball. However, the large size of the soccer
field and the broad set of possible defensive set-ups that teams can exhibit
when defending provides the need for employing a richer set of features for
understanding a player’s passing tendencies beyond the location of his ac-
tions. Figure 4.16 compares the passes attempted and received by two FC
Barcelona right-wingers, Messi and Dembélé, in a match against Athletic
Club Bilbao in January of 2021. The Figure presents four plots by player.
The first two plots correspond to a kernel density estimation of the origin
location of the passes attempted by each player; while the first one uses the
observed origin location of passes, the second one presents the locations rel-
ative two the opponent’s pressure lines. The third and fourth plots present
the total percentage of passes attempted (using origin location) and received
(using destination location) by each player, respectively, summarized accor-
ding to the opponent’s pressure lines.

We can observe that the pass location changes considerably when we re-
calculate the locations relative to the opponent’s line. The first plot shows
us that Messi tended to play in a central position around the midfield, with
a wide coverage spread. However, when observing the second plot, we can
see that most of Messi’s passes occurred between the opponent’s second and
third pressure line (a highly threatening attacking position) while the op-
ponent presented an advanced block positioning. The third plot shows that
Messi can frequently pass towards locations inside the opponent’s block and
behind the defender’s back, exhibiting the tremendous associative capacity
and generating danger of the player. The third plot shows a recent position-
ing behavior of Messi, where he tends to play lower than what is usual for
a winger to receive between the first and second lines and participate more
in the playmaking and ball circulation.

Dembelé, on the other hand, showed different positioning and passing
tendencies. While the first heatmap might provide an idea that the player is
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Figure 4.16: Comparison of two player’s passing selection and reception dynamics in a
single match, providing absolute and pressure lines-relative location of passes

positioned in a lower part of the field (while wingers tend to play in higher
positions), the relative location heatmap shows the player is touching the
ball frequently between the second and third line, by the outside of the
opponent block. Like the case of Messi, with the relative lines, we can un-
derstand that the opponent is playing in a high block position, providing a
very different read than the one represented in the original heatmap. The
third and fourth plot shows that while the player tends to receive in the
outside, he tends to pass the ball towards the inside of the formation block
and can make successful passes between all the lines. Also, the plot shows
that the player has been able to receive the ball beyond the defensive line,
a critical performance element for wingers.

In this analysis, we have observed how the simple incorporation of rela-
tive positioning lines can provide a more rich interpretation of observed loca-
tions of passes and provide deeper inspection into a player’s passing selection
and reception dynamics. Employing this information, we can translate the
vast amount of observed passes into more straightforward and holistic pieces
of information for coaches.
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The value of passes breaking lines

A concept frequently discussed by coaches is the ability to break lines, ei-
ther through passing or driving. This idea refers directly to the capacity
of making a pass or a ball drive that starts behind a pressure line and
ends successfully above that line. While actions breaking lines are typically
interpreted as valuable, there is no quantification of the value of these ac-
tions using tracking data. In order to better understand the value of passes
breaking lines, we employ the dynamic pressure lines model to compare the
average goals observed within 15 seconds after the formation line is broken
through passes, differentiating between the inside and outside of the oppo-
nent’s block. This comparison is presented in Figure 4.17, where the plot
below presents the percentage of all passes that correspond to a series of
passes breaking lines, and the plot above presents the mentioned long-term
reward of each of these passes.

Figure 4.17: Comparison of the average goals observed within 15 seconds that after passes
breaking lines, and passes into the last third of the field are successfully attempted

We can observe that all the passes breaking the second line and above
present an average amount of goals within 15 seconds larger than the average
of 0.75% observed in most of the passes presented earlier in Figure 4.13.
Passes breaking the third line are shown to be valuable, providing an average
probability of scoring goals of 3.5%. While we can observe that passes
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attempted towards the last third (which might not break lines) provide a
high expected long-term value, this is considerably lower than when the
defenders’ line is broken directly. Also, we can observe that passing the
ball towards the inside of the opponent’s block in the last third (as seen for
Messi’s passes in the last Section) has a larger expected value than passes
towards the outside of the block. Naturally, passes breaking the first and
second line are considerably more frequent that passes breaking the third
line, which also provides an idea of the difficulty of finding single actions
with high value in soccer.

Identifying game phases

During a soccer possession the dynamics of the game can change drastically
depending on the location of the ball and the 22 players. In order to pro-
vide a structured approach for analyzing the development of possessions,
coaches tend to group different parts of the possession into phases, accor-
ding to contextual information. A typical approach for analyzing organized
possessions in professional is defining three possible phases that possession
might go through: buildup, creation, and finishing phases. The buildup is
a phase where a possession starts to develop from one’s half, typically with
most of the opponent team behind the ball. Once the first pressure line
or the midfield is reached, the possession is considered to reach a creation
phase, where the objective is to keep progressing towards the opponent’s
goal. Then, when the possession reaches zones near the box, the possession
enters a finishing stage, where the objective is to score. During the same
possession, a team could return to a previous phase. While these stages
can take many names and forms, the underlying idea is that possession goes
through different stages where the contextual characteristics differ and are
not straightforward to define. Also, for each stage the characteristics of on-
ball and off-ball actions might vary, given that the objective of each phase
varies as well.

Following this definition, we can employ the dynamic pressure lines to
identify the different phases that possession goes through with high preci-
sion. Following the advice of the professional coaches that contributed to
this work, we will say the possession enters a buildup phase when the ball
is behind the first pressure line. After the first pressure line is overcome,
we will say the possession enters a creation phase. This phase might end
if the ball moves behind the first pressure line or if the ball is above the
second pressure line and in the last third when we will say the possession
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enters a finishing stage. While this simplified version can be improved by
evaluating the time the ball spends between lines and some other movement
dynamics, we consider this definition is sufficient to present the value of this
contextualization.

To provide an idea of how the passing dynamics change between phases,
we present in Figure 4.18 a comparison of FC Barcelona and Athletic Club
de Bilbao’s passing networks during their buildup and creation phases, in a
match played in January 2021. We can observe that the players’ distribu-
tion along the field changes considerably between the buildup and creation
phase. While in the buildup phase, the teams’ blocks tend to be longer and
broader, in the creation phase, we observe a more compact block, with dif-
ferences in the occupation of spaces. These changes in positioning directly
impact the ball-passing dynamics and the players involved in each phase.
We can expect wider spaces during the buildup phase and a higher risk of
losing the ball given the closeness to the attacking team’s goal. On the other
hand, during the creation phase, the need for short passes, faster ball circu-
lation, and in general, the ability to play in spaces with higher density and
value increases considerably. These dynamics can also change drastically,
depending on the type of pressure imposed by the opponent team, which
can also be identified through the dynamic lines algorithm. For example,
buildup phases against a low block (opponent players placed in their side
field) propose a completely different game situation than a buildup phase
where the opponent defends with a high block and intense pressure. By
identifying the dynamic lines of both teams, we can provide a fundamen-
tal building block for deriving features that allows us to develop a richer
representation of the spatiotemporal dynamics according to context.

4.5 Methodology of the collaboration with coaches

One of the fundamental goals of sports analytics is to ensure that research
can be directly applied by sports practitioners in professional environments.
Soccer coaches are the best example of a type of practitioner that has key
decision-making responsibilities with a direct impact in team performance
and development. Based on this idea, this thesis was aimed to be devel-
oped at the facilities of FC Barcelona, one the most renowned teams in the
world, with the objective to work closely with professional soccer coaches,
and ensure the applicability and practical relevance of the different models
developed. In this Section we describe the nature of the collaboration with
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Figure 4.18: Comparison of the pass maps for FC Barcelona and Athletic Club de Bilbao,
during the buildup and creation phases, in a match played in January 2021. Arrows
size indicates the percentage from all the team passes, and the circles around players are
proportional to the percentage of all the passes received by the team players. Players are
placed in the average location of all their attempted passes
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FC Barcelonaś coaches, and the collaboration methodology followed across
the development of this thesis.

From the beginning of this work, the club identified the role of game
analysts as the best type of coach to further this collaboration. Game an-
alysts are professional soccer coaches whose worked is focused on providing
rich tactical analysis of the performance of both teams and players. Most
of their work is carried through the detailed analysis of match videos, and
the manual tagging of the events observed during the match. Right now,
almost every professional team in the European soccer clubs counts with at
least one game analyst within their coaching staff. Specicially, we created
a collaboration grouped conformed by game analysts of the most part of
soccer teams at FC Barcelona. The game analysts most actively involved
in this group where Raúl Peláez (first team), Javier Molina (second team),
Guillem Escriu (under-19 team), and the cross-team analysts Xavier Pavo
and Dı́dac Soler.

The first year of this collaboration involved meetings in a weekly basis
with the objective of understanding the terminology and the building blocks
of the analysts’ daily work. At the same time, we introduced the types
of data available in soccer (especially event and tracking data), and the
main characteristics of the most common algorithmic approaches to develop
spatiotemporal analysis from this data. During this process, we analyzed
one-by-one most of the tags that analysts produce in each match. Starting
from more simple concepts such as the definition of attack and defense, up
to more complex ones such as the identification of game phases or the dy-
namic variation of defense pressure types, we designed a series of rule-based
algorithms providing automated labeling of these concepts. The automatic
labeling algorithms provided video clips that the group could watch together
each other week to validate and refine the concepts. This first stage provided
the pillar for allowing a faster collaboration with these professionals in the
rest of the years of the thesis.

During the next years we started developing the different spatial and
contextual features presented in this Section, as well as the different applied
models presented in Chapters 5, 6 and 7. The feedback and observations
of these coaches where critical for designing and fine-tuning the different
models, especially given their keenness in identifying when the results of
a model will be applicable and easily digestible within professional soccer
staffs.
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In order to accelerate and facilitate the joint analysis of different models,
we designed a web-based infrastructure that integrates spatiotemporal data,
the developed statistics, and match videos, into a single analysis tool. Figure
4.19 presents a snapshot of this web-based tool which become a fundamental
piece for improving the understanding of the models developed during this
work, as well as providing a ground-truth validation of the different find-
ings. The infrastructure consists of three main elements: a data processing
backend, a web services middleware, and frontend web presentation. For the
data processing backend, we designed an algorithm development framework
providing the groundwork for quickly developing new models and a seam-
less integration between different data sources. This framework currently
constitutes the backbone for the development of algorithms and statistical
models at the FC Barcelona’s data analysis department.

Figure 4.19: Web-based tool integrating spatiotemporal tracking data, calculated statistics
and synchronized video footage.
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Chapter 5

SoccerMap: learning
probability surfaces from raw
tracking data

The majority of existing research in soccer analytics has focused on analyz-
ing the impact of either on-ball events, such as goals, shots, and passes, or
the effects of players’ movements and match dynamics (Gudmundsson and
Horton, 2017). Most modeling approaches share one or more common issues,
such as: heavy use of handcrafted features, little visual interpretability, and
coarse representations that ignore meaningful spatial relationships. We still
lack a comprehensive approach that can learn from lower-level input, ex-
ploit spatial relationships on any location, and provide accurate predictions
of observed and unobserved events at any location on the field.

This chapter presents SoccerMap, a deep learning architecture that al-
lows calculating full probability surfaces from low-level spatiotemporal track-
ing data. SoccerMap receives layers of low-level inputs and learns a feature
hierarchy that produces predictions at different sampling levels, capturing
both coarse and fine spatial details. By merging these predictions, we can
produce visually-rich probability surfaces for any game situation that al-
lows coaches to develop a fine-grained analysis of players’ positioning and
decision-making, an as-yet little-explored area in sports. We show how this
architecture can be easily adapted to provide practical solutions for chal-
lenging problems such as the estimation of pass probability, pass selection
likelihood, and pass expected value surfaces. We describe all the compo-
nents of the SoccerMap architecture and show that it successfully solves
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the challenging problem of learning a full prediction surface when there is
only a single-pixel correspondence between ground-truth outcomes and the
predicted probability map.

5.1 Methodology

In this section, we describe the characteristics of the SoccerMap architec-
ture, including the general structure of the input data, the different feature
extraction components, and the design considerations for learning a predic-
tion surface from single-location outcome labels.

We seek an architecture that can produce a full probability surface from
a given game state representation constructed from spatiotemporal tracking
data. Specifically, the architecture must be able to learn both more refined
features related to the influence of close locations and features considering
information on a greater spatial scale. For a SoccerMap architecture trained
to predict pass events’ success probability, some examples of local features
that the network might learn are the likelihood of nearby players reaching
the destination location or information about local spatial pressure. On the
other hand, higher scale features might consider the player’s density and
interceptability of the ball in its path from the location of origin.

In this work, we use the term “probability surface” in a broad way to
refer to a matrix of values (generally in [0,1]), which complies with a size
such that it can be extrapolated to a soccer field, unlike a single value es-
timate. From a design perspective, SoccerMap is designed to be applied
as a spatial-aware feature extractor for estimating probability surfaces for
a broad set of problems, instead of being tailored to solve a specific pro-
blem in soccer (e.g., predicting pass selection probability or predicting the
expected value of on-ball events). Essentially, to build a network for estima-
ting probability surfaces one is only required to define a matrix-like game
state representation, provide the location and outcome of a given observed
event, and define both an activation and a loss function that are appropriate
for the distribution of the outcome variable. During training, the network
weights are adjusted to learn the set of characteristics that best correspond
to the specific problem being set up.
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5.1.1 Defining SoccerMap formally

We seek a model that can produce accurate predictions of the probability of
observing a given event for each location on a l×h coarse representation of a
soccer field, given a matrix representation of the game state of size l×h× c.
Based on this, we formally define SoccerMap as in Definition 5.1.1.

Definition 5.1.1 (SoccerMap). Let {x|x ∈ Rl×h×c} be the set of possible
game state representations derived from a tracking data snapshot Tt, at time
t, where l, h ∈ N1 are the height and length of a coarse representation of
soccer field, and c ∈ N1 the number of data slices. A SoccerMap is a function
f(x; θ), f : Rl×h×c → Rl×h[0,1], where f produces a probability map, and θ are
the function parameters.

Here we identify three main elements that must be clearly defined for
developing a SoccerMap model: the game state representation, the function
parameters, and the learning approach. In the next sections, we describe
each of these elements’ characteristics in detail, where we propose a fully
convolutional neural network architecture for learning the function param-
eters, which we refer to as the SoccerMap architecture.

5.1.2 Representing the game state

In order to capture the complex spatial relationships that are required for
learning accurate probability surfaces in soccer, we want our model to make
sense of spatiotemporal tracking data. In Section 3.1.1 we defined Ψ to be
a high dimensional space representing all the spatiotemporal data available,
and Tt ∈ Ψ as a subset of that data at time t. We refer to Tt as a snap-
shot of spatiotemporal data. In the context of SoccerMap, we will employ
spatiotemporal tracking data to construct snapshots representing the game
state at any given time. Intuitively, the game state representation should
comprise all the spatiotemporal information that is considered to influence
the probability at any location. Given that we aim to learn a probability
surface, it is convenient to structure the game state representation in a ma-
trix form resembling a soccer field’s dimensions (and the dimensions of the
output surface). Following Definition 5.1.1 we will define the game state
representation as a stack of c matrices of size l × h, each representing a
subset of the available spatiotemporal information. The specific choice of
information for each of these c slices might vary depending on the problem
being solved. In general, these slices might be constituted by either spatial
or contextual information of any kind, including those defined in Chapter
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4, as long as a value is defined for each cell of the matrix. In Section 5.2 we
show that we can estimate pass probability surfaces by using a game repre-
sentation constituted by low-level information slices including the locations
of the players of each team, the magnitude of velocity of the players in each
direction of a 2D plane, the angle between players and the ball, and the
distance to the ball and the defending team goal location. In Section 5.2 we
show that, although most of these slices constitute sparse matrices, Soccer-
Map can make sense of this information on both local and global scales. In
Chapter 6 we present different types of game representations that are specif-
ically adapted for estimating the pass probability, pass selection, and pass
EPV components of the decomposed EPV model through the SoccerMap
architecture.

5.1.3 SoccerMap architecture design

Figure 5.1: SoccerMap architecture with an input game state representation of 104 × 68
and 13 input channels, trained for predicting pass probability surfaces.

The SoccerMap architecture design is approached as a fully convolutional
neural network. Figure 5.1 presents a visual representation of the main
components of the proposed architecture, trained to predict pass probability
surfaces and receiving an input data snapshot of 104 × 68 × 13. An input
game state representation is processed by the deep neural network that
creates a feature hierarchy by learning convolutions at 1x, 1/2x, and 1/4x
scales while preserving the filters’ receptive fields. Predictions are produced
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at each of these scales and then upsampled nonlinearly and merged through
fusion layers. An activation function is applied to the latest prediction layer
to produce a single probability estimations at every location and preserving
the original input scale (l×h). During training, a single-location prediction
associated with the destination of a sample event is selected to compute a
selected loss function that is backpropagated to adjust the network weights.

5.1.4 The reasoning behind the choice of layers

The diagram in Figure 5.2 presents a detailed representation of all the com-
ponents of a standard SoccerMap architecture for a soccer field representa-
tion of sizes 104×68, and a variable number of layers c.

The network incorporates different layers: max-pooling, linear, ReLu and
linear activation layers, and 2-dimensional convolutional filters (conv2d) for
feature extraction, prediction, upsampling, and fusion. In this section, we
present a detailed explanation of the reasoning behind the choice of these
layers and the architecture design.

Convolutions for feature extraction At each of the 1x, 1/2x, and 1/4x
scales, two layers of 2D convolutional filters with a 5× 5 receptive field and
stride of 1 are applied, each one followed by a ReLu activation function
layer, in order to extract spatial features at every scale. To keep the same
dimensions after the convolutional filters, we apply symmetric padding to
the input matrix of the convolutional layer. We chose symmetric-padding to
avoid border-image artifacts that can hinder the model’s predicting ability
and visual representation (Odena et al., 2016).

Fully convolutional network There are several conceptual and practical
reasons for considering convnets for this problem. Convolutional filters are
designed to recognize the relationships between nearby pixels, producing
features that are spatially aware. convnets have been proven successful in
data sources with a Euclidean structure, such as images and videos, so a
2D-mapping of soccer field location-based information can be expected to
be an ideal data structure for learning essential features. Also, these features
are expected to be non-trivial and complex. convnets have been proven to
learn what are sometimes more powerful visual features than handcrafted
ones, even given large receptive fields and weak label training (Long et al.,
2014). Regarding the architecture design, we are interested in learning the
full l × h mapping of probabilities covering the extent of a soccer field, for
which fully convolutional layers are more appropriate than standard neural
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Figure 5.2: Components of the SoccerMap architecture. A layered input of a game state
snapshot is fed to a network that produces prediction surfaces at 1x, 1/2x, and 1/4x
sampling scales to capture both local and global features. Outputs at different sampling
rates are merged and upsampled to produce a single prediction surface.
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networks built for classification by changing dense prediction layers for 1x1
convolution layers.

Pooling and upsampling The network applies downsampling twice through
max-pooling layers to obtain the 1/2x and 1/4x representations. Since the
activation field size is kept constant after every downsampling step, the net-
work can learn filters of a wider spatial extent, leading to the detection of
coarse details. We learn non-linear upsampling functions at every upsam-
pling step by first applying a 2x nearest neighbor upsampling and then two
layers of convolutional filters. The first convolutional layer consists of 32
filters with a 3× 3 activation field and stride 1, followed by a ReLu activa-
tion layer. The second layer consists of 1 layer with a 3× 3 activation field
and stride 1, followed by a linear activation layer. This upsampling strategy
has been shown to provide smoother outputs and to avoid artifacts that can
usually be found in the application of transposed convolutions (Odena et al.,
2016).

Prediction and fusion layers Prediction layers consist of a stack of two
convolutional layers, the first with 32 1× 1 convolutional filters followed by
an ReLu activation layer, and the second consists of one 1× 1 convolutional
filter followed by a linear activation layer. Instead of reducing the output to
a single prediction value, we keep the spatial dimensions at each step and
use 1 × 1 convolutions to produce predictions at each location. The stack
learns a non-linear prediction on top of the output of convolutional layers.
To merge the outputs at different scales, we concatenate the pair of matrices
and pass them through a convolutional layer of one 1× 1 filter.

5.1.5 Learning from single-location labels

From a practical standpoint, training a SoccerMap architecture has the in-
trinsic difficulty that ground-truth data of full probability surfaces are not
available in most problems where it could be applied. In contrast, we usu-
ally only have an observed binary value at a single location. For example,
for the pass probability problem, ground-truth data only provides the ob-
served binary outcome (i.e. successful or unsuccessful) of the pass at the
destination location. For more challenging problems such as estimating the
expected possession value of passes, the single-value outcome is usually ob-
served in a much more distant time than the moment of attempting the pass.
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Considering this, we approach the model training as a weakly-supervised
learning task, where the ground truth labels only correspond to a single
location in the full mapping matrix that needs to be learned. The target-
location loss presented in Definition 5.1.2 essentially shrinks the output of
a SoccerMap f to a single value by selecting the prediction at the destina-
tion location of the event and then computes the loss between this single
prediction and the ground-truth outcome.

Definition 5.1.2 (Target-Location Loss). Let yk be the observed outcome
of an event at time t, for a game state xk, dk the destination location of the
event k, f a SoccerMap with parameters θ, and L a loss function, we define
the target-location loss as

L(f(xk; θ), yk) = L(f(xk; θ)
dk , yk)

5.2 Experiments and results

In this section, we approach estimating pass probability surfaces represent-
ing the success probability of attempting a pass to any location of the field,
given a game situation. We first present the characteristics of the dataset
used to train a SoccerMap architecture and two other benchmark models
used for performance comparison. Then, we describe the game state rep-
resentations used in each of the models, and the experimental framework
applied. Finally, we present the logistic loss, calibration, and inference time
for each of the models. Additionally, we present an ablation study performed
on the SoccerMap architecture trained for this problem, where we assess the
impact of each of the main components of the architecture.

5.2.1 Dataset

We use tracking data, and event data from 633 EPL matches from the
2013/2014 and 2014/2015 seasons, provided by STATS LLC. Each match
contains the 2D location for every player and the ball sampled at 10Hz.
The event data provides the origin location, destination location, time,
player, team, and outcome for 480,670 passes. From this data, we extract
the tracking data snapshot described in Section 5.2.2 to produce a coarse
(104, 68) representation of a soccer field, and obtaining a dataset of size
480, 670 × 104 × 68 × 13. There are 382,806 successful passes and 97,864
missed passes.
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5.2.2 A game state representation for estimating pass prob-
ability

We construct a game state representation for the SoccerMap model consti-
tuted by matrices of size 104×68×13. The dimensions 104×68 correspond
to the maximum length and width allows for a soccer field in professional
soccer 1. Following these dimensions, each cell approximately represents
1m2 of the field. The snapshot of tracking data is constituted by 13 slices of
low-level spatiotemporal information at the time a pass is attempted. The
game-state representation is composed of the following slices:

• Six sparse matrices with the location and the two components of the
velocity vector for the players in both the attacking and defending
teams.

• Two dense matrices where every location contains the distance to the
ball and goal location.

• Two dense matrices containing the sine and cosine of the angle between
every location to the goal and the ball location, and one dense matrix
containing the angle in radians to the goal location.

• Two sparse matrices containing the sine and cosine of the angle be-
tween the velocity vector of the ball carrier and each of the teammates
in the attacking team.

The tracking data is normalized left to right, where the field’s rightmost
location is where the team taking the pass scores goals. Since we are using
a discrete field representation for learning probability surfaces from con-
volutional neural networks, this normalization becomes convenient for the
network to differentiate between the cells in the matrix that are closer to
where goals are scored or conceded, which is expected to influence the risk
associated to the pass.

5.2.3 Benchmark models

We compare our results against a series of benchmark models of increasing
levels of complexity. We define a baseline model Naive that for every pass,
outputs the known average pass completion in the entire dataset (80%)

1A usual length of soccer fields is 105; however it is convenient to use 104, which is an
even number and can be divided by 2 and 4 (following the 1/2x and 1/4x downsampling
scales).
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following a similar definition in Power et al. (2017). We build two additional
models Logistic Net and Dense2 Net based on a set of handcrafted features
built on top of tracking data. Logistic Net is a neural network with one
hidden layer, followed by a linear activation layer and a single sigmoid output
unit. Dense2 Net is a fully connected neural network with two hidden layers,
followed by ReLu activations and a sigmoid output unit.

Handcrafted features We employ several of the spatial features pre-
sented in Chapter 4 for building the dataset to be used for training the
benchmark models. Specifically, for all the available passes, we include ori-
gin and destination location, pass distance, angle to goal at origin and des-
tination, and the pitch influence of the attacking and defending teams at
both the origin and destination location.

5.2.4 Experimental framework

This section describes the experimental framework followed for testing the
performance of the proposed architecture for the pass success probability
estimation problem.

Training, validation, and test set We randomly sample the available
matches and split them into a training, validation, and test set with a 60 :
20 : 20 distribution. The events in the training dataset are randomly shuffled
to avoid introducing bias related to the closeness of the occurrence of these
events in time.The validation set is used for model selection during a grid-
search process. The test set is left as hold-out data, and results are reported
on performance for this dataset. For the benchmark models, datasets are
built by extracting the features described in Section 5.2.3, and an identical
split is performed. Features are standardized column-wise by subtracting
the mean value and dividing by the standard deviation.

Optimization Both the SoccerMap network and the baseline models are
trained using the ADAM optimization. Model selection is achieved through
grid-search on learning rates of 10−3, 10−4 and 10−5, and batch sizes of 1,
16 and 32, while β1, β2 are set to 0.9 and 0.999, respectively. We use early
stopping with a minimum delta rate of 0.001. Optimization is computed on
a single Tesla M60 graphical processing unit (GPU) and using Tensorflow
1.5.0. During the optimization, the negative log-loss is minimized.
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Metrics For each of the models we report the log-loss, following the defi-
nition presented in Equation 2.5. We validate the model’s calibration using
a variation of the ECE presented in Section 2.5.1. For obtaining this metric,
we distribute the predicted outcomes into K bins and compute the difference
between the average prediction in each bin and the average expected out-
come for the examples in each bin. Equation 5.1 presents this variation of
the ECE metric, where K is the number of bins, and Bk corresponds to the
set of examples in the k-th bin. Essentially, we are calculating the average
difference between predicted and expected outcomes, weighted by the num-
ber of examples in each bin. In these experiments, we use uniform binning
to obtain K bins in ascending order. A perfectly calibrated model would
have an ECE value of 0. Additionally, we provide a calibration reliability
plot showing the mean confidence for every bin Bk. Note that Equation 5.1
extends directly from the more global definition of ECE presented earlier in
Section 2.5.1 and Equation 2.11.

ECE =

K∑
k=1

|Bk|
N
|
(

1

|Bk|
∑
i∈Bk

yi

)
−
(

1

|Bk|
∑
i∈Bk

ŷi
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5.2.5 Results

Table 5.1 presents the results for the benchmark models and SoccerMap on
the pass probability dataset. We can observe that SoccerMap achieves a
considerably lower error than the other models. This result is remarkable
considering the network uses exclusively low-level spatiotemporal data and
makes sense of the full spatial extent of the field. Despite the large number
of parameters in SoccerMap, the number of examples per second is near a
thousand, being high enough to ensure a real-time estimation for frame rates
below 200Hz (i.e., twenty times higher than the available frame rate). Figure
5.3 presents a calibration reliability plot for each of the models. We can see
that both the models using handcrafted features and SoccerMap can produce
well-calibrated estimations of pass probabilities. Additionally, since there is
no strong deviation in any of the ranges of predicted probabilities in relation
to observed data, a post-hoc calibration procedure could be applied to fine-
tune slight miss calibrations in any of the models. While both the visual
evaluation of the calibration and the ECE metric show a good calibration
of the models, the considerably lower log-loss reveals that SoccerMap tends
to produce predictions that are closer to the observed values than those
predictions produced by the benchmark models.
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Table 5.1: Results for the benchmark models and SoccerMap on the pass probability
dataset

Model log-loss ECE Ex. (s) Number of parameters

Naive 0.5151 − − 0
Logistic Net 0.2833 0.0087 22, 982 12
Dense2 Net 0.2178 0.0043 22, 600 276
SoccerMap 0.1842 0.0172 953 401, 259

Figure 5.3: A calibration reliability plot, where the X-axis presents the mean predicted
value for samples in each of 10 bins, and the Y-axis the fraction of samples in each bin
containing positive examples.

Figure 5.4 presents the predicted pass probability surface for a specific
game situation during a professional soccer match. We observe that the
model can capture both fine-grained information, such as the influence of
defending and attacking players on nearby locations and coarse information,
such as the probability of reaching more extensive spatial areas depending
on the distance to the ball and the proximity of players. We can also observe
that the model considers the player’s speed for predicting probabilities of
passing to not-yet-occupied spaces, a critical aspect of practical soccer anal-
ysis.
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Figure 5.4: Pass probability surface for a given game situation. Yellow and blue circles
represent players’ locations on the attacking and defending team, respectively, and the
arrows represent the velocity vector for each player. The white circle represents the ball
location.

Ablation Study

We performed an ablation study to evaluate whether the different compo-
nents of the proposed architecture allow improving its performance on the
passing probability estimation problem or not by testing the performance of
different architecture variations. Specifically, the variations of the Soccer-
Map architecture are created by removing one component at a time from the
following set of components: nonlinear upsampling (UP), fusion layer (FL),
nonlinear prediction layer (NLP), and skip-connections (SC). For the case
of the fusion layer, we substitute the convolutional layers with direct point-
wise addition of the predictions at different sampling levels. The removal
of the nonlinear prediction layer consists in substituting the ReLu activa-
tions by linear activations at the prediction level. When skip-connections
are removed, the architecture is modified considerably. For this case, we
avoid making predictions at different sampling levels and keep a single sam-
pling level (i.e., the original 104×68 input size). We provide two variations:
CNN-D4 and CNN-D8, consisting of a feedforward network with 4 and 8
layers of 32 convolutional filters of size 5× 5, respectively, each one followed
by layer of ReLu activation functions. Finally, a linear prediction layer is
applied to obtain the final predictions.
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For each of the configurations, we train the architecture three times, with
a fixed learning rate of 10−4, a batch size of 32, a maximum of 20 epochs,
and equivalent optimization criteria as presented in Section 5.2.4. Table
5.2 presents the average log-loss obtained on different configurations of the
architecture, among the different runs. We can observe that the SoccerMap-
based architectures outperform the rest of the configurations that do not use
skip-connections. This highlights the importance of producing predictions at
different sampling levels to capture relevant relationships at different scales.
The full SoccerMap architecture presented the best average performance
among the architectures. The nonlinearity at the prediction layers and fu-
sion layers provided a slight performance improvement, provided the higher
average loss obtained in the configuration where these are removed. The
removal of the nonlinear upsampling provided a worst performance than the
other architectures. While with a higher number of iterations, these average
performances could improve, a critical aspect of this layer is the ability to
produce smoother surfaces. From a practical standpoint, smoother surfaces
are more visually appealing for practitioners, easing the communication and
translation of the results into practice

Table 5.2: Ablation study for subsets of components of the SoccerMap architecture.

Architecture SC UP FL NLP log-
loss

SoccerMap X X X X 0.1859
SoccerMap-NLP X X X 0.1875
SoccerMap-FL X X X 0.1870
SoccerMap-UP X X X 0.1984
CNN-D4 0.2045
CNN-D8 0.2007

5.3 Related work

From an applied standpoint, our work is related to several other approaches
aimed at estimating pass probabilities and other performance metrics de-
rived from spatiotemporal data in soccer, described in Section 2.2.2. While
some of the related work has estimated probability surfaces by inference on
a set of discrete pass destination locations (Spearman et al., 2017), none
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has yet approached the learning of probability surfaces directly. The related
problem of pass selection has been approached by applying convolutional
neural networks that predict the likelihood of passing to a specific player on
the attacking team (Hubáček et al., 2018).

Regarding the technical approach, we leverage recent findings on the
application of fully convolutional neural networks for image segmentation.
Fully convolutional networks have been extensively applied to semantic im-
age segmentation, specifically for the pixel-labeling problem to detect broad
pixel areas associated with objects in images successfully. The approach
most related to our work builds a hierarchy of features at different sampling
levels that are merged to provide segmentation regions that preserve both
fine and coarse details (Long et al., 2015). From a learning perspective,
image segmentation has been approached as either supervised (Long et al.,
2015), weakly supervised (Pathak et al., 2015), and semi-supervised learning
problems (Papandreou et al., 2015). Usually, the available labels are asso-
ciated with many other pixels in the original image. However, in our case,
labels are only associated with a single location in the desired probability
map (the destination location of the event), transforming the estimation of
a full probability surface into a challenging prediction problem.

5.4 Discussion

The estimation of full probability surfaces provides a new dimension for soc-
cer analytics. The presented architecture allows generating visual tools to
help coaches perform fine-tuned analysis of opponents and own-team per-
formance derived from low-level spatiotemporal soccer data. We show how
this network can perform remarkably well at estimating the probability of
observed passes. By merging features extracted at different sampling lev-
els, the network can extract both fine and coarse details, thereby managing
to make sense of soccer’s complex spatial dynamics. Chapter 6 shows how
the SoccerMap can be trained to learn to estimate two related but different
problems, the pass selection probability and the expected possession value
from passes. We show these models also produce accurate and calibrated
estimations. In Chapter 7 we present several novels practical applications
on soccer analytics derived from these SoccerMap-based models, such as
evaluating optimal passing, evaluating optimal positioning, and identifying
context-specific and team-level passing tendencies. This analysis framework
derived from spatiotemporal data could also be applied directly in many
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other team sports, where the visual representation of complex information
can bring the coach and the data analyst closer.
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Chapter 6

Estimating the EPV
components

In Chapter 3 we presented a theoretical framework for modeling EPV, where
this concept is approached as an estimation of the long-term reward of a po-
ssession, given all the spatiotemporal data available at a given time. More
specifically, Section 3.2 presents the idea of decomposing the general EPV
expression into a series of terms modeling the influence of three types of
on-ball actions: passes, ball drives and shots. This decomposition allows us
to split out a complex model into more easily understandable parts so the
practitioner can both understand the factors that produce the final estimate
and evaluate the effect that other possible actions may have had.

In this chapter we employ spatiotemporal tracking data and event data
from professional soccer matches to develop a series of models for estima-
ting the components of the EPV, and also producing a single instantaneous
estimate of the EPV for any time instance. A visual representation of the
output of this approach is presented in Figure 3.1. We propose two different
approaches to learn each of the separated models, depending on whether
we need to estimate a field-wide probability surface or producing only a
single-valued prediction. We adapt the SoccerMap architecture presented in
Chapter 5 to produce full prediction surfaces from low-level features, for the
passing related components. Specifically, we are able to learn the surfaces
for the pass selection, pass probability and pass EPV problems, from very
challenging learning set-ups where only a single-location ground-truth is
available. Producing these surfaces allows the components related to passes
to estimate either the expected value or the probability of attempting a pass
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to any other location on the field. On the other hand, for the components
related to ball drive or shot actions, we use shallow neural networks on top
of a broad set of novel spatial and contextual features, to produce single es-
timations of the expected value and the success probability of these actions.

This chapter is structured in the following way. We first provide the
implementation details for estimating each of the components of the de-
composed approach presented in Section 3.2. Then, we present the ex-
perimental setup for estimating these components from a large dataset of
spatiotemporal tracking data of professional soccer matches, where we show
this approach can produce calibrated estimations for each of the components
and the final EPV estimate. With this approach we present a comprehen-
sive analysis framework that allows us to develop a wide variety of practical
applications in soccer, which includes both on-ball and off-ball performance
analysis. Several of these applications are presented in Chapter 7.

6.1 Separate component inference

In this section we describe the approaches followed for estimating each of
the components described in Equations 3.2,3.3, and 3.4. In general, we use
function approximation methods to learn models for these components from
spatiotemporal data. Specifically, we want to approximate some function
f∗ that maps a set of features x, to an outcome y, such that y = f∗(x). To
do this, we will find the mapping y = f(x; θ) to learn the values of a set of
parameters θ that result in an approximation to f∗.

Customized convolutional neural network architectures are used for estima-
ting probability surfaces for the components involving passes, such as pass
success probability, the expected possession value of passes, and the field-
wide pass selection surface. Standard shallow neural networks are used to
estimate ball drive probability, expected possession value from ball drives
and shots, and the action selection probability components. In this section
we focus on describing the modeling approach for each component, provid-
ing details about the selection of features x, observed value y, and model
parameters θ. The implementation details regarding the experiments carried
out for building these models are explained in Section 6.2. All the spatial
and contextual features referred in this section are explained in more de-
tail in Chapter 4, while the detailed list of features used for each model is
described in Appendix A.
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6.1.1 Estimating pass impact at every location on the field

One of the most significant challenges when modeling passes in soccer is
that, in practice, passes can go anywhere on the field. Previous attempts on
quantifying pass success probability and expected value from passes in both
soccer and basketball assume that the passing options a given player has
are limited to the number of teammates on the field, and centered at their
location at the time of the pass (Power et al., 2017; Cervone et al., 2016b;
Hubáček et al., 2018). However, in order to accurately estimate the impact
of passes in soccer (a key element for estimating the future pathways of a
possession), we need to be able to make sense of the spatial and contextual
information that influences the selection, accuracy, and potential risk and
reward of passing to any other location on the field. For doing so, we employ
the SoccerMap fully convolutional neural network architecture (see Chapter
5), which is specifically designed to exploit spatiotemporal information at
different scales. We extend and adapt this architecture to the three related
passing action models we require to learn: pass success probability, pass
selection probability and pass expected value.

While these three problems necessitate from different design considera-
tions, we structure the proposed models into four main conceptual blocks:
the game state representation, a feature extraction block, a surface prediction
block, and a loss computation block. For each of these models we detail the
selected configuration on each of these conceptual blocks. The game state
representation refers to the coarse matrix representation of size l×h× c, re-
quired by the SoccerMap architecture, and described in Section 5.1.2. For all
of these problems, the feature extraction block is represented by the Soccer-
Map fully convolutional network architecture, and uses the parameters pre-
sented in Section 5.1.3. The surface prediction block refers to the activation
function used at the end of the architecture, and that produces the predicted
values for each location and sampling level. For all these three problems,
the loss computation block employs the target-location loss presented in
Definition 5.1.2, but uses different loss functions. In the following sections,
we describe the design characteristics for the three pass-related problems:
pass success probability, pass selection probability, and expected value from
passes. By joining these models’ output, we will obtain a single action-value
estimation (EPV) for passing actions, expressed by E[G|A = ρ, Tt].

Chapter 6 Javier Fernández 132



A framework for the interpretation of spatiotemporal dynamics in soccer

6.1.2 Pass success probability

From any given game situation where a player controls the ball, we desire
to estimate the success probability of a pass attempted towards any of the
other potential destination locations, expressed by P(A = ρ,Dt|Tt). Figure
6.1 presents the designed architecture for this problem. The input data at
time t is conformed by 13 layers of spatiotemporal information obtained from
the tracking data snapshot Tt consisting mainly of information regarding the
location, velocity, distance, and angles between the both team’s players and
the goal. The feature extraction block is composed strictly by the SoccerMap
architecture, where representative features are learned. This block’s output
consists of a 104× 68× 1 pass probability predictions, one for each possible
destination location in the coarsened field representation. In the surface
prediction block a sigmoid activation function, defined in Equation 2.8, is
applied to each prediction input to produce a matrix of pass probability
estimations in the [0,1] continuous range. Finally, at the loss computation
block, we select the probability output at the known destination location of
observed passes and compute the negative log-loss, defined in Equation 2.5,
between the predicted (ŷ) and observed pass outcome (y).

Note that we are learning all the network parameters θ needed to produce
a full surface prediction by the back-propagation of the loss value between
the predicted value at that location and the observed outcome of pass success
at a single location. We show in Section 6.2.6 that this learning set up is
sufficient to obtain remarkable results.

6.1.3 Expected possession value from passes

Once we have a pass success probability model, we are halfway to ob-
taining an estimation for E[G|A = ρ,Dt, Tt], as expressed in Equation
3.3. The remaining two components, E[G|A = ρ,Op = 1, Dt, T t] and
E[G|A = ρ,Op = 0, Dt, T t], correspond to the expected value of successful
and unsuccessful passes, respectively. We learn a model for each expression
separately; however, we use an equivalent architecture for both cases. The
main difference is that one model must be learned with successful passes and
the other with missed passes exclusively to obtain full surface predictions
for both cases.

The input data matrix consists of 16 different layers with equivalent
location, velocity, distance, and angular information to those selected for
the pass success probability model. Additionally, we append a series of
layers corresponding to contextual features related to outplayed players’
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Figure 6.1: Representation of the neural network architecture for the pass probability sur-
face estimation, for a coarsened representation of size 104×68×13. Thirteen layers of spa-
tial features are fed to a SoccerMap feature extraction block, which outputs a 104×68×1
prediction surface. A sigmoid activation function is applied to each output, producing a
pass probability surface. The output at the destination location of an observed pass is
extracted, and the log-loss between this output and the observed outcome of the pass is
back-propagated to learn the network parameters
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concepts and dynamic pressure lines. Finally, we add a layer with the pass
probability surface, considering that this can provide valuable information
to estimate the expected value of passes. This surface is calculated by using
a pre-trained version of a model for the architecture presented in Section
6.1.2.

The input data is fed to a SoccerMap feature extraction block to obtain
a single prediction surface. In this case, we must observe that the expected
value of G should reside within the [−1, 1] range, as described in Section
3.1.1. To do so, in the surface prediction block, we apply a sigmoid activation
function to the SoccerMap predicted surface obtaining an output within
[0, 1]. We then apply a linear transformation, so the final prediction surface
consists of values in the [−1, 1] range. Notably, our modeling approach does
not assume that a successful pass must necessarily produce a positive reward
or that missed passes must produce a negative reward.

The loss computation block computes the MSE between the predicted
values and the reward assigned to each pass, defined in Equation 2.6. Note
that the model design is independent of the reward choice for passes. In this
work we choose a long-term reward associated with the observed outcome
of the possession for the implementation of this model. The details about
this implementation are described in Section 6.2.2.

6.1.4 Pass selection probability

Until now, we have models for estimating both the probability and expected
value surfaces for both successful and missed passes. In order to produce
a single-valued estimation of the expected value of the possession given a
pass is selected, we model the pass selection probability P(A = ρ,Dt|Tt)
as defined in Equation 3.1. The values of a pass selection probability sur-
face must necessarily add up to 1, and will serve as a weighting matrix for
obtaining the single estimate.

Both the input and feature extraction blocks of this architecture are
equivalent to those designed for the pass success probability model (see Sec-
tion 6.1.2). However, we use the softmax activation function presented in
Equation 2.9 for the surface prediction block, instead of a sigmoid activation
function. We then extract the predicted value at a given pass destination
location and compute the log-loss between that predicted value and 1, since
only observed passes are used. With the different models presented in Sec-
tion 6.1.1, we can now provide a single estimate of the expected value given
a pass action is selected, E[G|A = ρ, Tt].
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6.1.5 Estimating ball drive probability

We will focus now on the components needed for estimating the expected
value of ball drive actions. In this work’s scope, a ball drive refers to actions
where a player keeps control of the ball, following the definition presented
in Section 3.1.5. For this implementation, ball drives lasting more than 1
second are split into a set of individual ball drives of 1-second duration.
While keeping the ball, the player might sustain the ball-possession or lose
the ball (either because of bad control, an opponent interception, or by
driving the ball out of the field, among others). The probability of keeping
control of the ball with these conditions is modeled by the expression P(Oδ =
1|A = δ, Tt).

We use a standard neural network architecture to learn a model for this
probability, consisting of two fully-connected layers, each one followed by
a layer of ReLu activation functions, and a single-neuron output preceded
by a sigmoid activation function. We provide a state representation for ob-
served ball drive actions that are composed of a set of spatial and contextual
features, detailed in Appendix A. Among the spatial features, the level of
pressure a player in possession of the ball receives from an opponent player
is considered to be a critical piece of information to estimate whether the
possession is maintained or lost. We model pressure through two additional
features: the opponent’s team density at the player’s location and the overall
team pitch control at that same location. Another factor that is considered
to influence the ball drive probability is the player’s contextual-relative lo-
cation at the moment of the action. We include two features to provide this
contextual information: the closest opponent’s vertical pressure line and the
closest possession team’s vertical pressure line to the player. These two vari-
ables are expected to serve as a proxy for the opponent’s pressing behavior
and the player’s relative risk of losing the ball. By adding features related
to the spatial pressure, we can get a better insight into how pressed that
player is within that context and then have better information to decide the
probability of keeping the ball. We train this model by optimizing the loss
between the estimated probability and observed ball drive actions that are
labeled as successful or missed, depending on whether the ball carrier’s team
can keep the ball’s possession during after the ball drive is attempted.

6.1.6 Estimating ball drive expectation

Finally, once we have an estimate of the ball drive probability, we still need
to obtain an estimate of the expected value of ball drives, in order to model
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the expression E[G|A = δ, Tt], presented in Equation 3.4. While using a
different architecture for feature extraction, we will model both E[G|A =
δ,Oδ = 1, Tt] and E[A = δ,Oδ = 0, Tt], following an analogous approach of
that used in Section 6.1.3.

Conceptually, by keeping the ball, players might choose to continue a
progressive run or dribble to gain a better spatial advantage. However, they
might also wait until a teammate moves and opens up a passing line of lower
risk or higher quality. By learning a model for the expression E[G|A = δ, Tt]
we aim to capture the impact on the expected possession value of these
possible situations, all encapsulated within the ball drive event. We use
the same input data set and feature extractor architecture used in Section
6.1.5, with the addition of the ball drive probability estimation for each
example. Similarly to the loss surface prediction block of the expected value
of passes (see Section 6.1.3), we apply a sigmoid activation function to obtain
a prediction in the [0, 1] range, and then apply a linear transformation to
produce a prediction value in the [−1, 1] range. The loss computation block
computes the MSE loss between the observed reward value assigned to the
action and the model output.

6.1.7 Expected goals model

Once we have a model for the expected values of passes and ball drives, we
only need to model the expected value of shots to obtain a full value state-
value estimation for the action set A. We want to model the expectation of
scoring a goal at time t given that a shot is attempted, defined as E[G|A = ς].
This expression is typically referred to as xG and is arguably one of the most
popular metrics in soccer analytics (Eggels, 2016). For estimating this xG
model we include spatial and contextual features related derived from the
22 players’ and the ball’s locations, to account for the nuances of shooting
situations.

Intuitively, we can identify several spatial factors that influence the like-
lihood of scoring from shots, such as the level of defensive pressure imposed
on the ball carrier, the interceptability of the shot by close opponents, or the
goalkeeper’s location. Specifically, we add the number of opponents that are
closer than 3 meters to the ball-carrier to quantify the level of immediate
pressure on the player. Additionally, we account for the interceptability of
the shot (blockage count) by calculating the number of opponent players in
the triangle formed by the ball-carrier location and the two posts. We in-
clude three additional features derived from the location of the goalkeeper.
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The goalkeeper’s location can be considered an important factor influencing
the scoring probability, particularly since he has the considerable advantage
of being the only player that can stop the ball with his hands. In addition to
this spatial information, we add a contextual feature consisting of a boolean
flag indicating whether the shot is taken with the foot or the head, the latter
being considered more difficult. Additionally, we add a prior estimation of
expected goal as an input feature to this spatial and contextual information,
produced through the baseline xG model described in Section 4.3.2. The full
set of features is detailed in Appendix A.

Having this feature set, we use a standard neural network architecture
with the same characteristics as the one used for estimating the ball drive
probability, explained in Section 6.1.5, and we optimize the MSE between
the predicted outcome and the observed reward for shot actions. The long-
term reward chosen for this work is detailed in Section 6.2.2.

6.1.8 Action selection probability

Finally, to obtain a single-valued estimation of EPV we weigh the expected
value of each possible action with the respective probability of taking that
action in a given state, as expressed in Equation 3.1. Specifically, we esti-
mate the action selection probability P(A|Tt), where A is the discrete set
of actions described in Section 3.1.1. We construct a feature set composed
of both spatial and contextual features. Spatial features such as the ball
location and the distance and angle to the goal provide information about
the ball carrier’s relative location in a given time instance. Additionally, we
add spatial information related to the attacking team’s pitch control and the
degree of spatial influence of the opponent team near the ball. On the other
hand, the location of both teams’ dynamic lines relative to the ball location
provides the contextual information to the state representation. We also
include the baseline estimation of xG at that given time, which is expected
to influence the action selection decision, especially regarding shot selection.
The full set of features is described in Appendix A. We use a neural network
architecture, analogous to those described in Section 6.1.5 and Section 6.1.6.
This final layer of the feature extractor part of the network has size 3, to
which a softmax activation function is applied to obtain the probabilities of
each action. We model the observed outcome as a one-hot encoded vector of
size 3, indicating the action type observed in the data, and optimize the cat-
egorical cross-entropy between this vector and the predicted probabilities,
which is equivalent to the log-loss.
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6.2 Experiments and results

In this section we describe the experimental setup for implementing the
models described in Section 6.1, using a large spatiotemporal tracking data
and events dataset. We first describe the characteristics of the dataset, and
the approach followed for defining the estimands of each separate problem.
Then we provide details about the experimental setup, indicating the way
the dataset is split, the hyperparameters involved in the model selection
process, and the metrics used to evaluate the results. Finally, we present
the results where we show we can obtain calibrated probability estimates
from each of the separated models, as well as from the joint estimation of
glsepv.

6.2.1 Datasets

We build different datasets for each of the presented models based on optical
tracking data and event data from 633 EPL matches from the 2013/2014
and 2014/2015 season, provided by STATS LLC. This tracking data source
consists of every player’s location and the ball at a 10Hz sampling rate, ob-
tained through semi-automated player and ball tracking performed on match
videos. The tracking data provided is integrated with event data consist-
ing of human-labeled on-ball actions observed during the match, including
the time and location of both the origin and destination of the action, the
player who takes action, and the outcome of the event. Following our model
design, we focus exclusively on the pass, ball drive, and shot events. Table
6.1 presents the total count for each of these events according to the dataset
split presented below in Section 6.2.3. The definition of success varies from
one event to another: a pass is successful if a player of the same team re-
ceives it, a ball drive is successful if the team does not lose control of the ball
after the action occurs, and a shot is labeled as successful if a goal is scored
from that shot. Given this data, we can extract the tracking data snapshot,
defined in Section 3.1.1, for every instance where any of these events are
observed. From there, we can build the input feature sets defined for each
of the presented models. For the detailed list of features used, see Appendix
A. For each sample, the players’ and the ball locations are normalized so
the team taking the action is attacking from left to right (i.e., scores goals
in the rightmost goal, and concedes goals in the leftmost goal of the field).
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Table 6.1: Total count of events included within the tracking data of 633 EPL matches
from the 2013/2014 and 2014/2015 season

Data Type # Total # Training # Validation # Test % Success

Match 633 379 127 127 -
Pass 480,670 288,619 96,500 95,551 79.64
Ball drive 413,123 284,759 82,271 82,093 90.60
Shot 13,735 8,240 2,800 2,695 8.54

6.2.2 Defining the estimands

Each of the components of the EPV structured model has different estimands
or outcomes. For both the pass success and ball drive success probability mo-
dels, we define a binomially distributed outcome, according to the definition
of success provided in 6.2.1. These outcomes correspond to the short-term
observed success of the actions. For the pass selection probability, we define
the outcome as a binomially distributed random variable. A value of 1 is
given for every observed pass in its corresponding destination location. We
define the action selection model’s estimand as a multinomially distributed
random variable that can take one of three possible values, according to
whether the selected action corresponds to a pass, a ball drive, or a shot.

For the EPV estimations of passes, ball drives, and shot actions, respec-
tively, we define the estimand as a long-term reward, corresponding to the
outcome of the possession where that event occurs. We follow the definition
of possession presented in Section 3.1.4, where a possession starts with a
kick-off event and ends when a goal is observed, or a match half ends. By
doing this, we allow the ball to either go out of the field or change control
between teams an undefined number of times until the next goal is observed.
Once a goal is observed, all the actions between the goal and the previous
one are assigned an outcome of 1 if the action is taken by the scoring team
or −1 otherwise. If the match half ends before observing the next goal, the
actions’ outcome value is set to 0. Following this, each action gets assigned
a long-term reward as an outcome.

Additionally, we will include the possession resetting state described in
Section 3.1.4 to limit possessions’ time extent. There is a low frequency
of goals in matches (2.8 goals on average in our dataset) compared to the
number of observed actions (1,433 on average). Given this, the definition of
the time extent of possessions is expected to influence the balance between
individual actions’ short-term value and the long-term expected outcome
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after that action is taken. Let ε be the constant representing the time in
seconds between each action and the next goal; all the actions observed
more than ε time from the observed goal received a reward of 0. For this
work, we choose ε = 15s, which corresponds to the average duration of
standard soccer possessions in the available matches. Note this is equivalent
to assuming that any given state of possession only has ε seconds impact.

For the implementation of this model we will use only passes, ball drives
and shot actions that are observed within an open-play phase of the posse-
ssion, and ignore the actions occurring during set-pieces. We will say that an
action belongs to a set-piece if it is observed 5 seconds or less from the start
of a direct or indirect free-kick, a corner kick, a throw-in or a penalty kick.
All the other actions are considered to occur in open-play. It is important to
remark that all the goals available in the dataset are used in this implemen-
tation, including those occurring within a set-piece time range. This means
that if a goal is scored in a corner kick, all the actions preceding the goal
will be labeled with −1, 1 or 0 (according to the definition of possession de-
scribed above), except for those that are 5 seconds or less closer to the goal.
By doing this, our implementation focuses on learning the expected value
of open-play actions, and leaves for future work the modeling of set-pieces,
since these involve different spatiotemporal dynamics.

6.2.3 Model setting

We randomly sample the available matches and split them into training
(379), validation (127), and test sets (127). From each of these matches,
we obtain the observed on-ball actions and the tracking data snapshots to
construct the set of input features corresponding to each model, detailed in
Appendix A. The events are randomly shuffled in the training dataset to
avoid bias from the correlation between events that occur close in time. We
use the validation set for model selection and leave the test set as a hold-
out dataset for testing purposes. We train the models using the ADAM
algorithm (Kingma and Ba, 2014), and set the β1 and β2 parameters to
0.9 and 0.999 respectively. For all the models we perform a grid search
on the learning rate ({10−3, 10−4, 10−5, 10−6}), and batch size parameters
({16, 32}). We use early stopping with a delta of 10−3 for the pass success
probability, ball drive success probability, and action selection probability
models, and 10−5 for the rest of the models.

Chapter 6 Javier Fernández 141



A framework for the interpretation of spatiotemporal dynamics in soccer

6.2.4 Model calibration

We include an after-training calibration procedure within the processing
pipeline for the pass success probability and pass selection probability mo-
dels, which presented slight calibration imbalances on the validation set. We
use the temperature scaling calibration method (see Section 2.5.1) for both
models, a useful approach for calibrating neural networks (Guo et al., 2017).
We apply these post-calibration procedures exclusively on the validation set.

6.2.5 Evaluation Metrics

For the pass success probability, keep ball success probability, pass selec-
tion probability, and action selection models, we use the cross-entropy loss,
defined in Equation 2.4. For the first three models, where the outcome is bi-
nary, we set the number of class as M = 2. We can directly observe that for
this set-up, the cross-entropy is equivalent to the negative log-loss defined
in Equation 2.5. For the action selection model, we set M = 3. For the
rest of the models, corresponding to EPV estimations, we can observe the
outcome takes continuous values in the [−1, 1] range. For these cases, we
use the MSE as a loss function, defined in Equation 2.6, by first normalizing
both the estimated and observed outcomes into the [0, 1] range.

We are interested in obtaining calibrated predictions for all of the models,
as well as for the joint EPV estimation. Having the models calibrated allows
us to perform a fine-grained interpretation of the variations of EPV within
subsets of actions, as shown in Chapter 7. For doing this, we report the
ECE metric and present a series of calibration reliability plots following a
similar methodology as presented in Section 5.2.4.

6.2.6 Results

Table 6.2 presents the results obtained in the test set for each of the pro-
posed models. The loss value corresponds to either the cross-entropy or
the mean squared loss, as detailed in Section 6.2.5. The table includes the
optimal values for the batch size and learning rate parameters, the number
of parameters of each model, and the number of examples per second that
each model can predict.

We can observe that the loss value reported for the final joint model
is equivalent to the losses obtained for the EPV estimations of each of the
three types of action types, showing stability in the model composition.
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Table 6.2: The average loss and calibration value for each of the components of the
EPV model, as well as for the joint EPV estimation, on the corresponding test datasets.
Additionally, the table presents the optimal value of the hyper-parameters, total number
of parameters, and the number of predicted examples by second, for each of the models

Model Loss ECE
Batch
Size

Learning
Rate

# Params. Ex. (s)

Pass probability 0.1900 0.0047 32 1e−4 401,259 942
Ball drive probability 0.2803 0.0051 32 1e−3 128 67,230
Pass successful EPV 0.0075 0.0011 16 1e−6 403,659 899
Pass missed EPV 0.0085 0.0015 16 1e−6 403,659 899
Pass selection probability 5.7134 - 32 1e−5 401,259 984
Pass EPV * Pass selection 0.0067 0.0011 - - - -
Ball drive successful EPV 0.0128 0.0022 16 1e−4 153 57,441
Ball drive missed EPV 0.0072 0.0025 16 1e−4 153 57,441
Shot EPV 0.2421 0.0095 16 1e−3 231 72,455
Action selection probability 0.6454 - 32 1e−3 171 23,709
EPV 0.0078 0.0023 - - - -

The shot EPV loss is higher than the ball drive EPV and pass EPV losses,
arguably due to the considerably lower amount of observed events available
in comparison with the rest, as described in Section 6.2.1. While the number
of examples per second is directly dependent on the models’ complexity, we
can observe that we can predict 899 examples per second in the worst case.
This value is 89 times higher than the sampling rate of the available tracking
data (10Hz), showing that this approach can be applied for the real-time
estimation of EPV and its components.

Regarding the models’ calibration, we can observe that the ECE met-
rics present consistently low values along with all the models. Figure 6.2
presents a fine-grained representation of the probability calibration of each
of the models. The x-axis represents the mean predicted value for a set
of K = 10 equal-sized bins, while the y-axis represents the mean observed
outcome among the examples within each corresponding bin. The circle
represents the percentage of examples in the bin relative to the total num-
ber of examples. In these plots, we can observe that the different models
provide calibrated probability estimations along their full range of predic-
tions, which is a critical factor for allowing a fine-grained inspection of the
impact that specific actions have on the expected possession value estima-
tion. Additionally, we can observe the different ranges of prediction values
that each model produces. For example, ball drive success probabilities are
distributed more often above 0.5, while pass success probabilities cover a
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wide range between 0 and 1, showing that it is harder for a player to lose
the ball when keeping the ball than it is to lose the ball by attempting a
pass towards another location on the field. The action selection probability
distribution is heavily influenced by each action type’s frequency, showing
a higher frequency and broader distribution on ball drive and pass actions
compared with shots. The joint EPV model’s calibration plot shows that
the proposed approach of estimating the different components separately
and then merging them back into a single EPV estimation provides cali-
brated estimations. We applied post-training calibration exclusively to the
pass success probability and the pass selection probability models, obtaining
temperature values of 0.82 and 0.5, respectively.

Having this, we have obtained a framework of analysis that provides
accurate estimations of the long-term reward expectation of the possession,
while also allowing for a fine-grained evaluation of the different components
comprising the model.

6.3 Inspecting the EPV components

This section presents a deeper inspection into the characteristics of the diffe-
rent components of the EPV framework. First, we present how the prob-
ability surfaces predicted for each passing component provide a more fine-
grained representation of game situations and a visual approach to game
analysis. Then, we analyze the influence of the developed spatial and con-
textual features in predicting the expected value from shots and the proba-
bility of selecting an action, providing a detailed view of how these models
are profiting from tracking data to produce more accurate predictions. Addi-
tionally, we present a novel description of the distribution of added value by
a broader set of soccer actions to better understand the relative impact of
these actions according to context.

6.3.1 Visually-interpretable passing components

The different passing components developed in this work allow coaches to
perform a deeper inspection into actual game situations. Specifically, the
prediction of full probability surfaces instead of single statistics offers the
opportunity to analyze alternative passing options than those attempted
during the matches and understand the spatial dynamics from one situation
to another. Figure 6.3 presents the predicted surfaces for the pass expected
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Figure 6.2: Probability calibration plots for the action selection (top-left), pass and ball
drive probability (top-right), pass (successful and missed) EPV (mid-left), ball drive (suc-
cessful and missed) EPV (mid-right), pass and ball drive EPV joint estimation (bottom-
left), and the joint EPV estimation (bottom-right). Values in the x-axis represent the
mean value by bin, among 10 equally-sized bins. The y-axis represents the mean observed
outcome by bin. The circle size represents the percentage of examples in each bin relative
to the total examples for each model

value (left), pass probability (center), and pass selection probability (cen-
ter) components on the same game situation. First, we can observe that
the SoccerMap architecture can produce very different probability surfaces
from the same set of observed passes by learning the spatiotemporal fea-
tures better adapted to each specific problem. In this game situation, a
coach could observe that making a short pass to the defenders has a high
probability of success and would provide a low but positive expected long-
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Figure 6.3: Three different passing surfaces calculated on the same game situation. On
the left the pass expected value surface; on the center the pass probability surface; and
on the right the pass selection probability.

term reward. Also, attempting a pass behind the first line of the opponent’s
pressure shows an increased risk of losing the ball and receiving a goal,
despite the medium to high pass probability observed for the midfielders.
Interestingly, the model captures that playing long balls to either of the
wingers is expected to produce a positive reward, but that it also has a very
low probability of success. Additionally, we can see that the likelihood of
selecting a long-ball is low. The coach might select to instruct their team
to play long balls despite the high likelihood of losing the ball to decrease
the expectation of receiving a ball. Suppose the coach would prefer playing
a short-passing playing style. In that case, he could indicate its defensive
midfielder to move closer to the goalkeeper in these types of situations to
decrease the risk of losing the ball near their goal (highlighted by the blue
shaded area close to the three forward players of the blue team).

This highly informative representation of risk and reward observed in the
pass expectation surface takes advantage of the surfaces produced for each
component. Figure 6.4 shows how the pass probability and pass turnover
surfaces are combined with the successful and missed pass expected value
surfaces to produce this single estimation of the value of potential passes.
In this game situation, we can observe that while the pass probability of
the players in the back is high, the associated risk of losing the ball and
receiving a goal lowers the total expected value. Also, we can observe that
missed passes towards the box can produce a neutral and even positive
expected reward. This coincides with the intuition that losing the ball near
the opponent’s goal increases the chance of scoring after a quick ball recovery
(although it is not as high as making a successful pass). Additionally, we
can observe that these surfaces also capture players’ movement dynamics by
showing an increased probability in farther away locations towards which a
player is running.
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Figure 6.4: Surface of pass expected value, calculated as a combination of the predicted
surfaces for pass probability and the pass expected value conditioned to the pass outcome.

6.3.2 An enhanced expected goals model

The shot component described in Section 6.1.7 introduces a series of spatial
and contextual features derived from tracking data to predict the expecta-
tion of scoring from any location. These features are expected to provide a
more fine-grained estimation of xG than those built with event data, such as
those described in Section 2.2.4 and the baseline model presented in Section
4.3.2. To provide a deeper understanding, we calculated the importance and
impact of these features in the developed model, using the SHAP framework
approach (see Section 2.6). Figure 6.5 presents the mean importance (top)
and the SHAP value for each of the features (bottom). We can observe that
the tracking data-specific features such as the distance to the goalkeeper, the
block count, the identification of the goalkeeper being surpassed, and the
opponent density all provide an impact higher than 0.1 on average, showing
to be influential features. Additionally, the event data features are still cru-
cial for the model, especially the event data-based xG estimation, intended
to provide a baseline estimation of the shot component. By taking a closer
look at the impact of these features in the test set examples, we can see that
while the lower the distance to the goalkeeper, the higher the goal expecta-
tion (unsurprisingly, give the correlation of this variable to the distance to
the goal), when the goalkeeper is surpassed the goal expectation increases
considerably. Similarly, when the goalkeeper is not surpassed, the impact of
this feature is lower. On the other hand, the lower amount of players poten-
tially blocking the shot (i.e., block count), the higher the goal expectation,
and vice versa. We can also observe that, in general, a higher opponent den-
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sity near the shooting location decreases the goal expectation considerably.
The angle to goal shows to be an essential feature (also available in event
data), indicating that a higher angle to the goal center decreases the goal
expectation. In contrast, the more centered the shot location is, the higher
the expectation of scoring goals.

6.3.3 Understanding action selection

The action selection model described in Section 6.1.8 produces an estimate
of the probability of selecting a pass, ball drive, or a shot in any given game
situation. These three components play a critical weighting role for the
decomposed EPV model. In this section, we analyze the impact that the
different spatial and contextual features have on the probability of selecting
one action over the other. Figure 6.6 presents the average predicted proba-
bility of selecting a pass (left), ball drive (center) and a shot (right), for each
location in a 104×68 representation of a soccer field. We can see that there
are areas in the soccer field where there is a considerably high preference for
selecting one of the actions instead of the others. The shot selection prob-
ability is concentrated in the opponent’s box and presents a radial shape
where the maximum values are found near the penalty kick location. When
the ball is in the first quarter of the field, we can observe a higher tendency
to attempt ball drives. This tendency decreases, in favor of selecting pass,
when the ball approaches the second and third quarter. Interestingly, when
the ball is on the sides of the field in the last quarter, there is a higher ten-
dency for attempting ball drives instead of passes. This might be due to the
players identifying a higher chance of scoring in the long-term by carrying
the ball towards the box than attempting a cross (i.e., aerial pass to the box).

While the average probability provides an overall idea of where players
tend to select each action, we will inspect further into the impact of each of
the spatial and contextual features. In Figure 6.7 we compare the average
SHAP value of each of the features for predicting each of action types, and
the SHAP value for each of the examples in the test set to understand the
feature importance in each case. In the average feature importance plot,
we can observe that the opponent’s density and the player’s pitch control
in control of the ball play a fundamental role in deciding between passes
and ball drives. We can see in the feature impact plots that when the
opponent’s density increases and the player’s pitch control decreases, the
probability of attempting a pass increases considerably. In contrast, the
opposite is observed for ball drives. This situation captures a known dynamic
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Figure 6.5: Two images showing the mean SHAP value for each of the features of the
shot component of the EPV framework (top), and the SHAP value of each feature for the
examples in the test set.
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Figure 6.6: Three surfaces showing the average predicted probability of selecting a pass
(left), ball drive (center) or shot (right), represented in a 104 × 68 grid.

in soccer, where players tend to keep the ball to attract the opponent players
to their location and then make a pass when an opponent is close to avoid
losing the ball. Also, we can argue that, in general, a player will tend to
keep control of the ball when there are sufficient space and a lower risk of
losing the ball and will tend to pass otherwise. Other features that influence
the action selection probability are the closest team dynamic line and the
opponent’s pressure line, which provides information about the two teams’
relative location. We can observe that when both the pressure line and team
closest line is the lowest (i.e., ball in control of defenders and opponents’
forwards pressing), there is a higher tendency to pass. The opposite is
observed for ball drives, where players tend to carry the ball when they are
closer to the opponent’s defensive line. Additionally, this feature could be
capturing the idea that forwards have a higher tendency to attempt ball
drives than defenders. Regarding shot selection, the goal’s distance and
angle are shown to be the two most influential features. Additionally, we
can observe that the higher the opponent’s density, the lower the predicted
probability of making a shot, showing the model can capture changes in
decision making according to the spatial pressure.

6.3.4 Not all value is created (or lost) equal

There is a wide range of playing strategies that can be observed in mod-
ern professional soccer. There is no single best strategy found in success-
ful teams, from Guardiola’s creative and highly attacking FC Barcelona to
Mourinho’s defensive and counter-attacking Inter Milan. We could argue
that a critical element for selecting a playing strategy lies in managing the
risk and reward balance of actions, specifically which actions a team will
prefer in each game situation. While professional coaches intuitively under-
stand which actions are riskier and more valuable, there is no quantification
of the actual distribution of the value of the most common actions in soccer.
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Figure 6.7: Four figures describing the importance of the action selection model’s features.
Top left figure presents the mean SHAP value for each of the features for predicting pass,
ball drive and shot actions. The rest of the figures present the SHAP value of each feature
for predicting pass (top right), ball drive (bottom left) and shot (bottom right) probability,
for all the examples in the test set.
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To assess the value created by individual actions we propose adapting
the concept of EPV added, previously introduced in the first approach for
EPV in basketball (Cervone et al., 2016b). Let ts and te be the start and
ending time of an on-ball action a, and EPVts and EPVte be the EPV of
the possession at these time instances, respectively, we define the action’s
EPVA as in Equation 6.1.

EPVA(a) = EPVte − EPVts (6.1)

From all the passes and ball drive actions described in Section 6.2.1, and the
spatial and contextual features described in Chapter 4 we derived a series
of context-specific actions to compare their value distribution. We identify
passes and ball drives that break the first, second, or third line from the
concept of dynamic pressure lines. We define an action (pass or ball drive)
to be under pressure if the player’s pitch control value at the beginning of the
action is below 0.4 and without pressure otherwise. A long pass is defined as
a pass action that covers a distance above 30 meters. We define a pass back
as passes where the destination location is closer to the team’s goal than
the ball’s origin location. We count with manually labeled tags indicating
when a pass is a cross and when the pass is missed from the available data.
We identify lost balls as missed passes and ball drives ending in recovery
by the opponent. For all of these action types, we calculate each observed
action’s added value (EPVA) based on the registered start and ending time
of the action. We perform a kernel density estimation on the EPVA of
each action type to obtain a probability density function. In Figure 6.8
we compare the density between all the action types. The density function
value is normalized in the [0, 1] range by dividing by the maximum density
value to ease the distributions’ visual comparison.

From Figure 6.8 we can gain a deeper understanding of the value dis-
tribution of different types of actions. From passes that break lines, we
can observe that the higher the line, the broader the distribution, and the
higher the extreme values. While passes breaking the first line are cen-
tered around 0 with most values ranging in [−0.01, 0.015], the distribution
of passes breaking the third line is centered around 0.005, and most passes
fall in the interval [−0.025, 0.05]. Similarly, ball drives that break lines
present a similar distribution as passes breaking the first line. Regarding
the level of spatial pressure on actions, we can see that actions without pre-
ssure present an approximately zero-centered distribution, with most values
falling in a [−0.01, 0.01] range. On the other hand, actions under pressure
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Figure 6.8: Comparison of the probability density function of the EPV added (EPVA) for
ten different actions in soccer. The density function values are normalized into the [0, 1]
range. The normalization is obtained by dividing each density value by the maximum
observed density value

present a broader distribution and a higher density on negative values. This
shows both that there is more tendency to lose the ball under pressure,
hence losing value, and a higher tendency to increase the value when the
pressure is overcome with successful actions. Whether crosses are a suc-
cessful way to reach the goal or not has been a long-term debate in soccer
strategy. We can observe that crosses constitute the type of action with a
higher tendency to lose significant amounts of value; however, it provides a
higher probability of high-value increases in case of succeeding than other
actions. Long passes share a similar situation, where they can add a high
amount of value in case of success but have a higher tendency to produce
high EPV losses. For years, soccer enthusiasts have argued about whether
passing backward provides value or not. We can observe that, while the EPV
added distribution of passing back is the narrowest, near half of the proba-
bility lies on the positive side of the x-axis, showing the potential value to
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be obtained from this type of action. Finally, losing the ball often produces
a loss of value. However, in situations such as being close to the opponent’s
box and pressure on the ball carrier, losing the ball with a pass to the box
might provide an increment in the expected value of the possession, given
the increased chance of a rebound.

6.4 Discussion

This chapter presents a comprehensive approach for estimating the instanta-
neous expected value of possessions in soccer. One of the main contributions
of this work is showing that by deconstructing a single expectation into a
series of lower-level statistical components and then estimating each of these
components separately, we can gain greater interpretation insight into how
these different elements impact the final joint estimation. Also, instead of
depending on a single-model approach, we can make a more specialized selec-
tion of the models, learning approach, and input information that is better
suited for learning the specific problem represented by each sub-component
of the EPV decomposition. The deep learning architectures presented for
the different passing components produce full probability surfaces, providing
rich visual information for coaches that can be used to perform fine-grained
analysis of player and team performances. We show that we can obtain
calibrated estimations for all the decomposed model components, including
the single-value estimation of the expected possession value of soccer pos-
sessions. We employ a broad set of novel spatial and contextual features for
the different models presented, allowing rich state representations. In the
next chapter, we present a series of practical applications showing how this
framework could be used as a support tool for coaches, allowing them to
solve new upcoming questions and accelerating the problem-solving neces-
sities that arise daily in professional soccer.

We consider that this work provides a relevant contribution to improving
the practitioners’ interpretation of the complex dynamics of professional
soccer. With this approach, soccer coaches gain more convenient access
to detailed statistical estimations that are unusual in their practice and
find a visual approach to analyze game situations and communicate tactics
to players. Additionally, on top of this framework, there is a large set of
novel research that can be derived, including on-ball and off-ball player
performance analysis, team performance and tactical analysis for pre-match
and post-match evaluation, player profile identification for scouting, young
players evolution analysis, match highlights detection, and enriched visual
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interpretation of game situations, among many others.

Chapter 6 Javier Fernández 155



Chapter 7

Practical applications

The main purpose of soccer analytics is to provide practical applicability of
advanced data analysis. Most of the design, modeling and implementation
decisions presented in this work, were made taking into consideration that
the produced models would provide the greatest possible practical applica-
bility. In this section we present a series of novel practical applications that
are achieved through exploiting the rich set of components provided by the
proposed EPV framework, and the spatial and contextual features presented
in this work. We structure these applications into three main groups: match
and team analysis, off-ball performance, and on-ball performance. We show
that this broad set of applications can be directly derived either from the
overall EPV estimation, the estimations provided by single components, or
the adaptation of any of these components to specific game situations.

7.1 Match and team analysis

7.1.1 A real-time control room

In most team sports, coaches make heavy use of video to analyze player
performance, show players their correctly or incorrectly performed actions,
and even point out other possible decisions the player may have taken in
a given game situation. The presented structured modeling approach of
the EPV provides the advantage of obtaining numerical estimations for a
set of game-related components, allowing us to understand the impact that
each of them has on the development of each possession. Based on this, we
can build a control room-like tool like the one shown in Figure 7.1, to help
coaches analyze game situations and communicate effectively with players.
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Follow the link Control Room Video to watch a video showing the live usage
of this tool.

Figure 7.1: A visual control room tool based on the EPV components. On the left, a
2D representation of the game state at a given frame during the match, with an overlay
of the pass EPV added surface and selection menus to change between 2D and video
perspective, and to modify the surface overlay. On the bottom-left corner, a set of video
sequence control widgets. On the center, the instantaneous value of selection probability
of each on-ball action, and the expected value of each action, as well as the overall EPV
value. On the right, the evolution of the EPV value during the possession and the expected
EPV value of the optimal passing option at every frame. See Control Room Video for a
video showing the live usage of the tool.

The control room tool presented in Figure 7.1 shows the frame-by-frame
development of each of the EPV components. Coaches can observe the
match’s evolution in real-time and use a series of widgets to inspect into
specific game situations. For instance, in this situation, coaches can see that
passing the ball has a better overall expected value than keeping the ball or
shooting. Additionally, they can visualize in which passing locations there
is a higher expected value. The EPV evolution plot on the right shows that
while the overall EPV is 0.032, the best possible passing option is expected
to increase this value up to 0.112. The pass EPVA surface overlay shows that
an increase of value can be expected by passing to the teammates inside the
box or passing to the teammate outside the box. With this information and
their knowledge on their team, coaches can decide whether to instruct the
player to take immediate advantage of these kinds of passing opportunities
or wait until better opportunities develop. Additionally, the player can gain
a more visual understanding of the potential value of passing to specific
locations in this situation instead of taking a shot. If the player tends to
shoot in these kinds of situations, the coach could show that keeping the ball

Chapter 7 Javier Fernández 157

https://drive.google.com/file/d/1LzT9gO-XG9V1UPt70myhAM7kZd1ZtYWT/view?usp=sharing
https://drive.google.com/file/d/1LzT9gO-XG9V1UPt70myhAM7kZd1ZtYWT/view?usp=sharing


A framework for the interpretation of spatiotemporal dynamics in soccer

or passing to an open teammate has a better goal expectancy than shooting
from that location.

This visual approach could provide a smoother way to introduce ad-
vanced statistics into a coaching staff analysis process. Instead of evalu-
ating actions beforehand or only delivering hard-to-digest numerical data,
we provide a mechanism to enhance coaches’ interpretation and player un-
derstanding of the game situations without interfering with the analysis
process.

7.1.2 Team-based passing selection tendencies

The pass selection component presented in Section 6.1.4, provides a fine-
grained evaluation of the passing likelihood in different situations. However,
it is clear to observe that passing selection is likely to vary according to a
team’s player style and the specific game situation. While a league-wide
model might be useful for grasping the expected behavior of a typical team
in the league, a soccer coach will be more interested in understanding the
fine-grained details that separate one team from the other. Once we train
a SoccerMap network to obtain this league-wide model, we can fine-tune
the network with passes from each team to grasp team-specific behavior. In
this application example, we trained the pass selection model with passes
from all the teams from EPL season 2014-2015. Afterward, we retrained
the initial model with passes from two teams with different playing-styles:
Liverpool and Burnley.

In Figure 7.2 we compare the pass selection tendencies between Liver-
pool (left column) and Burnley (right column). On the top left corner of
both columns, we show a 2D plot with the difference between the league
mean passing selection heatmap, and each team’s mean passing selection
heatmap, when the ball is within the green circle area. We can observe that
Liverpool tends to play short passes, while Burnley has a higher tendency
of playing long balls to the forwards or opening on the sides. However, this
kind of information would not escape from the soccer coach’s intuition, so
we require a more fine-grained analysis of each team’s tendencies in spe-
cific situations. In the two plots of Figure 7.2 we show over each players’
location the percentage increase in passing likelihood compared with the
league’s mean value. In this situation, we can observe that when a left
central defender has the ball during a buildup, Liverpool will tend to play
short passes to the closest open player, while Burnley has a considerably
higher tendency to play long balls to the forwards, especially if forwards are
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starting a run behind the defender’s backs, such as in this case. Through a
straightforward fine-tuning of the SoccerMap-based model, we can provide
detailed information to the coach for analyzing specific game situations.

Figure 7.2: A game-state representation of a real game situation in soccer. Above each
player (circles) we present the added percentage difference of pass likelihood in that given
situation in comparison with the league for two teams: Liverpool (left column) and Burnley
(right column). The heatmaps in both top left corners of each column represent the mean
difference in pass selection likelihood with the league, when the ball is located within the
green circle.

7.1.3 Optimizing lineup selection

Most teams in the best professional soccer leagues have at least one player
who is the key playmaker. Often, coaches want to ensure that the team’s
strategy is aligned with maximizing the performance of these key players.
In this section, we leverage tracking data and the passing components of the
EPV model to analyze the relationship between the well known attacking
midfielder David Silva and his teammates when playing at Manchester City
in season 14/15. We analyze two different situations: when Silva has the
ball and when any other player has the ball and Silva is on the field. We
calculated the playing minutes each player shared with Silva and aggregated
both the on-ball EPVA and expected off-ball EPVA of passes between each
player pair for each match in the season. The on-ball EPV added is calcu-
lated following Equation 6.1 presented in Section 6.3.4, where we add the
difference of the EPV at the end and start time of observed passes. On
the other hand, then off-ball EPV added is calculated by calculating the
difference between the predicted EPV of a pass taken to the location of the
teammate (accounting for its velocity) and the EPV at the time the actual
is evaluated. We also calculate the selection percentage, defined as the per-
centage of time Silva chooses to pass to that player when available (and vice
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versa).

Figure 7.3 presents the sending and receiving maps involving David Silva
and each of the two players with more minutes by position in the team. Ev-
ery player is placed according to the most commonly used position in the
league. Players represented by a circle with a solid contour have the higher
sum of off-ball and on-ball EPV in each situation than the teammate as-
signed for the same position, presented with a dashed circle. The size of
the circle represents the selection percentage of the player in each situa-
tion. We represent off-ball EPVA by the arrows’ color, and on-ball EPVA
of attempted passes by the arrow’s size.

Figure 7.3: Two passing maps representing the relationship between David Silva and each
of the two players with more minutes by position in the Manchester City team during
season 14/15. The figure on the left represents passes attempted by Silva, while the
figure on the right represents passes received by Silva. The color of the arrow represents
the average expected off-ball EPVA of the passes. The size of the circle represents the
selection percentage of the destination player of the pass. Circles present a solid contour
when that player is considered better for Silva than the teammate in the same position.
The size of the arrow represents the mean on-ball EPVA of attempted passes. Players are
placed according to their highest used position on the field. All metrics are normalized by
minutes played together and multiplied by 90 minutes

We can see that both the wingers and forwards generate space for Silva
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and receive high added value from his passes. However, the most frequently
selected player is the central midfielder Yaya Touré, who also looks for Silva
often and is the midfielder providing the highest value to him. Regarding
the other central midfielder, Fernandinho has a better relationship with
Silva in terms of received and added value than Fernando. Silva shows a
high tendency to play with the wingers; however, while Milner and Jovetic
can create space and receive value from Silva, Navas and Nasri find Silva
more often, with higher added value. Based on this, the coach can decide
whether he prefers to lineup wingers that can benefit from Silva’s passes or
wingers, increasing Silva’s participation in the game. A similar situation is
presented with the right and left-backs. Additionally, we can observe that
Silva tends to be a highly preferable passing option for most players. This
information allows the coach to gain a deeper understanding of the effective
off-ball and on-ball value relationship that is expected from every pair of
players and can be useful for designing playing strategies before a match.

7.2 Off-ball performance

7.2.1 Deciding how to defend against buildups

A prevalent and challenging decision that coaches face in modern profes-
sional soccer is how to defend an organized buildup by the opponent. We
consider an organized buildup as a game situation where a team has the ball
behind the first pressure line. When deciding how to press, a coach needs to
decide first in which zones they want to avoid the opponent receiving passes.
Second, how to cluster their players in order to minimize the chances of the
opponent moving forward. This section uses the EPV passing components
and the dynamic pressure lines to analyze how to press Brendan Rodgers’
Liverpool (season 14/15).

We identify the formation being used every time by counting the number
of players in each pressure line. We assume there are only three pressure
lines, so all formations are presented as the number of defenders followed
by the number of midfielders and forwards. For every formation faced by
Liverpool during buildups, we calculate both the mean off-ball and on-ball
advantage in every location on the field. The on-ball advantage is calculated
as the sum of the EPVA of passes with positive EPVA. On the other hand,
the off-ball advantage is calculated as the sum of positive potential EPVA.
We then say that a player has an off-ball advantage if he is located in a po-
sition where, in case of receiving a pass, the EPV would increase. Figure 7.4
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presents two heatmaps for every of the top 5 formations used against Liv-
erpool during buildups, showing the distribution where Liverpool obtained
on-ball and off-ball advantages, respectively. The heatmaps are presented as
the difference with the mean heatmap in all of Liverpool’s buildups during
the season.

Figure 7.4: In the first row, one distribution for every formation Liverpool’s opponents
used during Liverpool’s organized buildups, showing the difference between the distribu-
tion of off-ball advantages and the mean distribution. The second row is analogous to the
first one, presenting the on-ball EPVA distributions. The green circle represents the ball
location

We will assume that the coach wants to avoid Liverpool playing inside its
team block during buildups. We can see that when facing a 3-4-3 formation,
Liverpool can create higher off-ball advantages before the second pressure
line and manages to break the first line of pressure by the inside successfully.
Against the 4-4-2, Liverpool has more difficulties in breaking the first line
but still manages to do it successfully while also generating spaces between
the defenders and midfielders, facilitating long balls to the sides. If the
coaches’ team does not have a good aerial game, this would be a harmful
way of pressing. We can see the 4-3-3 is an ideal pressing formation for
avoiding Liverpool playing inside the pressing block. This pressing style
pushes the team to create spaces on the outside, before the first pressure
line and after the second pressure line. In the second row, we can observe
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that Liverpool struggles to add value by the inside and is pushed towards
the sides when passing. The 4-2-4 is the formation that avoids playing inside
the block the most; however, it also allows more space on the sides of the
midfielders. We can see that Liverpool can take advantage of this and create
spaces and make valuable passes towards those locations. If the coach has
fast wing-backs that could press receptions on long balls to the sides, this
could be an adequate formation; otherwise, 4-3-3 is still preferable. Finally,
the 5-3-2 provides significant advantages to Liverpool that can create spaces
both by the inside above the first pressure line and behind the defenders
back, while also playing towards those locations effectively.

This kind of information can be highly useful to a coach to decide tactical
approaches for solving specific game situations. If we add the knowledge that
the coach has of his players’ qualities, he can make a fine-tuned design of
the pressing he wants his team to develop.

7.2.2 Calculating player’s optimal positioning

One of the most important skills in soccer is the player’s ability to be lo-
cated in spaces that increase the likelihood of receiving a pass successfully.
Coaches often assess and correct players positioning in specific game situ-
ations when they observed a positional tendencies that are considered to
be incorrect or detrimental for the team. By using the probability surfaces
generated by pass probability component, we can detect the best possible
location a player could occupy to increase the probability of receiving a
pass directly. Additionally, to evaluate specific game situations selected by
the coach, we could automatically identify other game situation in the past
matches that may have gone unnoticed, and track player’s evolution in this
skill.

Given a game-state, where a player is in possession of the ball, we calcu-
late the optimal location of each teammate. For doing so, we first generate
a series of alternative game situations that are identical to current game
state except for the location of one teammate. The teammate location is
translated to any other possible location in 5 × 5 grid around its expected
location in the next second (based on the player’s current velocity). To
obtain the optimal location of this player, we predict the pass probability
surface for each of the calculated alternative situations. The location within
that grid with the highest (positive) probability difference with the current
player’s location probability is set as the optimal passing location. Addi-
tionally, a set of sub-optimal passing locations are obtained by identifying
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locations with positive probability difference and that are at least 5 meters
away from the optimal location. We repeat this procedure for each player
in the attacking team (i.e. in possession of the ball) to generate the optimal
location of each player.

In Figure 7.5 we observe in green circles the expected pass probability
added if the player would have been placed in that location instead. We
can observe that if Semedo would move towards the right lane to increase
the passing angle, the pass probability would increase 58%. Both Rakitic
and De Jong would increase over 30% their probabilities of receiving a pass
if they run towards the open space near them that separates them from
the nearby opponents. For the two cases of Busquets we can observe the
value of providing a set of alternative locations, instead of a single one. The
optimal location for Busquets is placed behind the back of the opponent
in a more advanced position, and provides an extra 21% pass probability.
However, being this player a defensive midfielder, the coach might prefer
he moves to the alternative location, where he offer a direct pass line to
Pique, and still increase its probability in 7%. Also notice that the optimal
position predicted for De Jong is close to the optimal position predicted for
Busquets. Here, the coach can decide, based on the desired tactics and his
knowledge of his players, what movements to demand to each player, and
use this visual and numerical information to indicate to players the effect of
this.

7.2.3 Quantifying space occupation and space generation

Based on the space quality concept introduced in Section 4.2.4, and both
the pitch control model and pitch value models presented in Section 4.2.3
and Section 4.2.4, respectively, we will focus on quantifying two critical con-
cepts in soccer: space occupation and space generation. Occupying space
on the field is fundamentally about a player’s act of continually positioning
himself in an area of high value. Specifically, we identify two types: ac-
tive occupation, when the player moves at running speed to earn the space,
and passive occupation, when the player is below running speed (jogging or
walking). Regarding space generation, we define it as the action of dragging
opponents out of certain areas to create newly available space in previously
covered areas. Specifically, we identify situations where a player drags an
opponent away from another teammate whom the opponent was close to
initially. The dragging concept is, at its simplest, creating space for a team-
mate by pulling their defender towards oneself.
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Figure 7.5: A game situation where yellow circles represent the players of the attacking
team, and the blue circles the players in the defending team. The surface represents the
pass probability for every location on the field. The green circles represent the optimal
positioning of players increasing the expected pass probability if the players were placed
in those locations at that time, and the number indicates the added probability.

From these definitions, we can derive two performance metrics: Space
Occupation Gain (SOG) and Space Generation Gain (SSG), and also iden-
tify whether these are produced passively (while jogging or walking) or ac-
tively (above walking speed). Through the analysis of a first division Span-
ish league match, we show a handful of approaches to understand better
a missing key factor for performance analysis in soccer: off-ball attacking
dynamics. The quantification of space occupation gain and space genera-
tion allows us to observe Sergio Busquets’ high relevance during positional
attacks through his pivoting skills, the dragging power of Luis Suarez to
generate spaces for his teammates, and the capacity of Lionel Messi to oc-
cupy spaces of value with smooth movements along the field, among other
characteristics.
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Space Occupation Gain

Employing the model that estimates the value of space ownership at any
given time (represented in Equation 4.18), we can define a model for iden-
tifying gain in space occupation in time. As mentioned earlier in this sec-
tion, we propose the Space Occupation Gain (SOG) concept as the relative
amount of quality of owned space earned during a time window. An opposite
concept is Space Occupation Loss (SOL), which relates to a negative gain
during the time window. We first define the concept of gain in time G as
the mean difference of quality of space occupation Q during a time window
[t+ 1, t+ w + 1], for a given player i. This is expressed in Equation 7.1.

Gi(t) =

∑t+w+1
t′=t+1 Qi(t

′)

w
(7.1)

Given the dynamic nature of soccer, players are involved in a continuous
process of winning and losing space. A small gain of space can happen when
the nearby defenders follow the ball when it moves away from the player,
leaving the player better control of space. However, the same can happen in
a high-speed running situation between the attack and the defender, where
the attacker moves slightly faster. In another case, a medium or high gain
of space can happen when the player moves towards free space. Given this,
it is necessary to define a level of space gain from which the earned space
can be considered an actual occupational advantage and not a consequence
of slower-moving contextual factors in a given situation. We set a constant
ε as a threshold to account for space occupation gain only when the gain is
above that threshold. We can do the equivalent for space occupation loss.
Both expressions are defined in Equations 7.2 and 7.3.

SOGi(t) =

{
Gi(t) if Gi(t) ≥ ε
0 otherwise

(7.2)

SOLi(t) =

{
−Gi(t) if Gi(t) ≤ −ε
0 otherwise

(7.3)

Space is occupied actively when the player moves towards that space
faster than a jogging pace. Otherwise, we consider that space to be occupied
passively. Ric et al. (2017) define jogging pace as any speed lower than
1.5m/s.
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Space Generation Gain

The generation of space for teammates is a concept that involves two or
more teammates during a certain attacking situation. Two main types of
actors are present: one generator and one or more receivers. The generator
is a player that moves toward a certain space while dragging opponents
during the process. This dragging behavior causes the freeing up of space
previously occupied by the dragged opponent. When that opponent was
previously close to one or more other teammates, we say those players are
receiving space generated by the attracting player. In order to express this
concept mathematically, we need to define a value for closeness. We will
say that a player is close to another if the distance between them in a
given time t is below a constant δ. Also, it is desirable to define another
constant α for constraining the minimum attracting distance, which refers
to the difference in distance between the starting and end position of the
generator and the attracted opponent. This allows us to avoid inaccurate
attractions when players are very close to each other initially. Given this,
let di,j(t) be the distance between players i and j, Equation 7.4 presents the
necessary conditions for the concept of space generation SG between any
pair of teammates (i, i′) and any opponent j, for a time window [t, t+ w].

SGi,i′(t) = ∃j(di′,j(t) ≤ δ) ∧ (di,j(t+ w) ≤ δ) ∧ (di′,j(t+ w) > δ)∧
(di,j(t+ w)− di,j(t) < α) (7.4)

Intuitively, Equation 7.4 expresses that player i is generating space for a
teammate i′, within a time frame [t, t+w], if at time t there is an opponent
j that is at least δ meters close from the teammate i′, and that after t+ w
seconds, it moves away from player i′ and approaches player i closer than
δ meters. Additionally, it provides the condition that players i and j got
closer by at least α meters, within that time frame.

Once we can identify when a space generation behavior is occurring, we
would like to focus on the cases in which we have a gain in space due to the
dragging effect. Analogously to the SOG definition, we express the Space
Generation Gain (SGG) as space generation situations where the gain is
above a threshold ε, as presented in Equation 7.5.

SGGij (t) =

{
Gj(t) if SGi,j(t) ∧Gj(t) ≥ ε
0 otherwise

(7.5)
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Essentially, we attribute space gain to a player when a defender leaves
his mark and moves towards a teammate, subject to the conditions that the
defender was close to the player and ended close to the teammate during a
time window. It is essential to clarify that while SOG and SGG represent
two frequent and relevant cases of space gain within soccer, other types of
situations and movements might contribute to the total space created by a
player during a match. An additional possible concept is that of potential
space, referring to a space that the player is more likely to reach, within his
positioning, but not in his immediate influence area. We will now focus on
analyzing SOG and SGG within a match context.

Match analysis through space creation

The ability to create and occupy spaces are two commonly trained con-
cepts in modern soccer. During training, coaches interrupt and reshape
individual drills to teach players how to orient and move toward spaces
and away from low-value local zones on the field. When analyzing off-
ball performance, coaches appeal to video analysis. Although elite soccer
analysis staff typically have a great capacity to understand complex con-
cepts through match visualization, the dynamics of space creation are so
frequent and happen in such short time windows that it becomes imprac-
tical for video analysts to grasp them all, even for a single match. How-
ever, it is important to note that there is no existence of ground truth
data regarding the quantification of spaces in soccer. Hence we have per-
formed an extensive validation of the developed concepts through video
and studying individual situations within games, with the help of two ex-
pert soccer video analysts from F.C. Barcelona, to fine-tune our quanti-
tative approach. The following videos are examples of the video-based
validation tool we have used: http://www.lukebornn.com/sloan/space_

occupation_1.mp4, http://www.lukebornn.com/sloan/space_occupation_
2.mp4

Based on this, we provide a complete summary of off-ball movement
statistics for a specific Spanish first division official match between F.C.
Barcelona and Villareal F.C. in January 2017. Specifically, we provide an
analysis focused on the concepts of space occupation and space generation,
using Metrica Sports optical tracking data. This match ended with a 1-1
result, where Villareal F.C. scored the first goal at the 49th minute (second
half), and the F.C. Barcelona equalizer came at the 90th minute by Lionel
Messi. Situationally, this presents a game where F.C. Barcelona was required
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to score during the final minutes and occupy and generate the most spaces
possible to reach scoring chances. To identify space occupation and genera-
tion actions, we calculate for the attacking situations of F.C. Barcelona all
the instances where a player had controlled possession of the ball with his
feet. From each of those situations, and alongside expert football analysts
from F.C. Barcelona, we define a window w of three seconds after each of
these cases, reaching a total of 845 different situations. The closeness factor
δ is set to 5 meters, based on the minimum distance an opponent is on aver-
age to a player in possession of the ball. We also set the minimum attraction
distance for space generation α to 3 meters.

Table 7.1 and Table 7.2 present the space occupation statistics for F.C.
Barcelona, sorted in descending order by the total amount of Space Occu-
pation Gain (SOG). At first glance, it can be seen that over 41% of gain
of space occupation was performed by Iniesta, Sergio Busquets, and Lionel
Messi. Notably, these three players occupy different positions and have diffe-
rent roles within the team. Busquets is a pivot and has a specific role of
helping to drive the ball with controlled possession during build-ups and
accompanying the game creation during positional attacks. Iniesta is an at-
tacking midfielder with significant control of the ball and exceptional skills
in moving and finding spaces between lines. Messi is an attacker but not
attached to a specific position and can cover broad areas of the pitch to find
space and request the ball. However, the three players share a long-time
tradition of possession-centered and off-ball movement quality during their
careers. Suarez and Neymar, two highly mobile players, appear with a lower
count of situations where space was gained. This can be associated with the
high level of strictly closed marking these players suffered during the match.

It is interesting to observe that for most players, the active occupation of
spaces is considerably more frequent than passive occupation. This is par-
ticularly noticeable on the left and right backs, Digne and Sergi Roberto,
who need to cover more expansive spaces and show a high mean distance
to the ball for SOG, a characteristic shared by central defenders Pique and
Mascherano. A remarkable case is Lionel Messi, whose passive SOG is con-
siderably higher than the active one. The passive characteristic of SOG does
not mean the player is not occupying the space intentionally, but rather that
he is not moving at running speed but slower. Much has been argued in re-
cent years about several moments during matches where Messi walks through
zones of the field. However, that walking behavior is not a detachment from
the match but a conscious action to move through empty spaces of value,
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Table 7.1: Statistics of space occupation for F.C. Barcelona in an official Spanish League
match against Villareal F.C. Symbols #,

∑
and µ represent the total, sum, and mean

of their associated variable. SOG refers to Space Occupation Gain, and Active (%) and
Passive (%) the player percentage of times space was occupied through active or passive
occupation.

Name # SOG
∑

SOG µ SOG Passive (%) Mins

Iniesta 96 (14.8%) 15.77 0.16 43.75 94.86
S. Busquets 90 (13.9%) 14.85 0.16 52.22 94.86
Messi 81 (12.5 %) 14.72 0.18 66.67 94.86
A. Gomes 74 (11.4%) 12.58 0.17 31.08 68.61
Suarez 70 (10.8%) 12.27 0.18 42.86 94.86
Neymar 61 (9.4%) 9.46 0.16 40.98 94.86
S. Roberto 51 (7.8%) 7.34 0.14 21.57 94.86
Pique 29 (4.4%) 4.92 0.17 51.72 94.86
Mascherano 29 (4.4 %) 4.54 0.16 58.62 94.86
D. Suarez 22 (3.4%) 4.07 0.18 22.73 26.25
A. Turan 17 (2.6%) 3.51 0.21 47.06 23.32
Digne 26 (3.2%) 3.48 0.13 19.23 71.54

Table 7.2: Statistics of space occupation for F.C. Barcelona in an official Spanish League
match against Villareal F.C. FRT and BEH indicate the amount of times SOG occurs in
front or behind the ball. MBD represents the mean ball distance

Name FRT BEH MBD Mins

Iniesta 49 47 15.19 94.86
S. Busquets 44 46 16.65 94.86
Messi 58 23 17.50 94.86
A. Gomes 40 34 15.93 68.61
Suarez 57 13 13.46 94.86
Neymar 48 13 18.31 94.86
S. Roberto 25 26 25.10 94.86
Pique 6 23 21.05 94.86
Mascherano 2 27 22.03 94.86
D. Suarez 13 9 17.47 26.25
A. Turan 12 5 12.71 23.32
Digne 13 13 16.23 71.54
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claim the control of valuable space, and ultimately the ball. Messi does this
very effectively, placing him near the top of players in terms of space gained
during the match, despite the lack of active gain. A relevant characteristic
of this is that 71% of the time the gain in space is done in front of the ball
rather than behind. The in front and behind the ball statistics show a clear
tendency for central defenders to gain space behind the ball, while attackers
show a higher rate of space gain in front of the ball. Noticeably Busquests,
Iniesta, and the right and left backs (Digne and S. Roberto) have a balanced
ratio of space gain behind and in front of the ball.

Table 7.3 and Table 7.4 presents the statistics Space Generation Gain
(SGG) and for Space Occupation Loss (SOL), respectively. The SOL statis-
tics show a clear tendency of higher space loss for players that are more
often in possession of the ball, such as Iniesta, Messi, Neymar, and Suarez.
The space loss can be directly associated with pressure by the opponent,
who tends to increase density near attacking players to reduce their range
of action, especially for highly skilled players. Regarding the generation of
space, we obtain a different picture from the space occupation skills. Here,
Neymar and Suarez appear to be, alongside Messi, the players who often
drag opponents to create space. With a 4-3-3 system and high-quality play-
ers, a specific attacking strategy is to spread out attacking players to drag
defenders out of position and provide wider spaces for attacking action. Bus-
quets, a pivoting specialist, also appears at the top of the table, showing his
value in supporting space creation. Notably, the left and right back, Digne
and S. Roberto, do not generate much space. Given that they move towards
the sides of the field, it is less likely that back defenders drag opponents.

A more detailed perspective of space generators and receivers is pre-
sented in Figure 7.6. Here we can observe the number of times generators
produce space for receivers and discover some collaborative playing behav-
ior. First to observe is that Busquets receives space from most of the players
at least once, possibly showing his ability to stay at the center of the play. A
renowned skill of FC Barcelona is the third-man pass, which consists of the
following: if a player A wants to pass to player C but is marked, he passes
to player B, dragging the opponents toward him, enabling C to receive the
ball in more space. This plot might show a third-man behavior through
Busquets. Notably, Suarez, Neymar, and Messi generate space commonly
for each other, especially Suarez, who provides considerable space to both.
A special connection between Suarez and Messi is also shown for this game,
where both were able to generate a high amount of space for each other.
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Table 7.3: Statistics of space generation for F.C. Barcelona in an official Spanish League
Match against Villareal F.C. Symbols #,

∑
and µ represent the total, sum, and mean of

their associated variable. # Generated and # Received indicate the total times a player
generated or received generated space, accompanied by the team-relative percentage. SGG
refers to Space Generation Gain

Name # Generated # Received
∑

SGG µ SGG Mins

Neymar 28 (18.9%) 6 (4.1%) 5.97 0.21 94.86
Suarez 25 (16.9%) 18 (12.3%) 5.60 0.22 94.86
Messi 22 (14.9%) 24 (16.4%) 4.32 0.20 94.86
S. Busquets 15 (10.1%) 24 (16.4%) 3.83 0.26 94.86
Pique 14 (9.5%) 9 (6.2%) 3.66 0.26 94.86
Iniesta 13 (8.9%) 21 (14.4%) 2.62 0.20 94.86
A. Turan 8 (5.4%) 7 (4.8%) 2.26 0.28 23.32
S. Roberto 7 (4.7%) 2 (1.4%) 1.55 0.22 94.86
A. Gomes 9 (6%) 18 (1.2%) 1.49 0.17 68.61
Mascherano 5 (3.4%) 9 (6.2%) 0.80 0.16 94.86
D. Suarez 2 (1.4%) 8 (5.5%) 0.46 0.23 26.25

Table 7.4: Statistics of space occupation loss for F.C. Barcelona in an official Spanish
League Match against Villareal F.C. Symbols #,

∑
and µ represent the total, sum and

mean of their associated variable. SOL refers to Space Occupation Loss

Name # SOL
∑

SOL µ SOL Mins

Neymar 51 -8.53 -0.17 94.86
Suarez 52 -9.12 -0.18 94.86
Messi 68 -11.61 -0.17 94.86
S. Busquets 38 -6.16 -0.16 94.86
Pique 19 -2.77 -0.15 94.86
Iniesta 75 -11.79 -0.16 94.86
A. Turan 8 -1.29 -0.16 23.32
S. Roberto 31 -4.62 -0.15 94.86
A. Gomes 44 -6.25 -0.14 68.61
Mascherano 23 -3.39 -0.15 94.86
D. Suarez 16 -3.14 -0.20 26.25
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Figure 7.6: A heatmap showing the total times space was generated by generators (y-axis)
for receivers (x-axis)
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A different vision of space gain and generation can be grasped from Fig-
ure 7.7. Here we present the spatial heatmap for SOG and SGG situations.
At first glance, we observe that the amount of space gained through occupa-
tion is considerably higher than through generation, a more complex process.
Iniesta presents an interesting case where he can generate more space next
to the left sideline of the field, while he is better at gaining spaces for him-
self at the interior of the field. Also, he produces a notable amount of space
near the box. Busquets shows relevant collaborative behavior by generating
space almost anywhere around the field. He also presents broad areas of
SOG, but more intensively near the midfield, his natural habitat. Suarez
presents a notable ability to generate space within the box, where he con-
centrates most of his generating contribution. Here he arises as a specialist
in dragging defenders while making spaces for himself or while generating
spaces for others. Messi also shows excellent ability in generating spaces
around the attacking zones of the field, while Neymar concentrates on the
left-wing, focused on high-speed diagonal runs towards the box. Defenders,
as expected, show a minimal generation of space.

7.3 On-ball performance

7.3.1 Evolving passing networks

Passing network plots representing the passes between players and their
average location in a given match, are arguably one of the most popular
visualizations in soccer analytics (Knutson, 2018; McHale and Relton, 2018;
Buldú et al., 2018). The usual passing network visualization consists of the
average location of every player on the field at the time where they took
the pass, a player circle size according to frequency of passes taken by the
player, and lines between players with size and color related to frequency of
passes. More sophisticated versions assign passes the xG value calculated at
the end of the attack, with the limitation that all the passes within the same
attack receive the same value (Knutson, 2018). While passing networks are
useful tools to understand frequency of passes between pairs of players, they
fail to recognize whether those passes added or subtracted value, and the
distribution the EPVA of those passes. We introduce here an evolved ver-
sion of passing networks that incorporates EPV-related metrics, in order to
better evaluate passing quality.

Figure 7.8 presents a passing network for all passes departing from
Rakitic in a single FC Barcelona match in La Liga season 2017-2018. Only
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Figure 7.7: Space Occupation Gain and Space Generation heatmap for every field player
playing over 60 minutes. The scaling factor is based on the maximum Space Occupation
and maximum Space Generation among all the team, respectively

one player is shown for simplicity. This passing network introduces sev-
eral concepts. Players are located at their mean location for all the passes
received. The size of a player’s circles is proportional to the mean pitch
control they had when the pass was taken, where smaller sizes represent
lower space control, thus high pressure on the player. Here we can see the
central defenders are receiving balls from Rakitic with low pressure, while
the wingers and forwards are under considerably higher pressure (Suarez
in particular). The circles and lines are colored according to the EPVA of
the passes between Rakitic and each corresponding teammate. Circles are
colored with the mean EPVA by passes received by the player (except for
Rakitic). The way the lines are colored deserves special attention. Since
the contextual and spatial characteristics of the game state are expected
to influence the value of passes, coloring based on a sole summary statistic
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such as the mean or median EPVA can produce a considerable loss of infor-
mation. In order to get a closer view into the passing distribution, arrows
are divided into three equally sized blocks. Each block is colored according
to the EPVA of the passes in the percentile .25, .50 and .75 respectively of
each corresponding distribution of passes between players. Having this, we
can observe that while passes to Suarez incorporate a wide range of results
(from 0.01 to 0.12), the top 25% of passes where of great value. Also, we
can observe that the top 25% of passes to Piqué provided over 0.05 EPVA.
The plot also shows the average location of each pressure line when Rakitic
attempted a pass, so the locations of the teammates also provide informa-
tion about their average location relative to the opponents’ formation lines.
More detailed information can be obtained from the plot when filtering for
specific situations, such as organized buildups phases (e.g. passes starting
from behind the first pressure line) or creation phases (e.g. passes taken
above the midfield and beyond the first pressure line).

7.3.2 Inspecting into passing tendencies relative to context

In Section 4.4 we explored the idea of contextualizing actions based on the
relative location according to the mean position of pressure lines at a given
time. Here, we leverage that concept to provide a contextualized view into
the passing performance of a set of players in a given match. Figure 7.9
presents a comparison of the EPVA of passes between relative locations for
two central defenders (Sergio Ramos and Gerard Piqué) and two midfield-
ers (Luka Modric and Sergio Busquets) for a FC Barcelona vs Real Madrid
match, in La Liga season 2018-2019. Each column groups passes taken from
the red colored area shown on the first row. Each of the four areas (that
we call Z1, Z2, Z3 and Z4) represent the space between the own goal and
the first pressure line (Z1), the space between the first pressure line and
the second (Z2), the space between the second and the third pressure line
(Z3) and the space between the third pressure line and the opponents goal
(Z4). Notice that these zones are not predefined but they move dynamically
according to the opponents location at every time step. Each plot shows a
stacked bar chart representing the same concept as arrows in Section 7.3.1.
That is, the distribution of passes is split into three equally sized groups
(favoring the top in case of not exact division by 3) and colored according
to the EPV added after the pass. The x-axis locations represent the destina-
tion of the pass, and indicates whether the ball stays in the current relative
zone or it goes back or forward to any other zone.
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Figure 7.8: Passing network for all passes of Rakitic in a 2017-18 FC Barcelona match.
Circles are located in the mean pass destination location for every other player, while the
circle representing Rakitic’s location is placed at the mean location where passes were
taken. Circle size is related to the pitch control the player had when making the pass,
where smaller means less space (higher pressure). The color of the circles represent the
mean added value of those passes. The lines are split into three equally sized blocks. Each
block (starting from Rakitic) is colored by the added value associated with the percentile
.25, .50 and .75 in the distribution of passes between those two players. The gray areas
represent the space between the mean pressure lines of the opponent.
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Let’s analyze this figure column by column. For actions behind the first
pressure line (Z1) we observe two different pass tendencies from central de-
fenders (Ramos and Piqué). Ramos had a higher tendency to overcome the
first line of pressure towards the second but this resulted most of the time
in a loss of value for the possession. Piqué showed a higher tendency to
keep possession value by passing behind the first pressure line, but he also
attempted to overcome the first and the second pressure line. His three
attempts to overcome the first line of pressure successfully added value to
the possession. The second column represents passes starting between the
first and second pressure line, typically during the progression phase of the
possession. For the central defenders, we observe again two different ten-
dencies. Piqué passed back to Z1 twice as much as Ramos, both with the
tendency of losing an average of 0.01 EPV in their possession when passing
behind this line. When keeping the ball in Z2 Piqué was able to increase
the EPV of the possession while values for Ramos in that zone were con-
siderably lower, providing a hint for different types of pressure received by
each team. Regarding the midfielders, we can see the need for analyzing the
distribution of passes instead of jumping directly to summary statistics. For
both midfielders, two thirds of the passes subtracted or added little EPV to
the possession, however, the last third of passes where able to add value to
the possession. Remarkably, Busquets was able to attempt successfully two
passes beyond the defenders back adding a considerable amount of value.
For passes starting between the first and second line (Z3) we have diffe-
rent situations. Here, the contribution of central defenders was very low
for Ramos and non-existent for Piqué. Ramos was not able to add value
through passing while remaining in this zone, however his presence in this
zone adds more information to the match analysis regarding the tendency
of the defender to contribute with the attack. For both midfielders passes
within the same zone presented a consistent loss of value, which shows the
difficulty of adding value in the relative zone in soccer where the highest
pressure is found. Remarkably, passing back to Z2 found added value in
the third of the cases for both Modric and Busquets, but subtracted value
when they went back to Z1, showing again the changing dynamics of soccer
according to context.

7.3.3 Calculating optimal passing locations

In Section 3.1.7 we argue that one of the main concepts to be considered
when designing and EPV framework is capturing the idea that, in soccer,
passes con go anywhere on the field. Both the development of the Soccer-
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Figure 7.9: The image presents the distribution of EPVA for passes between relative zones
for four different players in a FC Barcelona vs Real Madrid match of La Liga season 2018-
2019. Columns group passes taken from three relative zones: behind the first pressure line
(Z1), between the first and second pressure line (Z2) and between the second and third
pressure line (Z3). The stacked bar charts represent the frequency of passes and are split
into three equally sized groups. From bottom to top the color of the bars correspond to
the EPV added of the actions at percentile .25, .50 and .75 respectively. X-axis in the bar
charts represent the destination of the pass, including a fourth zone (Z4) corresponding
to the space between the third pressure line and the opponents goal. The direction of the
attack goes from left to right.
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Map architecture, as well as the implementation of the decomposed EPV
model (presented in Chapters 5 and 6, respectively) provides the necessary
components to evaluate which passing destination locations passes provide
greater impact. Following a similar approach to that presented in Section
7.2.2, we can exploit the prediction of passing probability surfaces to assess
the optimal destination location for any potential pass, to ensure the pass
is completed successfully.

Given a game-state, where a player is in possession of the ball, we de-
fine the optimal and sub-optimal pass destinations as the locations near the
teammates than provide a higher pass probability than their current loca-
tion. To obtain the optimal passing locations we follow a similar procedure
to the one presented in Section7.2.2, where a series of alternative game sit-
uations are obtained by shifting each player’s position within a 5 × 5 grid,
adjusted to player’s velocity. For each of these situations we obtain the ex-
pected success probability of each potential pass, from which we select the
optimal and a set of sub-optimal passing locations. Figure 7.10 presents
in red circles the set of best passing locations for each of the possession
team players for a given game state. This kind of visualization provides a
coach the ability to perform a direct visual inspection of passing options
and allows her to provide direct feedback to players about specific game
situations, improving the coach’s effective communication options. We can
observe that the optimal passing location do not always coincide with the
optimal location for the player presented in Section 7.2.2. Here we can ob-
serve that the optimal passing locations from Piqué to Semedo are both in
a straight line between both, and consider either passing in short to bring
Semedo to Piqué’s location (71%) or making a longer pass behind Semedo’s
back, to avoid the pressure of the nearest opponent. In the cases of both
Lenget and Busquets, we can see the optimal locations follow the player’s
velocity, specially considering the higher speed of these compared to the
other teammates. We can also observe that the optimal passing location for
Rakitic is influenced by the velocity vector of two closest opponents; one
that is quickly moving away, opening a space behind his back, and the other
that is quickly approaching Rakitic to press him and reduce his passing
success probability. Having this information we could automatically locate
game situations where players select passing locations that are considerably
below the optimal, and provide the coach with specific information about
alternative passing locations. If a certain behavior pattern is detected (for
example, consistently passing back or being unable to find the playmaker)
the coach could use this visual representation and the associated video to
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instruct to the players.

Note that for all of the passes (with the exception of the pass to the
goalkeeper) the optimal location is rarely found in the player’s current lo-
cation. Also, the location and velocity of the opponents is shown to be
determinant factor for the success of passes. Both observations, provide an
idea of the complexity of the spatial dynamics of soccer, and the necessity
of considering the full extent of the soccer field, as well as the dynamics of
the 22 players and the ball.

Figure 7.10: A game situation where yellow circles represent the players of the attacking
team, and the blue circles the players in the defending team. The surface represents the
pass probability for every location on the field. The red circles represent the optimal and
sub-optimal (when available) locations maximizing pass probability of potential passes
to each of the players. The number above the red circles indicates the calculated pass
probability.
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Assessing individual passing skill

Following the identification of optimal passing location presented in Section
7.3.3, we propose a new metric pass completion added (PPA) to quantify
a player’s passing skill. For each observed pass, we calculate the player’s
passing accuracy, weighted by the difference between the probability of the
optimal pass and the probability of the selected pass. This metric is formally
defined in Equation 7.6, where S and M are the set of successful and missed
passes, respectively, ŷ is the optimal pass probability, and y is the selected
pass probability. Intuitively, a player reward is discounted if the selected
pass was not optimal. In the case of the pass being unsuccessful, the player
is only penalized in proportion to the probability difference with the optimal
location, rewarding the player’s pass selection.

PPA =

S∑
s=1

(1− ŷs)(1− (ŷs − ys))−
M∑
m=1

(ŷs)(ŷs − ys) (7.6)

In table 7.5 we present the best ten players in pass completion added for
the 2014-2015 season of the EPL, where The cumulative PPA of a player
is normalized by 90 minutes played. The table includes the players’ esti-
mated market value in 2014, provided by www.transfermarkt.com. We can
observe that the list contains a set of the best players in recent times in
this league, including creative midfielders such as Oezil,Silva, Hazard and
Fabregas, deep creative wingers such as Navas and Valencia, and Rosicky, a
historical player.

Table 7.5: Ranking of the best ten players in pass completion added for the season 2014-
2015 of the EPL.

Team Player Name PPA/90m Age Market value

Arsenal Mesut Oezil 0.0578 24 e45M
Manchester City David Silva 0.0549 28 e40M
Chelsea Eden Hazard 0.0529 23 e48M
Manchester United Antonio Valencia 0.0502 29 e13M
Arsenal Tomas Rosicky 0.0500 33 e2M
Chelsea Cesc Fabregas 0.0484 27 e40M
Arsenal Santi Cazorla 0.0470 29 e30M
Manchester City Jesus Navas 0.0469 28 e20M
Manchester City Yaya Toure 0.0466 30 e30M
Manchester City Samir Nasri 0.0447 26 e22M
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Chapter 8

Conclusions and future work

This chapter presents the conclusions of this work, emphasizing the most
relevant contributions concerning the research questions posed. Additiona-
lly, we detail the main limitations of this approach and propose a series of
ideas for future work.

8.1 Conclusions

The primary motivation of this work is focused on the current difficulty of
integrating data analytics within professional soccer clubs, especially given
the complexity of soccer’s spatiotemporal relationships and the challenge
of translating findings to practitioners. While applied research in soccer
has covered a broad set of topics such as evaluating the impact of indi-
vidual actions, measuring spatial dominance, or estimating player’s motion
dynamics, we identify that most of these correspond to isolated aspects of
the game. Given this, we devote this work to designing and developing an
analysis framework that could capture relevant spatiotemporal relationships
and provide interpretable and visual explanations of the outcomes.

By developing the concept of EPV, we provide a comprehensive anal-
ysis framework capable of producing calibrated estimates of the long-term
expected value of any game situation. We propose a decomposed approach
from a modeling standpoint where a series of foundational soccer compo-
nents can be estimated separately and then merged to provide a single EPV
estimation, providing flexibility to this integrated model. From an inference
and implementation standpoint, we leverage several function approxima-
tion approaches within the field of machine learning and statistical analysis
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to exploit complex relationships in spatiotemporal tracking data. We de-
sign deep learning architectures to exploit both low-level spatiotemporal
data and soccer-specific features for producing calibrated predictions in a
wide range of components, from action-selection probability to action suc-
cess probability and expected value. An essential contribution of this work
is the proposal of SoccerMap, a flexible deep learning architecture capa-
ble of producing accurate probability surfaces and accurate estimates in a
broad range of problems. Based on the large set of spatial and contextual
features developed in this work, and the availability of low-level spatiotem-
poral tracking data from professional matches, we show we are able to model
each of the components of the decomposed EPV approach successfully and
provide accurate EPV estimates at any time instance. The flexibility and
interpretation capabilities of the proposed model allows one to produce a
broad set of examples of practical applications in three different fields of
interest within soccer analytics: on-ball performance, off-ball performance,
and match analysis. Additionally, we provide a series of practical applica-
tions derived directly from the developed spatial and contextual features.
Through this modeling process, we achieve a functional framework for ad-
dressing a comprehensive set of problems of interest within the non-stop
flow of questions that usually arise in the relationship between data ana-
lysts and coaching staffs. Based on this model, future developments can
incorporate a set of improvements for performing more sophisticated anal-
ysis of unexplored soccer problems. Some of these improvements include
learning from more recent and larger datasets, incorporating match-specific
and team-specific information, adding kinematic information such as pose
estimation derived from video footage, considering richer physical data, or
adding ball height, among many others.

In the following sections, we address each of the research questions pre-
sented in Chapter 1.2, which constitute the focus for the design and develop-
ment of this work, highlighting the main conclusions related to the findings
and contributions of this work.

8.1.1 Expected possession value

The fundamental research question of this thesis is the following: “can we
estimate the expectation of a team scoring or conceding the next goal, at
any time in the game (EPV)?” Through the results of the joint EPV model
implementation, we are able to verify that it is possible to estimate the ex-
pected value of any given ball-possession in the long term in a way that it
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produces calibrated estimates and that the visual representation of results
matches the understanding of professional coaches. One of the differential
aspects of this approach is the definition of soccer possessions, where we
consider the fluid nature of the game, allowing the ball to change control
between teams an indefinite number of times until a goal, an objective metric
of success is observed. An additional critical decision is the joint modeling
of the probability of conceding and scoring goals. This allows the model to
capture non-intuitive characteristics of the game such that risking to lose the
ball near the opponent’s box produces a positive expected reward on aver-
age. In a broader perspective, considering both goal scoring and conceding
probabilities provides the ability to perform a more direct and fine-grained
evaluation of the risk and reward of actions, especially for potential or non-
observed actions. A limiting factor is the consideration of a maximum time
threshold before observing a goal. Naturally, the sparsity of goals, com-
pared with the long duration of soccer matches, provides a time limitation
for the influence that any given individual action has on future outcomes.
The instantaneous estimation of EPV itself can be used directly in a broad
set of practical applications, including the evaluation of the frame-by-frame
expected goal probability during possessions, identifying the most valuable
actions, the evaluation of a player’s on-ball and off-ball performance accor-
ding to the added value by observed actions, quantifying a team’s attacking
and defensive production (e.g., the sum of last actions’ EPV in attacks and
defenses), and even the generation of either match-specific or cross-season
highlight reels.

8.1.2 A decomposed EPV approach

In this work, we argue that while the EPV estimates can be applied di-
rectly to solve a broad set of practical needs, single-model approaches lack
flexibility and interpretability, two fundamental elements for successfully
implementing such a model within a coaching staff’s day-to-day work. Con-
sidering the possibility of modeling EPV in a more granular way, we pose
the question: “can we express this expectation (EPV) in terms of a series of
smaller components, akin to coaches’ language so that they can be estimated
and interpreted separately?” We present a new approach for modeling EPV
consisting of decomposing the primary expression into a series of subcompo-
nents by following the law of total expectation. To apply this decomposition,
we decided to define a series of essential building blocks representing con-
cepts familiar to coaches, modeled and calculated separately, and then joined
to produce a single EPV expectation. Specifically, we consider a reduced
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set of three actions: passes, ball drives, and shots, to encompass the most
significant number of types of on-ball actions in soccer. This approach pro-
vides a comprehensive analysis framework, where each of the components
can be inspected, adapted, and extended separately. Additionally, this al-
lows one to conduct a deep exploration into the factors that influence the
variations of EPV in any given situation and develop a considerably more
extensive set of practical applications. We consider that the idea of decom-
posing and estimating an expression in this way is a valuable contribution
to the development of more interpretable machine learning models.

8.1.3 Obtaining calibrated estimations

To provide the ability to perform fine-grained analysis on each component’s
impact, we must grasp the uncertainty related to the occurrence and suc-
cess of the different events. An example of this is evaluating the risk and
reward of actions, which would benefit from a deeper understanding of the
actions’ probability and expected value. From a practical standpoint, we
are more interested in providing a sense of the likelihood of an event rather
than classifying it into discriminant classes. For example, the probability of
scoring a goal becomes more useful and granular information from a practi-
cal standpoint than strictly predicting if the shot will produce a goal or not.
Following this, we express the components so that their outcomes provide
estimates for either the probability or the expected value (depending on the
component) of the concept they represent. Given that these probabilities
constitute the pieces of information to be delivered and used in practice,
it becomes necessary to ensure that each of the models provides calibra-
ted estimates. This reasoning lead to the following research question: “can
the models built for these components produce calibrated probability esti-
mates?”

In the implementation of the EPV framework, presented in Chapter 6, we
show the models are able to produce calibrated estimations. These are vali-
dated in two ways. First, calibration reliability curves are provided, showing
that the average observed outcome coincides with the average probability
by bin for a set of ten equally-sized bins of the model’s predictions. Addi-
tionally, we report a quantitative calibration value for each model based on
the ECE metric, allowing us to compare these results with future research.
A noticeable result of this work is that calibrated probabilities could be
obtained in a set of different learning scenarios, from fully convolutional
network-based architectures, which have a high number of parameters, to
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boosting regression models. Remarkably, the SoccerMap architecture pro-
duces calibrated results in three different problems, despite the challenging
learning set-up posed by the single-location label restriction, described in
Chapter 5. Most interestingly, we show that ensuring calibrated outcomes
on each of the separated components is sufficient for producing a calibrated
joint EPV model.

8.1.4 Development of spatial and contextual features

An essential part of this work is the development a broad set of spatial
and contextual features aimed to provide a richer representation of game
states. The development of these features was supported by a broad set of
professional coaches, whose experience in-game analysis produced a series of
suggestions that influenced the design and implementation of these features.
While the experience of these coaches is considered a valuable aspect for the
mentioned features’ design, an important question is whether these features
would influence the models developed. Specifically, we propose the following
research question: “can soccer-specific features developed with experts con-
tribute to the models’ estimations?”

The influence and usefulness of these features is presented in three ways:
by evaluating feature importance through the SHAP methodology, applying
some of these features for providing contextual information within EPV-
derived practical applications, and showing practical applications directly
derived from these features. Through the SHAP value analysis, we can
see how concepts such as pass, ball drive, and shot selection probability
are highly influenced by the pitch control and opponent density features.
Additionally, spatial features such as block count and goalkeeper surpassed
influence the estimation of the expected value of shots. The detection of
dynamic pressure lines play a significant role in this thesis, both as a feature
within the models and as a useful variable for deriving practical applica-
tions directly. The dynamic lines of both the attacking team and opponent
are used in the expected value models for passes and ball drives, providing
location-relative contextual information, and enriching the game state rep-
resentation.

Specifically, the dynamic formation lines provide the models with infor-
mation absent in standard low-level spatiotemporal data and comprehending
a series of complex spatiotemporal dynamics. For example, the value of a
potential pass now considers if that pass breaks the last pressure line of the
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opponent and if the pass is being taken from the first formation line (typi-
cally from a player in the center-back position) or the outside or inside of the
opponent’s block. In Section 4.4.4, we show that the expected value of passes
varies considerably according to this contextual information. Moreover, we
present a series of comprehensive practical applications directly obtained by
conditioning both the quantitative and visual information to the dynamic
formation lines information. An example of this is detecting and comparing
players’ passing tendencies relative to the opponents’ positioning. We show
how the passing selection and reception dynamics interpretation is enriched
when adding this contextual information. Another practical application is
identifying game phases, which provides higher granularity for understand-
ing the changing dynamics within a single ball possession, and can serve as
a sophisticated method for structuring the analysis of matches.

We also show how the pitch control and pitch influence models could be
exploited to develop useful practical applications directly. We present two
novel concepts in soccer analytics, the quantification of space occupation
and space creation, two off-ball qualities that are omnipresent in coaches’
language. From these concepts, we derive a series of metrics for providing
a more in-depth evaluation of the spatial performance of players and the
value they provide to teammates. This approach itself provides a new way
of evaluating players’ off-ball performance, a little-studied concept in soccer
analytics, and that becomes particularly valuable given the vast amount
of time that players spend without ball control. Beyond these specialized
features, the series of more natural spatial features such as distance, angle,
and velocity, constitute a fundamental piece of information in all the models
developed.

8.1.5 SoccerMap: producing visually-interpretable outputs

While most existing research to date focused on developing models on top
of carefully designed features, we consider exploring if rich features could
be learned autonomously from low-level spatiotemporal data by employing
approaches that could exploit the spatial relationship of nearby locations.
Additionally, if such a model could produce visual representations of the
predictions, we could have a more granular and intuitive way to translate
the results of complex models to coaches in a more digestible way. Based on
this, we propose the following research questions: “can we develop a model
capable of ingesting raw tracking data and producing probability surfaces
in a way that is easily adaptable to other problems? Can this model be
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developed through a spatial-aware deep learning architecture?”

In this work, we introduce SoccerMap, a fully convolutional neural network-
based architecture capable of receiving low-level tracking data and produc-
ing probability surfaces representing predictions at every location on the
field. We show that SoccerMap can be easily adapted to produce accurate
estimates of different challenging problems such as pass probability, pass
expected value, and pass selection likelihood. The architecture can receive
an arbitrary number of layers, from sparse matrices with low-level infor-
mation (e.g. location of the defending players), to more carefully designed
dense matrices (e.g., defensive pressure lines corresponding to each location
on the field). Additionally, we show we can successfully train this architec-
ture with single-location labels and produce entire probability surfaces with
accurate and calibrated estimates. The remarkable performance of the pre-
sented SoccerMap-based models, highlights the capacity of the architecture
to exploit low-level spatiotemporal data to produce representative features
for each problem. In other words, the results of these models suggest that
SoccerMap is capable of making sense of the most relevant complex spa-
tiotemporal dynamics to produce accurate predictions.

The flexibility of SoccerMap and the visual interpretability of the out-
come it produces make this architecture a useful tool for quickly learning
complex problems with little specification and exploring its results with the
aid of practitioners with a non-scientific background. The production of
probability surfaces is still a little explored area in sports analytics. With
SoccerMap, we show that these surfaces are usually more easily interpreted
than standard machine learning approaches but that these open the door for
a deeper exploration of off-ball performance and the analysis of the impact
of potential (non-observed) actions, a critical aspect of performance analy-
sis. This architecture could be directly applied in other team sports that
count with the availability of tracking data, such as basketball, American
football, handball, among many others, by performing slight modifications
to its configuration.

8.1.6 A large set of novel practical applications

One of the main objectives of the proposed comprehensive EPV framework
is allowing data analysts to quickly solve the wide variety of performance-
related questions that arise daily within professional coaching staff. Based
on this, a critical part of this work is devoted to exploring the practical
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applicability that such a framework would allow, which we synthesize in the
following research question: “can we produce practical applications from the
developed models so the set of EPV components can be understood as an
analysis framework?”

We present over ten practical applications directly derived from the EPV
framework and the different spatial and contextual features developed in
this work. In particular, we show how the separated components of the
EPV model, the capacity of producing entire probability surfaces, and in
general, the application of the framework for assessing the risk and reward
balance of both observed and potential actions, provides great flexibility for
approaching different applied areas of interest. The majority of applications
are structured into three main topics: match and team-level analysis, off-
ball performance, and on-ball performance.

For the match and team-level analysis topic, we present a real-time con-
trol room where the impact of the different components can be accessed on
a frame-by-frame basis for assessing the evolution of attacks. Through this
application, coaches can perform a deep inspection into the expected po-
ssession value and understand how different decisions might have impacted
the outcome of the possession at any given time. Interestingly, we provide
both quantitative information and visual representations of the different sit-
uations.

In a more specific application, we show how a coach could exploit their
opponent teams’ different pass-selection tendencies to understand better
what to expect in the next match. These passing tendencies are learned
directly from the data by adapting the pass-selection component to condi-
tion it to the information available for each team. Finally, we show how the
process of selecting an optimal initial squad could be enriched by examining
the on-ball and off-ball relationship between pairs of players. Based on the
evaluation of the added and received EPV, and the pass selection tendencies
between teammates, we explore the different team squad configurations that
Manchester City’s 2014 coach could select to optimize the performance of
their playmaker David Silva.

A considerably novel topic explored from the applied standpoint is as-
sessing off-ball performance, a yet-little explored area in soccer analytics.
The capacity of the EPV framework of evaluating the risk and reward as-
sociated with any potential action provides a new dimension of analysis.
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One of these applications consists of exploring the defensive system that
could be used to suppress the organized buildup capabilities of Brendan
Rodgers’s Liverpool. Here, we analyze the possibilities of creating danger
in different field zones relative to the defending team’s positioning. Instead
of directly recommending a specific system, this approach allows a coach to
decide the optimal configuration that fits better with his optimal strategy
(e.g., progressing through the center lane and breaking the first pressure
line). Another novel contribution from the application standpoint is the
evaluation of the optimal positioning of players in specific game situations.
Given the high amount of time that players spend without being in contact
with the ball, positioning in space in time plays a critical role in a player’s
performance, so coaches spend much time evaluating and correcting off-ball
behaviors. The optimal positioning analysis provides a way of exploiting
the predicted pass probability surfaces for producing a quantitative assess-
ment of the optimal spaces to occupy. Additionally, the availability of these
surfaces eases the communication of these findings to players. Finally, we
provide the first known quantification of two popular off-ball concepts, space
occupation and space generation (or space creation), both universal concepts
in coaches’ jargon. We showed how players’ spatial performance could be
evaluated from the space creation standpoint, identifying the way space is
generated (i.e., jogging or running pace), where this space is generated, and
the spatial contribution between pairs of players.

We provide three new practical applications regarding on-ball perfor-
mance, exploiting the fine-grained evaluation of EPV and the spatial and
contextual features here developed. First, we propose a new approach for
visualizing passing networks that consider the value added with passes be-
tween teammates, going beyond the simple representation of pass frequency.
In this plot, we combine players’ spatial dominance when they are about to
receive a pass, the players’ average location, and the distribution of added
value to gain a more detailed picture of the intricacies of passing dynamics.
Second, we present a fine-grained analysis of four different players’ added
value and passing tendencies relative to the origin and destination location of
passes and the teammates’ pressure lines. Through this visualization we get
information about the players’ risk-taking profiles and the obtained reward
from those taken risks, contextualized according to the positioning of the
defensive team. Specifically, with this information, we can understand how
frequently a player risks breaking formation lines through passes and how
much value is added from those actions. For example, in the match being
analyzed we show how Sergio Ramos tended more frequently to break the
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first pressure line, but he added considerably less value than Gerard Piqué,
who, in change, attempted to break lines less often. The third on-ball per-
formance application introduces the idea of quantifying the optimal passing
location in any game situation. We exploit the pass probability surfaces
to identify the destination locations that would maximize the probability
of successfully passing to each teammate. This approach provides a clear
perspective on the value added by predicting the entire probability surface,
where we can explore the impact of passes played into space, rather than only
considering the teammate’s exact location, offering a more realistic evalua-
tion of passing options. In addition to this, we introduce a new metric to
evaluate individual passing skill, PPA. While the usual approach compares
the success of passes with the predicted pass probability, we moved a step
forward and considered the probability of the optimal passing location. In
other words, we are identifying how well did a player identify the optimal
passing location and weighting its ability according to the observed success,
thus providing a sense of players passing intelligence.

While each of these practical applications can be interesting and useful
themselves, the main takeaway is the flexibility and adaptability that the
EPV framework provides to develop new applied ideas as quickly as possi-
ble. Either by exploiting a subset of components or by directly employing
the joint EPV estimate, this approach presents itself as a fully functional
framework for addressing challenging applied problems while considering
complex spatiotemporal relationships. This EPV framework can be seen as
a versatile and flexible toolbox for enhancing soccer analysis with rich quan-
titative metrics and the capacity of performing visual inspection for better
translating the results to practitioners.

8.1.7 Collaboration with professional soccer coaches

The practical focus of this work is catalyzed and enriched by the close col-
laboration with professional soccer coaches from a variety of FC Barcelona
teams. The support of these coaches played a critical role in designing and
validating the broad set of spatial and contextual features here developed.
The followed methodology, involved periodical meetings over four years, the
selection of specific topics of discussion, and the development of a web-based
support tool for validating the results along with the video, providing a suc-
cessful incremental approach for enriching the developed models with the
expert considerations of these coaches. This collaboration results especially
valuable in developing the different practical applications, ensuring that both
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the factors considered in the design of the models and the presentation of
results could be integrated into professional coaching staffs.

8.2 Limitations and future work

In this section we present the main limitations of the SoccerMap architecture
and the full EPV framework presented. We accompany these limitations
with suggestions for further work that could improve the developed mo-
dels, emphasizing the game state representation, the availability of broader
datasets, the learning and optimization considerations, and the availability
of new types of data sources.

Coarse field representation The use of a coarse representation of the
field in the SoccerMap architecture limits the output to a discrete matrix
of values. In this work, we prove we can produce accurate estimations of
pass success probability, pass selection probability, and pass expected value
estimates with a field representation of size 104 × 68. Although the use
of convolutional neural networks limits the prediction to a discrete space, it
has the advantage of considering the spatial relationships of nearby locations
directly. Other approaches could address the impact of selecting different
configurations for the discrete output matrix. Additionally, other layers con-
sisting of precomputed surfaces of more sophisticated or problem-specific fea-
tures that consider continuous location space could be introduced to enhance
the SoccerMap-based models. An example of this could be to introduce a
surface layer representing the degree of interceptability of passes based on
the physics-based motion model presented in Spearman et al. (2017).

Model size and number of parameters The number of parameters
of the SoccerMap-based model for pass probability is considerably large
compared to the benchmark models presented in Chapter 5. We show that
SoccerMap could provide real-time estimations (near 200Hz) if GPU compu-
tation is available. However, if GPU processing is unavailable, the inference
time of the model is expected to increase considerably.

Broader and larger datasets A sufficiently large dataset is required
in order to train a model with this high number of parameters. While
the access of tracking data for full seasons has been historically limited
to public access, several high-level competitions such as the EPL and the
German Bundesliga provide tracking data of all the matches to every team
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in the league. Recently, private companies are starting to offer tracking
data generated from broadcast videos or enhanced versions of event data,
including players’ locations at every event. This increasing availability of
data should facilitate the development of models derived from this approach.
Additionally, training these models with more recent tracking data might
help capture up-to-date soccer characteristics such as improved physical
conditions of players or a tendency to prefer short passes over long passes.

Player and team-specific features This kind of features, such as player
skills or team-level playing tendencies, could provide enriched information
for producing more accurate estimates in specific game situations. Some
examples of these features are: a player-passing skill feature (e.g., average
pass completion) for the pass probability model, an action-selection feature
indicating either the player’s or the team’s tendency to pass, keep the ball, or
shoot, or a player-level shooting skill. Alternatively, a series of components
could be added to the different neural network architectures proposed in this
work to learn team-specific features within the same learning process. For
example, a group of neurons encoding team passing-style could be added
to produce pass-likelihood surfaces adjusted to each team in the dataset.
However, it is important to notice that considering player-level or team-
level features could make the attribution of value more challenging.

Meta-information of the game and team state The overall estima-
tion of EPV could benefit from including information such as the time when
actions occur, the current score, an estimation of the match importance, the
known rivalry between the two teams, or an estimation of a team’s mental
pressure at any given time (Bransen et al., 2019).

Training set-pieces separately The components related to passes and
shots could be improved by differentiating between open-play and set-pieces
at an implementation level.

Incorporating player orientation and kinematics Computer vision
methods could be exploited to derive a new series of features providing infor-
mation derived from the pose estimation and other robust object recognition
technologies. During this work, we collaborated with the development of a
model for identifying the upper-torso orientation of players at any time and
incorporated that feature within a pass probability model (Arbués-Sangüesa
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et al., 2020a,b). These new sources of information could provide new per-
spectives to incorporate kinematics and motion analysis of players.

Incorporating ball height The standard format of available tracking
data provides players locations in a 2D coordinate system, ignoring the z-
axis or ball height. While this kind of data is still not usually available in
soccer, its incorporation might provide richer information of the game state
for most developed components, emphasizing the passing models. The z-axis
would allow us to differentiate directly between an aerial and a ground-level
pass instead of extracting this information as a latent factor related to the
pass distance and its origin and destination location. This information could
enrich the decision-making evaluation, for example, in suggesting optimal
passing locations by providing a fine-grained assessment of the expected
outcome of the different types of passes.

A more nuanced evaluation of short-term value attribution The
presented framework focuses on the estimation of the long-term expected
outcome of a possession. While the estimation of the EPVA of actions pro-
vides a signal for understanding a player’s on-ball contribution, we could
develop more sophisticated approaches for understanding how to attribute
this value in short term. For example, a high-value pass from a midfielder
might have been influenced by two previous passes with lower added value,
which created the opportunity for the later high-value pass. Through meth-
ods related to the reinforcement learning research area, we could learn how
to better attribute the high-value pass to the group of players participating
in actions close in time to provide a more refined evaluation of a player’s
actual contribution to the increase of goal-scoring probability.

Different approaches for learning inter-player relationships A re-
cent approach explores graph convolutional neural networks to evaluate play-
ers’ defensive contribution (Stöckl et al., 2021). The exploration of different
neural network architectures and optimization approaches, such as the graph
networks learning approach, might provide a different way of learning to es-
timate EPV, by conditioning the state representation to the relationships
between adjacent nodes. While we would lose the rich information provided
by estimating probability surfaces, we could obtain a more direct way to
understand the expected value of passing to a teammate without conside-
ring multiple locations, although risking a too steep simplification of players’
expected behavior.
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List of spatial and contextual
features

Table A.1,A.2, A.3, and A.4 describe the complete set of features used as
input for each presented model. The concept type column refers to the
general feature grouping described in Chapter 4, including a prefix indicating
whether the feature is a spatial feature (SP), a contextual feature (CX), or
other types (OT). Model names are presented with acronyms, including:
pass success probability (PP), pass selection probability (PS), pass success
and missed EPV (PE), ball drive probability (DP), ball drive success and
missed EPV (DE), action selection probability (AS), and shot EPV (SE).
For PP, PS, and PE models, the input features are either sparse or full
matrix of 104× 68. When the feature description indicates the value is set
of every location, this input will correspond to a full matrix; otherwise, it
corresponds to a sparse matrix. For the rest of the models, each feature is
provided as a single variable. We refer to the team in control of the ball as
the attacking team, and its players as the attacking players. We refer to the
other team as the defending team, and its players as the defending players.
All the features are normalized, assuming a left to right attacking direction
of the team in control of the ball (attacking team).
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Table A.1: First part of the set of spatial features used as input for each presented model.
The concept type column includes a prefix indicating the feature belongs to the spatial
feature type (SP). For the rest of the columns a checkmark indicates the models where
the feature is used, including: pass success probability (PP), pass selection probability
(PS), pass success and missed EPV (PE), ball drive probability (DP), ball drive success
and missed EPV (DE), action selection probability (AS), and shot EPV (SE)

Concept Type Feature PP PS PE DP DE AS SE

SP - (x,y) location 1 on attacking players’ lo-
cation (x,y).

X X X

SP - (x,y) location Ball location (x). X X X X
SP - (x,y) location 1 on defending players’ lo-

cation (x,y).
X X X

SP - (x,y) location 1 if the ball is closer to the
goal than the opponent’s
goalkeeper.

X

SP - Velocity Attacking team players’
speed (m/s) (x).

X X X

SP - Velocity Attacking team players’
speed (m/s) (y).

X X X

SP - Velocity Defending team players’
speed (m/s) (y).

X X X

SP - Velocity Defending team players’
speed (m/s) (y).

X X X

SP - Angle Angle between every loca-
tion and the goal

X X X

SP - Angle Angle between the ball
and the goal.

X X X X

SP - Angle Sine of the angle between
every location and the ball
location.

X X

SP - Angle Cosine of the angle be-
tween every location and
the ball location.

X X

SP - Angle Sine of the angle between
the ball carrier velocity
vector and every other lo-
cation.

X X

SP - Angle Cosine of the angle be-
tween the ball carrier ve-
locity vector and every
other location.

X X
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Table A.2: Second part of the set of spatial features used as input for each presented model.
The concept type column includes a prefix indicating the feature belongs to the spatial
feature type (SP). For the rest of the columns a checkmark indicates the models where
the feature is used, including: pass success probability (PP), pass selection probability
(PS), pass success and missed EPV (PE), ball drive probability (DP), ball drive success
and missed EPV (DE), action selection probability (AS), and shot EPV (SE)

Concept Type Feature PP PS PE DP DE AS SE

SP - Distance Distance between every
location and the goal.

X X X

SP - Distance Distance between every
location and the ball.

X X X

SP - Distance Distance between the
ball and the goal.

X X X X

SP - Distance Distance between the
ball and the goalkeeper
in y-axis.

X

SP - Distance Distance between the
ball and the goalkeeper.

X

SP - Pitch control Pitch control of the at-
tacking team at the ball
location

X X X

SP - Pitch influence Pitch influence of the
defending team at the
ball location.

X X X
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Table A.3: First part of the set of contextual features and other feature types used as
input for each presented model. The concept type column includes a prefix indicating
whether the feature is a contextual feature (CX) or other types (OT). For the rest of
the columns a checkmark indicates the models where the feature is used, including pass
success probability (PP), pass selection probability (PS), pass success and missed EPV
(PE), ball drive probability (KP), ball drive success and missed EPV (KE), action selection
probability (AS), and shot EPV (SE)

Concept Type Feature PP PS PE DP DE AS SE

CX - Dynamic
pressure lines

Index of the closest at-
tacking team line to ev-
ery location.

X

CX - Dynamic
pressure lines

Index of the closest at-
tacking team line to the
ball location.

X X X

CX - Dynamic
pressure lines

Index of the closest de-
fending team line to ev-
ery location.

X

CX - Dynamic
pressure lines

Index of the closest de-
fending team line to the
ball location.

X X X

CX - Outplayed
players

Number of attacking
team’s players between
the ball and every other
location.

X

CX - Outplayed
players

Number of defending
players between the ball
and every other loca-
tion.

X

CX - Outplayed
players

Number of attacking
players between the
opponent’s goal and
every other location.

X
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Table A.4: Second part of the set of contextual features and other feature types used as
input for each presented model. The concept type column includes a prefix indicating
whether the feature is a contextual feature (CX) or other types (OT). For the rest of
the columns a checkmark indicates the models where the feature is used, including pass
success probability (PP), pass selection probability (PS), pass success and missed EPV
(PE), ball drive probability (KP), ball drive success and missed EPV (KE), action selection
probability (AS), and shot EPV (SE)

Concept Type Feature PP PS PE DP DE AS SE

CX - Dynamic
pressure lines

Index of the closest at-
tacking team line to ev-
ery location.

X

CX - Outplayed
players

Number of players of the
defending team between
the opponent’s goal and
every other location.

X

CX -
Interceptability

Number of defending
players inside the trian-
gle formed between the
ball location and the
posts of the opponent’s
goal.

X

CX -
Interceptability

Number of defending
players located less than
3 meters away from the
ball location.

X

CX - Event-based
xG

Expected goals based on
the action location and
the angle to the goal.

X X

OT - Type 1 of action is attempted
with the head.

X

OT - Probability Pass probability surface. X
OT - Probability Ball drive probability. X
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