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3.1-1 READING LIST 

 
Basic references: 

 Fox, J. Applied Regression Analysis and Generalized Linear Models. Sage Publications, Edition 2015. 
 Fox and Weisberg An R Companion to Applied Regression. Sage Publications, Edition 2011. 
 Wickham, H. ggplot2: Elegant Graphics for Data Analysis. Springer New York, 2009.  

 
 

 

 

 

 

 

 

 

  

 

 



                                    SIM course. Master in Data Science – FIB- UPC 

Prof. Lídia Montero ©                                     Page 3.1-4                     2021-2022 Academic Year 
 

3.1-2  INTRODUCTION TO LINEAR MODELS  

Let ( )n
T yy ,,y 1=  be a vector of n observations, randomly drawn from the vector 

( )n
T YY ,,Y 1= , whose variables are statistically independent and distributed with expectation 

( )n
T µµ ,,1 =µ : 

In linear models, the random component ( )n
T YY ,,Y 1=  is assumed to be normally distributed 

𝑌𝑌𝑖𝑖|𝑋𝑋𝑖𝑖~𝑁𝑁(𝜇𝜇𝑖𝑖 ,𝜎𝜎)  with constant variance 2σ , 𝑉𝑉(𝑌𝑌𝑖𝑖|𝑋𝑋𝑖𝑖) = 𝜎𝜎2 and expectation 𝐸𝐸(𝑌𝑌𝑖𝑖|𝑋𝑋𝑖𝑖) = 𝜇𝜇𝑖𝑖  
 Therefore, the response variable is modeled as normally distributed; thus, negative or positive values, 
which may be arbitrarily small or large, may be encountered as data for the response and prediction. 

 The systematic component of the model consists in specifying a vector called the linear predictor, 
denoted η , of the same length as the response, dimension n, obtained from the linear combination of 

regressors (explanatory variables). In vector notation, the parameters are ( )p
T ββ ,,1=β  and 

the regressors are ( )pXX ,,1 =X  and, thus, βη X=  where η  is nx1, X is nxp and β  is 
px1.  

 Vector µ  is the direct linear predictor η ; therefore, the link function is µη = or 𝜇𝜇𝑖𝑖 = 𝑋𝑋𝑖𝑖𝛽𝛽 
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3.1-2 INTRODUCTION TO LINEAR MODELS  

Empirical problem: What do the data say about class sizes and test scores according to the California 
Test Score Data Set? 

All K-6 and K-8 California school districts (n = 420) 

Variables: 

• 5th grade test scores (Stanford-9 achievement test, combined math and reading), district average. 
TARGET (Y) 

• Student-teacher ratio (STR) = number of students in the district divided by number of full-time 
equivalent teachers. (X) 

Policy question: What is the effect of reducing class size by one student per class? By 8 students/class? Do 
districts with smaller classes (lower STR) have higher test scores? 

An initial look at the California test score data: 
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3.1-2 INTRODUCTION TO LINEAR MODELS  

 

 
 Stock and Watson (2007) 
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3.1-2 SOME NOTATION AND TERMINOLOGY  

• The population regression line is 

Test score = β1 + β2STR 

β1 is the intercept 

β2 is the slope of the population regression line  

= 
Test score

STR
∆

∆
 = change in test score for a unit change in STR 

• Why are β1 and β2 “population” parameters? 

• We would like to know the population value of β2. 

• We don’t know β2, so we must estimate it using data. 

• How can we estimate β1 and β2 from the data? 

 

We will focus on the least squares (“ordinary least squares” or “OLS”) estimator of the unknown parameters 
β1 and β2, which solves

 
( ) ( ) ( ) ( ) ( )∑ −−=−⋅−==

k
k21k

T
ββ xββYSMin

21

2
, XβYXβYββ
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3.1-2 SOME NOTATION AND TERMINOLOGY: EXAMPLE  

The OLS estimator minimizes the average squared difference between the actual values of Yi and the 
prediction (predicted value) based on the estimated line.  

 

Application to the California Test Score – Class size data 

 

Estimated slope = – 2.28 

Estimated intercept = 698.9 

Estimated regression line: = 698.9 – 2.28 STR 

 

Interpretation of the estimated slope and 
intercept: 

• Districts with one more student per 
teacher on average have test scores that are 
2.28 points lower. 
• The intercept (taken literally) means 
that, according to this estimated line, districts 

with zero students per teacher would have a (predicted) test score of 698.9. This makes no sense, 
since it extrapolates outside the range of the data. 
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3.1-2 SOME NOTATION AND TERMINOLOGY: EXAMPLE 

Predicted values & residuals: 

One of the districts in the data set for which STR = 25 and Test Score = 621 

predicted value:     = 698.9 – 2.28*25 = 641.9 

residual:    = 621 – 641.9 = -20.9 

 

The OLS regression line is an estimate 
computed using our sample of data; a 
different sample would have given a different 

value of 2β̂ . 
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3.1-2 SOME NOTATION AND TERMINOLOGY  

How can we: 

 Quantify the sampling uncertainty associated with 2β̂ ? 

 Use 2β̂  to test hypotheses such as 2β  = 0? 

 Construct a confidence interval for 2β̂ ? 

 

Let us proceed in four steps: 

• The probability framework for linear regression 
• Estimation 
• Hypothesis testing 
• Confidence intervals 

 

Vector-matrix notation for regression elements will be used since it simplifies the mathematical framework 
when dealing with several explanatory variables (regressors). 

 
 

 

 



                                    SIM course. Master in Data Science – FIB- UPC 

Prof. Lídia Montero ©                                     Page 3.1-11                     2021-2022 Academic Year 
 

3.1-2 INTRODUCTION TO LINEAR MODELS  

Classification of statistical tools for analysis and modeling 
 
Explanatory 
variables 
 

Response variable- Target  
Dichotomous or 

binary 
Polytomous Counts 

(discrete) 
Continuous 

Normal Time between 
events 

Dichotomous Contingency tables 
Logistic regression 
Log-linear models 

Contingency tables 
Log-linear models  

Log-linear 
models 

Tests for 2 
subpopulation 
means: t-test 

Survival 
analysis 

Polytomous Contingency tables 
Logistic regression 
Log-linear models 

Contingency tables 
Log-linear models 

Log-linear 
models 

ONE-WAY, 
ANOVA 

Survival 
analysis  

Continuous 
(covariates) 

Logistic regression * Log-linear 
models 

Multiple 
regression 

Survival 
analysis 

Factors and 
covariates 

Logistic regression * Log-linear 
models 

Covariance 
analysis 

Survival 
analysis 

Random 
Effects 

Mixed models Mixed models Mixed 
models 

Mixed models Mixed models 
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3.1-2 INTRODUCTION TO LINEAR MODELS  

Normal regression analysis is a particular case of generalized linear models where the random component is 
normally distributed and thus a member of the exponential family. 

An exponential family distribution has the following canonical form: 

( ) ( )
( ) ( )








+

−
= φ

φ
θθφθ ,exp,, yc

a
byyfY  

Where a(.), b(.) and c(.)  are specific functions with known φ parameter and depending of a single 

parameter θ , named the canonic parameter.  

 Let us verify that the density function of a normal distribution variable can be written in the canonical 
form of exponential family members : 

( ) ( ) ( ) 















+−

−
=







 −
−= 2

22

2

2

2
2

2
12

22
1 πσ

σσ
µµ

σ
µ

πσ
φθ 22 logexpexp,, yyyyfY  

where ( ) 2σφφ ==a , ( )
2
µ

2
θθ

22

==b  ( and µθ = )   
( ) ( )








+−= πφ

φ
φ 2

2
1 2

log, yyc
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3.1-2 INTRODUCTION TO LINEAR MODELS  

 And thus: 

( ) ( ) ( )
( ) ( ) ( )








+−

−
=+

−
== πφ

φφ
θθφ

φ
θθφθφθ 2

2
12 22

log,,,log,, yyyc
a

byyfy Y
 

 

 For n observations belonging to the normal distribution, the scaled deviance statistic is   

 And the deviance statistic is the well known residual sum of squares: 

 

( ) ( ) ( )∑
=

−
=−=

n

i

iiyD
1

2

22
φ
µφφ
ˆ

y,,ˆy),(y,ˆy,' µµ 

( ) ( ) ( )∑
=

−==
n

i
iiyDD

1

2µφ ˆˆy,'ˆy, µµ
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3.1-3  LEAST SQUARES ESTIMATION IN MULTIPLE REGRESSION 

Assume we have a linear model with no distribution hypothesis, 

εXβεμY +=+= , where Y is nx1, X design matrix nxp and β  the vector parameters px1  

Let Y be a numeric response variable and ε  the model error  
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The ordinary least squares estimation of model parameters β  can be written in the general case as 

( ) ( ) ( ) ( ) YX2XXYYxXYXY
1

2 TTTTT

ni

T
kk

T YSMin ββββββββ −+=−=−⋅−= ∑
= 

 

The OLS estimator minimizes the average squared difference between the actual values of Yi and the 
prediction (predicted value) based on the estimated line. Matrix-vector notation is used in these notes. 
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3.1-3 LEAST SQUARES ESTIMATION 

 First-order condition for a minimum of ( )βS  are: 

( ) ( ) pjSS
j

,,10
β

0 ==
∂
∂

↔=∇
βββ  

Once derivatives are computed, the so-called “normal equations” appear: 

 
( ) ( ) ( ) YXXXˆb0YX2XX20 1 TTTTSS −

==→=−=
∂

∂
↔=∇ ββ

β
βββ   

• The solution of the normal equations is the least square estimator β̂  of the β  parameters.  

• If the design matrix is not singular, i.e., the column range of X is p, then β̂ , the solution to normal 
equations, is unique.  

• Perfect multicollinearity is when one of the regressors is an exact linear function of the other regressors. 

• If X is not full-rank, and this happens where there is perfect multicollinearity, then infinite solutions to 

normal equations exist, but all of them give the same vector of prediction values βXμy ˆˆˆ == . 
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3.1-3 LEAST SQUARES ESTIMATION 

 ANOVA and ANCOVA models have singular design matrices and reparametrization is required, and 
solutions to the normal equations can be computed using generalized inverses or pseudo inverses  

( ) YXXXβ TT −
=ˆ

 

 ( )−− = XXA T
 is a g-invers or generalized invers if satisfies AAAA =−

. 

−A always exists, but it not uniqu. When it is also satisfied:  

1. −−− = AAAA       2. ( ) −− = AAAA T
     3. ( ) AAAA −− =

T
 

Then 
−A  is unique and it is called  the Moore-Penrose inverse or p-inversa noted as 

+A . 

 Second order conditions of minima request that second order derivatives of ( )βS , the hessian 
matrix of the quadratic form,  be positive definite  or  , 

( ) ( ) pjiSS
ji

,,,0 10
2

2 =>












∂∂
∂

↔>∇
ββ
βββ  
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3.1-3 LEAST SQUARES ESTIMATION 

The range of XXT
 is equal to the range of X. This attribute leads to two criteria that must be met in 

order to ensure XXT
is nonsingular and thus obtain a unique solution: 

 

1. At least as many observations as there are coefficients in the model are needed. 

2. The columns of X can not be perfectly linearly related, but even near collinearity can cause statistical 
problems.  

3. Use vif(model) in R to check collinearity (thresholds will be discussed in lab sessions). 

 

 

3.1-3.1 Geometric properties 

Let ( )Xℜ  be the linear variation expanded by the columns of X, 

( ) { } np ℜ⊂ℜ∈==ℜ ββμμ XX  . 

And βXμy ˆˆˆ ==  the predictions once the least squares estimator of model parameters is calculated.  
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3.1-3 LEAST SQUARES ESTIMATION 

 Then it can be shown that μ̂  is the orthogonal projection of Y, it is unique, the projection operator 

being defined as ( ) TT XXXXH −
= , and it is called the hat matrix since, applied to Y, it provides 

the fitted values or predictions typically denoted Ŷ ,  

( ) TT XXXXH −
= puts a ^ on Y: ( ) HYYXXXXXbY TT ===

−ˆ
. 

Graphically,  
 

Properties of the hat matrix: Diagonal H – hatvalues(model) 

 

• It depends solely on the X predictor variables. 

• It is square, symmetric and idempotent: HH = H. 

• Finally, the trace of H is the degrees of freedom for the model. 

 

  

 

 

iŷ

iy

iii yye ˆ−=
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3.1-4  LEAST SQUARES ESTIMATION: INFERENCE 

3.1-4.1 Basic inference properties 
 A continuous response linear model is assumed where 

εXβεμY +=+=  or Yi = β1 + β2X2i + … + βpXpi + εi, i = 1,…,n 

where Y,µ  are nx1, X nxp of p rank and β  px1 and the conditional distribution of unbiased errors are 

i.i.d. of constant variance and normally distributed: ( )2σ0,N| ≈Xε  or 𝐘𝐘|𝐗𝐗~N(𝐗𝐗𝐗𝐗,σ2𝐈𝐈𝐧𝐧). 

 Then, the minimum-variance unbiased estimator of β  is ( ) YXXXˆ TT 1−
=β , the ordinary least 

squares estimator is equal to the maximum likelihood estimator MVβ̂ .  

 If normal assumptions are not met, then OLS estimators are not efficient (they do not have minimum 
variance as ML estimator). 

 If the hypothesis holds true, then the unbiased estimator of 2σ , denoted 2s , is efficient (minimum 
variance) and its square root, s , is called the standard error of the model. 

( ) ( )
pn

RSS
pnpn

s
−

=
−

−⋅−
=

−
⋅

=
βXYβXYee

TT ˆˆ
2

 
Residual sum of 

squares 



                                    SIM course. Master in Data Science – FIB- UPC 

Prof. Lídia Montero ©                                     Page 3.1-20                     2021-2022 Academic Year 
 

3.1-4 LEAST SQUARES ESTIMATION: INFERENCE 

 More detailed (Th 3.5 Seber (77) pag. 54) : 

1. ( )( )12,Nˆ −
≈ XXTσββ p  is the sampling distribution of the OLS estimator. 

2. ( ) [ ] ( ) ( ) ( ) 221
p

TT χβββββββββ ≈−−=−−
− σˆXXˆˆˆVˆ T

. 

3. ( ) YXXXˆ TT 1−
=β  is independent of s2. 

4. ( ) 2222 σσ pnspnRSS −≈−= χ . 

 

What we knew before presenting the statistical properties for OLS was  about a sample (in particular, our 
sample) but now we know something about a larger set of observations from which this sample is drawn.  

 

We consider the statistical properties of ( ) YXXXˆ TT 1−
=β , an estimator of something, specifically 

the population parameter vector β and the former theorem says to us that OLS estimator is linear and 
unbiased. It is the best, the most efficient (with smaller variance) than any other estimator and has a normal 
sampling distribution. 
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3.1-4 LEAST SQUARES ESTIMATION: INFERENCE 

What we knew before presenting the statistical properties for OLS was about a sample (in particular, our 
sample), but now we know something about a larger set of observations from which this sample is drawn.  

We consider the statistical properties of ( ) YXXXˆ TT 1−
=β  an estimator of something, specifically the 

population parameter vector β , and the former theorem tells us that the OLS estimator is linear and 
unbiased. It is better and more efficient (with smaller variance) than any other estimator and has a normal 
sampling distribution. 

Any individual coefficient jβ̂  is distributed normally with expectation jβ  and sampling variance 

( ) ( )TjjXXV T
j

2ˆ σ=β  and we can test the simple hypothesis (i.e., make some inference): 

0
0 : jjH ββ = with ( )

)1,0(
ˆ 0

0 NZ
T
jj

jj ≈
−

=
XXTσ

ββ
 

But since it does not help that much, since jβ and 2σ are unknown, an unbiased estimator of 2σ  is proposed 

based on the standard error of regression 
2s and to estimate the sample variance of jβ̂ , ( )jV β̂ˆ . 
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3.1-4 LEAST SQUARES ESTIMATION: INFERENCE 

( ) ( ) ( ) ( )TjjT
jj sSEs XXXXV T

j
T

j =→= ββ ˆˆˆ 2
and the ratio of jβ̂ and ( )jβ̂SE  (standard error of 

jth parameter) is distributed as a Student t with n-p degrees of freedom (since jβ̂  and 
2s are 

independent). 

 

( ) pnT
jj

jj tStudent
s

t −≈
−

=
XXT

0

0

ββ
can be defined and thus ( ) ( )00 ttPHP pn >= −  or a bilateral 

confidence interval at ( )%100 1 α− for ( )jpnjj SEt βββ α ˆˆ 2
−±∈  can be calculated.   

 

Inference for multiple coefficients will be further presented by the F-test. 
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3.1-4 GENERALIZED LEAST SQUARES ESTIMATION 

3.1-4.2 Generalized least squares 

Let εβεµ +=+= XY  be a multiple regression model and as usual  Y  nx1,  X nxp  of range p and 

β  px1. Let the model errors be unbiased and correlated with normal distribution 

( )WXε 2σ0,Nn≈   or equivalently say  𝒀𝒀|𝐗𝐗~𝑁𝑁𝑛𝑛(𝛍𝛍,𝜎𝜎2𝐖𝐖) 

,  

where W  is a symmetric and positive defined matrix of dimension nxn . 

 

W  in the model 𝒀𝒀|𝐗𝐗~𝑁𝑁𝑛𝑛(𝛍𝛍,𝜎𝜎2𝐖𝐖) can be Cholesky factorized uniquely and transformed in a matrix 

product of a lower triangular K matrix of dimensión nxn and its transpose; i.e., 
TKKW = . Cholesky 

factorization is usually computed as a triangular decomposition, 

( ) TTT2
1

2
1

T KKLDLDLDLDDLLLUW =









==== 2

1
2
1

. 
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3.1-4 GENERALIZED LEAST SQUARES ESTIMATION 

K matrix appearing in the factorization of W is the tool to compute linear transformations for the response 

variable (noted Y~ ), and for the design matrix X~ and the error term ε~ : 

1. YKY~ 1−=        2. XKX~ 1−=        3.  εε 1K~ −=  

4. εβεβεη ~X~Y~KXKKKYK 11111 +=↔+=+= −−−−−
. 

 Now, in the transformed linear model εβ ~X~Y~ +=  errors are uncorrelated and the variance is 

common and equal to 
2σ , 

 

[ ] [ ] [ ] [ ] [ ]( ) n
TT IKKKKWKKKVKKV~V~X~VY~V T1T1111 222 σσσ ======+= −−−−−−− εεεεβ  
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3.1-4 GENERALIZED LEAST SQUARES ESTIMATION 

Sinthesis of the least square estimation for linear models with normal response : 

MODEL [ ] IV,XY 2σ=+= εεβ  [ ] DV,XY 2σ=+= εεβ  [ ] TKKWV,XY 22 σσ ==+= εεβ  

Transformation YY → , XX →  YDY 2
1−→ , XDX 2

1−→  YKY 1−→ , XKX 1−→  

( )βS   Quadratic 
form to minimize  

( ) ( )ββ XYXY −− T  ( ) ( )ββ XYDXY 1 −− −T  ( ) ( )ββ XYWXY 1 −− −T
 

Normal 
Equations 

QS =β  

YXQX,XS TT ==  YDXQX,DXS 1T1T −− ==  YWXQX,WXS 1T1T −− ==  

Estimator β̂  ( ) YXXX TT 1−
 ( ) YDXXDX 111 −−− TT  ( ) YWXXWX 111 −−− TT  

Variance of β̂  ( ) 12 −XXTσ  ( ) 12 −− XDX 1Tσ  ( ) 12 −− XWX 1Tσ  

RSS ( ) β̂YXYY TTT −  ( ) β̂YDXYDY T1T1T −− −  ( ) β̂YWXYWY T1T1T −− −  
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3.1-5  HYPOTHESIS TESTING IN MULTIPLE REGRESSION 

 

 Let the statistical model for multiple regression for a given data set be 

εβεµ +=+= XY , where Y nx1, X nxp of range p and β  px1 

where errors are unbiased and iid is normally distributed ( )WXε 2σ0,Nn≈ . Ordinary least 

square estimators are denoted β̂ . 

 

 Let a simpler model of multiple regression for the same set of data be the former one with a set of linear 
restrictions applied to the model parameters (a nested model), i.e., 

εβεµ +=+= XY , where Y nx1, X nxp of range p and β  px1 

is subject to linear constraints cA =β  that define a linear hypothesis to contrast (to make an 

inference) that we call H; A is a qxp  matrix of range q < p. Ordinary least square estimates subject 

to constraints are Hβ̂ . The residual sum of squares is denoted RSSH. 
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3.1-5 HYPOTHESIS TESTING IN MULTIPLE REGRESSION 

• If hypothesis H is true, then it can be shown that   

( )
( )

( ) ( )( ) ( )
pnq

TTT

H F
sqpnRSS

qRSSRSSF −

−−

→
−−

=
−

−
= ,2

11 ˆXXˆ cAAAcA ββ

 
 
Example: Suppose we have a model with the set of parameters 

( )4321 ββββ=Tβ
  

 
 and we want to test the hypothesis 
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3.1-5 HYPOTHESIS TESTING IN MULTIPLE REGRESSION 

3.1-5.1 Testing in R 
anova() 

• For nested linear regression models, method anova(restrictedmodel, fullmodel) implements the F-test. 
Hypothesis testing in this subject will be suggested by this method.  

• Net effects tests for a multiple regression model performed with package car Anova(model) 
• Inconvenient: the two models have to be computed beforehand. 

 

linear.hypothesis() in car package: following the previous generic example 

 
library(car) 

linearHypothesis(model, 

hypothesis.matrix=matrix(c(1,1,0,-4,1,-1,0,0),nrow=2,ncol=4,byrow=TRUE), 

rhs=as.vector(c(2,0)) ) 

 

For glm() object performs a Wald test 

It requires the estimation of one model only (compared to anova() method) 
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3.1-5 HYPOTHESIS TESTING IN MULTIPLE REGRESSION 

3.1-5.2 Confidence interval for single model parameters 

Individual confidence interval for iβ  in OLS is summarized as: 

pn
ii tt

i

−≈
−

=
β

σ
ββ

ˆˆ

ˆ
     →   i

pni t
β

α σβ ˆˆˆ 2
−±   where  ( ) 1−

= ii
T XXs

iβ
σ ˆˆ

 and  

pn
RSSs
−

== σ̂  

2α
pnt −  is the Student t for the bilateral confidence interval 1-α  . The degrees of freedom are (n-p) and 

correspond to the standard error of regression. 

Estimates of iβ parameters are statistically dependent and individual confidence intervals might give a 
wrong idea of the jointly distributed values.  

 

There is much literature about how to build confidence regions or perform simultaneous tests on several 
hypotheses: this falls outside of the scope of this material. Some specific suggestions will be presented in 
the practical sessions. 
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3.1-6  MULTIPLE CORRELATION COEFFICIENT 

 Multiple correlation coefficient R is a goodness of fit 
measure for a regression model defined as the Pearson 

correlation coefficient between fitted values kŷ  and 

observations ky :  

 The square of the multiple correlation coefficient R2 is called 
the coefficient of determination. The multiple correlation coefficient generalizes the standard 
coefficient of correlation. It is used in multiple regression analysis to assess the quality of the prediction 
of the dependent variable. It corresponds to the squared correlation between the predicted and the 
actual values of the response variable.  

1. According to the decomposition of the total sum of squares (TSS) in the residual sum of squares plus the 
explained sum of squares for a given model (valid for models including an intercept), R-Squared can be 
rewritten.  

2. TSS=
( )∑ −

k
k yy 2

 where ∑=
k

ky
n

y 1
 is the mean of the observed response data. 

3. ESS= ( )∑ −
k

k yy 2ˆ     and     RSS=
( )∑ −

k
kk yy 2ˆ
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3.1-6 MULTIPLE CORRELATION COEFFICIENT 

4. TSS=ESS+RSS, ( )∑ −
k

k yy 2
= ( )∑ −

k
k yy 2ˆ + ( )∑ −

k
kk yy 2ˆ ,  

Proof: 
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3.1-6 MULTIPLE CORRELATION COEFFICIENT 

3.1-6.1 Properties of the multiple correlation coefficient 

1. 1≤R  and if |R|=1 this indicates a perfect linear relation between response data and regressors. 

2. )( 21100 R−  represents the fraction of response data variability not explained by the current model.  

3. 2100R  represents the fraction of response data variability explained by the current model.  

3.1-6.2 Adjusted R2 
 Since this correlation can not go down when variables are added, the R2 must be adjusted in order to 

increase only when truly significant regressors are added to the model. This is the adjusted R-Squared: 

( )
( ) ( ) 








−
−

−−=
−
−

−=
pn

nR
nTSS

pnRSSRa
111

1
1 22

 

 Adjusted R-Squared is always less than the original R-Squared and might be negative. 
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3.1-7  GLOBAL TEST FOR REGRESSION. ANOVA TABLE 

 The global test for regression is a particular case of multiple comparison of hypotheses in which all 
parameters related to the explanatory variables are tested to be simultaneously zero.  

H: 002 == pββ ,, . 

( )
( )

( ) ( )
( )

( )
( ) ( ) ,,121

11
pnp

H F
sp

ESS
pnTSS

pESS
pnRSS
pRSSTSS

pnRSS
qRSSRSSF −−≈

−
=

−
−

=
−

−−
=

−
−

=
 

 This Omnibus test sometimes is presented to clarify in form of a table, called the ANOVA Table for 
a Regression Model: 

ANOVA TABLE Descomposition Degrees of 
freedon 

Variance Contrast 

ESS ( )∑ −
k

k yy 2ˆ  
p-1 2

exps =ESS/(p-1)  

RSS ( )∑ −
k

kk yy 2ˆ  n-p 2s =RSS/(n-p) F=
2
exps /

2s  

TSS ( )∑ −
k

k yy 2
 n-1 2

Ys =TSS/(n-1) 
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3.1-8 PREDICTIONS AND INFERENCE 

 Let kŶ  be the fitted value (prediction) for observation data k, where the values for explanatory 

variables are ( )pxx 21=T
kx : β̂xˆ T

k=kY .  

1. [ ] [ ] ββ T
k

T
k xˆxˆ == ΕΕ kY . 

2. [ ] [ ] [ ] ( ) kkk hVVYV 22ˆˆˆ σσ ====
−

k
1TT

kk
T
k

T
k xXXxxxx ββ , where kkh  is the k diagonal term of 

projection matrix appearing in OLS (H, hat matrix). 

3. Fitted values are normally distributed. 

4. In R: predict(model, interval = "confidence") for 95% CI for fitted values. 

5. New data: predict(model, newdata=dataframe, interval = "prediction") for 95% CI for fitted values. 

 It is known as the point and the variance of a mean prediction at kx  and the confidence interval should 
be calculated based on Student t with n-p df using the standard error of regression s: 

( )→≈
−

10,
xˆ
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 where ( ) ( ) xXXxxXXxˆˆ 1TT1TT
ˆ

−−
== sY σσ  

And at a confidence level 100(1-α )% the true mean value lies in YpntY ˆˆˆ σ2α
−± . 
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3.1-9  MODEL VALIDATION 

 

 Residual analysis constitutes a practical tool for graphically assessing model fitting and satisfaction of 
optimal hypothesis for OLS estimates: 

 

Let a model for a continuous response be 

εβεµ +=+= XY , where Y nx1, X is nxp of column range p and β is px1 

and errors are unbiased, uncorrelated and normally distributed with constant variance, i.e., 

( )IXε 2σ0,Nn≈  or equivalently 𝒀𝒀|𝐗𝐗~𝑁𝑁𝑛𝑛(𝛍𝛍,𝜎𝜎2𝐈𝐈). 

 Residuals are the difference between observed response values and fitted values: 

( )YHIYYe −=−= ˆ .  
 Check: 
o Linearity: 𝐸𝐸(𝑌𝑌𝑖𝑖|𝑋𝑋𝑖𝑖) = 𝜇𝜇𝑖𝑖 = 𝑋𝑋𝑖𝑖𝛽𝛽 
o Homokedasticity (constant variance): 𝑉𝑉(𝑌𝑌𝑖𝑖|𝑋𝑋𝑖𝑖) = 𝜎𝜎2 
o Normality: 𝑌𝑌𝑖𝑖|𝑋𝑋𝑖𝑖~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 
o Independence: 𝑌𝑌𝑖𝑖�𝑋𝑋𝑖𝑖 ⊥ 𝑌𝑌𝑗𝑗�𝑋𝑋𝑗𝑗, 𝑖𝑖 ≠ 𝑗𝑗 
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3.1-9 MODEL VALIDATION: RESIDUAL ANALYSIS  

 

 In order to interpret residuals, some transformed residuals are defined: 

1. Scaled residual ic  is defined as i residual divided by the standard error of regression estimate for the 

model, s, s
ec i

i = . It is not too serious when leverages show no big changes, since [ ] ( )iii heV −= 12σ . 

 

2. Standardized residual id  is defined as the residual divided by its standard error: 
ii

i
i hs

ed
−

=
1 .  

 

3. Studentized residual ir  is defined as 
( ) iii

i
i hs

er
−

=
1   where ( )

( ) ( )
1
122

2

−−
−−−

=
pn

hespns iii
i . 

 

• Outliers for ir  can be detected using t.Student lower and upper bounds for sample size or by univariate 
descriptive graphical tools as a boxplot. 
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3.1-9 RESIDUAL ANALYSIS: DIAGNOSTIC PLOTS 

Residual analysis - usual plots: 

 

 Histogram residuals: normal 
density is checked.  
hist(rstudent(model), 
freq=F) 

curve(dt(x, model 
$df),col=2,add=T) 

 Boxplot residuals to identify 
outliers of regression.  

 Normal probability plot or 
quantile plot of standardized or 
studentized residuals.  

In R, the confidence band for 
studentized residuals is shown 
loading car package and qqPlot 

method. 
library(car) 

qqPlot( model, simulate=T, labels=F) 

Histogram of rstudent(an

rstudent(anscombe.lmA)
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3.1-9 RESIDUAL ANALYSIS: DIAGNOSTIC PLOTS 

o When the normality assumption is not fully met then the comparisons of the hypothesis based on the 
Student or F-test are approximate and estimates are not efficient.  

o Tests for normality assessment can be used. The Shapiro-Wilke test is one of my favorites, but there 
are lots of tests depending on sample size. Package nortest in R contains some common possibilities. Even 
in non-normal errors, residuals tend towards normality (due to central limit theorem) in medium and large 
samples. 

o Residuals are correlated with observations iY , but not with fitted values iŶ , so scatterplots with fitted 
values on the X-axis are suggested.  

o Use residualPlots(model) method in package car for R. 

 

 Scatterplots: ii Yvse ˆ , or ii Yvsd ˆ
 or ii Yvsr ˆ . Failed linearity (regressor transformations or 

additions might be needed) or heteroscedasticity (transformations required) might be detected. 
Unusual observations might make interpretation difficult. 

 Use default residual analysis of a linear model for R. 
 

par(mfrow=c(2,2)) 
plot(model, id=list(n=Inf,labels=row.names(df))) 
par(mfrow=c(1,1)) 
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3.1-9 RESIDUAL ANALYSIS: DIAGNOSTIC PLOTS 
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3.1-9 RESIDUAL ANALYSIS: DIAGNOSTIC PLOTS 
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3.1-9 RESIDUAL ANALYSIS: DIAGNOSTIC PLOTS 

 

 

 

Linear hypothesis and homoskedastic         Heteroskedastic   Linear hypothesis rejected 
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3.1-9 RESIDUAL ANALYSIS: DIAGNOSTIC PLOTS  

 Scatterplots of residuals vs each regressor (except intercept)  

The horizontal band indicates linearity satisfaction and homoskedastic hypothesis. 

o Use residualPlots(model) method in package car for R. Example: Duncan data 
lm(prestige~education+income,data=Duncan) 

 
o Homoskedastic Hypothesis Test - Breusch-Pagan test in package lmtest might be of interest. 
> library(lmtest) 

> bptest(model)  # Null Hypothesis: Homoskedasticity holds  

 studentized Breusch-Pagan test data:  model 

BP = 0.57522, df = 2, p-value = 0.7501 
  

H0 can’t be rejected 

OK for income Lack of fit for 
education 
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3.1-9 RESIDUAL ANALYSIS: DIAGNOSTIC PLOTS  

 Residual vs time/order or any omitted variable in the model suspected to affect hypothesis 

Such as the autocorrelation function for residuals (method in R, acf(rstudent(model)) of order k, 

( )
∑
∑ +=

i k

i kii

e
ee

kr 2 , and contrasts for simultaneous hypothesis r(j)=0 for j>k.  

Or Durbin-Watson test (tables are very difficult to interpret) also for autocorrelation testing. 

No temporal dependency      Temporal dependency 
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3.1-10 MODEL TRANSFORMATIONS ON Y OR X 

o Use marginalModelPlots(model) method in package car for R or avPlots(model). Lack of fit between data 
smoother and current model behavior for one variable indicates that transformation on selected 
regressor is needed. 

o Use poly(varname,2) to model linear and quadratic terms on varname regressor. 

o Use poly(varname,3) to model linear, quadratic and cubic terms on varname regressor. 

 

 
There seem to be no problems in any of them! 
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3.1-10 MODEL VALIDATION: TRANSFORMATIONS 

3.1-10.1 Box-Cox transformation of Y 
o The Box-Cox transformation of Y functions to normalize the error distribution, stabilize the error 

variance and straighten the relationship of Y to the Xs. Basic transformations are log(Y), 1/Y, Y : 

o If λ =1, no transformation is necessary. Note that all of the Yi must be positive. 

o λ  may be by maximum likelihood in R: boxcox( formula, data ) method in MASS library. 

o Or boxCoxVariable(response) after loading car package with λ =1-coefficient for the 
boxCoxVariable() ). The t-test for the coefficient of the constructed variable is an approximate score 
test for whether a transformation is required. 

 

 
  

( )
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3.1-10 MODEL VALIDATION: TRANSFORMATIONS 

  

lm(formula = prestige ~ boxCoxVariable(prestige) + income + education, data = Duncan) 

 

Coefficients: 

                         Estimate Std. Error t value Pr(>|t|)     

(Intercept)               13.7510     7.7283   1.779 0.082607 .   

boxCoxVariable(prestige)   0.5954     0.2001   2.975 0.004888 **  

income                     0.5860     0.1099   5.332 3.84e-06 *** 

education                  0.4165     0.1001   4.160 0.000158 *** 

 

Residual standard error: 12.27 on 41 degrees of freedom 

Multiple R-squared: 0.8587,     Adjusted R-squared: 0.8483  

 

Or 
 
boxcox(prestige ~ income + education, data = df) 

 

95% CI for λ excludes 1 

Transformation is 
needed 
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3.1-10 MODEL VALIDATION: TRANSFORMATIONS 

3.1-10.2 Box-Tidwell Transformation of the X’s  
Maximum likelihood can also be used to find an appropriate linearizing transformation for the X variables 

The Box-Tidwell model is a non-linear model that estimates transformation parameters for the X’s 
simultaneously with the regular parameters, 

Yi = β1 + β2Xγ22i + … + βpX γppi + εi,  i = 1,…,n  errors are iid normal and Xi  are positive 

Explicit in this model is a power transformation of each of the X’s 

Of course, it makes no sense to transform dummy variables and the like, so we should not attempt to 
estimate transformation parameters for them. 

 BoxTidwell method in R is available (for Duncan data) 

> library(car) 

> boxTidwell(prestige ~ income, ~ education,  data=duncan1) 

 Score Statistic   p-value MLE of lambda 

      -0.1323884 0.8946771     0.9275973 

> boxTidwell(prestige ~ income + education,  data=duncan1) 

          Score Statistic   p-value MLE of lambda 

income         -0.6859686 0.4927329     0.6622138 

education       1.0408104 0.2979635     1.7312407 
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3.1-10 MODEL VALIDATION: TRANSFORMATIONS 

• Scatterplot matrices are useful for 
preliminary assessments of the relationship 
between several variables in a multiple regression 
model, but can be misleading because they plot the 
marginal rather than partial relationships between 
Y and each X (i.e., they do not control for the 
other X’s) 
• Partial-regression plots (or added-variable 
plots, avPlot()) are not very useful either because 
they are unable to distinguish between monotone 
linearity (which can often be corrected with a 
simple transformation) and non-monotone non-
linearity (which cannot be corrected with a 
transformation) 
• Partial-residual plots, however, can reveal 
both monotone and non-monotone linearity. 
o Notice that although column (a) is 
characterized by non-monotone non-linearity. 
o Only (b) can be transformed to satisfy the 
linearity requirement. 
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3.1-10 MODEL VALIDATION: TRANSFORMATIONS 

 

avPlots(model) : Partial-regression 
plots (or added-variable plots, 
avPlots()). Partial regression plots for 
a response variable (prestige) and 
predictor (income) are scatterplots 
of the residuals from 2 regressions - 
regressing the outcome prestige on all 
of the other predictors (education, in 
the example), and regressing that 
particular predictor (income) on all of 
the other predictors.  

It is useful to address the 
contribution of the predictor to 
explain the outcome and highlights 
potentially influential observations 

 
  



                                    SIM course. Master in Data Science – FIB- UPC 

Prof. Lídia Montero ©                                     Page 3.1-50                     2021-2022 Academic Year 
 

3.1-10 MODEL VALIDATION: TRANSFORMATIONS 

Partial-residual plots can reveal both monotone and non-monotone linearity. The partial residual for the jth 

explanatory variable from a multiple regression is, 

 
( ) ( )

ij
j

i
j

i xepe β+=  Where 
this simply adds the linear 
component of the partial 
regression between Y and Xj 

(which may be characterized by 
a non-linear component) to the 
least squares residuals. 
The“partial residuals”  ( )j

ipe  are 
plotted versus Xj, meaning that 

( )jβ  is the slope of the multiple 

simple regression of 
( )j
ipe on Xj.. 

 

In R car package: 
crPlot(duncan1.lm,"income") 

crPlot(duncan1.lm,"education") 
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3.1-10 MODEL VALIDATION: TRANSFORMATIONS 

3.1-10.3 Transformations and Interpretation 
Often the response variable or regressors have to be transformed to linearize its relationship with y.  

However, it is essential putting model interpretations back in the metric of y and x. This is easy for log 
transformations: 

 

• log(y) = a + bx: when x increases by one unit, on average y increases by 100 × b percent. 

• y = a + b log(x): when x increases by 1 percent, on average y increases by b 100 units. 

• log(y) = a + b log(x): when x increases by 1 percent, on average y increases by b percent. 
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3.1-11 MODEL VALIDATION: UNUSUAL AND INFLUENTIAL DATA 

It is easy to find examples of regression analysis that 
show the existence of a few observations that strongly 
affect the estimation of model parameters in OLS: 1%  
of data might weigh more in parameter estimation than 
99% of the data.  

 Influential data affects model prediction and it 
seems only natural that predicted values should be 
supported by 99% of data and not seriously 
affected by the remaining 1%.  

 Classifying an observation as a priori influential is 
related to robustness of the design of data 
collection. 

 We’ll see a technical case study (Anscombe’s data) 
in one of the lab sessions to further discuss this 
extremely important aspect of model validation if 
regression (in general linear) models are formulated 
and estimated with a predictive future scope of use.  
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3.1-11 UNUSUAL AND INFLUENTIAL DATA 

 

Outlying observations can lead us to misinterpret patterns in plots.  

• Temporarily removing them can sometimes help us see patterns that we otherwise would not. 
• Transformations can also spread out clustered observations and bring in the outliers. 
• More importantly, separated points can have a strong influence on statistical models – removing outliers 

from a regression model can sometimes give completely different results. 

 

Unusual cases can substantially influence the fit of the OLS model.  

• Cases that are both outliers and high leverage exert influence on both the slopes and intercept of the 
model. A final model shouldn’t contain influent data. 

• Outliers may also indicate that our model fails to capture important characteristics of the data.  
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3.1-11 UNUSUAL AND INFLUENTIAL DATA 

 
Types of unusual observations 

• A regression outlier is an observation that has an unusual value of the outcome variable Y, 
conditioned by the value of the explanatory variable X. 

o An observation that is unconditionally unusual in either its Y or X value is called a univariate 
outlier; this is not necessarily a regression outlier. 

o In other words, for a regression outlier, neither the X nor the Y value is necessarily unusual on 
its own. 

o Regression outliers often have large residuals but do not necessarily affect the regression 
slope coefficient. They are also sometimes referred to as vertical outliers. 

o Outliers could increase standard errors of the estimated parameters (or fitted values) since 
the standard error of regression is computed from residuals:   
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3.1-11 UNUSUAL AND INFLUENTIAL DATA 

• Observation with leverage (large diagonal element of hat matrix, hii) 
o An observation that has an unusual X value (i.e., it is far from the mean of X) has leverage on 

the regression line. 
o The further the outlier sits from the mean of X (either in a positive or negative direction), the 

more leverage it has. 
o High leverage does not necessarily mean that it influences the regression coefficients; it is 

possible to have high leverage and yet fall straight in line with the pattern of the rest of the 
data.  

• Influential observations 
o An observation with high leverage that is also a regression outlier will strongly influence the 

regression line. 
o In other words, it must have an unusual X value with an unusual Y value, given its X value. 
o Both the intercept and slope are affected. 

 
Discrepancy × leverage = influence 

o Use influencePlot(model) method in package car  
> influencePlot(m1, col="orange",pch=19,id=list(method=”noteworthy”,n=3)) 

               StudRes        Hat      CookD 

minister     3.1345186 0.17305816 0.56637974 

reporter    -2.3970224 0.05439356 0.09898456 

conductor   -1.7040324 0.19454165 0.22364122 

RR.engineer  0.8089221 0.26908963 0.08096807 
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3.1-11 UNUSUAL AND INFLUENTIAL DATA 

3.1-11.1 A priori influential observations 

• Simple regression: An observation that has an unusual X value (i.e., it is far from the mean of X) has 
leverage on the regression line. The further the outlier is from the mean of X (either in a positive or 
negative direction), the more leverage it has. 

• Multiple regression: We must imagine a cloud of points defined by regressors in X (each column on an 
axis) and a center of gravity for those points. 

Heterogeneous points x (
pℜ∈x ) regarding the cloud of X points and their center of gravity identify a 

priori influential data.  
The most common measure of leverage is the hat − value, hi, the name hat − value comes from their 

calculation based on the fitted values ( jŷ  ): leverages ih  are computed for all observations and the 

i-th distance from point ix  to the center of gravity is measured for the whole set of observation data. 
Use the hatvalues(model) method in R. 

 Thus, the average value for the leverage is n
p

n
h

h i ii == ∑ . Belsley et al. show that atypical values 

for leverage observations are those that meet the cut-off: hhii 2> .  

 This cut-off is not useful when considering big data sets: the cut-off has to be increased to hhii 3>
.  
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3.1-11 UNUSUAL AND INFLUENTIAL DATA 

According to Fox (Figure 11.3 in Fox, 1997), 
the diagram to the left shows elliptical 
contours of hat values for two explanatory 
variables. 

As the contours suggest, hat values in 
multiple regression take into consideration 
the correlational and variational structure 
of the Xs.  

As a result, outliers in multi-dimensional X-
space are high leverage observations (i.e., 
the outcome variable values are irrelevant 
in calculating hi). 

o Use aq.plot(dataframe) in package 
mvoutlier for R, where dataframe contains 
only numeric variables. 

o Use chemometrics package: Moutlier 
method. 
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3.1-11 UNUSUAL AND INFLUENTIAL DATA 

3.1-11.2 A posteriori influential data 
An influential observation implies that the inclusion of the data in OLS: 

1. Modifies the vector of estimated parameter β̂ . 

2. Modifies the fitted values Ŷ . 

3. If the i-th observation is influential, then its fitted value is very good when i-th data is included in the 
data set for OLS estimation, but when it is removed its fitted value is bad, leading to a high value of 
the absolute residual. 

An influential observation is one that combines discrepancy and leverage•  

4. The most direct approach to assessing influence is to assess how the regression coefficients change 
if outliers are omitted from the model. We can use Di j (often termed DFBetasi j) to do so: 

( )( )
j

ijjijD
β

σββ ˆˆˆˆ
−−=

      i = 1, . . . , n; j = 1, . . . , p 

where the β̂ are the coefficients for all the data and the ( )i−β̂
 are the coefficients for the same 

model with the ith observation removed. Use dfbetas(model) in R. 

A standard cut-off for an influential observation is Dij ≥ 2/√n. (Be careful with small samples!!!) 



                                    SIM course. Master in Data Science – FIB- UPC 

Prof. Lídia Montero ©                                     Page 3.1-59                     2021-2022 Academic Year 
 

3.1-11 UNUSUAL AND INFLUENTIAL DATA 

One problem with DFBetas is that each observation has several measures of influence: one for each 
coefficient np with different measures. 

Cook’s D overcomes the problem by presenting a single summary measure for each observation iD : 
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where ( )iβ̂  are the coefficients for the same model with the ith observation removed. Use 
cooks.distance(model) method in R. 

• Cook’s D measures the ‘squared distance’ between β̂ , which are the coefficients for all the data, and 

( )i−β̂ , which are the coefficients for the same model with the ith observation removed by calculating an 

F-test for the hypothesis that ( )iββ −= ˆ:iH . 
• There is no significance test for Di but a commonly used cut-off is the one proposed by Chatterjee and 

Hadi (1988) that defines influential observations as those that satisfy Di >4/(n-p). 
 

• For large samples, the Chatterjee and Hadi cut-off does not work and, as a rule of thumb, Di >0.5 are 
suspected to be influential data and Di>1 are considered influential (R criteria). 
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3.1-11 UNUSUAL AND INFLUENTIAL DATA 

• In R it’s possible to plot DFBETAS (using matplot) for each observation and regressor, as well as the 
indication of overall influence related to Cook’s distance. To unify metrics, Cook’s distance is a squared 
distance, but DFBETAS are ordinary units, so the squared root of Di (Cook’s distance) can be added to 
the DFBETAS matplot. Standard cut-offs may be suggested and drawn. 

 

>matplot(dfbetas(duncan1.lm), type="l", 
col=2:4,lwd=2) 

>lines(sqrt(cooks.distance(duncan1.lm))
,col=1,lwd=3) 

>abline(h=2/sqrt(dim(duncan1)[1]), 
lty=3,lwd=1,col=5) 

>abline(h=-2/sqrt(dim(duncan1)[1]), 
lty=3,lwd=1,col=5) 

> abline(h=sqrt(4/(dim(duncan1)[1]-
length(names(coef(duncan1.lm))))), 
lty=3,lwd=1,col=6) 

>llegenda<-c("Cook d", 
names(coef(duncan1.lm)), "DFBETA Cut-
off", "Ch-H Cut-off") 

> legend(locator(n=1), legend=llegenda, 
col=1:length(llegenda), 
lty=c(1,2,2,2,3,3), lwd=c(3,2,2,2,1,1)) 
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3.1-11 UNUSUAL AND INFLUENTIAL DATA 

• DFFITSi suggested by Belsley et al. (1980) are related to Cook’s distance and combine studentized 

residuals and leverages. A usual cut-off for abnormal absolute value is pn
pDFFITSi −> 2 .  

Use dffits(model) in R. 
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influence(model) 

plot(dffits(model),type="l",lwd=3) 

pp=length(names(coef(model))) 

lines(sqrt(cooks.distance(model)),col=3,lwd=2) 

abline(h=2*(sqrt(pp/(nrow(duncan)-pp))),lty=3,lwd=1,col=2) 

abline(h=-2*(sqrt(pp/(nrow(duncan1)-pp))),lty=3,lwd=1,col=2) 

llegenda<-c("DFFITS","DFFITS Cut-off","Cooks D") 

legend(locator(n=1),legend=llegenda,col=1:3,lty=c(1,3,1),lwd=c(3,1,2)) 

 

 



                                    SIM course. Master in Data Science – FIB- UPC 

Prof. Lídia Montero ©                                     Page 3.1-62                     2021-2022 Academic Year 
 

3.1-11 UNUSUAL AND INFLUENTIAL DATA 

3.1-11.3 Joint influence 
Subsets of cases can jointly influence a regression line, or can offset each other’s influence. 

• Depending on where the jointly influential cases lie, they can have different effects on the regression 
line.  

• Cook’s D helps to determine joint influence if there are relatively few influential cases. 
• Cases can be deleted sequentially, updating the model each time and exploring the Cook’s D’s again. This 

approach is impractical if there are potentially a large number of subsets to explore. 

 

Added-variable plots or partial-regression (leverage) plots provide a more useful method of assessing joint 
influence, since these plots essentially show the partial relationships between Y and each X: 
 
For each regressor j in the design matrix X one plot is made: 

1. Let ey(j)  represent the residuals from the least-squares regression of Y on all of the X’s except for Xj: 

2. Similarly, ex(j) be the residuals from the regression of Xj on all the other X’s. 

3. These two equations determine the residuals ex(j) and ey(j) as parts of Xj and Y that remain when the 
effects of all other Xs are removed. 

4. Plot of  ey(j)  versus ex(j) (in R, avPlots(model, variable) in car package is available). 
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3.1-11 UNUSUAL AND INFLUENTIAL DATA 

The residuals ex(j) and ey(j)  have the following properties: 
• The slope of the regression of ey(j)  on ex(j) 

is the least-squares slope jβ̂ from the full 
multiple regression.  

• The partial correlation coefficient of Y 
and Xj given all the other X’s are in the 
model is the square root of the 
coefficient of determination of the simple 
regression of ey(j)  on ex(j). 

• Residuals from the regression of ey(j)  on 
ex(j) are the same as the residuals from the 
full regression. 

• Variation of ex(j) is the conditional variance 
of Xj holding the other X’s constant. 

A plot of  ey(j)  versus ex(j) allows to examine the leverage and influence of cases on jβ̂ . These plots also give 

us an idea of the precision of the slope jβ̂ . 
avPlots(duncan1.lm,labels = rownames(duncan1), id.method=list("x", "y"), id.n=3) 
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3.1-12 BEST MODEL SELECTION 

 

The best regression equation for Y given the regressors ( p1 x,,x  ) might contain dummy variables, 
transformations of the original variables and terms related to polynomial regression (higher order rather 

than linear for covariate variables) for the original variables ( q1 z,,z  ). Model selection should satisfy 
trade-off between simplicity and goodness of fit, often called parsimony criteria.  

 

1. As many regressors as necessary to make good predictions, on average and with the highest precision 
in confidence interval. 

2. Many variables are expensive to obtain (data collection) and difficult to maintain. 

 

 It is not practical to build all possible regression models and choose the best one according to some 
balance criteria.  

 A good model should be consistent with theoretical properties in residual analysis. Neither influential 
nor unusual data should be included. 

 

 



                                    SIM course. Master in Data Science – FIB- UPC 

Prof. Lídia Montero ©                                     Page 3.1-65                     2021-2022 Academic Year 
 

3.1-12 BEST MODEL SELECTION 

The elements available to assess the quality of a particular multiple regression (goodness of fit) model are: 

1. Determination coefficient 2R . A marginal increase is expected when the number of regressors included 
in the model is consistent with the data available. Any added regressors would (marginally) increase the 

determination coefficient, so stability must be found. Sometimes the adjusted coefficient 
2
aR  is useful. 

2. Stability of the standard error of regression estimate. Estimation of 𝜎𝜎2 by s2 of underfitting is biased 
and greater than the true value. The stability of s2 confirms or at least points to goodness of fit. 

3.  Residual analysis. 

4. Unusual and influential data analysis. 

5. And a new element: Mallows pC . Related to Akaike Information Criteria (AIC) ( )( )pAIC +−= y,β̂2 

. Models with lower values of Cp or AIC indicator are preferred. 

 Some authors strongly recommend BIC (Bayesian Information Criteria) Schwartz criteria 

( ) npBIC logˆ2 +−= y,β where extra parameters are penalized.  
 In R, AIC(model) for AIC on model objects for which a log-likelihood value can be obtained and 
AIC(model, k=log(nrow(data.frame))) for BIC. 
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3.1-12 BEST MODEL SELECTION 

3.1-12.1   Stepwise regression 
 Backward elimination is a heuristic strategy to select the best model given a number of regressors and a 
maximal model built from them. It is a robust method that suppresses insignificant terms from the 
maximal model to the point that all the terms maintained are statistically significant and cannot be 
removed. It has been proven to be very effective for polynomial regression. 

 Forward inclusion is a heuristic strategy to select the best model given a set of regressors from the null 
model by iteratively adding terms and regressors to the target set. It is not a robust procedure and it is 
not recommended as an automatic procedure to find the best model for a data set and regressor terms.  

 Stepwise regression is a forward strategy that builds on the starting model but, at each iteration, 
regressor terms are checked for statistical significance.  

 

 Criteria for adding/removing regressor terms vary in different statistical packages, but F-tests or AIC 
are commonly used. Partial correlation between Y and each Xj, once some subset of regressors is already 
in the model, has proven to be successful in the selection of regressors to increase the current model.  
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3.1-12 BEST MODEL SELECTION 

R software implements these heuristics in a sophisticated way in the method step(model, target model) 
based on AIC criteria for model selection at each step. 
> step(duncan1.lm0, ~income+education, direction="forward",data=duncan1)  
#AIC direction "forward" 
Start:  AIC=311.52 
prestige ~ 1 
 
            Df Sum of Sq   RSS    AIC 
+ education  1     31707 11981 255.30 
+ income     1     30665 13023 259.05 
<none>                   43688 311.52 
 
Step:  AIC=255.3 
prestige ~ education 
 
         Df Sum of Sq     RSS    AIC 
+ income  1    4474.2  7506.7 236.26 
<none>                11980.9 255.30 
 
Step:  AIC=236.26 
prestige ~ education + income 
 
Call: 
lm(formula = prestige ~ education + income, data = duncan1) 
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Coefficients: 
(Intercept)    education       income   
    -6.0647       0.5458       0.5987   
 
> step(duncan1.lm2,data=duncan1)  # Without scope direction is "backward" using AIC 
Start:  AIC=236.26 
prestige ~ income + education 
 
            Df Sum of Sq     RSS    AIC 
<none>                    7506.7 236.26 
- income     1    4474.2 11980.9 255.30 
- education  1    5516.1 13022.8 259.05 
 
Call: 
lm(formula = prestige ~ income + education, data = duncan1) 
 
Coefficients: 
(Intercept)       income    education   
    -6.0647       0.5987       0.5458   
 
> step(duncan1.lm2,k=log(dim(duncan1)[1]),data=duncan1)   
# Without scope direction is "backward" using BIC 
Start:  AIC=241.68 
prestige ~ income + education 
 
            Df Sum of Sq     RSS    AIC 
<none>                    7506.7 241.68 
- income     1    4474.2 11980.9 258.91 
- education  1    5516.1 13022.8 262.66 
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Call: 
lm(formula = prestige ~ income + education, data = duncan1) 
 
Coefficients: 
(Intercept)       income    education   
    -6.0647       0.5987       0.5458   
 
> step(duncan1.lm0, ~income+education, data=duncan1)  
#AIC direction "both" 
Start:  AIC=311.52 
prestige ~ 1 
 
            Df Sum of Sq   RSS    AIC 
+ education  1     31707 11981 255.30 
+ income     1     30665 13023 259.05 
<none>                   43688 311.52 
 
Step:  AIC=255.3 
prestige ~ education 
 
            Df Sum of Sq   RSS    AIC 
+ income     1      4474  7507 236.26 
<none>                   11981 255.30 
- education  1     31707 43688 311.52 
 
Step:  AIC=236.26 
prestige ~ education + income 
 
            Df Sum of Sq     RSS    AIC 
<none>                    7506.7 236.26 
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- income     1    4474.2 11980.9 255.30 
- education  1    5516.1 13022.8 259.05 
 
Call: 
lm(formula = prestige ~ education + income, data = duncan1) 
 
Coefficients: 
(Intercept)    education       income   
    -6.0647       0.5458       0.5987   
 
> 
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