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3.1-1 READING LIST

Basic references:

Fox, J. Applied Regression Analysis and Generalized Linear Models. Sage Publications, Edition 2015.
[ Fox and Weisberg An R Companion to Applied Regression. Sage Publications, Edition 2011,
[0 Wickham, H. ggplot2: Elegant Graphics for Data Analysis. Springer New York, 2009.
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T
Let ¥ =(y19---9yn) be a vector of n observations, randomly drawn from the vector

T
Y (Yl""’Yn), whose variables are statistically independent and distributed with expectation

ﬂT =(1Ll19"'9,Lln):

In linear models, the random component Y’ =(Yl,---,Yn) is assumed fo be normally distributed
Y;|X;~N (u;, 0) with constant variance o,V (Y;|X;) = 02 and expectation E(Y;|X;) = y;

®» Therefore, the response variable is modeled as normally distributed; thus, negative or positive values,
which may be arbitrarily small or large, may be encountered as data for the response and prediction.

®» The systematic component of the model consists in specifying a vector called the linear predictor,
denoted 77 , of the same length as the response, dimension n, obtained from the linear combination of

ﬂT =( 19“"ﬂp) and

the regressors are X = (Xp-naXp) and, thus, |77 = Xﬂ where 77 is nx1, X is nxp and ,B is
px1.

regressors (explanatory variables). In vector notation, the parameters are

W Vector H is the direct linear predictor 7] : therefore, the link functionis 71 = H or Ui = X;p
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Empirical problem: What do the data say about class sizes and test scores according to the California
Test Score Data Set?

All K-6 and K-8 California school districts (n = 420)
Variables:

e 5th grade test scores (Stanford-9 achievement test, combined math and reading), district average.
TARGET (Y)

e Student-teacher ratio (STR) = number of students in the district divided by number of full-time
equivalent teachers. (X)

Policy question: What is the effect of reducing class size by one student per class? By 8 students/class? Do
districts with smaller classes (lower STR) have higher test scores?

An initial look at the California test score data:

Percentile

Average Standard 10%  25%  40%  50%  60%  75%  90%

Deviation (median)
Student-teacher ratio 19.6 1.9 7.3 18.6 19.3 19.7 20.1 20,9 21.9
Test score 654.2 19.1 6304 6400 6491 6545 6394 6667  679.1
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Stock and Watson (2007)
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3.1-2 SOME NOTATION AND TERMINOLOGY

e The population regression line is
Test score = B; + B2STR
B1is the intercept

Bz is the slope of the population regression line

ATest score

= = change in test score for a unit change in STR

ASTR

Why are B: and B2 "population” parameters?

We would like to know the population value of B..

We don't know B2, so we must estimate it using data.

How can we estimate 31 and B2 from the data?

We will focus on the least squares (“ordinary least squares” or "OLS") estimator of the unknown parameters
B1 and B2, which solves

Ming_(, ,\S(B)=(Y-XB) -(Y-XB)= Z(Yk =B = box; )2

k

Prof. Lidia Montero © Page 3.1-7 2021-2022 Academic Year



UNIVERSITAT POLITECNICA DE CATALUNYA
BARCELONATECH
Pepartqmer_lt d’Estac!istica

i Investigacié Operativa

SIM course. Master in Data Science - FIB- UPC

3.1-2 SOME NOTATION AND TERMINOLOGY: EXAMPLE

The OLS estimator minimizes the average squared difference between the actual values of Yi and the
prediction (predicted value) based on the estimated line.

Application to the California Test Score - Class size data

Test score
720 - :
_ Estimated slope = - 2.28
700 L o e, Estimated intercept = 698.9
tent TestScore = 698.9 - 2.28 x STR
el v e v ‘e, R " Estimated regression line: = 698.9 - 2.28 STR
' @ ."’J.:; . ::.!t'. LI *
660
_ Interpretation of the estimated slope and
mis y {: intercept:
640 s P |
. e e . Districts with one more student per
‘2 L ." ., . N L]
620 ‘e e * teacher on average have test scores that are
m}u- e e 2 28 points lower,
10 15 20 25 30 e The intercept (taken literally) means

Student-teacher ratio  +hqt qccording to this estimated line, districts
with zero students per teacher would have a (predicted) test score of 698.9. This makes no sense,
since it extrapolates outside the range of the data.
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3.1-2 SOME NOTATION AND TERMINOLOGY: EXAMPLE

Predicted values & residuals:

One of the districts in the data set for which STR = 25 and Test Score = 621
predicted value: = 698.9 - 2.28*25 = 6419
residual: = 621-6419=-209

The OLS regression line is an estimate Test score
. ) ~
computed using our sample of data; a 720

different sample would have given a different |

value of f,.
680
660

640

620

(){]l} L 1 ' 1 L L L L AL L L 1 ' L ' L
10 15 20 25 30

Student-teacher ratio
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How can we:

®» Quantify the sampling uncertainty associated with ﬁ 2?
®» Use B, to test hypotheses such as B, = 0?

®» Construct a confidence interval for B,?

Let us proceed in four steps:

The probability framework for linear regression
Estimation

Hypothesis testing

Confidence intervals

Vector-matrix notation for regression elements will be used since it simplifies the mathematical framework
when dealing with several explanatory variables (regressors).
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Classification of statistical tools for analysis and modeling

Response variable- Target

Dichotomous or Polytomous Counts Continuous
binary (discrete) Normal Time between
events
bl Contingency tables  Contingency tables  Log-linear Tests for 2 Survival
Logistic regression  Log-linear models models subpopulation analysis
Log-linear models means: t-test
Polytomous Contingency tables  Contingency tables Log-linear ONE-WAY, Survival
Logistic regression  Log-linear models models ANOVA analysis
Log-linear models
Continuous Logistic regression * Log-linear Multiple Survival
( ) —r regression analysis
Felar g Logistic regression * Log-linear Covariance Survival
covariates el analysis analysis
Random Mixed models Mixed models Mixed  Mixed models  Mixed models
Effects models
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Normal regression analysis is a particular case of generalized linear models where the random component is
normally distributed and thus a member of the exponential family.

An exponential family distribution has the following canonical form:

£, (,0,0) = exp| 2 Qa'( ;)(e)w( 9)

Where a(.), b(.) and c(.) are specific functions with known ¢ parameter and depending of a single

parameter 0 , named the canonic parameter.

® Let us verify that the density function of a hormal distribution variable can be written in the canonical
form of exponential family members :

Iy (y,9,¢)= 12exp(— ()/2—2)2J = exp(yﬂ — /;2/2 —%(y—i+ log(27z0'2)]]
o

2T o o o

P, 2

: 1
where a(¢)=¢ =O'ZI b(0)=(97=/u7 (and H:lu) C(y9¢)=_2(2+10g(27z¢)j
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3.1-2 INTRODUCTION TO LINEAR MODELS

® And thus:

0o)=1021,0.0.0) =222 .9 =202 —;(jﬂog(zw)j

® For n observations belonging to the normal distribution, the scaled deviance statistic is

D'(y, 2) =21y, 4,3) 2 (i1, 4, y) = Z”:(yl- —¢ul~)

®» And the deviance statistic is the well known residual sum of squares:

D(y, ) D'(Y9 )¢ Z(yz /uz)
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3.1-3 LEAST SQUARES ESTIMATION IN MULTIPLE REGRESSION

Assume we have a linear model with no distribution hypothesis,

Y = HréE= XB +& ,where Y is nx1, X desigh matrix nxp and B the vector parameters px1

Let Y be a numeric response variable and € the model error

M

Y

ek

[

1

X

Jj=2
——
X2

X2

n—1...2

an

j=3
——
X3

X3

Xpo13
xn3

~=

J=p
——

X,

X

X

p

n-lp

np

B (&
&

ﬁ.z +| 2

ﬂp €p

The ordinary least squares estimation of model parameters B can be written in the general case as

Min, S(B)=(Y-XB) -(Y-XB)= Y (¥, —x! Bf =Y"Y+p" X' X -258" XY

i=l...n

The OLS estimator minimizes the average squared difference between the actual values of Yi and the
prediction (predicted value) based on the estimated line. Matrix-vector notation is used in these notes.
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®» First-order condition for a minimum of S(ﬂ) are:

oS .
VﬂS(ﬂ)ZOH%ZO j=1...,p

J

Once derivatives are computed, the so-called "normal equations” appear:
P q PP P

V,S(8)=0« ag(;)szTXﬁ—zXTY:O Sb=a4XX))XTY

7o)

e The solution of the normal equations is the least square estimator IB of the ﬁ parameters.

7o

e If the design matrix is not singular, i.e., the column range of Xis p, then IB , the solution to normal
equations, is unique.

e Perfect multicollinearity is when one of the regressors is an exact linear function of the other regressors.

o If X is not full-rank, and this happens where there is perfect multicollinearity, then infinite solutions to

normal equations exist, but all of them give the same vector of prediction values |y =p=Xp|
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®» ANOVA and ANCOVA models have singular design matrices and reparametrization is required, and
solutions to the normal equations can be computed using generalized inverses or pseudo inverses

B=(X"X]X"Y

» A = (XTX)_ is a g-invers or generalized invers if satisfies AA”A = A

A~ always exists, but it not uniqu. When it is also satisfied:

L AAA A 2 (AA ) =aA s (A A)=AA

Then A~ is unique and it is called the Moore-Penrose inverse or p-inversa noted as A"

® Second order conditions of minima request that second order derivatives of S(ﬂ) the hessian

matrix of the quadratic form, De positive definite or ,

2 0°S ..
V,; S(B)>0 < aﬂiégj) >0 i, j=1...,p
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T
The range of X X is equal to the range of X. This attribute leads to two criteria that must be met in

T
order to ensure X X is nonsingular and thus obtain a unique solution:

1. At least as many observations as there are coefficients in the model are needed.

2. The columns of X can not be perfectly linearly related, but even near collinearity can cause statistical
problems.

3. Use vif(model) in R to check collinearity (thresholds will be discussed in lab sessions).

3.1-3.1 Geometric properties

Let 9Q(X) be the linear variation expanded by the columns of X,
R(X)={plp=Xp PeR’jcR"

And Y=R0=XP the predictions once the least squares estimator of model parameters is calculated.
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® Then it can be shown that M is the orthogonal projection of Y, it is unique, the projection operator

Twv | vT
being defined as H = X(X X) X , and it is called the hat matrix since, applied to Y, it provides

the fitted values or predictions typically denoted Y
H=X(X"X) X" puts a - on'y: | ¥ = Xb{X(X"X) X"Y = HY ‘

Graphically, S~

y Vi
Properties of the hat matrix: Diagonal H - hatvalues(model) & . o
; ‘ €=V )
e It depends solely on the X predictor variables. ;J Vire I__;f
e It issquare, symmetric and idempotent: HH = H. v ’ T ; T I
-.,.- . -'_.__._ el -"i '..
e Finally, the trace of H is the degrees of freedom for Tfhg_mo/dei:"' 1 y | [ X,
) p - II
e | Least Squares plane
x .

1
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3.1-4 LEAST SQUARES ESTIMATION: INFERENCE

3.1-4.1 Basic inference properties

= A continuous response linear model is assumed where

Y:u+8:XB+£|OI"YE = Bl + BZXZi + ..+ Bpol + &, | = 1,...,n

where Y, H are nx, X nxp of p rank and B px1 and the conditional distribution of unbiased errors are

~ 2
i.i.d. of constant variance and normally distributed: ‘8 | X~N (O’ ° )\ or Y|X~N(XB, °1,).

A

Tv Y! ~7T
®» Then, the minimum-variance unbiased estimator of ﬂ is ﬂ = (X X) X Y, the ordinary least

squares estimator is equal to the maximum likelihood estimator By .

®» If normal assumptions are not met, then OLS estimators are not efficient (they do not have minimum
variance as ML estimator).

®» If the hypothesis holds true, then the unbiased estimator of o’ , denoted s°, is efficient (minimum
variance) and its square root, §, is called the standard error of the model.

o e (voxpf(v-XB) RSS @ pesuuatsumet
squares

n—p n—-p n—p
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3.1-4 LEAST SQUARES ESTIMATION: INFERENCE

®» More detailed (Th 3.5 Seber (77) pag. 54) :

1. ,é ~ Np (ﬂa o’ (XTX)_l) is the sampling distribution of the OLS estimator.
. (B-8) VIB]" (B-B)=(B-B) X"X(B-B) 0" ~ 2.

3. ﬂ,\ = (XTX)_1 XY is independent of S°.

. RSS[o* =(n=p)s* /o>~ 12,

What we knew before presenting the statistical properties for OLS was about a sample (in particular, our
sample) but now we know something about a larger set of observations from which this sample is drawn.

A

T~V w7
We consider the statistical properties of B = (X X) XY, an estimator of something, specifically

the population parameter vector ﬂ and the former theorem says fo us that OLS estimator is linear and
unbiased. It is the best, the most efficient (with smaller variance) than any other estimator and has a normal
sampling distribution.
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3.1-4 LEAST SQUARES ESTIMATION: INFERENCE

What we knew before presenting the statistical properties for OLS was about a sample (in particular, our
sample), but now we know something about a larger set of observations from which this sample is drawn.

0 T~ Y w7
We consider the statistical properties of p= (X X) XY anestimator of something, specifically the

population parameter vector ﬂ , and the former theorem tells us that the OLS estimator is linear and
unbiased. It is better and more efficient (with smaller variance) than any other estimator and has a normal
sampling distribution.

N

Any individual coefficient ﬂj is distributed normally with expectation ,Bj and sampling variance

/oY

2T
V('BJ )_ 4 (X X)j] and we can test the simple hypothesis (i.e., make some inference):

7 = ﬂj—ﬁj(')
J

~ N(0,])

But since it does not help that much, since ,Bj and 0 are unknown, an unbiased estimator of o’ is proposed

2 A A A
based on the standard error of regression S and to estimate the sample variance of ﬂj V(ﬂj).
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‘A]('éj): Sz(XTX Jj — SE('éj): § \ (XTX)Z and the ratio of Bj and SE(ﬁj) (standard error of

3 2
jth parameter) is distributed as a Student t with n-p degrees of freedom (since :Bj and S are

independent).
B, —B;
t, = ———=—L— ~ Student t,_
0 g (XTX ""P can be defined and thus P(Ho): P(tn—p > to) or a bilateral
i

0 0 al2 0
confidence interval at 100 (1 B a)A) for :Bj < :Bj T tn—/pSE(ﬂj) can be calculated.

Inference for multiple coefficients will be further presented by the F-test.
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3.1-4.2 Generalized least squares

et Y=H+E=XP+E q multiple regression model and as usual ¥ nx1, X nxp of range p and

ﬂ pxl. Let the model errors be unbiased and correlated with normal distribution

~ 2
& ‘X ~N, (O’ ° W) or equivalently say Y |X~N,, (1, 02W)

where W isa symmetric and positive defined matrix of dimension nxn .

W in the model Y |X~N,, (11, 0%W) can be Cholesky factorized uniquely and transformed in a matrix

T
product of a lower triangular K matrix of dimensién nxn and its transpose; i.e., W=KK". Cholesky
factorization is usually computed as a triangular decomposition,

1 1
W=LU=L(DL")=LD?D*L" = (LDzj(DzLTj —KK"
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K matrix appearing in the factorization of W is the tool to compute linear transformations for the response

variable (no‘red Y ) and for the design matrix iand the error term € :
. Y=K'Y 2 %=k'x 3 &=K''¢
4 K'Y=K'p+K'e=K'XB+K'e & Y=XB+7

®» Now, in the transformed linear model Y = Xﬂ + & errors are uncorrelated and the variance is

2
common and equal to O

V[¥]=V[®p+2]=V[z]=V[K 'e]=K'V[e][K ") =6’K'WK " =’K'KK'K " =¢"I,
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3.1-4 GENERALIZED LEAST SQUARES ESTIMATION

Sinthesis of the least square estimation for linear models with normal response :

MODEL Y=Xp+¢, Vlg]=0%1| Y=XB+¢, V[g]=0’D | Y=XB +¢, V[e]=0>W=02KK'
Transformation | Y—>Y,X—>X |y  piy X ,pTix Y->K'Y,X->K'X
S(B) Quadratic| (Y-XB) (Y-XB8) |(Y-XB) D™ (Y-Xp) (Y-XB) W (Y-XB)
form to minimize

Normal S=X"X,Q=X"Y [$=X"D7'X,Q=X"DTY| S=X"W'X,Q=X"W'Y
Equations

Sf=Q

Estimator f (x’x)'x"y | (X'D'X)'X'DY (X" W X)' X" Wy
Variance of B o’ (XTX)_1 o’ (XT D™ X)_l o’ (XT w™ X)_1

RSS Y'Y-(X"Y)' |[YD'Y-(XD'Y)' 3 v'WlY-(X"W'Y) 3
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®» Let the statistical model for multiple regression for a given data set be

Y:,U"‘g:Xﬂ"‘g,whereYnxl,anpofrangepand ﬂ px1

X~N,(0,*W)

where errors are unbiased and iid is normally distributed ¢ Ordinary least

A

square estimators are denoted B

®» Let a simpler model of multiple regression for the same set of data be the former one with a set of linear
restrictions applied to the model parameters (a nested model), i.e.,

Y:,u+8:Xﬂ+8,WhereYnxl,anPOf"Gngepﬂnd P px1

is subject to linear constraints A:B =€ +that define a linear hypothesis to contrast (to make an

inference) that we call H; A is a gXp matrix of range g < p. Ordinary least square estimates subject

to constraints are ﬂ H|. The residual sum of squares is denoted RSSy
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3.1-5 HYPOTHESIS TESTING IN MULTIPLE REGRESSION

e If hypothesis H is true, then it can be shown that

(rss, - Rss)q _(ap—e (Ax'x)'a")'(aB-c)
RSS/(n—p) qs’

Example: Suppose we have a model with the set of parameters

B"=B B B B)
ﬂ1+ﬂ2_4ﬂ4:2

and we want fo test the hypothesis { B —-5,=0 then,

p

{1 1 0 —4} B, H
Af=c— =
1 -1 0 0 |p

Pa_
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3 1-51 TVesting in R

anova()

e For nested linear regression models, method anova(restrictedmodel, fullmodel) implements the F-test.
Hypothesis testing in this subject will be suggested by this method.

e Neft effects tests for a multiple regression model performed with package car Anova(model)

e Inconvenient: the fwo models have to be computed beforehand.

linear.hypothesis() in car package: following the previous generic example

library (car)
linearHypothesis (model,

hypothesis.matrix=matrix(c(1,1,0,-4,1,-1,0,0),nrow=2,ncol=4,byrow=TRUE),

rhs=as.vector(c(2,0)) )

For glm() object performs a Wald test

It requires the estimation of one model only (compared to anova() method)
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3.1-5.2 Confidence interval for single model parameters

Individual confidence interval for ﬁi in OLS is summarized as:

B —-B \/ 7
Z._ 1 lzt_ 7N 0!/2 A I\A — ( T )
&B P ﬂiitn—pGAi where Gi SY\XT X ), and
. RSS
S = =
n—p

ta/2

n—p is the Student t for the bilateral confidence interval 1 | . The degrees of freedom are (n-p) and
correspond to the standard error of regression.

Estimates of 0, parameters are statistically dependent and individual confidence intervals might give a
wrong idea of the jointly distributed values.

There is much literature about how to build confidence regions or perform simultaneous tests on several
hypotheses: this falls outside of the scope of this material. Some specific suggestions will be presented in
the practical sessions.
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3.1-6 MULTIPLE CORRELATION COEFFICIENT

®» Multiple correlation coefficient R is a goodness of fit Z(y . —)(" _)7/)
measure for a regression model defined as the Pearson k k

correlation coefficient between fitted values Vi and 5 —\o %

observations JVj : Zk:(yk_y) Zk:(yk_y) }
®» The square of the multiple correlation coefficient RZis called

the coefficient of determination. The multiple correlation coefficient generalizes the standard

coefficient of correlation. It is used in multiple regression analysis o assess the quality of the prediction

of the dependent variable. It corresponds to the squared correlation between the predicted and the
actual values of the response variable.

1. According to the decomposition of the total sum of squares (TSS) in the residual sum of squares plus the
explained sum of squares for a given model (valid for models including an intercept), R-Squared can be
rewritten.

_\2 _ 1
2. TSS= ;(yk B y) where ¥ = ;;yk is tThe mean of the observed response data.

3. ESS=;(JA/"—J7)2 and RSS:Z(yk_)A/k)Z.

k
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4. TSS=ESS+RSS) Zk:(yk -7) - Zk:(ﬁk -3) $20-0)

Proof:

=3 =200 =3+ G =) =20 =5) + Xl =5 #2200 = 5)0, - 7)=
Z(yk y) +Z(yk yk)

where
Z(yk Z )A’k)JA’k_)_’Z(yk_JA’k):Z(y yk)y (Y Y) Y=
k k k k
=(Y-HY)HY =Y"(I-H)HY =0
A ) ;(y -3) ESS _ RSS
®» Or equivalently R” = Z(yk _)_})2 = o — “ e
k

RSS =(1-R?*)TSS
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3.1-6.1 Properties of the multiple correlation coefficient

L |R|<1

and if |R| =1 this indicates a perfect linear relation between response data and regressors.

2
2. 100(1-R") represents the fraction of response data variability not explained by the current model.
3. 100R’ represents the fraction of response data variability explained by the current model.

3.1-6.2 Adjusted R2

® Since this correlation can not go down when variables are added, the R2 must be adjusted in order to
increase only when fruly significant regressors are added to the model. This is the adjusted R-Squared:

2 :l_RSS/(n—p):l_(l_Rz{n—l]

‘ 7SS/(n—-1) n—p

®» Adjusted R-Squared is always less than the original R-Squared and might be negative.
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3.1-7 GLOBAL TEST FOR REGRESSION. ANOVA TABLE

® The global test for regression is a particular case of multiple comparison of hypotheses in which all
parameters related to the explanatory variables are tested to be simultaneously zero.

H. 5> =O,...,,Bp =0
o (RSS, —RSS)lq _(1SS—RSS)/(p—1) _ ESS/(p-1) __ESS

— — ~y

RSS/(n—p) RSS/(i—p)  TSS/(n=p) (p—i)s® v

® This Omnibus test sometimes is presented to clarify in form of a table, called the ANOVA Table for
a Regression Model:

ANOVA TABLE Descomposition Degrees of Variance Contrast
freedon
ESS > (5 -5) p-1 St =ESS/(p-1)
k
A \2 _ 2 2
RSS Zk:(yk ~51) P S"=RSS/(n-p)  F=Sexp /S
—\2
TS5 20-7) -1 Sy =TSS/(n-1)
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A

® Let Y, be the fitted value (prediction) for observation data k, where the values for explanatory

variables are X: = (1 Xy o e xp): fk = Xgﬂ
L B =i Bl=xis.
2. V Y] V[ kIB] TV[IB] =0’ Xy XTX) = O.thk, where hkk is the k diagonal term of

projection matrix appearing in OLS (H, hat maTrix).
3. Fitted values are normally distributed.
4. InR: predict(model, interval = "confidence") for 95% CI for fitted values.
5. New data: predict(model, newdata=dataframe, interval = "prediction") for 95% CI for fitted values.

® Tt is known as the point and the variance of a mean prediction at X, and the confidence interval should
be calculated based on Student t with n-p df using the standard error of regression s:

Y —x" - .
b SOV (R B e VI 6, = \/XT(XTX)IX=S\/XT(XTX)IX
o 5. n—p where
¥ 7
And at a confidence level 100(1- & )% the true mean value lies in Y+
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3.1-9 MODEL VALIDATION

® Residual analysis constitutes a practical tool for graphically assessing model fitting and satisfaction of
optimal hypothesis for OLS estimates:

Let a model for a continuous response be

Y=pu+te= Xﬂ T &  where Y nx1, X is nxp of column range p and B is px1

and errors are unbiased, uncorrelated and normally distributed with constant variance, i.e.,

~ 2
& ‘X ~N, (O’ o I) or equivalently ¥ |X~N,, (1, o21).

® Residuals are the difference between observed response values and fitted values:
e=Y-Y=(I-H)Y

®» Check:

Linearity: E(Y;|X;) = u; = X;B8

Homokedasticity (constant variance): V(Y;|X;) = o

Normality: Y;|X;~Normal

Independence: Y;|X; L Y;|X;,i # j

O

O O O
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3.1-9 MODEL VALIDATION: RESIDUAL ANALYSIS

® In order to interpret residuals, some transformed residuals are defined:

1. Scaled residual |€; | is defined as i residual divided by the standard error of regression estimate for the

e.
i 2
model, S, ¢ = ¢ | It is not oo serious when leverages show no big changes, since V[ei] =0 (l - hn’).
d=——
2. Standardized residual di is defined as the residual divided by its standard error: |/ s 1=h. |
7 o € §? _(n_p)sz_eiz/(l_hii)
3. Studentized residual |'i | is defined as |’ so1- A where °(i) n—p—1

Outliers for

7.

12

can be detected using t.Student lower and upper bounds for sample size or by univariate

descriptive graphical tools as a boxplot.
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3.1-9 RESIDUAL ANALYSIS: DIAGNOSTIC PLOTS

Residual analysis - usual plots:

Histogram of rstudent(ai Empirical quantiles of St

04

0.3

Studentized Residuals(anscombe.ImA)

Density
0.2

0.1

0.0

3 2 1 0 1 2 3 2 1 0 1 2
rstudent(anscombe.ImA) t Quantiles
method.

®» Histogram residuals: normal
density is checked.

hist (rstudent (model),
freqg=F)

curve (dt (x, model
$df) ,col=2,add=T)

® Boxplot residuals to identify
outliers of regression.

®» Normal probability plot or
quantile plot of standardized or
studentized residuals.

In R, the confidence band for
studentized residuals is shown
loading car package and qqPlot

library (car)

qgPlot ( model, simulate=T, labels=F)
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3.1-9 RESIDUAL ANALYSIS: DIAGNOSTIC PLOTS

o When the normality assumption is not fully met then the comparisons of the hypothesis based on the
Student or F-test are approximate and estimates are not efficient.

o Tests for normality assessment can be used. The Shapiro-Wilke test is one of my favorites, but there
are lots of tests depending on sample size. Package nortest in R contains some common possibilities. Even
in non-normal errors, residuals tend fowards normality (due to central limit theorem) in medium and large

samples.

o Residuals are correlated with observations Yl , but not with fitted values 1;, so scatterplots with fitted
values on the X-axis are suggested.

o Use residualPlots(model) method in package car for R.

® Scatterplots: |€; VS 1],

or

A

d, vsY,

or

v Y,

. Failed linearity (regressor transformations or

additions might be needed) or heteroscedasticity (fransformations required) might be detected.
Unusual observations might make interpretation difficult.

® Use default residual analysis of a linear model for R.

par (mfrow=c(2,2))

par (mfrow=c(1,1))

plot (model, id=list (n=Inf,labels=row.names (df)))
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Residuals vs Fitted Normal Q-Q
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3.1-9 RESIDUAL ANALYSIS: DIAGNOSTIC PLOTS

Residuals Versus the Fitted Values

(response is YA)

27
(_g L ] L ]
5 17
[%2]
[0)
x
8 .
N 0 . - .
T
©
-o L ]
c
8 4
n
-2 —
I I I I I I
5 6 7 8 9 10
Fitted Value

Linear Hypothesis valid

Standardized Residual

Residuals Versus the Fitted Values

(response is YB)

I I I [ I
6 7 8 9 10

Fitted Value

Linear Hypothesis fails
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3.1-9 RESIDUAL ANALYSIS: DIAGNOSTIC PLOTS

Linear hypothesis and homoskedastic
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% Scatterplots of residuals vs each regressor (except intercept)

The horizontal band indicates linearity satisfaction and homoskedastic hypothesis.

o Use residualPlots(model) method in package car for R. Example: Duncan data
Im(prestige~education+income,data=Duncan)

o _| o _
o 2}
> @ L&} @
2 8’ @ o & 7 i
m o
2 21 oo ° R s e o
@ 000 & oPs o @ o i o o oo
. e — J)_ P i 'Y
Lack of fit for ° \%“8‘-————5’“' s CT T & i OK for income
. rd ] ] o o ]
education B2 ) o S S+ % o \
o [+) o el
-] o kel — @ =3
o o @ o
2 4 o 8 4 @

20 40 60 a0 100 20 40 60 a0

education income

o Homoskedastic Hypothesis Test - Breusch-Pagan test in package Imtest might be of interest.

> library(lmtest)
> bptest(model) # Null Hypothesis: Homoskedasticity holds

studentized Breusch-Pagan test data: model

BP = 0.57522, df = 2, p-value = 0.7501 o can't be reject
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®» Residual vs time/order or any omitted variable in the model suspected to affect hypothesis

Such as the autocorrelation function for residuals (method in R, acf(rstudent(model)) of order k,
ieiei+k
r(k)= Z o2 . and contrasts for simultaneous hypothesis r(j)=0 for j>k.

Or Durbin-Watson test (tables are very difficult to interpret) also for autocorrelation testing.

No temporal dependency Temporal dependency

Series resid(m) Series z

08 08 1.0
0.8 08 1.0

ACF
04
ACF

04

02
02

00

- 00
1

0.2

-0.2
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3.1-10 MODEL TRANSFORMATIONS ON Y OR X

prestige

Use marginalModelPlots(model) method in package car for R or avPlots(model). Lack of fit between data
smoother and current model behavior for one variable indicates that transformation on selected
regressor is needed.

o Use poly(varname,2) to model linear and quadratic terms on varname regressor.

o Use poly(varname,3) to model linear, quadratic and cubic terms on varname regressor.

Marginal Maodel Plots

m— Dztz W - ool = Dotz - - hsodel = Datn - — ool

100
!
100
|

100
|

0
80
|

40 il
I
prestige
prestige
il

40
1

0
I
0

20 40 80 a0 100 20 40 = a0 a 20 40 S0 a0 100

education Fitted walues

There seem to be no problems in any of them!
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3.1-10.1 Box-Cox transformation of Y
o The Box-Cox transformation of Y functions to normalize the error distribution, stabilize the error

variance and straighten the relationship of Y to the Xs. Basic transformations are log(¥), 1/Y, JY
o If A=1, no transformation is necessary. Note that all of the ¥; must be positive.

o A may be by maximum likelihood in R: boxcox( formula, data ) method in MASS library.

o Or boxCoxVariable(response) after loading car package with A -1 coefficient for the
boxCoxVariable() ). The t-test for the coefficient of the constructed variable is an approximate score

test for whether a transformation is required.

Y* -1
h(Y)zi—;L A#0
L logY A=0
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3.1-10 MODEL VALIDATION: TRANSFORMATIONS

Tm(formula = prestige ~ boxCoxvariable(prestige) + income + education, data = Duncan)

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 13.7510 7.7283 1.779 0.082607 .

boxCoxvariable(prestige) 0.5954 0.2001  2.975 0.004888 ** X Transformation is
income 0.5860 0.1099  5.332 3.84e-06 ***

education 0.4165 0.1001  4.160 0.000158 **: \\ needed

Residual standard error: 12.27 on 41 degrees of freedom

Multiple R-squared: 0.8587, Adjusted R-squared: 0.8483 s
[Ty
Or
boxcox(prestige ~ income + education, data = df)
g 8
E
-
()]
o
(o] H H H
3 L
95% CI for A excludes 1
\ / T T T R T
2 -1 0 1 2
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3.1-10 MODEL VALIDATION: TRANSFORMATIONS

3.1-10.2 Box-Tidwell Transformation of the X's

Maximum likelihood can also be used to find an appropriate linearizing transformation for the X variables

The Box-Tidwell model is a non-linear model that estimates transformation parameters for the X's
simultaneously with the regular parameters,

Yi - Bl + BZXVZZi + ...+ BPX vai + &, | = 1,...,n errors are iid normal and Xi are positive

Explicit in this model is a power transformation of each of the X's

Of course, it makes no sense to transform dummy variables and the like, so we should not attempt to
estimate transformation parameters for them.

®» BoxTidwell method in R is available (for Duncan data)

> library (car)
> boxTidwell (prestige ~ income, ~ education, data=duncanl)
Score Statistic p-value MLE of lambda
-0.1323884 0.8946771 0.9275973
> boxTidwell (prestige ~ income + education, data=duncanl)
Score Statistic p-value MLE of lambda
income -0.6859686 0.4927329 0.6622138
education 1.0408104 0.2979635 1.7312407

Prof. Lidia Montero © Page 3.1-47 2021-2022 Academic Year



e

UNIVERSITAT POLITECNICA DE CATALUNYA
BARCELONATECH

Departament d’Estadistica
i Investigacié Operativa

SIM course. Master in Data Science - FIB- UPC

3.1-10 MODEL VALIDATION: TRANSFORMATIONS

e Scatterplot matrices are useful for
preliminary assessments of the relationship
between several variables in a multiple regression
model, but can be misleading because they plot the
marginal rather than partial relationships between
Y and each X (i.e., they do not control for the
other X's)

e Partial-regression plots (or added-variable
plots, avPlot()) are not very useful either because
they are unable to distinguish between monotone
linearity (which can often be corrected with a
simple transformation) and non-monotone non-
linearity (which cannot be corrected with a
transformation)

e Partial-residual plots, however, can reveal
both monotone and non-monotone linearity.

o Notice that although column (a) is
characterized by non-monotone non-linearity.

o Only (b) can be transformed to satisfy the
linearity requirement.
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3.1-10 MODEL VALIDATION: TRANSFORMATIONS

Added-Variable Plots

Q | ministergg
enel
” 0 B'Z
@ @
- = - =
= 2 B
@ @
= @ o
17 T
o D
Q 8 B |
= e
i wlenfarelil_rlnalnagers <I>ne[wslboels |
4 0 4 -5000 10000

education | others

Income | others

avPlots(model) : Partial-regression
plots (or added-variable plots,
avPlots()). Partial regression plots for
a response variable (prestige) and
predictor (income) are scatterplots
of the residuals from 2 regressions -
regressing the outcome prestige on all
of the other predictors (education, in
the example), and regressing that
particular predictor (income) on all of
the other predictors.

It is useful tfo address the
contribution of the predictor to
explain the outcome and highlights
potentially influential observations
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Partial-residual plots can reveal both monotone and non-monotone linearity. The partial residual for the ji
explanatory variable from a multiple regression is,

pei(]) =¢, +f (])xij Where
this simply adds the linear
i component of the partial
o regression between Y and X;
(which may be characterized by
a non-linear component) to the
least squares residuals.

o (o]
S o

40

Component+Residual(prestige)
Component+Residual(prestige)

The"partial residuals” pet’) are

plotted versus X;, meaning that

,B(j) is the slope of the multiple

‘ ‘ ‘ ‘ ‘ ‘ | | ‘ simple regression of Pei(j) on X,

20 40 60 80 20 40 60 80 100

-30

income education

In R car package:

crPlot (duncanl.lm, "income")

crPlot (duncanl.1lm, "education")
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3.1-10 MODEL VALIDATION: TRANSFORMATIONS

3.1-10.3 Transformations and Interpretation

Often the response variable or regressors have to be transformed to linearize its relationship with y.

However, it is essential putting model interpretations back in the metfric of y and x. This is easy for log
transformations:

* log(y) = a + bx: when x increases by one unit, on average y increases by 100 x b percent.
e y=a+blog(x): when x increases by 1 percent, on average y increases by b 100 units.

e log(y) = a + b log(x): when x increases by 1 percent, on average y increases by b percent.
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3.1-11 MODEL VALIDATION: UNUSUAL AND INFLUENTIAL DATA

It is easy to find examples of regression analysis that
show the existence of a few observations that strongly

affect the estimation of model parameters in OLS: 1% . E—
of data might weigh more in parameter estimation than 21" - Outier Fxcluded
99% of the data.

140
I

® Influential data affects model prediction and it
seems only natural that predicted values should be
supported by 99% of data and not seriously
affected by the remaining 1%.

= Classifying an observation as a priori influential is
related fo robustness of the design of data
collection.

®» We'll see a technical case study (Anscombe's data)
in one of the lab sessions to further discuss this
extremely important aspect of model validation if o s 1 10 14'10' o 10 200
regression (in general linear) models are formulated
and estimated with a predictive future scope of use.

120
I

weight
100
1

height
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Outlying observations can lead us to misinterpret patterns in plots.

e Temporarily removing them can sometimes help us see patterns that we otherwise would not.

e Transformations can also spread out clustered observations and bring in the outliers.

e More importantly, separated points can have a strong influence on statistical models - removing outliers
from a regression model can sometimes give completely different results.

Unusual cases can substantially influence the fit of the OLS model.

e Cases that are both outliers and high leverage exert influence on both the slopes and intercept of the
model. A final model shouldn't contain influent data.
e Outliers may also indicate that our model fails to capture important characteristics of the data.
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Types of unusual observations

e A regression outlier is an observation that has an unusual value of the outcome variable Y,
conditioned by the value of the explanatory variable X.

o An observation that is unconditionally unusual in either its Y or X value is called a univariate
outlier; this is not necessarily a regression outlier.

o Inother words, for a regression outlier, neither the X nor the Y value is necessarily unusual on
its own.

o Regression outliers often have large residuals but do not necessarily affect the regression
slope coefficient. They are also sometimes referred to as vertical outliers.

o Outliers could increase standard errors of the estimated parameters (or fitted values) since
the standard error of regression is computed from residuals:

, e (v-XpJ -(Y-Xp) Rss
CTap np np
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e Observation with leverage (large diagonal element of hat matrix, hi)

o An observation that has an unusual X value (i.e., it is far from the mean of X) has leverage on
the regression line.

o The further the outlier sits from the mean of X (either in a positive or negative direction), the
more leverage it has.

o High leverage does not necessarily mean that it influences the regression coefficients; it is
possible to have high leverage and yet fall straight in line with the pattern of the rest of the
data.

e Influential observations

o An observation with high leverage that is also a regression outlier will strongly influence the
regression line.

o Inother words, it must have an unusual X value with an unusual Y value, given its X value.

o Both the intercept and slope are affected.

minister

|Discr'epancy x |leverage = influence

o Use influencePlot(model) method in package car
> influencePlot(ml, col="orange",pch=19,id=1ist(method="noteworthy”,n=3))

RR engineer

Studentized Residuals

StudRes Hat CookD
minister 3.1345186 0.17305816 0.56637974 "
reporter -2.3970224 0.05439356 0.09898456
conductor -1.7040324 0.19454165 0.22364122 gheoter : i :
RR.engineer 0.8089221 0.26908963 0.08096807

Hat-Values
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3.1-11.1 A priori influential observations

e Simple regression: An observation that has an unusual X value (i.e., it is far from the mean of X) has
leverage on the regression line. The further the outlier is from the mean of X (either in a positive or
negative direction), the more leverage it has.

e Multiple regression: We must imagine a cloud of points defined by regressors in X (each column on an
axis) and a center of gravity for those points.

Heterogeneous points X (X € SRp) regarding the cloud of X points and their center of gravity identify a

priori influential data.
The most common measure of leverage is the hat - value, h;, the name hat - value comes from their

calculation based on the fitted values (Y ): leverages hz' are computed for all observations and the

i-th distance from point X; to the center of gravity is measured for the whole set of observation data.
Use the hatvalues(model) method in R.
A Zihﬁ P

® Thus, the average value for the leverage is h = n o Belsley et al. show that atypical values

for leverage observations are those that meet the cut-off: h; >2h

® This cut-off is not useful when considering big data sets: the cut-off has to be increased to h; > 3h
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According to Fox (Figure 11.3 in Fox, 1997),

X the diagram to the left shows elliptical
2 " contours of hat values for two explanatory
variables.

As the contours suggest, hat values in
multiple regression take into consideration
the correlational and variational structure
of the Xs.

As a result, outliers in multi-dimensional X-
space are high leverage observations (i.e.,
the outcome variable values are irrelevant
in calculating hi).

o Use aq.plot(dataframe) in package
mvoutlier for R, where dataframe contains
only numeric variables.

o Use chemometrics package: Moutlier
method.
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3.1-11.2 A posteriori influential data

An influential observation implies that the inclusion of the data in OLS:

N

1. Modifies the vector of estimated parameter 8.

2. Modifies the fitted values 3’\(

3. If the i-th observation is influential, then its fitted value is very good when i-th data is included in the
data set for OLS estimation, but when it is removed its fitted value is bad, leading to a high value of
the absolute residual.

An influential observation is one that combines discrepancy and leverage-

4. The most direct approach to assessing influence is to assess how the regression coefficients change
if outliers are omitted from the model. We can use Dij(often termed DFBetasi;) to do so:

DU':('BAJ_'BJ(—I'))/A;@ i=1,...,nj=1,...,p

N

where ‘rheIBar‘e the coefficients for all the data and the :B(—i) are the coefficients for the same
model with the inobservation removed. Use dfbetas(model) in R.

A standard cut-off for an influential observation is Dij > 2/Vn. (Be careful with small samplesll!)
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One problem with DFBetas is that each observation has several measures of influence: one for each
coefficient np with different measures.

Cook's D overcomes the problem by presenting a single summary measure for each observation D,.

2

D.:(B—B<—i>)TXTX(B—B<—i>): ¢ | (hffj
l ps’ s/1=1h; \/; 1=,

where :B(i) are the coefficients for the same model with the in observation removed. Use
cooks.distance(model) method in R.

Cook's D measures the 'squared distance’ between IB which are the coefficients for all the data, and

N

:B(—i) , Which are the coefficients for the same model with the in observation removed by calculating an

F-test for the hypothesis that Hi P = B(—i).

e There is no significance test for Di but a commonly used cut-off is the one proposed by Chatterjee and
Hadi (1988) that defines influential observations as those that satisfy Di >4/(n-p).

e For large samples, the Chatterjee and Hadi cut-off does not work and, as a rule of thumb, Di >0.5 are
suspected to be influential data and Di>1 are considered influential (R criteria).
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e In R it's possible to plot DFBETAS (using matplot) for each observation and regressor, as well as the
indication of overall influence related to Cook's distance. To unify metrics, Cook's distance is a squared
distance, but DFBETAS are ordinary units, so the squared root of Di (Cook's distance) can be added to

the DFBETAS matplot. Standard cut-offs may be suggested and drawn.

n — Cookd
7 " = = (Intercept)
- -~ = income

1.0

05

- - education
- . DFBETA Cut-off
| It N Ch-H Cut-off

dfbetas{duncan1.Im)
05

-1.0

>matplot (dfbetas (duncanl.1lm), type="1",
col=2:4,1wd=2)

>lines (sqgrt (cooks.distance (duncanl.1lm))
,col=1,1lwd=3)

>abline (h=2/sqrt (dim(duncanl) [1]),
lty=3,1wd=1,col=5)

>abline (h=-2/sqrt(dim(duncanl) [1]),
lty=3,1wd=1,col=5)

> abline (h=sqgrt(4/ (dim(duncanl) [1] -
length (names (coef (duncanl.1lm))))),
lty=3,1wd=1,col=6)

>llegenda<-c("Cook 4",
names (coef (duncanl.1lm)), "DFBETA Cut-
off", "Ch-H Cut-off")

> legend(locator (n=1), legend=llegenda,
col=1l:length(llegenda),
lty=c(1,2,2,2,3,3), lwd=c(3,2,2,2,1,1))
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o DFFITS; suggested by Belsley et al. (1980) are related to Cook's distance and combine studentized

>21/
\/n—p-

(ﬂ —5<f>)TXTX(3 —B(,.)) { e, J h, i~Yi(-i)
DFFITS, = : =| | |- |pFFITS|=[pD, | or DFFITS; = =2
Sy Sy 11, 1-h, ‘ ‘ 1 (_1)\/1’1_11

residuals and leverages. A usual cut-off for abnormal absolute value is |DFF1T51-
Use dffits(model) in R.

Q| <D

15

— DFEITS influence (model)

-------- DFFITS Cutoff .
— Cooks D plot (dffits (model) , type="1",1lwd=3)

10

pp=length (names (coef (model)))
lines (sqgrt(cooks.distance (model) ) ,col=3,1lwd=2)

/\ abline (h=2* (sqrt (pp/ (nrow (duncan) -pp) ) ) ,1ty=3,1lwd=1, col=2)

05

dffits(duncan1.Imj
00
!

abline (h=-2* (sqrt (pp/ (nrow (duncanl) -pp))) ,1lty=3,1lwd=1,col=2)
llegenda<-c ("DFFITS","DFFITS Cut-off","Cooks D")
legend(locator (n=1) ,legend=llegenda,col=1:3,1lty=c(1,3,1) ,1lwd=c(3,1,2))

05

0 1o 20 30 40

Index
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3.1-11.3 Joint influence

Subsets of cases can jointly influence a regression line, or can offset each other's influence.

e Depending on where the jointly influential cases lie, they can have different effects on the regression
line.

e Cook's D helps to determine joint influence if there are relatively few influential cases.

e Cases can be deleted sequentially, updating the model each time and exploring the Cook's D's again. This
approach is impractical if there are potentially a large number of subsets to explore.

Added-variable plots or partial-regression (leverage) plots provide a more useful method of assessing joint
influence, since these plots essentially show the partial relationships between Y and each X:

For each regressor j in the design matrix X one plot is made:

1. Let ey represent the residuals from the least-squares regression of Y on all of the X's except for X;:
2. Similarly, ex¥ be the residuals from the regression of X; on all the other X's.

3. These two equations determine the residuals ext and ey( as parts of X; and ¥ that remain when the
effects of all other Xs are removed.

4. Plot of eyW versus exV (in R, avPlots(model, variable) in car package is available).
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The residuals ex® and ey® have the following properties:

o The slope of the regression of ey on ex(

A

Added-Variable Plots

2 Y 3 6

is the least-squares slope lBj from the full

30

multiple regression.

e The partial correlation coefficient of Y
and Xj given all the other X's are in the
model is the square root of the
coefficient of determination of the simple
regression of ey? on ex®.

o Residuals from the regression of ey on
ex® are the same as the residuals from the

20

10
prestige | others

prestige | others

0

10

-20

full regression. 3 . o6
e Variation Of CX(‘D is The conditional variance 40 20 0 20 40 60 40 20 0 20 40
of X; holding the other X's constant. neome |oters edcation trers

A plot of eyl versus exWallows to examine the leverage and influence of cases on P, These plots also give

us an idea of the precision of the slope ﬂj .

avPlots (duncanl.1lm,labels = rownames (duncanl), id.method=list("x", "y"), id.n=3)
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3.1-12 BEST MODEL SELECTION

The best regression equation for Y given the regressors (Xl 9° 09 Xp ) might contain dummy variables,
transformations of the original variables and terms related to polynomial regression (higher order rather

than linear for covariate variables) for the original variables ( Liseo Zq ) Model selection should satisfy
trade-off between simplicity and goodness of fit, often called parsimony criteria.

1. As many regressors as necessary to make good predictions, on average and with the highest precision
in confidence interval.

2. Many variables are expensive to obtain (data collection) and difficult o maintain.

® It is not practical to build all possible regression models and choose the best one according to some
balance criteria.

®» A good model should be consistent with theoretical properties in residual analysis. Neither influential
nor unusual data should be included.
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The elements available to assess the quality of a particular multiple regression (goodness of fit) model are:

1. Determination coefficient R”. A marginal increase is expected when the number of regressors included
in the model is consistent with the data available. Any added regressors would (marginally) increase the

2
determination coefficient, so stability must be found. Sometimes the adjusted coefficient Ra is useful.

2. Stability of the standard error of regression estimate. Estimation of o2 by s? of underfitting is biased
and greater than the true value. The stability of s®confirms or at least points to goodness of fit.

3. Residual analysis.

4. Unusual and influential data analysis.

5. And a new element: Mallows C, . Related to Akaike Information Criteria (AIC) AIC =2 (_ E(B, Y)+ p)
. Models with lower values of Cp or AIC indicator are preferred.

®» Some authors strongly recommend BIC (Bayesian Information Criteria) Schwartz criteria

BIC =21 (Ba Y+ p log " where extra parameters are penalized.
®» In R, RIC (model)| for AIC on model objects for which a log-likelihood value can be obtained and

AIC (model, k=log(nrow(data.frame)))|for BIC.

Prof. Lidia Montero © Page 3.1-65 2021-2022 Academic Year



UNIVERSITAT POLITECNICA DE CATALUNYA
BARCELONATECH

Departament d’Estadistica

i Investigacié Operativa

3.1-12 BEST MODEL SELECTION

SIM course. Master in Data Science - FIB- UPC

3.1-12.1 Stepwise regression

® Backward elimination is a heuristic strategy to select the best model given a number of regressors and a
maximal model built from them. It is a robust method that suppresses insignificant terms from the
maximal model to the point that all the terms maintained are statistically significant and cannot be
removed. It has been proven to be very effective for polynomial regression.

® Forward inclusion is a heuristic strategy to select the best model given a set of regressors from the null
model by iteratively adding terms and regressors to the target set. It is not a robust procedure and it is
not recommended as an automatic procedure to find the best model for a data set and regressor terms.

= Stepwise regression is a forward strategy that builds on the starting model but, at each iteration,
regressor terms are checked for statistical significance.

W Criteria for adding/removing regressor terms vary in different statistical packages, but F-tests or AIC
are commonly used. Partial correlation between ¥ and each Xj, once some subset of regressors is already
in the model, has proven to be successful in the selection of regressors to increase the current model.
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R software implements these heuristics in a sophisticated way in the method step(model, target model)
based on AIC criteria for model selection at each step.

> step(duncanl.1lm0, ~incomet+education, direction="forward", data=duncanl)
#AIC direction "forward"

Start: AIC=311.52

prestige ~ 1

Df Sum of Sqg RSS AIC
+ education 1 31707 11981 255.30
+ income 1 30665 13023 259.05
<none> 43688 311.52

Step: AIC=255.3
prestige ~ education

Df Sum of Sqg RSS AIC
+ income 1 4474 .2 7500.7 236.26
<none> 11980.9 255.30

Step: AIC=236.26
prestige ~ education + 1income

Call:
Im(formula = prestige ~ education + income, data = duncanl)
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Coefficients:
(Intercept) education income
-6.0647 0.5458 0.5987

> step(duncanl.1lm2,data=duncanl) # Without scope direction is "backward" using AIC
Start: AIC=236.2606

prestige ~ income + education

Df Sum of Sqg RSS AIC
<none> 7506.7 236.26
- income 1 4474 .2 11980.9 255.30
- education 1 5516.1 13022.8 259.05
Call:

Im(formula = prestige ~ income + education, data = duncanl)

Coefficients:
(Intercept) income education
-6.0647 0.5987 0.5458

> step(duncanl.1lm2,k=1log(dim(duncanl) [1]) ,data=duncanl)
# Without scope direction is "backward" using BIC
Start: AIC=241.68

prestige ~ income + education

Df Sum of Sqg RSS AIC
<none> 7506.7 241.68
- lncome 1 44774 .2 11980.9 258.91
- education 1 5516.1 13022.8 262.66
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Coefficients:
(Intercept) income education
-6.0647 0.5987 0.5458

> step(duncanl.1lm0, ~income+education, data=duncanl)
#AIC direction "both"

Start: AIC=311.52

prestige ~ 1

Df Sum of Sqg RSS AIC
+ education 1 31707 11981 255.30
+ income 1 30665 13023 259.05
<none> 43688 311.52

Step: AIC=255.3

prestige ~ education

Df Sum of Sqg RSS AIC
+ income 1 4474 7507 236.26
<none> 11981 255.30
- education 1 31707 43688 311.52

Step: AIC=236.26
prestige ~ education + 1ncome

Df Sum of Sqg RSS AIC
<none> 7506.7 236.26
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- income 1 4474 .2 11980.9 255.30
- education 1 5516.1 13022.8 259.05
Call:
Im(formula = prestige ~ education + income, data = duncanl)
Coefficients:
(Intercept) education income
-6.0047 0.5458 0.5987
>
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