
  

  
  

TRABAJO   DE   FIN   DE   MÁSTER   

Máster   en   Interdisciplinary   and   Innovative   Engineering   

  

I MAGE     PROCESSING     PLATFORM     FOR     THE     ANALYSIS     OF     BRAIN     VASCULAR     PATTERNS   

  
  
  

  

Memoria   

  

Autor: Nicolás   Arrieta   
Director: Raúl   Benítez   
Convocatoria: Octubre   2021   

  
  

   

  



  

ABSTRACT   
  

This  project  consists  in  the  development  of  a  web  application  for  the  support  of  medical                 
professionals  in  the  analysis  of  cerebrovascular  image  data.  The  objective  is  to  build  an  open  and                  
modular  prototype  that  can  serve  as  an  example  or  template  for  the  development  of  other  projects.  The                   
purpose  is  to  have  an  open  alternative  to  the  commercial  options  currently  available  for  data  analysis                  
tools  in  the  health  industry  market.  The  application  is  developed  using  Python.  The  application  allows                 
the  user  to  load  medical  images  contained  in  DICOM  files,  those  images  are  processed  for  noise                  
removal  and  segmentation  in  order  to  build  the  result  graphs.  The  results  are  three  graphs:  an  image                   
graph  called  “isochronal  map”  reflecting  the  temporal  evolution  of  the  blood  flow,  an  image  graph                 
showing  the  skeleton  of  the  vascular  system  structure,  a  box-plot  graph  representing  the  numerical                
branch  data  extracted  from  the  skeleton.  The  Dash  framework  is  used  to  construct  the  user  interface                  
and  to  implement  the  user  interaction  functionalities.  The  subject  can  load  two  different  samples  at  the                  
same  time  and  execute  the  analysis  to  compare  the  results  for  both  samples  in  the  same  screen.  Finally                    
the  application  is  containerized  using  Docker  to  package  it  and  make  it  multi-platform.  The  app  is                  
tested  and  the  results  are  satisfactory  as  the  resulting  application  works  properly  and  so  do  the  image                   
processing  algorithms  for  the  input  data  provided  by  the  Hospital  Sant  Joan  de  Déu.  Despite  its                  
obvious   limitations,   the   work   done   serves   as   a   starting   point   for   future   developments.   

   

1   



  

ACKNOWLEDGEMENTS   
  

This  project  was  made  in  collaboration  with  the  Hospital  Sant  Joan  de  Déu  of  Barcelona.  It  is                   
based  on  a  previous  work  done  by  Carlos  Rebollo  in  his  Masters’  thesis   Dynamic  Characterization  of                  
Blood   Flow   Through   The   Cerebral   Artery   Circle   By   Magnetic   Resonance   Imaging [1] .   

I  would  like  to  show  my  gratitude  to  my  thesis  supervisor,  Dr.  Raúl  Benítez  Iglesias,  for  guiding  me  in                     
the  development  of  the  project.  Also  to  Dr.  Josep  Munuera  from  the  Hospital  Sant  Joan  de  Déu,  who                    
provided   his   medical   counseling   and   the   medical   data   used   for   analysis.   

   

2   



  

INDEX   
  

ABSTRACT 1   

ACKNOWLEDGEMENTS 2   

INDEX 3   

SYMBOLS   AND   ABBREVIATIONS 5   

1.   PREFACE 6   

1.1   Overview 6   

1.2   Motivation 6   

1.3   Scope   And   Objectives 6   

2.   BACKGROUND 8   

2.1   Cerebral   Circulation,   Pathologies   And   Diagnosis 8   

2.1.1   The   Brain   Vascular   System 8   

2.1.2   Cerebrovascular   Disease   (CVD) 10   

2.2   Medical   Imaging 11   

2.2.1   Medical   Imaging   Techniques 11   

2.2.2   Magnetic   Resonance   Angiography   (MRA) 11   

2.2.3   The   DICOM   Standard 12   

2.2.4   Medical   Data   Regulation 13   

2.3   Materials   And   Methods 13   

2.3.1   Available   Data 13   

2.3.2   Biomedical   Image   Processing 14   

2.4   App   Development 15   

2.4.1   Python 15   

2.4.2   Dash   by   Plotly 15   

2.4.3   Docker 16   

2.4.4   Integration   In   The   Hospital   Network 17   

2.5   Available   Technologies 18   

3.   METHODOLOGY 20   

3.1   Image   Processing 20   

3   



  

3.1.1   Data   Loading 20   

3.1.2   Expected   Results 22   

3.1.3   Preprocessing 24   

3.1.3.1   Noise   Filtering 26   

3.1.3.2   Segmentation   (Binarization) 26   

3.1.4   Isochronal   Map 27   

3.1.5   Skeletonization 28   

3.2   Application   Development 30   

3.2.1   Python   Project 32   

3.2.2   Import   Libraries 33   

3.2.3   App   Instantiation 33   

3.2.4   Dash   Layout   Definition 34   

3.2.5   Dash   Callbacks 36   

3.2.6   Executing   The   Application 44   

3.2.7   Assets   &   Style 44   

3.2.8   Dockerization 45   

3.3   Code   Practices 46   

3.4   Evaluation   Of   The   App 47   

4.   RESULTS   AND   DISCUSSION 52   

5.   CONCLUSIONS   AND   FUTURE   WORKS 54   

BIBLIOGRAPHY 56   

   

4   



  

SYMBOLS   AND   ABBREVIATIONS   
  

  

   

5   

AVM   Arteriovenous   Malformation   

CVD   Cerebrovascular   Disease   

MRA   Magnetic   Resonance   Angiography   

NORD   National   Organization   for   Rare   Disorders   

TRANCE   Time   Resolved   Angiography   Non   Contrast   Enhanced   



  

1.   PREFACE   

1.1   Overview   
In  the  last  few  years,  there  has  been  an  important  evolution  in  the  health  industry  due  to  the                    

integration  of  emerging  technologies.  Information  and  communication  technologies  have  played  a  key              
role  in  assisting  health  professionals  in  their  activities,  such  as  for  the  management  and  analysis  of                  
patients’  data  for  diagnosis.  Different  initiatives  have  been  launched  to  address  these  matters;  one  of                 
special  interest  for  this  project  is  the  Digital  Imaging  and  Communications  in  Medicine  (DICOM)                
standard  for  the  communication  and  management  of  medical  imaging  information  and  related  data.               
DICOM  enables  the  integration  of  medical  imaging  devices  (such  as  scanners,  servers,  printers,   etc )                
and   communication   systems   from   multiple   manufacturers.   

In  this  scenario,  different  types  of  applications  have  been  developed  for  the  support  of  health                 
professionals.  The  visualization,  annotation  and  processing  of  medical  images  is  an  important  part  of                
the  process  of  medical  diagnosis.  The  objective  of  this  project  is  to  provide  neurologists  with  a  tool  to                    
help  them  in  identifying  vascular  anomalies  and  malformations  in  the  brain,  by  designing  a  web-based                 
application  for  the  automatic  analysis  of  Magnetic  Resonance  Angiography  (MRA)  images  and  the               
presentation   of   the   results.   

1.2   Motivation   
This  project  was  conceived  to  support  the  Sant  Joan  de  Déu  hospital  of  Barcelona  in                 

exploring  the  idea  of  building  a  custom  application  to  manage  and  process  the  medical  imaging  data                  
that  they  store.  This  could  help  medical  professionals  in  the  diagnosis,  treatment  and  research.                
Specifically,  in  this  project,  the  idea  is  to  process  medical  images  that  correspond  to  cerebral  MRAs,                  
in  order  to  analyze  the  structure  of  the  vascular  vessels  of  the  brain  and  the  dynamics  of  the  blood                     
flow   through   them.   

Such  an  application  could  be  very  useful  for  detecting  structural  malformations  and  functional               
anomalies  in  the  brain;  and  to  supervise  the  efficacy  of  the  treatments  applied.  Currently,  there  are                  
computer  applications  to  achieve  these  goals  available,  but  they  are  generally  owned  by  medical                
imaging  equipment  manufacturers  and  often  they  are  not  cost-effective.  One  of  the  incentives  of  the                 
project   is   to   explore   the   possibility   of   an   open   and   custom   alternative   to   those   existing   applications.   

There  is  also  the  interest  that  the  application  design  of  this  project  could  serve  as  a  base  or  template                     
for  the  development  of  other  related  medical  apps  with  different  purposes  and  functionality.  There  are                 
already  public  projects  exploring  this  idea,  such  as  the  Open  Health  Imaging  Foundation  ( OHIF ),  but                 
there   are   not   many   open   platforms   available.   

Another  reason  justifying  the  need  for  such  a  tool  is  to  bring  the  possibility  of  customization  and  the                    
use   of   custom   algorithms   or   functions.   

1.3   Scope   And   Objectives   
The  objective  of  this  project  is  to  develop  an  open  and  custom  application  for  the  analysis  of                   

MRA  medical  images  to  serve  as  a  diagnosis  support  tool  for  neurologists.  The  application  is  intended                  

6   

https://ohif.org/


  

to  be  simple,  with  the  ease  of  use  as  a  priority.  It  is  aimed  to  be  multiplatform,  easy  to  install  and                       
portable,   so   the   users   have   a   simple   setup   and   direct   access.   

The  goal  is  to  deliver  a  functional  prototype  app  that  provides  graphical  information  of  the  results  of                   
the   automatic   analysis   of   the   image   data,   those   graphs   are:   

● A   coloured   isochronal   map   showing   the   evolution   of   the   blood   flow   through   the   brain   vessels.   
● A  binarized  skeleton  of  all  the  vascular  structure,  identifying  the  nodes  and  branches  formed                

by   the   vessels.   
● A  graphical  visualization  representing  the  information  of  different  attributes  that  result  from              

the   skeleton   analysis.   
● A   table   containing   the   retrieved   structured   data   of   the   skeleton.   

The  application  will  allow  the  user  to  load,  analyze  and  compare  the  data  for  two  different  subjects  at                    
once,  so  a  control  subject  and  a  case  subject  can  be  contrasted.  The  information  available,  provided  by                   
the  hospital,  are  MRAs  of  different  patients.  The  medical  images  analyzed  for  each  subject  consist  of                  
a  set  of  frames,  sequentially  acquired,  that  correspond  to  a  time  slice  of  around  1.6  seconds.  Those                   
frames  should  be  pre-processed  in  order  to  remove  noise  and  to  be  able  to  properly  identify  the                   
objects  of  interest  in  the  image,  the  vessels.  This  is  one  of  the  main  challenges  of  the  project,  as                     
implementing   an   automatic   filtering   that   works   for   most   of   the   possible   inputs   can   be   an   arduous   task.   

The   image   processing   steps   are   fully   detailed   in   the   methodology   section,   here   is   a   list   of   them:   

1. Superposition/sum   of   the   frames   to   retrieve   a   picture   of   all   the   vessels   
2. Denoising   of   the   frame   sum   and   of   each   single   frame   
3. Segmentation   
4. Plot   of   the   isochronal   map,   built   from   the   binarized   frames   
5. Skeletonization   of   the   binarized   total   frame   sum   
6. Analysis   of   the   skeleton   

The  technology  stack  chosen  to  build  the  application  is  based  on  a  platform  called  Dash,  which  is  an                    
open  source  library  that  allows  the  development  of  modern  cross-platform  data  apps  in  a  simple  and                  
direct  manner.  Dash  was  chosen  because  of  its  simplicity,  web  based  architecture  and  rich  predefined                 
components   catalogue.   

The  application  is  almost  entirely  written  in  Python  except  for  the  CSS  used  for  modifying  the  web                   
layout  style.  Different  Python  libraries  are  used  for  the  implementation  of  the  image  processing                
functions.     

For  the  deployment  of  the  application,  a  Docker  container  is  configured.  Docker  is  an  OS-level                 
virtualization  platform  used  to  deliver  software  in  packages  called  containers.  By  using  a  Docker                
container,  the  app  runs  in  an  isolated  environment  having  just  the  required  dependencies  installed.  By                 
making  this  setup,  the  user  does  not  need  to  install  anything  but  Docker,  and  can  run  the  application  in                     
any   host   operating   system.     

The  requirements  and  costs  of  the  project  are  minimum,  the  software  used  for  the  development  is                  
open  source  and  free  to  use.  To  check  the  performance  of  the  final  application,  it  is  tested  with  some                     
subjects’   data,   of   patients   presenting   different   conditions.   

   

7   



  

2.   BACKGROUND   

2.1   Cerebral   Circulation,   Pathologies   And   Diagnosis   

2.1.1   The   Brain   Vascular   System   
The  vascular  system  of  the  brain  is  composed  of  a  network  of  blood  vessels  that  carry  out  the                    

function  of  supplying  the  brain  tissues  with  blood.  As  in  other  parts  of  the  body,  arteries  deliver                   
oxygen,  glucose  and  nutrients;  and  veins  remove  different  metabolic  waste  such  as  carbon  dioxide  or                 
lactic  acid.  The  blood  supply  of  the  brain  is  a  critical  process:  “The  brain  only  accounts  for  2%  of                     
adult  body  mass  (approximately  1400  g)  but  receives  approximately  15%  of  the  resting  cardiac                
output”  (S  Shah  and  S  Jeyaretna [2] ).  Any  shortage  of  blood  supply  to  the  brain  can  lead  to  stroke  or                     
other  life-threatening  conditions.  There  are  a  variety  of  important  factors  that  play  a  role  in  the                  
cerebral  circulation  such  as  the  mean  arterial  pressure,  intracranial  pressure,  arterial  carbon  dioxide               
tension,    etc .   The   system   autorregulates   in   order   to   keep   stable   blood   flow   rates.   

The  heart  pumps  blood  up  to  the  brain  through  two  sets  of  arteries:  the  carotid  arteries,  which  supply                    
blood  to  the  front  two-thirds  of  the  brain;  and  the  vertebral  arteries,  that  supply  the  back  third  of  the                     
brain.   The   jugular   and   other   veins   carry   blood   out   of   the   brain.     

There  are  different  structures  involved  in  the  arterial  supply  of  the  brain:  the  aortic  arch,  the  anterior                   
and  posterior  circulation  and  the  circle  of  Willis,  which  is  a  vascular  loop  connecting  both  brain                  
hemispheres   and   the   anterior   and   posterior   circulation.     

  

Arterial   supply   (source:    Ansys.com )   

8   



  

  

The   circle   of   Willis   (source:    Wikipedia.org )   

  

  

Cerebral   veins   (source:   Gray’s    Anatomy,    2008)   

9   



  

It  is  also  important  to  mention  the  blood-brain  barrier,  which  is  a  semi-permeable  barrier  that  blocks                  
the  diffusion  of  many  compounds  from  the  blood  to  the  brain.  The  venous  system  can  be  divided  in                    
three   main   parts:   the   venous   sinuses,   the   superficial   cerebral   veins   and   the   deep   cerebral   veins.   

2.1.2   Cerebrovascular   Disease   (CVD)   
As  noted  by  the  American  Association  of  Neurological  Surgeons [3]  (AANS):  “The  term              

cerebrovascular  disease  includes  all  disorders  in  which  an  area  of  the  brain  is  temporarily  or                 
permanently  affected  by  ischemia  (lack  of  blood  flow)  or  bleeding  and  one  or  more  of  the  cerebral                   
blood  vessels  are  involved  in  the  pathological  process.  Cerebrovascular  disease  includes  stroke,              
carotid   stenosis,   vertebral   stenosis   and   intracranial   stenosis,   aneurysms,   and   vascular   malformations.”   

The   blood   flow   restrictions   may   be   a   cause   of:   

● Stenosis   (vessel   narrowing)   
● Thrombosis   (clot   formation)   
● Embolism   (blockage)   
● Hemorrhage   (blood   vessel   rupture)   

Vascular  malformations  are  abnormal  connections  between  arteries  and  veins,  and  are  developed              
during  pregnancy.  These  include  the  arteriovenous  malformations  (AVMs)  which  is  a  tangle  of               
abnormal   and   poorly   formed   blood   vessels,   as   shown   in   the   next   figure:   

  

Arteriovenous   Malformations   (source:   Chamarthy    et.   al. [4] )   

There  are  other  pathologies  affecting  the  brain  vessels,  for  example  the  Moyamoya  disease,  which  is  a                 
progressive   condition   characterized   by   the   narrowing   or   closing   of   the   carotid   artery   to   the   brain.   

The  National  Organization  for  Rare  Disorders [5]  states  that  vascular  malformations  of  the  brain  may                
cause  headaches,  seizures,  strokes  or  hemorrhages.  Other  symptoms  include  weakness  or  numbness              

10   



  

on  one  side  of  the  body,  speech  trouble,  balance  and  coordination  difficulties,  vomiting,  loss  of  vision,                  
etc .   

Cerebrovascular  diseases  are  related  to  both  congenital  (genetic)  and  acquired  causes.  Some  other               
conditions  such  as  the  Moyamoya  disease  appear  spontaneously  without  a  known  cause.  Regarding               
epidemiology,  CVDs  are  one  of  the  most  common  causes  of  death  and  disability  in  the  world                  
population   and   AVMs   affect   about   1   percent   of   the   general   population [3] .   

These  diseases  are  more  common  in  advanced  age,  but  can  occur  at  any  stage  of  life.  Some  of  the                     
main  risk  factors  for  CVDs  include  smoking,  hypertension,  diabetes,  cholesterol,  physical  inactivity,              
obesity,   stress,    etc .   Controlling   or   treating   these   factors   can   help   in   the   prevention   of   these   diseases.   

The  diagnosis  of  cerebrovascular  problems  is  mainly  based  on  imaging  tests  that  allow  neurologists  to                 
view  the  vessels  around  and  inside  the  brain.  Some  of  these  medical  imaging  techniques,  ones  more                  
invasive  than  others,  include:  cerebral  angiography,  carotid  ultrasound,  computed  tomography,            
doppler  ultrasound,  magnetic  resonance  imaging  (MRI)  and  magnetic  resonance  angiogram  (MRA),             
etc .  Some  of  these  techniques  are  discussed  later  in  the  section   2.2.1  Medical  Imaging  Techniques .                 
The   medical   history   and   physical   and   neurological   exams   also   help   in   the   detection   of   CVMs.   

For  the  treatment  of  CVMs,  there  are  several  advanced  surgery  methods  such  as  craniotomy,                
neuroendovascular  therapy  (i.e.  embolization),  microsurgery,  stereotaxic  radiosurgery,  irradiation,          
etc .  The  treatment  generally  includes  lifestyle  changes  and  medication  prescription,  with             
antihypertensives  to  reduce  the  blood  pressure,  anticoagulants  to  prevent  blood  clotting  or              
medications   to   reduce   cholesterol.   

It  is  crucial  to  detect  and  treat  the  development  of  CVMs  as  soon  as  possible  in  order  to  prevent                     
damage  and  avoid  risks  leading  to  more  serious  conditions.  As  the  brain  is  directly  affected  by  these                   
diseases,  they  are  life-threatening,  and  speed  is  crucial  in  emergency  cases.  A  late  intervention  can                
result  in  long-term  disability  or  death  of  the  patient;  other  complications  include  loss  of  cognitive                 
functions  and  memory,  partial  paralysis  and  speech  difficulties.  The  prognosis  of  a  cerebrovascular               
disease   depends   on   its   severity   and   stage   at   the   point   of   diagnosis.   

2.2   Medical   Imaging   

2.2.1   Medical   Imaging   Techniques   
The  morphological  characteristics  of  the  intracranial  vessels  can  be  studied  using  imaging              

methods.  From  a  global  classification,  for  the  study  of  cerebrovascular  diseases  some  of  the                
techniques  most  commonly  used  include:  Cerebral  angiography,  Magnetic  Resonance  Imaging  (MRI),             
Computed   Tomography   (CT)   and   ultrasounds.   (Imperial   College   London [6] )   

In  most  of  the  cases,  a  contrast  (a  special  dye)  is  added  to  the  bloodstream  in  order  to  facilitate  the                      
scanning.   These   imaging   tests   help   detect   vascular   malformations   and   other   pathologies.   

Medical  images  are  important  for  medical  diagnosis  and  treatment,  but  also  for  investigation  and                
improvement   of   techniques   such   as   drug   delivery.   

11   



  

2.2.2   Magnetic   Resonance   Angiography   (MRA)   
The  MRA  is  a  type  of  MRI  technique  that  looks  specifically  at  the  body’s  blood  vessels.  It                   

uses  strong  magnetic  fields  and  radio  waves  to  generate  the  images.  It  is  a  non-invasive  procedure  in                   
which  the  patient  lies  inside  a  tunnel-like  tube  scanner.  Some  of  the  conditions  studied  using  MRA  are                   
aneurysm,  heart  disease,  narrowing  or  blocking  of  vessels,   etc .  The  image  acquisitions  can  be  both  2D                  
or   3D.   (Johns   Hopkins   Medicine [7] )   

  

Component   of   a   MRI   scanner   (Moore   and   Zouridakis,   2004)   

The  clinical  applications  for  MRA  are  expanding  due  to  the  improvements  in  hardware  and  imaging                 
techniques.  New  intravascular  contrast  agents  and  the  use  of  advanced  magnets  (such  as  the  3.0  T                  
magnets)  have  allowed  the  reduction  in  exogenous  contrast  dose,  and  therefore  lower  risks  for  the                 
patient.  One  of  the  most  used  contrast  agents  is  the  gadolinium-based,  and  its  use  is  a  concern  for                    
high-risk  patient  groups  who  present  renal  insufficiency  and  vascular  or  metabolic  disorders  (Hartung               
et  al. [8] ).  Nevertheless,  there  are  alternative  methods  called  non  contrast  enhanced  MRA  (NCE-MRA),               
which  do  not  make  use  of  contrast  agents,  however  they  require  longer  scan  times  than  contrast                 
enhanced  (CE)  methods.  These  techniques  are  widely  used  for  intracranial  imaging  and  there  are                
different   types   of   them:   

● Time   of   Flight   (TOF)   
● Steady   State   Free   Precession   (SSFP)   
● Phase   Contrast   (PC)   

There  are  also  specific  proprietary  methods  used  by  MRA  scanner  manufacturers.  One  of  these                
methods  is  used  for  the  acquisition  of  the  images  that  are  analyzed  in  this  project.  The  method  is                    
called  Time  Resolved  Angiography  Non  Contrast  Enhanced  (TRANCE)  and  it  is  provided  by  Philips.               
It   is   an   NCE-MRA   method   with   high   temporal   resolution   (down   to   160   milliseconds)   (Philips [9] ).   

2.2.3   The   DICOM   Standard   
Medical  data  needs  to  be  stored  and  transmitted  in  a  standard  manner  in  order  to  allow                  

hospitals  to  exchange  patient  data  and  to  allow  the  integration  of  medical  devices  from  different                 

12   



  

manufacturers.  With  that  aim  the  Digital  Imaging  and  Communications  in  Medicine [10]  (DICOM)              
standard   was   first   published   in   1993,   and   has   become   the   global   standard   for   medical   imaging.   

DICOM  includes  protocols  for  image  exchange,  compression,  visualization,   etc .  It  defines  the              
structure  of  the  DICOM  files,  which  aggregate  information  into  data  sets,  composed  of  different  items                 
such  as  name,  ID,  pixel  data,   etc .  A  single  DICOM  object  can  have  only  one  attribute  containing  pixel                    
data,  but  this  attribute  can  contain  multi-dimensional  multi-frame  images.  Pixel  data  can  be               
compressed  using  different  standards  such  as  JPEG,  RLE,  zip,   etc .  DICOM  uses  specific  data                
encoding   schemes   that   are   defined   in   the   standard.   

DICOM  also  provides  a  function,  the  grayscale  standard  display  function  (GSDF),  to  allow  identical                
grayscale  image  display  on  different  monitors  and  printers  that  have  been  calibrated  to  the  GSDF                 
curve.   

Finally,  it  is  important  to  remark  that  DICOM  provides  services  that  involve  transmission  of  data  over                  
the   network.   

Here   is   a   useful   explorer   for   the   DICOM   standard,   provided   by   Innolitics:   
https://dicom.innolitics.com/ciods   

There  are  a  wide  variety  of  DICOM  viewers  available  such  as  OsiriX  or  Postdicom.  There  are  also                   
open   DICOM   libraries   with   anonymized   data,   see    dicomlibrary.com   

And   here   is   an   open   online   DICOM   viewer   offered   by   the   Open   Health   Imaging   Foundation   (OHIF):   
https://v3-demo.ohif.org/   

2.2.4   Medical   Data   Regulation   
The  protection  of  personal  health  data  is  a  major  growing  concern,  as  nowadays  healthcare  is                 

becoming  more  and  more  data-driven  and  sensitive  medical  data  is  a  valuable  target  for                
cybercriminals.  Security  must  be  a  priority,  the  legislation  for  it  is  specific  to  each  country  but  there                   
are  general  principles  or  guidelines  proposed  by  important  institutions  such  as  the  World  Health                
Organization [12] .  The  risks  associated  with  the  vulnerability  of  medical  data  systems  include  personal               
safety,   privacy,   computer   system   attacks,    etc .   

2.3   Materials   And   Methods   

2.3.1   Available   Data   
The  images  analyzed  in  the  project  consist  of  a  set  of  frames  for  each  case,  containing  a                   

sequence  of  images  of  the  brain  vessels.  Frames  are  separated  by  a  temporal  gap  of  200  ms.  The                    
images   are   acquired   using   a   Philips   scanner   with   the   TRANCE   MRA   technique.   

13   

https://dicom.innolitics.com/ciods
https://www.dicomlibrary.com/
https://v3-demo.ohif.org/


  

  

Samples   of   MRA   images   

A  DICOM  file  is  generated  for  each  frame,  the  DICOMs  are  read  in  the  application  and  only  the  pixel                     
data  attribute  that  contains  the  frame  is  used.  The  data  provided  by  the  Hospital  Sant  Joan  de  Déu                    
includes  both  images  from  healthy  subjects  and  cases  presenting  different  conditions  such  as               
arteriovenous   malformations.   

2.3.2   Biomedical   Image   Processing   
Digital  signal  processing  techniques  are  applied  to  medical  images  in  order  to  enhance  them,                

remove  noise  and  unwanted  artifacts,  and  analyze  them.  The  general  process  that  is  followed  has  these                  
fundamental   steps:   

1. Filtering   for   noise   and   artifact   removal.   
2. Segmentation   for   identifying   different   anatomical   regions.   
3. Measurement   and   statistics   to   quantify   different   parts   of   the   image   data.   

  

Scheme   of   image   processing   (The   International   Society   for   Optics   and   Photonics [14] )   

There  are  different  types  of  image  filters  and  segmentation  algorithms.  These  steps  require  a-priori                
knowledge  on  the  nature  and  content  of  the  images,  which  must  be  integrated  into  the  algorithms  on  a                    
high  level  of  abstraction.  Thus,  the  process  of  image  analysis  is  very  specific,  and  developed                 
algorithms   can   rarely   be   transferred   directly   into   other   domains   of   applications   (Synopsys [13] ).   

14   



  

Image  processing  software  helps  to  automatically  identify  and  analyze  what  might  not  be  apparent  to                 
the  human  eye.  Computerized  algorithms  can  provide  temporal  and  spatial  analysis  to  detect  patterns                
and  characteristics  indicative  of  tumors  and  other  ailments  (The  International  Society  for  Optics  and                
Photonics [14] ).   

Biomedical  image  processing  is  a  field  in  constant  evolution,  it  is  applied  in  many  other  areas  apart                   
from   healthcare   applications,   such   as   research   and   education.   

  

Paradigms   of   medical   image   processing   (The   International   Society   for   Optics   and   Photonics [14] )     

In  this  project,  the  images  are  processed,  as  detailed  in  the   methodology  section,  in  order  to  extract                   
biomarkers   of   the   morphological   structure   of   the   blood   vessels   and   of   the   dynamics   of   the   blood   flow.   

2.4   App   Development   

2.4.1   Python   
Python  is  the  computer  language  of  choice  to  develop  the  application  of  this  project.  The                 

main  reason  for  choosing  Python  is  that  it  is  one  of  the  most  widely  used  programming  languages  in                    
the   field   of   data   analysis   and   it   provides   a   huge   library   of   open   source   software   ready   to   be   used.   

There  are  many  different  libraries  available  for  biomedical  image  processing,  some  of  the  well  known                 
are    OpenCV ,    Insight   Toolkit    (ITK )    and    ImageJ .   

The  libraries  and  algorithms  used  in  this  project  for  image  processing  are  some  of  the  most  basic  ones                    
and   can   be   found   in   many   well   known   python   packages:    numpy ,    scikit-image ,    pandas ,    pillow ...   

There  are  also  open  Python  frameworks  that  facilitate  the  process  of  web  application  development,                
one   of   them,   called   Dash,   is   used   for   this   project.   

15   



  

2.4.2   Dash   by   Plotly   
Dash  is  an  open  source  framework,  provided  by  Plotly  and  released  under  the  MIT  license,                 

that  allows  to  build  full-stack  web  applications  with  interactive  data  visualization,  while  abstracting               
away  the  technologies  and  protocols  that  are  required  for  that.  Dash  apps  are  rendered  in  a  web                   
browser   and   that   makes   it   inherently   cross-platform.   

Dash  provides  built-in  components  as  python  objects  that  can  be  used  to  define  the  layout  of  the                   
webpage.  The  user  interaction  is  implemented  with  callback  functions  that  can  execute  code  and                
modify   the   app   layout.   

Dash  is  a  stateless  framework  that  makes  it  scalable  and  robust  as  it  is  trivial  to  add  more  compute                     
power  and  to  scale  the  application  to  serve  more  users  or  to  run  more  computations  in  parallel.                   
Stateless  frameworks  are  more  robust  because  one  process  can  fail  and  other  processes  can  continue                 
serving  requests.  The  app  can  be  run  in  multiple  containers  or  servers  and  balance  the  load  between                   
them.   

2.4.3   Docker   
Docker [15]  is  a  platform  as  a  service  (PAAS)  product  that  provides  OS-level  virtualization  to                

deliver  software  in  packages  called  containers.  It  enables  separation  of  the  application  from  the                
infrastructure   making   software   delivery   faster.   

A  container  is  a  loosely  isolated  environment  in  which  the  application  runs.  It  is  isolated  from  the  rest                    
of  the  OS  and  can  contain  just  the  needed  dependencies  required  to  run  the  application.  Therefore                  
containers   can   be   easily   shared.   

The   architecture   of   docker   has   the   next   schema:   

  

Docker   architecture   (Docker)   

The   Docker  Client  is  the  user  interface  of  Docker,  it  is  a  command  line  interface  (CLI)  that  allows  the                     
user  to  run  different  commands  in  order  to  manage  the  containers.  The   Docker  Host   is  the  core  that                    

16   



  

manages  Docker  objects  such  as  images  and  containers.  A  Docker  image  is  a  software  package  that                  
includes  everything  needed  to  run  an  application,  a  Docker  container  is  an  execution  instance  of  a                  
Docker  image.  Finally,  the  Docker   Registry  is  a  repository  that  stores  Docker  images  that  can  be  used.                   
Docker   can   run   on   multiple   host   operating   systems   including   Linux,   Mac   and   MS   Windows.   

The  application  developed  in  this  project  is  “dockerized”  (delivered  as  a  Docker  image)  in  order  to  be                   
shared   and   installed   easily.   It   can   be   easily   configured   to   be   executed   on   an   external   web   server.   

2.4.4   Integration   In   The   Hospital   Network   
Hospitals  have  a  complex  IT  infrastructure  with  dedicated  networks  to  store,  process  and               

manage  the  patients’  data  and  to  connect  the  medical  devices  used.  The  integration  of  everything  is                  
not   a   simple   task,   the    DICOM    standard   establishes   the   protocols   for   it.   

The   IT   systems   used   in   a   hospital   include   (O'Connor [16] ):   

● The  Picture  Archive  and  Communication  System  (PACS)  that  works  as  a  medical  image               
library   to   store,   manage   and   retrieve   medical   images.   

● The  Radiology  Information  System  (RIS)  which  is  a  software  used  for  patient  scheduling,               
resource   management,   reporting,   etc.  

● The  Clinical  Information  System  (CIS)  that  integrates  information  into  a  patient  record  that               
clinicians   can   consult.   

● The  Hospital  Information  System  (HIS)  which  focuses  on  the  administrational  needs  of              
hospitals:   administrative,   financial,   legal   and   medical   issues.   

These  definitions  are  mixed  and  blurred,  but  in  general  these  are  the  global  terms  used  to  refer  to  the                     
IT   systems   implemented   in   medical   installations.   

For  the  developed  application  to  be  functional,  it  should  be  properly  integrated  in  the  hospital’s                 
computer   network,   and   with   its   medical   devices   and   servers.   

   

17   



  

2.5   Available   Technologies   
  

In  the  last  few  years,  there  has  been  an  important  integration  of  IT  technologies  in  the  medical                   
sector;  from  new  devices  to  software  and  applications  serving  different  purposes  in  all  the  medical                 
areas.  The  computer  networks  play  a  key  role  in  the  management  of  medical  information  in  hospitals                  
and  clinics.  The  medical  imaging  systems  include  applications  to  process  and  visualize  the  acquired                
data.   There   are   both   proprietary   and   open   software   options   available.   

In  terms  of  image  processing,  there  are  a  lot  of  algorithms  and  software  libraries  accessible,  for  many                   
different   purposes   and   use   cases.   Some   of   the   most   important   open   projects   in   these   area   include:   

● The   Insight  Toolkit [17]  (ITK)  which  is  a  recognized  library  for  the  processing  of  scientific                
images.   

● ImageJ  is  also  an  important  library  for  image  analysis  provided  by  the  National  Institute  of                 
Health.   

There  are  extensible  and  open  platforms  that  can  be  used  as  a  base  for  the  development  of  a  medical                     
application.   

● The  web-based  medical  imaging  platform  offered  by  the  Open  Health  Imaging  Foundation              
( OHIF ),  which  is  an  extensible  software  that  can  be  customized  to  address  many  different                
needs   or   applications.   

  

Screenshot   of   the   OHIF   DICOM   Viewer   

● The  Medical  Imaging  Interaction  Toolkit  ( MITK )  is  a  free  open-source  software  for  the               
development   of   interactive   medical   image   processing   software.   

Specifically   for   vascular   analysis,   there   are   a   number   of   tools   that   should   be   considered:   

● The   Vascular  Modelling  Toolkit  ( VMTK )  is  a  collection  of  libraries  and  tools  for  3D                
reconstruction,  geometric  analysis,  mesh  generation  and  surface  data  analysis  for  image-based             
modeling   of   blood   vessels.   

18   

https://itk.org/
https://imagej.nih.gov/ij/
https://ohif.org/
https://www.mitk.org/
http://www.vmtk.org/


  

● The   SimVascular [18]  software,  which  is  a  project  of  the  SimTK  initiative,  allows  to  perform                
blood   flow   simulations   and   other   analysis   of   biomedical   data.   

  

Simulation   of   the   blood   velocity   distribution   in   CABG   (SimVascular)   

There   are   also   comercial   options   available   for   specific   purposes,   such   as:   

● RapidAI    for   quantified   CBCT   perfusion   imaging.   
● NeuroAI    for   brain   tumor   diagnosis.   
● AVA  (from  See-Mode),  an  AI  analysis  and  reporting  software  of  vascular  ultrasound  for  the                

prevention   of   stroke.   

These  are  examples  of  successful  projects  that  are  used.  The  open  tools  and  software  listed  above                  
have  not  been  used  for  the  development  of  this  project,  but  could  be  considered  for  future                  
implementations.  As  commented  in  the  introduction,  many  of  the  procedures  are  standardized  so  the                
technological   projects   share   a   common   roof   under   which   to   communicate   and   integrate.   

The  field  is  in  constant  growth  and  evolution  and  there  are  a  lot  of  possibilities  to  study  and  options                     
for  the  development  of  medical  software.  Some  of  the  ideas  that  are  currently  being  exploited  are  the                   
application   of   data   analysis   and   supervised   learning   methods   for   the   analysis   of   medical   data.   

In  this  project,  the  time  and  budget  constraints  have  limited  the  scope  to  the  design  of  a  simple                    
prototype   application   making   use   of   some   open   software   libraries   and   platforms   available.   

There  are  a  lot  of  open  databases  (i.e.   MedPix  from  the  National  Institute  of  Health  NIH)  that  provide                    
anonymous  medical  data  to  use  for  study,  modelling,  testing,   etc .  With  the  irruption  of Big  Data ,                  
many  different  studies  have  been  made  in  the  field  of  biomedical  data  analysis,  presenting  and                 
proposing  new  methods  and  applications  covering  a  wide  variety  of  topics  of  any  medical  area.  These                  
studies   have   been   applied   to   research,   diagnosis,   prevention   and   treatment,   and   other   uses.   

  

  

   

19   

http://simvascular.github.io/
https://www.rapidai.com/rapid-for-angio
https://www.arterys.com/clinicalapp/neuroapp
https://www.see-mode.com/product
https://medpix.nlm.nih.gov/


  

3.   METHODOLOGY   
  

The  objective  of  this  project  is  to  develop  an  open  and  custom  application  for  the  analysis  of                   
MRA  medical  images  to  serve  as  a  diagnosis  support  tool  for  neurologists.  The  application  is  intended                  
to  be  simple,  with  the  ease  of  use  as  a  priority.  It  is  aimed  to  be  multiplatform,  easy  to  install  and                       
portable,   so   the   users   have   a   simple   setup   and   direct   access.   

The  development  of  this  project  consists  of  three  main  parts.  In  the  first  one  the  images  are  analyzed                    
and  processed  to  generate  the  desired  outputs.  In  the  second  part,  those  image  processing  algorithms                 
are  implemented  in  a  web  application  using  the  Python  Dash  framework.  And  in  the  third  part,  the                   
provided   data   samples   are   tested   in   the   application   to   evaluate   its   performance   and   usability.   

  

Roadmap   of   the   project   

This  is  the  sequence  followed  because  it  allows  to  check  first  whether  the  image  analysis  is  possible  to                    
be  performed,  and  if  it  is  viable  to  implement  it  in  an  application.  In  addition,  by  performing  the                    
image  analysis  first  the  algorithms  can  be  rapidly  tested  on  the  data  and  the  parameters  tuned  to  get                    
the   best   results.   

3.1   Image   Processing   
The  image  data  to  be  analyzed  consists  of  MRA  images  of  the  brain  vessels  of  different                  

subjects,  these  samples  are  provided  by  the  Hospital  Sant  Joan  de  Déu  of  Barcelona.  For  each  subject                   
there  is  a  set  of  8  frames  sequentially  acquired  in  a  short  time  interval  of  1.6  seconds.  Each  frame  is                      
encoded   in   a   DICOM   file.   

The   analysis   is   implemented   using   Python   and   some   of   its   well   known   libraries.   

3.1.1   Data   Loading   
The  DICOM  files  are  loaded  and  read  using  a  Python  library  called   pydicom  to  extract  the                  

image   pixel   data,   as   follows:   

20   



  

  
In  the  data  provided,  each  DICOM  file  contains  just  one  image/frame  of  the  sequence  for  each                  
subject.   This   is   an   example   of   a   sequence   of   8   frames   of   one   given   subject:   

  

  

Sequence   of   MRA   frames   acquired   for   a   subject   

The  sequence  shows  dynamically  how  the  blood  irrigates  the  vascular  system  of  the  brain.  Such  a                  
sequence  provides  information  to  study  the  characteristics  of  the  blood  flow  through  the  brain  and  the                  
structure   of   its   vascularity.   

It  is  important  to  note  that  the  first  and  last  frames  of  the  sequences  are  more  affected  by  noise  than                      
the   intermediate   frames.   For   the   pre-processing   of   the   images   this   will   be   taken   into   account.   

21   

import   pydicom   
  

dicom   =   pydicom.dcmread(‘filepath’)   
image   =   dicom.pixel_array   



  

  

4th   frame   of   a   sequence   showing   less   background   noise   

  

8th   frame   of   a   sequence   showing   higher   level   of   noise   

3.1.2   Expected   Results   
All   the   process   for   the   image   analysis   attempts   to   retrieve   two   main   results:   

● An    isochronal   map ,   representing   the   blood   flow   in   time   just   in   one   single   picture:   

22   



  

  

Isochronal   map   result   

To   generate   this   map,   the   sequence   frames   are   binarized   and   overlaid   in   temporal   order.   

● A    skeleton    map   of   the   vascularity   structure,   generating   also   a   dataset   with   the   branch   data:   

  

Skeleton   graph:   branches   colored   by   type   (lines)   and   nodes   (junctions)   

To  retrieve  the  skeleton  data,  the  binarized  frames  are  added  to  get  a  picture  of  all  the  vessels,                    
then   that   picture   (the   total   frame   sum)   is   skeletonized   to   obtain   the   nodes   and   branches.   

23   



  

It  is  important  to  note  that  all  the  preprocessing  will  be  automatically  applied,  without  the  user                  
intervention  or  manual  tuning,  and  that  it  should  properly  work  for  a  variety  of  samples  with  different                   
characteristics  such  as  the  amount  of  noise.  In  detriment  of  precision,  the  parameters  should  be  tuned                  
to   work   for   all   the   possible   inputs.   

3.1.3   Preprocessing   
The  first  step  of  the  pre-processing  is  to  filter  the  noise  in  order  to  facilitate  the  later                   

binarization  of  the  images  for  the  detection  of  the  vessels  in  each  frame.  As  the  first  and  last  frames  of                      
the  sequence  are  more  affected  by  noise  than  the  intermediate  ones,  the  strategy  followed  to  remove                  
the  noise  is  based  on  this  fact.  A  median  filter  is  applied  with  a  specific  mask.  It  must  be  remarked                      
that  the  position  of  the  vessels  are  considered  not  to  change  from  frame  to  frame,  only  their  visibility                    
because  of  the  blood  flow.  Having  this  into  account  the  frames  can  be  summed  to  enhance  the  vessels                    
in   the   images   and   facilitate   their   detection   or   segmentation.   

Once  the  noise  is  removed,  a  local  threshold  filter  is  applied  as  segmentation  to  obtain  the  binarized                   
image,   detecting   and   separating   the   vascular   vessels   from   the   background.   

The   steps   followed   for   the   preprocessing   are   summarized   in   the   next   diagram.   

24   



  

  

Image   processing   diagram   

25   



  

1. The  8  frames  are  cumulatively  summed,  that  means  the  1st  frame  of  the  output  is  the  1st                   
frame  of  the  input,  the  2nd  frame  of  the  output  is  the  sum  of  the  1st  and  2nd  frames  of  the                       
input…  and  so  for  the  rest  of  the  frames,  until  the  last  output  frame  is  the  total  sum  of  all  the                       
input   frames   of   the   given   sequence.   

2. That  total  frame  sum  is  filtered  using  a  median  filter  for  noise  removal,  and  then  binarized                  
(segmentation)  using  a  local  threshold  filter  (also  the  small  artifacts  are  detected  and               
removed).  These  filters  use  custom  and  manually  tuned  parameter  values  that  are  used  for                
processing  all  the  data  samples  provided.  The  binarized  total  frame  sum  is  skeletonized  to                
retrieve   the   skeleton.   

3. Each  output  frame  obtained  in  step  1  is  filtered  for  noise  removal  and  binarized,  then  an   AND                   
operation  is  made  with  the  binarized  total  frame  sum  to  get  rid  of  unwanted  artifacts.  The                  
result  is  a  sequence  with  the  binarized  cumulative  frames.  Then  the  isochronal  map  is  built                 
from   this   sequence.   

3.1.3.1   Noise   Filtering   
The  noise  removal  is  implemented  by  making  use  of  a  median  filter  with  a  specific  mask.  The                   

images  are  treated  and  processed  as   numpy  arrays,  numpy  is  a  mathematical  processing  library  for                 
Python.  The  Python  library   scikit-image   (for  image  processing)  is  used  for  applying  the  filter.  The                 
function   is   coded   as   follows:   

  
A  simple  median  filter  is  chosen  because  it  removes  the  noise  while  keeping  the  edges  of  the  image                    
objects  relatively  sharp,  facilitating  the  posterior  segmentation  of  the  image.  A  basic  gaussian  filter                
was  also  tested  but  it  is  not  idoneous  for  the  processing  of  these  images  as  it  blurs  the  edges  and                      
reduces  contrast.  There  are  other  filters  that  could  be  useful  for  the  task,  such  as  the  Hessian  or  Frangi                     
filters  which  are  used  for  ridge  detection,  but  the  median  filter  was  chosen  for  simplicity.  Some                  
different  filter  masks  were  tested  but  a  more  exhaustive  exploration  could  be  performed  for                
optimization.   

3.1.3.2   Segmentation   (Binarization)   
The  image  is  segmented  in  two  parts  (binarization),  one  being  the  background  and  the  other                 

the  blood  vessels.  This  step  is  critical  as  an  accurate  detection  of  the  vessels  will  have  an  important                    
impact   on   the   final   analysis   results.   

The  binarization  is  applied  making  use  of  a  function  of  scikit-image  called   threshold_local .  This                
function  allows  to  specify  a  custom  function  to  calculate  a  local  threshold  around  each  pixel  of  the                   
image   in   order   to   binarize   it.   

26   

import   numpy   as   np   
  

img_filtered   =   median(img,     
                       selem=[[0.3,   0.7,   0.3],   [0.7,   1,   0.7],   [0.3,   0.7,   0.3]])   

from   skimage.filters   import   threshold_local,   median   
  

def   binarize(img):   
     def   _filter_func(buffer):   
         mean   =   np.mean(buffer)   
         std   =   np.std(buffer)   



  

  

After  the  binarization,  the  function   remove_small_objects()   of  the   morphology   package  of             
scikit-image     is   used   to   remove   the   small   artifacts   left.   

The  local  threshold  segmentation  algorithm  is  chosen  because  it  is  one  of  the  simplest  ways  to                  
binarize  the  image,  by  setting  up  a  threshold.  By  using  such  a  region  based  (local)  method  the  vessels                    
showing   different   intensity   values   can   be   detected   at   once.   

There  are  many  other  segmentation  methods  that  could  be  implemented  such  as  clustering  methods                
(K-means),  edge  detection  methods,  AI  based  techniques,   etc .  There  are  also  ridge  detection  filters,                
such  as  the  Hessian  or  Frangi  filters,  that  could  be  useful  to  detect  and  separate  the  vascular  system                    
from   the   background.   However   this   is   a   more   complex   approach,   more   difficult   to   tune.   

These  possible  methods  were  not  exhaustively  tested,  but  the  local  threshold  parameters  were  tuned  to                 
get   acceptable   results   for   all   the   analyzed   images.   

3.1.4   Isochronal   Map   
Once  the  frames  have  been  processed  and  binarized,  the  isochronal  map  can  be  built.  The                 

isochronal  map  represents  in  one  picture  how  the  blood  flow  irrigates  the  vessels  in  temporal  order.                  
Each  binarized  frame  has  the  vessels  that  have  been  irrigated  upon  that  instant  of  time,  the  time  lapse                    
between   frames   is   200   ms.   

  

  

Binarized   frames   showing   the   blood   flow   evolution   

These   frames   can   be   superposed   and   coloured   to   build   the   isochronal   map,   the   code   implemented   is:   

27   

         return   np.maximum(1.1   *   mean,   1.1   *   std)   
     return   img   >   threshold_local(img,   block_size=13,   offset=-50,     
                              method='generic',   mode='mirror',   param=_filter_func)   

import   plotly.express   as   px   
  

def   isochronal_map(frames_bin):   
     size   =   frames_bin[0].shape   
     map_array   =   np.zeros(size,   dtype=np.uint16)   



  

  
In   order   to   generate   the   plot,   the   code   makes   use   of   a   graphical   library   of   Python   called    Plotly .   The   
resulting   map   is:   

  

Isochronal   map   

3.1.5   Skeletonization   
In  order  to  retrieve  the  skeleton  data  of  the  vascular  structure,  the  binarized  total  frame  sum  is                   

processed.   An   example   of   the   binarized   total   frame   sum   is   shown   in   the   next   figure:   

28   

  
     frames_bin   =   np.flip(frames_bin,   axis=0)   
     step   =   200    #   time   in   ms   between   frames   
     time   =   frames_bin.shape[0]   *   step   
     for   frame   in   frames_bin:   
         map_array[frame]   =   time   
         time   -=   step   
  

     fig   =   px.imshow(map_array,   color_continuous_scale='deep',   
                     width=600)   
     fig.update_xaxes(showticklabels=False)   
     fig.update_yaxes(showticklabels=False)   
     fig.update_layout(   
         margin=dict(l=0,   r=0,   b=0,   t=0),   
         coloraxis_colorbar=dict(   
             title='Time',   
             ticksuffix='   ms'   
         )  
     )   
  

     return   fig   



  

  

Total   frame   sum   binarized   

A  Python  function  from  the   morphology   package  of  the  library  scikit-image  is  used  to  generate  the                  
skeleton  of  the  image.  The  skeleton  is  simply  a  pixel-wide  representation  of  the  branches  and  nodes  of                   
the  binarized  objects  contained  in  the  image.  It  is  generated  by  recurrent  operations  of  erosion  and                  
dilation  of  the  image,  until  there  is  only  a  pixel  wide  structure,  the  skeleton.  Then  in  that  skeleton  it  is                      
easy  to  identify  the  nodes  (or  joints)  and  branches  and  their  attributes.  To  do  so,  another  Python                   
library  called   skan [19]  is  used,  which  automatically  analyzes  the  input  skeleton,  plots  the  joints  and                 
branches   of   it,   and   generates   a   dataset   with   the   branch   data.   

The   implemented   code   is:   

  
The   plot   generated   is:   

29   

from   skan   import   Skeleton,   summarize,   draw   
  

def   skeletonize(I_bin):   
     skeleton   =   morphology.skeletonize(I_bin)   
     branch_data   =   summarize(Skeleton(skeleton))   
     fig   =   plt.figure(figsize=(10,20))   
     draw.overlay_euclidean_skeleton_2d(I_bin,   branch_data,     
                          skeleton_color_source='branch-type',   axes=plt.gca())   
     plt.show()   
     return   branch_data   



  

  

Skeleton   plot   showing   branches   and   joints   

The  dataset  generated  with  the  branch  data  contains  a  table  with  different  attributes  for  each  branch,                  
such  as  the  branch  distance,  type,  end  points  coordinates,   etc .  Some  of  those  attributes  are  taken  for                   
the  analysis,  in  addition,  the  tortuosity  is  calculated  as  the  ratio  between  the  branch  distance  and  the                   
euclidean  branch  distance.  The  tortuosity  is  an  important  biomarker  that  measures  the  curvature  of  a                 
branch.   A   final   dataframe   is   built   using   the    Pandas    library   of   Python,   containing   the   following   data:   

  
This   data   can   be   used   to   generate   plots   that   compare   the   branch   attributes   for   different   samples.   

3.2   Application   Development   
Once  the  image  processing  algorithms  have  been  evaluated  and  validated,  the  next  step  is  to                 

develop  an  application  in  which  to  implement  those  algorithms.  This  application  will  serve  the                
medical  professional  users  in  the  exploration  of  the  image  data  for  different  purposes  such  as                 
diagnosis,   treatment   evaluation,    etc .   

The   requirements   for   the   application   are:   

● Simplicity   of   use:   The   application   should   be   intuitive   for   its   immediate   understanding.     
● Portability  and  easy  setup:  The  application  is  meant  to  be  multi-platform  and  packaged  for                

sharing   and   direct   installation   without   having   to   cope   with   external   dependencies.   

30   

branch   subject   skeleton-id   branch-type   branch-distance  euclidean-dist.   tortuosity   

0   case   1   1   27.12   25.44   1.066   

1   case   1   1   5.52   4.95   1.115   

2   case   1   2   33.10   31.46   1.052   

3   case   2   1   8.57   6.82   1.257   



  

● Modularity  and  customization:  It  is  aimed  to  serve  as  a  template  for  future  functionality                
enhancements   or   even   for   the   development   of   other   applications   with   different   purposes.   

● Open  web  app:  The  application  should  be  open-sourced  and  make  use  of  open-source               
software   and   web   technologies,   it   should   run   in   the   web   browser.   

These   objectives   can   be   fulfilled   by   choosing   the   right   technology   stack   to   develop   the   application.   

The  technology  stack  chosen  is  based  on  the  Python  programming  language.  Apart  from  the  Python                 
libraries  mentioned  in  the   Image  Processing  section,  used  for  the  image  processing  algorithms,  the                
development   of   the   application   makes   use   of   other   frameworks.   

The  platform  chosen  for  the  design  of  the  web  application  is  Dash.  Dash  was  introduced  in  the                   
Introduction ,  it  is  an  open  source  Python  framework  provided  by  Plotly  for  the  development  of  web                  
applications.  It  provides  abstraction  from  many  of  the  technologies  required  to  implement  a  web  app.                 
It  also  includes  a  library  of  a  variety  of  modular  components  serving  different  purposes  such  as  forms,                   
graphs,   menus,    etc .   

In  order  to  package  and  deliver  the  application,  and  to  abstract  the  management  of  the  required                  
dependencies,  the  chosen  option  is  to  containerize  the  application  using  a  software  called  Docker.                
Docker  was  introduced  in  the   Introduction ,  it  is  used  to  package  the  application  in  a  unit  of  software                    
called  ‘container’  which  includes  every  piece  of  software  required  by  the  application  to  run.  It  isolates                  
the  app  from  the  rest  of  the  operating  system  and  as  Docker  runs  in  many  different  operating  systems                    
it  directly  makes  the  app  a  multi-platform  and  portable  one,  without  the  need  for  any  installation  as                   
long   as   Docker   is   installed.   

The  functionalities  of  the  app  allow  the  user  to  load  two  sets  of  DICOM  files  from  two  different                    
subjects,  case  and  control,  for  comparison.  Once  the  files  are  loaded  the  image  data  is  automatically                  
extracted  and  the  frames  are  visualized  in  the  dashboard.  Then  the  user  can  start  manually  the  analysis                   
of  the  data  that  processes  the  images  to  generate  all  the  results:  the  isochronal  map,  the  skeleton  and                    
the  graph  plots.  Once  the  analysis  is  finished  the  user  can  download  any  of  the  plots  and  the  dataset                     
containing   the   branch   data   for   the   subjects   loaded.   

  

Screenshot   of   the   Dash   application   

The   app   interface   consists   basically   of   a   dashboard   with   some   basic   user   interaction   functionalities:   

● There  is  a  top  bar  showing  the  app  name  and  an  option  to  open  the  instructions,  that  shows  a                     
box   with   the   instructions   on   how   to   use   the   app.   

● All   the   controls   are   included   at   the   top,   with   5   different   action   buttons:     
○ 2   to   load   the   DICOM   files   for   the   two   different   subjects   
○ 1   to   start   the   analysis   of   the   data.   
○ 1   to   clear   the   results   and   the   files   loaded   to   reset   the   app.   

31   



  

○ 1  to  download  the  branch  data  as  a  CSV  file,  this  button  appears  automatically  once                 
the   analysis   is   complete.   

● A   grid   containing   and   showing   the   results.   
● The   resulting   graphs   are   interactive;   with   zoom   options,   axis   selection,    etc .   

The  Dash  framework  is  used  to  define  the  layout  of  the  web  app,  with  all  its  visual  and  interactive                     
HTML  components  such  as  bars,  buttons,  containers,   etc .  The  functionalities  for  the  user  interaction                
are   also   defined   in   Dash,   by   the   use   of    callbacks .   

Once   the   application   is   developed,   it   is   configured   to   be   containerized   using   Docker.   

The   development   process   is   summarized   now,   step   by   step,   in   a   tutorial   style.   

3.2.1   Python   Project   
The  first  step  is  to  create  a  Python  project,  with  a  directory  structure  such  as  the  one  shown  in                     

the   next   figure:   

  

Project   directory   structure   

Then  a  Python  virtual  environment  is  created,  in  order  to  install  the  python  packages  required  by  the                   
app   to   run.   This   can   be   easily   setup   by   using   a    requirements.txt    file   that   lists   all   the   dependencies:   

  
The  terminal  instructions  to  create  the  virtual  environment  (using  the   Conda  package  manager)  and  to                 
install   the   dependencies   are:   

32   

requirements.txt   
  

dash  
dash_bootstrap_components   
flask-caching   
matplotlib   
numba   
numpy   
pandas   
pillow   
plotly   
pydicom   
scikit-image   
skan  



  

  
For  the  development  of  this  application,  the  Python  version  3.6  is  required  in  order  to  be  able  to  use                     
the   library    skan .   

The   next   step   is   to   create   the   Python   script    app.py ,   that   contains   the   app   code.   

3.2.2   Import   Libraries   
The  Python  libraries  used  to  run  the  app  are  imported  at  the  beginning  of  the  script.  Here  are                    

included   both   the   image   processing   packages   and   the   ones   for   Dash.   

  
One  important  thing  is  to  set  the  Matplotlib  graphics  rendering  backend  to  a  non-interactive  mode,                 
because   it   makes   the   Dash   runtime   crash:   

  

3.2.3   App   Instantiation   
The  next  step  is  to  include  the  application  declaration,  which  serves  to  define  some                

parameters   such   as   the   app   title,   callback   exception   options,   and   others.   

  
The   Dash  class  of  the   dash  library  is  used  to  instantiate  the  app.  The   update_title  corresponds  to  the                    

33   

conda   create   --name   myenv   python=3.6   
conda   activate   myenv   
pip   install   -r   requirements.txt   

import   dash   
from   dash.dependencies   import   Input,   Output,   State   
import   dash_core_components   as   dcc   
import   dash_html_components   as   html   
import   dash_bootstrap_components   as   dbc   
import   plotly.express   as   px   
from   flask_caching   import   Cache   
import   base64   
import   io  
import   pydicom   
import   pandas   as   pd   
import   numpy   as   np   
import   matplotlib.pyplot   as   plt   
from   PIL   import   Image   
from   skimage   import   morphology   
from   skimage.filters   import   threshold_local,   median   
from   skan   import   Skeleton,   summarize,   draw   
from   assets.instructions   import   generate_instructions   

plt.switch_backend('Agg')   

external_stylesheets   =   [dbc.themes.BOOTSTRAP]   
app   =   dash.Dash(__name__,   external_stylesheets=external_stylesheets,   
                 title='Vascular   Analyzer',   update_title='Processing...',     
                 suppress_callback_exceptions=True)   



  

browser’s  tab  title  shown  during  the  execution  of  the  app  callbacks.  The   external_stylesheets               
attribute   serves   to   target   a   CSS   file   that   specifies   the   style   of   the   web   components.  

The   app   makes   use   of   the   browser’s   cache   memory,   making   use   of   the    flask_caching.Cache    library:   

  
The   cache   is   cleared   when   the   app   is   initialized.   The   filesystem   is   used   to   store   the   cached   values.   

3.2.4   Dash   Layout   Definition   
The  next  step  is  to  define  the  Dash  layout  for  the  application,  that  means  specifying  the                 

HTML  elements  that  compose  the  interface  of  the  web  app,  and  their  disposition  and  behavior  on  the                   
screen.   

The  basic  elements  of  the  layout  are  taken  from  the   dash_bootstrap_components  which  contains               
predefined  components  with  an  intrinsic  Bootstrap  design  and  functionalities.   Bootstrap  is  a  web               
styling  framework  intended  for  responsive  web  development.  The   dash_html_components  includes            
all  the  standard  HTML  tags  and  the   dash_core_components  is  the  standard  library  with  predefined                
components   provided   by   Dash.   

  
The  layout  is  defined  in  the   app.layout  object.  Everything  is  inserted  in  a  HTML  container  ( Div ).                  
The   dcc.Store  component  is  used  to  store  JSON  data  in  the  browser,  in  order  to  share  data  between                    
callbacks.   

Each  layout  component  that  has  user  interaction  functionalities,  needs  to  be  uniquely  identified  by                
specifying  the   id  tag  of  the  HTML  element.  This  allows  to  reference  those  elements  in  the  callback                   
functions.   

The    navigation_bar    is   defined   as:   

34   

CACHE_CONFIG   =   {   
     'CACHE_TYPE':   'filesystem',   
     'CACHE_DIR':   './cache'   
}   
cache   =   Cache()   
cache.init_app(app.server,   config=CACHE_CONFIG)   
cache.clear()   

app.layout   =   html.Div([   
     navigation_bar,   
     instructions,   
     analysis_grid,   
  

     dcc.Store(id='frames-case',   storage_type='memory'),   
     dcc.Store(id='frames-control',   storage_type='memory'),   
     dcc.Store(id='signal-case',   storage_type='memory'),   
     dcc.Store(id='signal-control',   storage_type='memory'),   
     dcc.Store(id='branch-data-case',   storage_type='memory'),   
     dcc.Store(id='branch-data-control',   storage_type='memory'),   
     dcc.Store(id='branch-data',   storage_type='memory'),   
     dcc.Store(id='signal-box-axes',   storage_type='memory')   
])   



  

  
The    instructions    modal   box   as:   

  
The   generate_instructions  function  returns  the  instructions  in  Markdown  format,  which  Dash  can              
also   render.   

The    analysis_grid    is   the   ‘biggest’   component   in   the   layout:   

35   

navigation_bar   =   dbc.NavbarSimple(   
     children=[   
         dbc.NavItem(dbc.Button("Instructions",   id='open-instructions',     
                     color='primary')),   
     ],   
     brand="Vascular   Analyzer",   
     brand_href="#",   
     color="primary",   
     dark=True,   
)   

instructions   =   dbc.Modal(   
     [   
         dbc.ModalHeader("Instructions"),   
         dbc.ModalBody(   
             generate_instructions(),   
             style={'text-align':'justify'}   
         ),   
         dbc.ModalFooter(dbc.Button("Close",   id="close-instructions",     
                         className="ml-auto")),   
     ],   
     id="instructions-modal",   
     scrollable=True,   
)   

analysis_grid   =   dbc.Container(   
     [   
         dbc.Row(   
             [   
                 dbc.Col(   
                     [   
                         dcc.Upload(id='upload-case',     
                                    children=dbc.Button("Upload     
                                                         case",   color='info'),  
                                    multiple=True,   className='upload'),   
                         dcc.Upload(id='upload-control',     
                                    children=dbc.Button("Upload   control",     
                                                        color='info'),     
                                    multiple=True,   className='upload'),   
                         dbc.Button("Analyze",   id='start-analysis',     
                                    color='danger'),   
                         dbc.Button("Clear",   id='clear-data',   color='secondary',     
                                    type='reset'),   
                         html.Div([   
                             dbc.Button("Download   CSV",   id='download-button',     
                                        color='success',      
                                        style={'visibility':'hidden'}),   



  

  
The   dbc.Container  sets  a  Bootstrap  grid  that  is  divided  in  rows,  each  row  ( dbc.Row )  containing                 
different  columns  ( dbc.Col ).  The  first  row  is  filled  with  the  control  buttons  for  the  user.  The  rest  of                    
the  rows  show  consecutively  different  results,  each  row  is  divided  in  two  columns:  one  to  show  the                   
result   for   the   ‘case’   subject,   and   the   other   column   to   show   the   result   for   the   ‘control’   subject.   

The  Dash  libraries  provide  many  more  options  and  possibilities  with  different  components  available               
with   different   built   in   functionalities   for   a   wide   variety   purposes.   

3.2.5   Dash   Callbacks   
Once  the  initial  layout  of  the  dashboard  is  defined,  the  next  step  is  to  implement  the                  

interactive  functionality  by  means  of   callback  functions .  This  is  an  intrinsic  characteristic  of  the                
functioning  of  Dash.  The  user  interaction  is  defined  by  events  and  changes  in  the  layout  elements.                  
These  events  trigger  the  so-called  callback  functions  that  can  perform  any  function  including  making                
changes   in   other   components   of   the   layout   (and   therefore   maybe   calling   other   callbacks).   

Toggle   Instructions   

To   begin   with,   let’s   see   the   callback   defined   to   toggle/show   the   instructions   modal:   

  
A  callback  is  defined  using  the  Python  decorator   @app.callback .  The   Input ,   Output  and   State                
objects  of  the   dash.dependencies  package  are  used  to  specify  the  trigger  events  of  the  callback,  and                  
the   layout   element   that   is   going   to   be   changed   as   output.   

This   callback   function   runs   when:   

36   

                             dcc.Download(id='download-csv')   
                         ])   
                     ]   
                 )   
             ]   
         ),   
         dbc.Row([dbc.Col(id='case-original'),   dbc.Col(id='control-original')]),   
         html.Div('Isochronal   map',   className='row-title'),   
         dbc.Row([dbc.Col(id='case-map'),   dbc.Col(id='control-map')]),   
         html.Div('Skeleton',   className='row-title'),   
         dbc.Row([dbc.Col(id='case-skeleton'),   dbc.Col(id='control-skeleton')]),   
         html.Div('Graphs',   className='row-title'),   
         dbc.Row(dbc.Col(id='box-plot'))   
     ],   
     fluid=False   
)   

@app.callback(Output("instructions-modal",   "is_open"),   
               [Input("open-instructions",   "n_clicks"),   
                Input("close-instructions",   "n_clicks")],   
               [State("instructions-modal",   "is_open")])   
def   toggle_instructions(n1,   n2,   is_open):   
     if   n1   or   n2:   
         return   not   is_open   
     return   is_open   



  

● The   user   clicks   on   the    open-instructions    button.   
● The   user   clicks   on   the    close-instructions    button.   

This  corresponds  to  the  two   Input  arguments  defined  in  the  callback  decorator.  The  callback  is                 
triggered  when  the   nclicks  attribute  of  the   open-instructions  or   close-instructions  layout             
elements   changes.   

The  callback  function,  which  can  have  any  valid  custom  name,  is  named   toggle_instructions .  This                
function  has  as  arguments  the  values  of  the  attributes  of  the   Input  and   State  objects  included,  in                   
order  of  declaration  ( n1 ,   n2 ,   is_open ).  The   State  objects  are  used  to  access  the  attribute  values  of                   
certain   layout   elements,   but   are   not   involved   in   the   callback   triggering.   

The   function   toggles   the    is_open    variable   value   and   returns   it.   

The  returned  object  will  be  the  new  value  assigned  to  the   is_open  attribute  of  the   Output  layout                   
element   instructions-modal .  And  this  is  the  way  in  which  the  layout  is  updated,  in  this  case  the                   
instructions   prompt   is   open   or   closed.   

This  is  the  basic  structure  and  behavior  of  a  callback.  There  are  more  advanced  features  available  to                   
the  programmer  to  manage  more  aspects,  such  as  identifying  which  is  the   Input  element  that  has                  
triggered   the   code   (that   is   done   with   the    dash.callback_context    built   in   object).   

Load   DICOMs   

The  callbacks  for  loading  the  files  of  the  case  and  control  subjects  are  triggered  once  the  upload                   
buttons   are   clicked   and   some   files   are   loaded:   

  
The   frames  object  returned  is  a  list  containing  the  frames  of  the  sequence  in  order  and  as  pixel  2D                     
Numpy  arrays.  The  result  is  passed  to  the   dcc.Store  with   id=’frames-case’  element  of  the  layout,                 
that  is  used  to  store  the  value  and  use  it  in  other  functions.  This  object  is  generated  in  the                     
parse_dicoms    function:   

37   

@app.callback(Output('frames-case',   'data'),   
               Input('upload-case',   'contents'),   
               State('upload-case',   'filename'))   
def   load_case(contents,   filenames):   
     if   contents   is   None:   
         return   None   
     files   =   zip(contents,   filenames)   
     files   =   sorted(files,   key=lambda   t:   t[1])   
     frames   =   parse_dicoms(files)   
     return   frames   

def   parse_dicoms(files):   
     frames   =   []   
     for   c,   n   in   files:   
         content_type,   content_string   =   c.split(',')   
         dicom   =   base64.b64decode(content_string)   
         ds   =   pydicom.dcmread(io.BytesIO(dicom))   
         frames.append(ds.pixel_array)   
     return   frames   



  

  
This  function  makes  use  of  the   pydicom  library  to  read  the  DICOM  files  and  the   base64  and   io  to                     
decode   the   input    files .   

The  application  does  not  make  use  of  global  variables  as  Dash  and  this  is  because  Dash  is  a  stateless                     
framework  designed  to  work  in  a  multi-user  environment  where  multiple  users  may  view  the  app  at                  
the  same  time  and  will  have  independent  sessions.  Dash  also  can  run  with  multiple  python  workers  so                   
that  callbacks  can  be  executed  in  parallel,  but  their  memory  is  not  shared.  If  global  variables  were                   
used,  a  user  session  could  affect  the  global  values  for  the  next  session,  also  a  modification  of  a  global                     
variable   by   one   worker   would   not   be   shared   or   applied   to   other   workers   running   in   parallel.   

Show   Frames   

Once  the  data  has  been  loaded,  the  change  in  the   frames-case  data  triggers  a  callback  to  show  the                    
frames   in   the   dashboard:   

  
The  object  returned  is  a  graph  containing  a  figure  generated  by  using  the   plotly.express  plotting                 
library,   this   is   done   in   the    plot_original    function:   

  
The   resulting   graph   is:   

38   

@app.callback(Output('case-original',   'children'),   
               Input('frames-case',   'data'))   
def   show_case(data):   
     if   data   is   None:   
         return   None   
     frames   =   np.array(data)   
     fig   =   plot_original(frames)   
     graph   =   html.Div([   
         html.Div('Case',   className='frames-title'),   
         dcc.Graph(figure=fig)   
     ])   
     return   graph   

def   plot_original(frames):   
     fig   =   px.imshow(np.array(frames),   animation_frame=0,   binary_string=True,   
                     labels=dict(animation_frame="Frames"),   width=450,   height=540)   
     fig.update_xaxes(showticklabels=False)   
     fig.update_yaxes(showticklabels=False)   
     fig.update_layout(   
         margin=dict(l=40,   r=40,   b=0,   t=0),   
         updatemenus=[dict(visible=False)],   
         sliders=[dict(   
             len=0.8,   
             pad=dict(t=10)   
         )]   
     )   
  

     return   fig   



  

  

Frames   displayed   with   slider   

Process   Data   

The  next  step  is  to  begin  the  analysis  by  clicking  the  ‘Analysis’  button.  The  callback  associated  to  it                    
is:   

39   

@app.callback(Output('signal-case',   'data'),   
               Input('start-analysis',   'n_clicks'),   
               Input('clear-data',   'n_clicks'),   
               State('frames-case',   'data'))   
def   processing_case(clicks1,   clicks2,   data):   
     if   data   is   None:   
         return   None,   None   
  

     ctx   =   dash.callback_context   
  

     if   not   ctx.triggered:   
         return   None,   None   
     else:  
         button_id   =   ctx.triggered[0]['prop_id'].split('.')[0]   
  

     if   button_id   ==   'clear-data':   
         return   None,   None   
  

     frames   =   np.array(data)   
     [frames_bin,   frame_sum_bin]   =   binarize(frames)   
     return   frames_bin,   frame_sum_bin   



  

  
In  this  callback  the   dash.callback_context  allows  to  see  which  is  the   Input  that  has  triggered  the                  
callback.  

This  function  calls  the  binarize  function  to  binarize  the  frames,  returning  a  list  with  two  items:  first  a                   
list  containing  the  binarized  frames,  and  second  the  pixel  array  representing  the  total  frame  sum                 
binarized.   

The  binarize  function  is  described  in  the   Image  Processing  section.  It  makes  use  of  the                 
@cache.memoize    decorator,   which   saves   the   results   of   the   function   calls   in   the   cache.   

Plot   Isochronal   Map   

Once  the  frames  are  processed,  they  are  stored  in  a   dcc.Store  layout  element  and  the  callbacks  to                   
generate   and   show   the   isochronal   map   and   skeletonization   results   are   triggered:   

  
The  isochronal  map  figure  is  generated  by  calling  the   isochronal_map  function,  which  was  explained                
in   the    Image   Processing    section.   

Visualize   Skeleton   

The   skeleton   graph   is   also   generated   in   the   following   callback:   

  
The  results  include  both  the  plot  figure  that  is  passed  to  the   case-skeleton  output,  which  is  a  HTML                    
container,  and  a  list  containing  the  branch  data  that  is  stored  in  the   dcc.Store  with                 
id=branch-data-case .   

The  skeleton  is  generated  with  the   skeletonize  function  that  returns  the  skeleton  graph  and  the                 
branch  data.  The  function  that  was  introduced  in  the   Image  Processing  section  needs  some                
modifications   to   work   properly   in   Dash   as   the    skan    library   makes   use   of   the   Matplotlib   library:   

40   

@app.callback(Output('case-map',   'children'),   
               Input('signal-case',   'data'))   
def   show_case_map(data):   
     if   data[0]   is   None:   
         return   None   
     frames_bin   =   np.array(data[0])   
     fig   =   isochronal_map(frames_bin)   
     return   dcc.Graph(figure=fig)   

@app.callback(Output('case-skeleton',   'children'),   
               Output('branch-data-case',   'data'),   
               Input('signal-case',   'data'))   
def   show_case_skl(data):   
     if   data[1]   is   None:   
         return   None,   None   
     frame_sum_bin   =   np.array(data[1])   
     branch_data,   fig   =   skeletonize(frame_sum_bin)   
     branch_data['subject']   =   'case'   
     branch_data   =   [branch_data.columns.values.tolist()]   +     
                   branch_data.values.tolist()   
     return   dcc.Graph(figure=fig),   branch_data   



  

  
The  skeleton  is  generated  using  the   morphology.skeletonize  function  of  the   scikit-image  library.              
This  is  just  a  pixel  wide  representation  of  the  binary  image.  Then  that  skeleton  is  analyzed  using  the                    
Skeleton    and    summarize    functions   of   the   skan   library.   

The  Matplotlib  figure  generated  by   draw.overlay_euclidean_skeleton_2d  is  rendered  to  an  image             
and  written  in  a  buffer  ( buf )  that  then  is  read  (using  the   Image.open  function  of  the  Pillow  library)  to                     
retrieve   the   data.   From   this   image   data   a   Plotly   figure   is   created   using   the   plotting   function    imshow .   

Build   Dataset   

The   branch_data  returned  by   skan  is  a   pandas  dataframe  containing  data  for  each  branch  in                 
the  skeleton,  such  as  the  end  point  coordinates,  the  length,  the  euclidean  length,   etc .  This  is  explained                   
in  the   Image  Processing  section.  The  data  should  be  processed  to  extract  some  parameters  or                 
biomarkers  such  as  the  branch  tortuosity  (curvature),  and  in  order  to  join  the  datasets  of  the  two                   
subjects   in   a   single   one   to   be   used   for   the   plots.   

41   

def   skeletonize(I_bin):   
     if   I_bin   is   None:   
         return   None,   None   
     skeleton   =   morphology.skeletonize(I_bin)   
     branch_data   =   summarize(Skeleton(skeleton))   
  

     mpl_fig   =   plt.figure()   
     draw.overlay_euclidean_skeleton_2d(I_bin,   branch_data,   
skeleton_color_source='branch-type',   axes=plt.gca())   
     buf   =   io.BytesIO()   
     plt.savefig(buf,   format='png',   bbox_inches='tight',   pad_inches=0)   
     buf.seek(0)    #   rewind   file   
     img   =   Image.open(buf)   
     img_array   =   np.array(img)   
  

     fig   =   px.imshow(img_array,   width=450,   height=343,   binary_string=True)   
     fig.update_xaxes(showticklabels=False)   
     fig.update_yaxes(showticklabels=False)   
     fig.update_layout(   
         margin=dict(l=0,   r=0,   b=0,   t=0),   
         coloraxis_showscale=False   
     )   
  

     buf.close()   
     plt.close(mpl_fig)   
  

     return   branch_data,   fig   

@app.callback(Output('branch-data',   'data'),   
               Input('branch-data-case',   'data'),   
               Input('branch-data-control',   'data'))   
def   build_dataframe(data_case,   data_control):   
     if   data_case   is   None   and   data_control   is   None:   
         return   None   
     elif   data_control   is   None:   
         branch_data   =   pd.DataFrame(data_case[:][1:],   columns=data_case[:][0])   
     elif   data_case   is   None:   
         branch_data   =   pd.DataFrame(data_control[:][1:],     



  

  
The  callback  is  executed  when  the   dcc.Store  components,  that  store  the  branch  data  of  the  subjects,                  
are  updated.  The  output  dataset  is  saved  in  another   dcc.Store  element.  It  is  important  to  note  that  the                    
pandas  dataframes  are  converted  to  lists  before  being  returned,  this  is  because  dcc.Store  can  store                 
Python   primitive   lists   but   not    pandas    objects.   

Download   CSV   

Once  the  final  dataset  is  built  an  option  to  download  the  data  as  a  CSV  file  is  enabled.  This                     
option   appears   by   displaying   a   button   that   was   initially   hidden   in   the   layout.   

  
The   pandas  library  allows  to  generate  a  CSV  file  with  the   to_csv  function.  The  visibility  of  the                   
download   button   is   toggled   by   modifying   the   style   parameter   using   CSS   clauses.   

The   prevent_inital_call  callback  attribute  set  to   True ,  makes  the  callback  not  to  execute  when  the                 
app  is  initialized.  By  default,  all  the  callbacks  execute  when  the  app  first  loads,  but  as  seen,  this  can  be                      
configured.   

Box   Plot   

42   

                                    columns=data_control[:][0])   
     else:  
         data_case   =   pd.DataFrame(data_case[:][1:],   columns=data_case[:][0])   
         data_control   =   pd.DataFrame(data_control[:][1:],     
                                     columns=data_control[:][0])   
         branch_data   =   pd.concat([data_control,   data_case])   
  

     branch_data   =   branch_data[['subject',   'skeleton-id',   'branch-type',     
                                'branch-distance',   'euclidean-distance']]   
     branch_data['tortuosity']   =   branch_data['branch-distance']   /     
                                 branch_data['euclidean-distance']   
  

     branch_data   =   [branch_data.columns.values.tolist()]   +     
                   branch_data.values.tolist()   
     return   branch_data   

@app.callback(Output("download-csv",   "data"),   
               Input("download-button",   "n_clicks"),   
               State('branch-data',   'data'),   
               prevent_initial_call=True)   
def   download_csv(n_clicks,   branch_data):   
     if   branch_data   is   None:   
         return   None   
     branch_data   =   pd.DataFrame(branch_data[:][1:],   columns=branch_data[:][0])   
     return   dcc.send_data_frame(branch_data.to_csv,   "branch_data.csv")   
  
  

@app.callback(Output('download-button',   'style'),   
               Input('branch-data',   'data'),   
               prevent_initial_call=True)   
def   toggle_download(branch_data):   
     if   branch_data   is   None:   
         return   {'visibility':'hidden'}   
     else:  
         return   {'visibility':'visible'}   



  

The  final  dataset  is  used  to  generate  a  box-plot  that  reflects  the  branch  data  for  a  graphical                   
comparison   of   the   parameter   values   retrieved   for   each   subject.   

43   

@app.callback(Output('box-plot',   'children'),   
               Input('branch-data',   'data'),   
               Input('signal-box-axes',   'data'))   
def   box_plot(branch_data,   data_axes):   
     if   branch_data   is   None:   
         return   None   
  

     branch_data   =   pd.DataFrame(branch_data[:][1:],   columns=branch_data[:][0])   
  

     if   data_axes   is   None:   
         data_axes   =   [branch_data.columns[0],   branch_data.columns[3]]   
     elif   data_axes[0]   is   None:   
         data_axes[0]   =   branch_data.columns[0]   
     elif   data_axes[1]   is   None:   
         data_axes[1]   =   branch_data.columns[3]   
  

     fig   =   px.box(branch_data,   x=data_axes[0],   y=data_axes[1],   color='subject')   
  

     plot   =   html.Div([   
         dcc.Graph(figure=fig),   
         generate_dropdown(branch_data,   "X   axis",   'x-bar',   data_axes[0],     
                           "X-axis"),   
         generate_dropdown(branch_data,   "Y   axis",   'y-bar',   data_axes[1],   "Y-axis")   
     ])   
  

     return   plot   
  
  

@app.callback(Output('signal-box-axes',   'data'),   
               Input('x-bar',   'value'),   
               Input('y-bar',   'value'),   
               prevent_initial_call=True)   
def   select_box_axes(x,   y):   
     return   [x,   y]   
  
  

def   generate_dropdown(branch_data,   title,   id,   value,   placeholder):   
     if   branch_data   is   None:   
         return   None   
  

     @cache.memoize()   
     def   generate_options(branch_data):   
         dropdown_options   =   []   
         for   column   in   branch_data.columns:   
             item   =   {   
                 'label':   column,   
                 'value':   column   
             }   
             dropdown_options.append(item)   
         return   dropdown_options   
  

     return   html.Div([title,   dcc.Dropdown(id=id,      
                      options=generate_options(branch_data),   
                      value=value,   placeholder=placeholder)],   



  

  
This  code  generates  a  box-plot  using  the   plotly  express  ( px.box )  library.  It  also  generates  two                  
dropdown  elements  automatically  ( generate_dropdown )  that  allow  choosing  the  axis  parameters,  the             
plot   is   automatically   updated   ( select_box_axes ).   The   results   are   coloured   by   subject.   

Clear   Data   

Finally,  there  is  another  callback  added  that  is  used  to  clear  all  the  data  loaded  in  order  to  be                     
able   to   reset   the   dashboard   layout   to   begin   a   new   analysis.   

  
The   clear-data  button  click   Input  is  also  used  in  the  processing  callbacks  (i.e.   processing_case )                
in   order   to   remove   the   data   stored   and   that   consequently   update   and   clear   the   graphs/images   loaded.   

3.2.6   Executing   The   Application   
The  final  step  is  to  run  the  app,  a  method  of  the   app  Dash  object  (declared  when  the  app  was                      

instantiated )   is   invoked   to   do   so,   different   arguments   are   passed   to   launch   the   web   server:   

  
The  host  IP  address  is  set  to   0.0.0.0  to  make  the  web  server  accessible  from  docker.  By  default,  the                     
port   configured   is    8050 .   

The   debug=True  option  is  used  when  developing  and  debugging  the  application,  it  allows  to  make                 
code   modifications   while   running   the   server   so   the   changes   can   be   immediately   tested.   

3.2.7   Assets   &   Style   
The  contents  in  the   assets  folder  created  in  the   project  are  automatically  indexed  by  Dash                 

and  can  be  used  in  the  app  by  their  file  names  without  referring  to  their  path.  The   favicon.ico  file                     
included   is   used   by   Dash   to   render   the   browser   icon   of   the   web   app.   

The   images  folder  and  the   instructions.py  script  are  used  to  render  the  instructions,  the  script  is                  
imported   in   the    app.py    code.   

Finally  there  is  another  file  in  the  assets  folder,  which  is  the  style.css  file  that  defines  the  CSS                    
declarations  to  specify  the  display  style  of  some  components  of  the  app.  CSS  is  a  styling  language  for                    
the   web   that   provides   a   lot   of   options   and   possibilities   for   customization.   The   code   included   is   simple:   

44   

                     className='dropdown-div')   

@app.callback(Output('upload-case',   'contents'),   
               Output('upload-control',   'contents'),   
               Input('clear-data',   'n_clicks'))   
def   clear_data(clicks):   
     return   None,   None   

if   __name__   ==   '__main__':   
     app.run_server(host='0.0.0.0',   debug=True,   port=8050)   

.navbar   {  
     margin-bottom:   40px;   

.row-title   {   
     margin-bottom:   20px;   



  

  
By  using  classes  ( class= ),  ids  ( id= )  and  other  HTML  attributes  to  reference  the  layout  elements,  the                  
style  is  configured  by  different  key-value  pairs  that  define  the  styling  properties.  In  this  code  the                  
position,   size   and   margins   of   some   elements   are   modified.   

It  is  important  to  remark  that  another  default  CSS  file  ( dbc.themes.BOOTSTRAP )  was  added  as               
external_stylesheet  in  the  app  instantiation,  this  file  contains  a  lot  of  style  specifications  that  are                 
default   to   the   Bootstrap   CSS   framework.   

3.2.8   Dockerization   
Once  the  application  is  functioning  when  executed  locally  in  a  Python  environment,  the  final                

step  is  to  configure  it  to  run  in  a  Docker  container.  To  do  so  a   Dockerfile  should  be  defined  in  the                       
root  directory  of  the  project.  In  addition,  a   docker-compose.yml  file  is  added  to  automate  the  Docker                  
commands  to  build  the  Docker  image  and  run  it  in  a  container.  Docker  was  briefly  introduced  in  the                    
Background    section.   

The   Dockerfile   contains   the   next   instructions:   

  
This  file  basically  instructs  Docker  to  build  an  image  based  on  the   Python:3.6  one,  setting  a  working                   
directory   (/usr/src/app )  in  which  the  app  files  are  copied,  and  installing  the  required  packages  to                 
run  the  app  ( requirements.txt )  and  then  opening  a  connection  in  the  port  8050  to  access  the  app                   
running   in   the   container,   finally   the   last   instruction   executes   the   application   ( app.py ).   

45   

     position:   center;   
}   
img[alt=instructions]   {   
     width:   100%;   
     margin-left:   auto;   
     margin-right:   auto;   
}   
.row   {   
     margin-bottom:   70px;   
}   
.row-title,   .frames-title   {   
     font-size:   large;   
     text-transform:   uppercase;   
     color:   grey;   
     text-decoration:   underline;   
     text-underline:   grey;   
}   

}   
button,   .upload   {   
     display:   flex;   
     float:   left;   
     margin-right:   10px;   
}   
.dropdown-div   {   
     display:   inline-block;   
     width:   200px;   
     margin-right:   10px;   
}   
.dash-dropodown   {   
     display:   flex;   
     align-self:   flex-start;   
}   

FROM   python:3.6   
  

WORKDIR   /usr/src/app   
  

COPY   requirements.txt   ./   
RUN   pip   install   --no-cache-dir   -r   requirements.txt   
  

COPY   .   .   
  

EXPOSE   8050   
  

CMD   [   "python",   "./app.py"   ]   



  

The   docker-compose.yml   is   a   configuration   file   for   setting   up   the   container:   

  
This  file  specifies  the  name  of  the  image  that  is  going  to  be  built,  it  maps  the  host  and  container  ports                       
to   make   the   connection,   and   it   also   defines   the   name   of   the   container   that   is   created.   

To   build   and   run   the   application   in   docker   the   user   just   needs   to   execute   the   following   command:   

  
The  docker-compose  command  has  many  more  options:  to  pause  or  stop  the  execution,  to  check  its                  
logs,   to   list   the   images   being   used   by   the   containers,    etc .   

3.3   Code   Practices  
For  the  development  of  the  application,  there  are  a  number  of  tools  and  practices  that  make                  

the   process   easier   and   clearer.   

The  first  practice  is  to  search  properly  the  documentation  and  APIs  of  the  different  libraries,  software                  
packages  and  frameworks  used  to  build  the  application.  The  recommendation  here  is  to  consult  the                 
official   documentation   when   possible.   

Dash  has  some  intrinsic  characteristics  that  make  programming  with  it  a  little  bit  different  than                 
programming  other  Python  scripts  or  programs.  For  example,  the  use  of  global  variables  is  not                 
recommended  in  Dash,  as  commented  in  the   Dash  Callbacks  section.  These  tips  are  explained  in  the                  
official  documentation;  before  putting  hands  in  the  project,  it  is  important  to  understand  the  basics  on                  
how   Dash   works   by   following   the   fundamental   sections   of   the   documentation.   

For  developing  the  application  it  is  recommended  to  make  use  of  a  Python  IDE  with  debugging                  
options.  In  general  it  is  recommended  to  separate  the  application  functionalities  in  modules  and                
functions  that  can  be  reused  and  make  the  code  look  clearer.  For  the  development  it  is  also  very                    
recommended  to  use  a  version  control  tool  such  as  Git.  The  code  for  this  project  is  hosted  in  a  GitHub                      
repository   and   Git   was   used   for   its   development.   

When  programming  the  application  callbacks  and  functions,  having  in  mind  the  execution/flow              
process  makes  it  easy  to  handle  the  possible  errors.  Dash  also  provides  development  tools  that  make  it                   
easy  to  debug  the  application;  these  include  a  debug  mode  for  testing  live  code  modifications,  the                  
callback   dependency   graph,   the   error   reporting,    etc .   A   capture   of   these   Dash   tools   is   shown   below.   

46   

version:   "3.8"   
  

services:  
   app:   
     build:   .   
     image:   vasculomics:dashapp   
     ports:   
       -   8050:8050   
     container_name:   dashapp_container   

docker-compose   up   



  

  

Dash   debugging   tools   

For  configuring  the  style  of  the  app,  it  is  also  useful  to  use  the  built  in  web  development  tools  that  are                       
integrated   in   the   web   browsers.   

One  final  but  nor  least  important  aspect  of  the  application  is  its  modularity.  The  app  was  designed                   
with  flexibility  in  mind  with  the  aim  of  serving  as  a  template  for  the  development  of  other  similar                    
apps  for  different  purposes.  Therefore  the  functions  implemented  are  as  loosely  coupled  as  possible                
and   the   layout   elements   are   as   separated   as   possible   from   the   rest   of   the   code.   

3.4   Evaluation   Of   The   App   
The  app  functionality  is  evaluated  by  testing  it  for  the  analysis  of  some  data  samples  provided                  

by  the  Hospital  Sant  Joan  de  Déu.  These  samples  are  included  in  the  DICOM  folder  of  the  project  root                     
directory.   

There  are  a  total  of  7  sequences  to  analyze.  They  are  loaded  in  the  app  by  pairs  for  analysis  in  order  to                        
make   comparisons.   

The   resulting   comparative   graphs   are   included   in   the   following   tables:   

  

  

  

  

  

47   



  

  
  

  

  

  

48   

S2040   vs   S3040   

  

  

 



  

  

  

  

  

49   

S5040   vs   S5040.2   

  

  

 



  

  

  

  

  

50   

S11040   vs   S11040.2   

  

  

 



  

  

  

  

   

51   

S5040   vs   S10040   

  

  

 



  

4.   RESULTS   AND   DISCUSSION   
  

The  application  can  be  useful  to  compare  an  ill  case  and  a  sane  control  subject,  but  also  for                    
evaluating  the  efficacy  or  evolution  of  a  treatment  in  the  same  subject,  before  and  after  surgery  or                   
after   the   administration   of   a   drug   such   as   a   vasoactive   drug.   

The  clinic  cases  studied  in  the   Evaluation  Of  the  App  section  reflect  that  the  isochronal  maps  and                   
skeleton  graphs  retrieved  provide  a  good  global  picture  for  comparing  morphological  characteristics              
of   the   samples,   such   as   symmetry,   and   to   have   a   basic   idea   of   the   blood   flow.   

The  box-plot  for  comparing  the  skeleton  data  between  subjects  is  not  as  clear  as  it  could  be  expected.                    
The  parameters/biomarkers  data  extracted  for  each  subject  may  not  be  enough  to  represent  and                
distinguish  properly  the  morphological  characteristics  of  interest.  However  this  depends  on  the              
samples   under   study   and   of   the   objective   of   the   observation   by   the   user.   

The  image  processing  results  were  satisfactory,  but  to  make  the  processing  automatic  the  same                
filtering  parameter  values  are  used  for  all  the  samples,  so  the  quality  of  the  processing  results  depends                   
on  the  features  of  the  input  images  that  may  vary  for  different  acquisitions.  As  it  can  be  seen  in  the                      
following   cases:   

Clear   image   processing   result   

  

52   

 



  

Blurry   image   processing   result  

The  application  works  properly,  it  is  responsive  and  therefore  works  in  a  wide  variety  of  screen  sizes.                   
The  interface  is  intuitive  and  the  app  is  easy  to  use.  Maybe  a  pitfall  is  that  the  processing  time  to  load                       
the  results  may  be  a  little  bit  high  but  that  depends  on  the  processing  power  of  the  computer.                    
Nonetheless,  the  time  loads  may  not  be  easily  improved  and  optimized  as  the  image  processing                 
algorithms   generally   require   a   high   number   of   computations.   

This  application  is  a  satisfactory  prototype  but  it  is  not  ready  for  deployment  in  a  Hospital  production                   
environment  where  a  lot  of  IT  security  compliances  should  be  met  and  other  connections  and                 
functionalities   would   be   required   for   integration   and   usability.   

  

   

53   

 



  

5.   CONCLUSIONS   AND   FUTURE   WORKS   
  

The  objective  of  this  project  was  to  develop  a  web  application  that  would  serve  medical                 
professionals  in  the  study  of  medical  image  data  of  cerebral  vascularity.  Such  application  was                
successfully   developed   and   tested,   and   the   results   obtained   were   satisfactory.   

The  application  makes  use  of  image  processing  algorithms,  implemented  using  Python  libraries,  for               
the  noise  filtering  and  the  binarization  (segmentation)  of  the  images,  as  well  as  for  the  skeletonization.                  
The  results  retrieved  are  an  ‘isochronal  map’  reflecting  the  temporal  evolution  of  the  blood  flow,  and                  
a  skeleton  graph  showing  the  branches  and  endpoints  of  the  vascular  network.  In  addition,  the                 
skeleton  is  analyzed  and  some  numerical  branch  parameters  are  extracted  such  as  the  tortuosity.  A                 
graphical  box-plot  is  added  representing  this  numerical  data.  This  analysis  is  launched  by  the  user  in  a                   
dashboard   web   app   built   based   on   the   Dash   Python   Framework   and   running   in   a   Docker   container.   

  

Screenshot   of   the   application   interface   

54   



  

This  application  serves  as  a  prototype  or  template  for  future  developments  of  related  projects.  The  app                  
developed   has   some   limitations:   

● The  image  processing  algorithms  (median  filter  and  local  threshold)  used  are  simple  and  not                
sophisticated.  This  aspect  could  be  optimized  for  obtaining  better  results  and  to  adapt               
automatically   to   the   quality   (i.e.   amount   of   image   noise)   of   the   input   data.   

● The  application  does  not  make  use  of  many  of  the  components  included  in  the  Dash                 
framework.   More   controls,   graphs   results   and   functionalities   could   be   implemented.   

● The  application  is  not  integrated  with  other  medical  systems  and  is  not  ready  to  function  in  a                   
production   environment.   

● The  choice  for  plots  to  represent  the  retrieved  branch  data  for  comparison  between  subjects  is                 
not  that  clear.  Also,  the  medical  relevance  of  this  data  should  be  assessed  by  a  medical                  
professional.   

Despite  these  limitations,  the  resulting  prototype  has  proved  to  be  viable  and  useful.  These  limitations                 
and   other   issues   could   be   addressed   and   the   application   improved   in   future   works.   

The  tests  of  the  application  were  successful,  even  though  the  amount  of  input  data  available  was  low,                   
so  deeper  testing  needs  to  be  performed.  Not  specifically  in  the  context  of  this  project,  but  it  should  be                     
remarked  that  there  is  a  lack  of  medical  image  data  for  training  machine  learning  models.  As  Kohli,                   
Summers  and  Geis  report:  “There  is  an  urgent  need  to  find  ways  to  collect,  annotate,  discover,  and,                   
ideally,   reuse   adequate   amounts   of   medical   imaging   data.”   

For   future   works,   there   are   a   lot   of   new   possible   functionalities   that   could   be   implemented:   

● Possibility   of   reading   and   processing   different   input   file   formats.   
● Processing   of   different   types   of   medical   images   in   the   same   app.   
● Manual   tuning   of   some   parameters.   
● Integration   with   medical   devices   and   other   software.   
● Improved   modularity   and   extensibility   of   the   application.   
● Write   development   documentation.   
● Optimization   of   speed   and   stability   (bug   fixing).   

Future  works  could  also  include  cloud  based  and  data  driven  services  that  could  comply  with  the                  
certifications  to  manage  sensitive  clinical  data.  There  are  a  lot  of  possible  purposes  for  medical                 
applications   such   as   for   administration,   diagnosis,   research,    etc .   

The  technology  stack  chosen  consists  of  well  known  open  sourced  technologies  such  as  Python,  Dash                 
or  Docker.  This  is  important  because  it  makes  the  development  of  the  application  transparent  and                 
based   on   robust   technologies.   

Of  course,  it  is  important  to  note  that  medical  knowledge  is  intrinsically  required  for  the  proper                  
functioning  of  a  medical  application,  and  its  development  should  go  hand  by  hand  with  the  counsel                  
and   supervision   of   medical   professionals.   

Working  in  this  project  has  served  me  to  learn  the  basics  on  how  to  develop  a  web  application  using                     
Python  and  Dash.  What  Docker  is,  how  containerization  works  and  how  to  run  the  app  in  a  container.                    
Also  the  basics  of  front-end  web  design  is  covered.  Finally,  it  was  useful  to  study  and  learn  about  the                     
image  processing  algorithms  for  noise  filtering,  segmentation  and  skeletonization  of  cerebrovascular             
MRA   images.     

55   



  

BIBLIOGRAPHY   
  

[1]   Rebollo   Ayuso,   Carlos.    Dynamic   characterization   of   blood   flow   through   the   cerebral   artery   circle   

by   magnetic   resonance   imaging .   Jun   2020.   

[2]   S   Shah,   Rahul,   and   Deva   S   Jeyaretna.    Cerebral   vascular   anatomy   and   physiology .   Elsevier,   2018.   

[3] American   Association   of   Neurological   Surgeons   (AANS).   “Cerebrovascular   Disease.”  

https://www.aans.org/en/Patients/Neurosurgical-Conditions-and-Treatments/Cerebrovascular- 

Disease.   Accessed   Sep   2021.   

[4] Chamarthy,   Murthy   R   et.   al.    Pulmonary   arteriovenous   malformations:   endovascular   therapy .   Jun   

2018,   DOI:   10.21037/cdt.2017.12.08.   

[5]   National   Organization   for   Rare   Disorders.   “Vascular   Malformations   of   the   Brain.”   

https://rarediseases.org/rare-diseases/vascular-malformations-of-the-brain/.   Accessed   Sep   

2021.   

[6]   Imperial   College   London.   “Types   of   Medical   Imaging.”   

https://www.doc.ic.ac.uk/~jce317/types-medical-imaging.html.   Accessed   Sep   2021.   

[7]   Johns   Hopkins   Medicine.   

https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/magnetic-resonance-an 

giography-mra.   Accessed   Sep   2021.   

[8]   Hartung,   Michael   P.,   et   al.   “Magnetic   resonance   angiography:   current   status   and   future   directions.”   

Journal   of   Cardiovascular   Magnetic   Resonance ,   vol.   13,   no.   19,   2011.   

[9]   Philips.    4D-TRANCE ,   

https://www.philips.co.uk/healthcare/product/HCNMRB970/4d-trance-mr-clinical-application 

.   Accessed   Sep   2021.   

[10]   National   Electrical   Manufacturers   Association   (NEMA).    Digital   Imaging   and   Communication   in   

Medicine   (DICOM) .   https://www.dicomstandard.org/current.   Accessed   Sep   2021.  

[11]   DICOM.    Key   Concepts   of   the   DICOM   Standard ,   https://www.dicomstandard.org/concepts.   

Accessed   Sep   2021.   

56   



  

[12]   World   Health   Organization   Europe.    The   protection   of   personal   data   in   health   information   

systems   -   principles   and   processes   for   public   health .   2021.   

[13]   Synopsys.    Medical   Image   Processing ,   

https://www.synopsys.com/glossary/what-is-medical-image-processing.html.   Accessed   Sep   

2021.   

[14]   The   International   Society   for   Optics   and   Photonics.    Medical   Image   Processing ,   

https://spie.org/publications/deserno-medical-image-processing.   Accessed   Sep   2021.   

[15]   Docker.    Docker   overview ,   https://docs.docker.com/get-started/overview/.   Accessed   Sep   2021.   

[16]   O'Connor,   Stephen.    What   Are   the   Differences   Between   PACS,   RIS,   CIS,   and   DICOM   ? ,   10   May   

2017,    https://www.adsc.com/blog/what-are-the-differences-between-pacs-ris-cis-and-dicom .   

[17]   McCormick,   M.,   et   al.   “ITK:   enabling   reproducible   research   and   open   science.”    Front   

Neuroinform ,   2014,   8:13.   doi:10.3389/fninf.2014.00013.   

[18]   Updegrove,   Adam,   et   al.   “SimVascular:   An   Open   Source   Pipeline   for   Cardiovascular   

Simulation.”    Annals   of   Biomedical   Engineering ,   no.   45,   2016,   pp.   525-541.   

https://doi.org/10.1007/s10439-016-1762-8 .   

[19]   Nunez   Iglesias,   Juan,   et   al.   “A   new   Python   library   to   analyse   skeleton   images   confirms   malaria   

parasite   remodelling   of   the   red   blood   cell   membrane   skeleton.”   2018.   doi:10.7717/peerj.4312.   

Cipolla,   Marilyn   J.    The   Cerebral   Circulation .   San   Rafael   (CA),   Morgan   &   Claypool   Life   Sciences,   

2009,    https://www.ncbi.nlm.nih.gov/books/NBK53086/ .   

IEEE   Engineering   in   Medicine   &   Biology   Society.    Biomedical   Imaging   &   Image   Processing ,   

https://www.embs.org/about-biomedical-engineering/our-areas-of-research/biomedical-imagi 

ng-image-processing/.   Accessed   Sep   2021.   

Kohli,   Marc   D.,   et   al.   “Medical   Image   Data   and   Datasets   in   the   Era   of   Machine   Learning.”   2017,   

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5537092/.   Accessed   Sep   2021.   

Miyazaki,   Mitsue,   and   Masaaki   Akahane.   “Non-Contrast   Enhanced   MR   Angiography:   Established   

Techniques.”    Journal   of   Magnetic   Resonance   Imaging ,   vol.   35,   2012.   

  

  

57   

https://www.adsc.com/blog/what-are-the-differences-between-pacs-ris-cis-and-dicom
https://doi.org/10.1007/s10439-016-1762-8
https://www.ncbi.nlm.nih.gov/books/NBK53086/


  

Nishimura,   Dwight   G.,   et   al.    Magnetic   Resonance   Angiography .   IEEE   Transactions   on   Medical   

Imaging,   VOL.   MI-5,   NO.   3,   Sep   1986.   

  

  

  

  

  

  

  

  

58   


