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Abstract20

Multi-observable probabilistic inversions are gaining popularity for imaging the physic-21

ochemical structure of the lithosphere. Of particular interest is the joint inversion of mag-22

netotelluric (MT) with seismic data as they are inherently sensitive to different phys-23

ical properties (viz. electrical conductivity and seismic velocity) and, therefore, provide24

complementary information on the thermochemical structure, fluid pathways and wa-25

ter content. Since both data sets can strongly constrain the first-order thermochemical26

structure of the lithosphere, this background effect can be ‘filtered out’ from the data27

to isolate the contribution of anomalous features. This information is critical for under-28

standing the complex fluid-rock interactions responsible for mineralization events and29

water-assisted tectonism.30

Joint probabilistic inversions of MT and seismic data have been successfully im-31

plemented in the context of 1D MT data only. In the case of 2D and 3D MT data, prob-32

abilistic approaches have, up until now, been impractical due to the large computational33

cost of the MT forward solver. We have recently presented a novel strategy (Manassero34

et al., 2020), called RB+MCMC, that reduces the computational cost of the forward so-35

lution and makes it possible to perform probabilistic inversions of 3D MT data. In this36

contribution, we adopt this strategy to jointly invert 3D MT and surface-wave (SW) dis-37

persion data in a fully probabilistic manner for imaging the electrical conductivity of the38

lithosphere including deep thermochemical anomalies and fluid pathways. The results39

of these first joint probabilistic inversions of 3D MT and SW data present the initial steps40

towards the inclusion of 3D MT data into multi-observable probabilistic inversions for41

the structure of the Earth’s interior.42

1 Introduction43

Joint inversions of two or more geophysical data sets are a common practice for imag-44

ing the Earth’s interior and elucidating the physical state of the planet. When the in-45

verted data sets have complementary sensitivities to the properties of interest, joint in-46

versions can significantly reduce the ambiguity inherent in single-dataset inversions, achieve47

more stable solutions and enhance model resolution. Perhaps more importantly, certain48

properties of the Earth’s interior can only be revealed by combining observations from49

different techniques. An example is the bulk composition of the lithospheric mantle, which50

requires independent constrains on the bulk density (e.g. from gravity data sets) and shear-51

wave velocity (e.g. from surface-wave data). Recent discussions on the benefits and lim-52

itations of joint approaches for imaging the structure of the lithosphere and upper man-53

tle can be found in e.g. Khan et al. (2006); J. Afonso et al. (2013a); J. C. Afonso, Moorkamp,54

& Fullea (2016) and Moorkamp (2017).55

The joint inversion of magnetotelluric (MT) with seismic data (e.g. Khan et al.,56

2006; Moorkamp et al., 2007; Gallardo & Meju, 2007; Jegen et al., 2009; Moorkamp et57

al., 2010; Vozar et al., 2014; Bennington et al., 2015; J. C. Afonso, Rawlinson, et al., 2016;58

Jones et al., 2017) is of particular interest as they offer complementary sensitivities to59

temperature, composition and fluid/melt content that are impossible to obtain with other60

data sets (e.g. Gallardo & Meju, 2007; Moorkamp et al., 2007; Jones et al., 2009; Moorkamp61

et al., 2010; Selway et al., 2019). The traditional MT-seismic inversion algorithm of Gal-62

lardo & Meju (2007), for example, explores this differential sensitivity to structurally con-63

strain (via cross-gradients) MT and seismic models in the shallow subsurface. However,64

the general validity of the cross-gradient assumption at lithospheric depths is unwarranted.65

In the context of whole-lithosphere structure, seismic data (or joint seismic-gravity) can66

put relatively tight constrains on the background (or regional) thermochemical struc-67

ture. Given the strong dependence of the electrical conductivity of rocks to this ther-68

mochemical structure, hydrogen content, minor conductive constituents and fluid/melt69

content (R. Evans, 2012; Yoshino, 2010; Khan, 2016; Selway, 2014), MT data not only70
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offer good sensitivity to the background fields but it also gives us relevant information71

about thermochemical anomalies and fluid pathways in the lithosphere. For this reason,72

any discrepancy in the background structure required by MT and seismic data can there-73

fore be related to factors other than temperature and bulk composition. This makes MT-74

seismic joint inversions a powerful means to detect fluid pathways in the lithosphere, (e.g.75

Selway & O’Donnell, 2019; R. L. Evans et al., 2019), including the locus of partial melt-76

ing, ore deposits and hydrated (or metasomatized) lithologies. This unique potential of77

joint MT-seismic inversions has given impetus to acquire collocated MT and seismic data78

over large regions. Concrete examples are the MAGIC and EarthScope USArray in USA79

(www.usarray.org), the AusLAMP program and AusArray in Australia (www.ga.gov.au/eftf/minerals/nawa),80

the IberArray (www.iberarray.ictja.csic.es/) in Europe and the Sinoprobe in China (www.sinoprobe.org).81

These programs are providing high-quality seismic and MT data with unprecedented res-82

olution and coverage, allowing the pursue of large-scale 3D joint inversions for the phys-83

ical state of the whole lithosphere and upper mantle.84

The actual joint inversion of MT with seismic data is, however, still a matter of much85

debate. While traditional deterministic methods are computationally efficient, they are86

not well prepared to deal with the inherent non-uniqueness of geophysical data sets, and87

MT data in particular (e.g Wait, 1962; Parker, 1971; Oldenburg, 1979; Mallick & Verma,88

1979; Parker, 1980). They are also generally unstable with respect to measurement and/or89

modeling errors (thus requiring strong regularization) and ill-suited for global uncertainty90

analysis (e.g. J. C. Afonso, Moorkamp, & Fullea, 2016; Moorkamp, 2017). In contrast91

to traditional approaches, probabilistic inversion methods (Tarantola, 2005; Gregory, 2005;92

Mosegaard & Hansen, 2016) offer a robust means to overcome the above-mentioned lim-93

itations. Within probabilistic or Bayesian approaches, the solution to the inverse prob-94

lem is given by the posterior probability density distribution (pdf) over the model pa-95

rameter space. This posterior pdf contains detailed information about the unknown pa-96

rameters and their uncertainties conditioned on the data and modeling assumptions, and,97

as such, it represents the most general solution to the inverse problem. In high-dimensional98

and/or non-linear problems with complex priors, the posterior pdf cannot be represented99

analytically and it is typically estimated using point-wise sampling algorithms (e.g. Metropo-100

lis algorithm, Mosegaard & Tarantola, 1995; Gilks et al., 1995; Tarantola, 2005; Gregory,101

2005). Joint probabilistic inversions of MT and seismic data have been successfully im-102

plemented by e.g Khan et al. (2006, 2008); J. Afonso et al. (2013a); J. C. Afonso et al.103

(2013b); Vozar et al. (2014) and Jones et al. (2017) in the context of 1D MT data only.104

In the case of 2D and 3D MT data, however, joint probabilistic approaches have been105

so far rendered impractical due to the large computational cost of the MT forward prob-106

lem, as the number of forward solutions required are typically on the order of 105−107.107

In recent years, various methods and strategies for reducing the cost of full forward108

solutions have been proposed (see reviews in Frangos et al., 2011; Peherstorfer et al., 2018).109

The general idea behind these methods is the construction of an approximation, called110

the low-fidelity or surrogate model, which can be used instead of, or combined with, the111

costly full forward or high-fidelity solution. Having a faster surrogate of the forward prob-112

lem is beneficial in a number of contexts, but it is particularly attractive in the context113

of Markov chain Monte Carlo (MCMC) schemes used to estimate the posterior pdf in114

a probabilistic inversion (Christen & Fox, 2005; Cui et al., 2015; Florentin & Dı́ez, 2012;115

Conrad et al., 2016; Galabert et al., 2019; Manassero et al., 2020; J. Zhang & Taflani-116

dis, 2019). In traditional implementations, the surrogates are computed in an offline stage117

(prior to the probabilistic inversion) at specific locations within the parameter space called118

‘snapshots’. However, it has been recently shown (Cui et al., 2015; Yan & Zhou, 2019;119

J. Zhang & Taflanidis, 2019; Galabert et al., 2019; Manassero et al., 2020) that in the120

context of high- and ultra-high-dimensional probabilistic inversions, it is practically im-121

possible to pre-explore the parameter space in an offline stage to create surrogates that122

will guarantee accurate solutions within the so far unknown high-probability regions. In123

these situations, an adaptive MCMC approach where the surrogate is refined online dur-124
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ing the MCMC simulation is a more effective and efficient approach. A strategy to re-125

duce the computational cost of the 3D MT forward solver and perform full probabilis-126

tic 3D MT inversions has recently been presented by Manassero et al. (2020). This novel127

strategy, called RB+MCMC, combines i) an efficient parallel-in-parallel structure to solve128

the 3D MT forward problem, ii) a Reduced Basis Method to create fast and accurate129

surrogate models of the high-fidelity solution, and iii) adaptive strategies for both the130

MCMC algorithm and the surrogate model.131

This paper builds on our previous work (Manassero et al., 2020) and presents the132

first joint inversion of 3D magnetotelluric and surface-wave data within the context of133

MCMC-driven, fully probabilistic inversions. Specifically, we focus on a realistic 3D map-134

ping of the electrical conductivity structure of the lithosphere including the locus of deep135

thermochemical anomalies and fluid pathways. We adopt the RB+MCMC strategy to136

compute 3D MT surrogate models and propose complementary parameterizations to cou-137

ple both data sets. The results presented here demonstrate the capabilities of our con-138

ceptual and numerical framework for 3D joint probabilistic inversions of MT with surface-139

wave data in particular, and with other data sets in general.140

The manuscript is organized as follows. Section 2 introduces the Bayesian formu-141

lation to the inverse problem and describes a particular MCMC algorithm, the Cascaded-142

Metropolis, that will be useful in the joint inversion. Section 3 outlines the forward prob-143

lems used in our implementation i) the magnetotelluric forward problem and the gen-144

eral RB+MCMC approach to produce fast surrogate approximations, and ii) the surface-145

wave forward solver. The parameterization and sampling strategies are described in Sec-146

tions 4 and 5, respectively. Section 6 includes numerical examples of joint probabilistic147

inversion of whole-lithosphere models to illustrate the benefits and limitations of the method.148

Section 7 discusses relevant aspects for the application of our approach to real inversions.149

Finally, a summary of the main results and potential of our approach are presented in150

Section 8.151

2 Bayesian Inversion152

Within the context of Bayesian inference, the most general solution to the inverse
problem is represented by a multi-dimensional probability density function (PDF) over
the combined parameter-data space (cf. Tarantola & Valette, 1982; Gilks et al., 1995;
Mosegaard et al., 2002; Gregory, 2005; Mosegaard & Hansen, 2016). This distribution
is known as the posterior PDF and can be thought of as an objective measure of our best
state of knowledge on the problem at hand. It is obtained as a conjunction of the avail-
able information on the model parameters (m), the data (d), and their uncertainties.
In particular, the marginal posterior PDF over the model parameters, P (m|d), is for-
mally given by

P (m|d) ∝ L(m)P (m). (1)

where P (m) is a PDF encoding a priori information on the parameter space (what we153

know or believe about the unknown model parameters prior to considering the actual154

data) and L(m) is the so-called likelihood function, which describes the probability of155

obtaining the observed data d given m. In general, P (m|d) will be non-linear and high-156

dimensional (and possibly multi-peaked), with no simple analytical description. When157

this is the case, unbiased approximations of P (m|d) are commonly obtained via Markov158

chain Monte Carlo (MCMC) methods (Gilks et al., 1995; Mosegaard & Tarantola, 1995;159

Tarantola, 2005; Gregory, 2005). These type of algorithms are designed to output Markov160

chains that have P (m|d) as their equilibrium distributions by repeatedly drawing mod-161

els mt and evaluating their posterior probability P (mt|d). A large number of MCMC162

methods have been proposed in the literature, all with relative merits and drawbacks.163

We refer the reader to the excellent monographs by e.g. Tarantola & Valette (1982); Gilks164

et al. (1995); Gregory (2005); Calvetti & Somersalo (2007) and Mosegaard & Hansen (2016)165
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for in-depth treatments of Bayesian and MCMC methods applied to inverse problems.166

In the following, we restrict ourselves to describing only the most relevant theoretical167

and computational aspects for our purposes.168

2.1 The Likelihood Function169

The construction of an appropriate likelihood function L(m) is a critical part of
any Bayesian inference problem. L(m) is typically specified by the distribution of the
data uncertainty, which includes both observational and modelization errors. In most
cases, observational errors are relatively straightforward to model. Modelization errors,
on the other hand, are more complex (and commonly ignored in most geophysical stud-
ies) to describe and typically involves exploratory assessments of both numerical errors
- e.g. convergence analyses - and Monte Carlo estimates of the correlations between dif-
ferent data sets (see discussions and approaches in Gouveia & Scales, 1998; J. Afonso
et al., 2013a). In the convenient (and most popular) case where both observational and
modelization errors can be assumed to be approximately Gaussian, the likelihood func-
tion takes the form:

L(m) ∝
(
− 1

2
(g(m)− d)t(Cd + CT )−1(g(m)− d)t

)
, (2)

where Cd and CT are the covariance matrices representing the data and theoretical (model)170

uncertainties, respectively, and g(m) denotes the data predicted by the forward prob-171

lem for model m. The term within the parenthesis in Eq. 2 is commonly referred to as172

the misfit of model m.173

In the case of joint inversions of uncorrelated observational data sets, the likelihood
function can be written as the product of partial likelihoods:

L(m) =
∏
Lj(m), (3)

where Lj refers to the likelihood associated with the dataset dj . The assumption of in-174

dependent observational data is well justified in most practical situations, an in partic-175

ular in the MT+seismic case discussed in this paper, as different data sets are commonly176

gathered in separate surveys using different instrumentation. An important practical ad-177

vantage of the factorization of the likelihood into partial likelihoods (Eq. 3) is that it makes178

it possible to adopt a Cascaded Metropolis (CM) approach (Tarantola, 2005; B. Hassani179

& Renaudin, 2013), which is typically more efficient than a standard Metropolis-Hastings180

algorithm applied to the total likelihood.181

2.2 Cascaded-Metropolis Algorithm182

The CM algorithm is particularly useful when the different data sets jointly inverted183

are uncorrelated, have complementary sensitivities to different aspects of the problem,184

and at least one of the forward solvers is more computationally demanding than the oth-185

ers. The basic idea is to apply a Metropolis criterion sequentially to each partial pos-186

terior (prior × partial likelihood), which becomes an updated prior in the evaluation of187

the subsequent partial posterior (e.g. B. Hassani & Renaudin, 2013; B. K. Hassani & Re-188

naudin, 2018). The practical benefits of the above procedure are significant when the189

partial likelihoods are arranged in order of computational complexity or cost, as there190

is no need to compute expensive forwards for models that are rejected early in the se-191

quence (see e.g. Tarantola, 2005, for further details).192

The basic procedure for the case of two forward operators is as follows: For a new
sample mt, the first partial posterior P1(mt|d) = L1(mt)P (m) is always computed us-
ing the computationally inexpensive forward. If P1(mt|d) > P1(mt−1|d), this first pos-
terior becomes a prior in the evaluation of the second partial posterior which is now ob-
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tained from the expensive forward:

P2(mt|d) = L2(mt)P1(mt|d). (4)

If P1(mt|d) < P1(mt−1|d), the algorithm randomly decides to evaluate P2(mt|d) or193

to reject the proposed moved with a probability P = P1(mt|d)/P1(mt−1|d) of going194

to the second step. At the second step, the acceptance of the proposed move is computed195

as in the standard Metropolis-Hastings algorithm. In this work, P1(mt|d) and P2(mt|d)196

correspond to the surface-wave dispersion solver and the 3D MT solver, respectively (see197

details in Section 3).198

We will also make use of the Adaptive Metropolis (AM) approach of Haario et al.199

(2001) to ameliorate the problem of choosing an optimal proposal before the start of the200

MCMC simulation and to obtain a more efficient sampling strategy of the parameter space201

that exploits correlations in the model parameters. We leave the presentation of this method202

to Section 5, where the general sampling strategy is discussed in detail.203

3 Forward Problems204

3.1 The Magnetotelluric Forward Problem205

In this section, we introduce the 3D magnetotelluric (MT) forward problem, the206

finite-element high-fidelity solver and the RB+MCMC approach to compute surrogate207

solutions. The reader is referred to Douglas Jr et al. (1999, 2000) and Zyserman & San-208

tos (2000) for an in-depth treatment of the theory behind the formulation of the 3D MT209

problem and to (Part I; Manassero et al., 2020) for a detailed description of the surro-210

gate approach.211

3.1.1 High-fidelity solver for the MT forward problem in 3D212

Using the secondary field formulation of Douglas Jr et al. (1999, 2000) and the ab-213

sorbent boundary conditions defined by Sheen (1997), the MT forward problem in 3D214

is defined as follows:215

Find E and H such that216

σE−∇×H = −F in Ω, (5a)

iωµ0H +∇×E = 0 in Ω, (5b)

(1− i)PτaE + ν ×H = 0 on ∂Ω ≡ Γ, (5c)

where E is the electric field [V/m]; H is the magnetic field [A/m]; µ0 is the magnetic per-217

meability of free space [V s/Am]; σ is the electrical conductivity [S/m] of the medium218

Ω ∈ R3 and Γ ≡ ∂Ω is the boundary of the domain Ω. a is defined as a = (σ/2ωµ0)1/2219

and Pτϕ = ϕ− ν(ν ·ϕ) is the projection of the trace of any vector ϕ on Γ where ν is220

the unit outer normal to Γ.221

High-fidelity numerical solutions to Eqs. 5 are sought via an optimized version of
the finite element (FE) code developed by Zyserman & Santos (2000). In this optimized
version, once the variational formulation of Eqs. 5 is discretized in terms of the FE shape
functions, Eqs. 5 are converted into the following linear system of equations:

KU = F, (6)

where KNFE×NFE is a sparse and symmetric matrix (the so-called FE stiffness matrix )222

and NFE is the number of degrees of freedom (usually very large). FNFE×1 is the force223

vector and UNFE×1 is a vector containing the unknown coefficients for the electric field224

in the whole domain. In MT, the numerical forward solution for a conductivity model225
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requires the computation of two (typically orthogonal) components of the electromag-226

netic (EM) fields per frequency. Here, these components are referred to as USi

and USi
⊥ ,227

for a frequency i. Once these solutions are computed, their coefficients and the FE shape228

functions are used to derive the electric and magnetic fields in the whole domain and at229

the surface of the Earth (for comparison with the observed data). It is worth noting that230

although the EM fields that satisfy Eqs. 5 are the actual solution to the forward prob-231

lem, we will refer to the vector U (either USi

or USi
⊥) as the high-fidelity solution to232

the forward problem.233

As previously mentioned, the overall cost of computing the high-fidelity solution234

has been the main limitation preventing probabilistic inversions of 3D MT data. In the235

following section, we briefly describe the RB+MCMC strategy introduced in our pre-236

vious paper (Manassero et al., 2020) to obtain fast and accurate approximations of the237

high-fidelity solutions.238

3.1.2 Surrogate solutions: A Reduced Basis + MCMC approach239

The RB+MCMC approach combines three main elements i) a Reduced Basis (RB)240

method to obtain fast approximations of the high-fidelity solution; ii) an MCMC algo-241

rithm that drives the sampling of the parameter space and iii) an efficient parallel-in-242

parallel structure to solve the 3D MT forward problem (for both the surrogate and high-243

fidelity solvers). The first level of parallelization is defined by frequency, i.e. different pro-244

cessors are in charge of computing the forward solution for different frequencies. The sec-245

ond level of parallelization includes a group of processors linked to each frequency which246

compute (when needed) the costly high-fidelity solutions using the parallel solver MUMPS247

(Amestoy et al., 2001, 2006).248

The general idea behind RB approaches is to seek for surrogate solutions as pro-249

jections onto a space of small dimensionality, referred to as the reduced basis. We gen-250

erate a reduced basis space VRB per frequency and field orientation, with dimension NRB �251

NFE and basis vectors Vj . These bases are high-fidelity solutions of Eqs. 6 for specific252

realizations θ of the conductivity model, σ(x, θ). In contrast to traditional RB approaches,253

these bases are not sampled in a pre-inversion stage, but rather during the MCMC in-254

version. In this way, each VRB is automatically updated (enriched) by adding new bases255

as needed during the evolution of the MCMC chain. This online enrichment approach256

circumvents the need of costly offline stages to build the reduced basis and increases the257

overall efficiency of the method (e.g. Manassero et al., 2020).258

In the following, we summarize the main steps of the RB+MCM procedure. Note259

that items (i)−(iv) are implemented per frequency i and field orientation (Si and Si⊥):260

1. If there are bases available from an offline stage or from a preliminary probabilis-261

tic inversion, we load these bases as the initial basis matrix VRB. Otherwise, we262

compute the high-fidelity solution of the starting model of the Markov chain and263

add it as a column vector in the initial VRB .264

2. For a new sample mt = σ(x, θ), we first seek for a surrogate solution to the for-
ward problem by solving

KRB(θ)a = FRB(θ) (7)

for the the coefficients a(θ); where KRB(θ)NRB×NRB = VRB
TK(θ)VRB is the RB265

matrix,266

FRB(θ)NRB×1 = VRB
TF(θ) is the RB force vector and VRB

NFE×NRB = [V1,V2, ...,VNRB
]

is the matrix of basis vectors of VRB. The surrogate solution, URB(θ), is then found
as a linear combination of the basis vectors in VRB by substituting the coefficients
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a(θ) into the following equation:

URB(x, θ) =

NRB∑
j=1

aj(θ)Vj = VRBa(θ). (8)

Since the linear system of Eqs. 7 is of size NRB � NFE , its computational cost267

is only a small fraction of the time consumed in solving Eqs. 6.268

3. The following relative error is computed to asses the accuracy of the surrogate (Quar-
teroni et al., 2015; Hesthaven et al., 2016):

RRB :=
||KURB − F||

||F||
, (9)

where || · || is the L2 norm.269

4. The surrogate solution is considered admissible if the RRB verifies RRB ≤ β for270

a prescribed tolerance β.271

5. If all the errors RRB are smaller than β, we accept URB
Si

and URB
Si
⊥ as good272

approximations of the high-fidelity solution for all frequencies. In this case, the273

corresponding approximate likelihood, L2(mt), is computed and the sample is ei-274

ther accepted or rejected according to the Metropolis-Hastings (MH) criterion.275

6. In the case of any RRB � β, the high-fidelity FE solution for that frequency and276

component of the EM field is computed for mt and added as a new basis vector277

to enrich the corresponding space VRB . Since the posterior probabilities of the pro-278

posed sample mt and that of the current sample mt−1 are no longer comparable279

(i.e. they were computed with different solvers, FE and RB, respectively), we re-280

compute the surrogate solution (and the associated likelihood) at sample mt−1281

using the newly enriched RB space. If mt is rejected by the MH criterion, a new282

trial m∗t is proposed in the vicinity of mt and its likelihood is computed with the283

newly enriched RB space. This new trial m∗t is accepted/rejected according to a284

modified Metropolis ratio to account for the delayed rejection (i.e. two propos-285

als) step (see e.g. Haario et al., 2006; Mira et al., 2001).286

As explained in Manassero et al. (2020), the last step above is required to preserve287

the ergodicity of the algorithm, but it is not the only possible option. We refer the reader288

to our previous work (Manassero et al., 2020) for further details on the combined RB+MCMC289

approach and additional functionalities to improve the efficiency of the method (e.g. use290

of variable tolerances and Singular Value Decomposition of the basis).291

3.2 The Surface-Wave Forward Problem292

Surface waves provide one of most valuable data sets to study the lithospheric struc-293

ture (Yang et al., 2008; Huang et al., 2009). One of the most common approaches in-294

volves the generation of dispersion curves or maps and the subsequent inversion of these295

curves for the velocity structure at depth. Here we compute dispersion curves as func-296

tions of 1D vertical velocity structures with a modified version of the forward code disp96297

(Herrmann & Ammon, 2002; J. C. Afonso et al., 2013b; J. C. Afonso, Rawlinson, et al.,298

2016) . We compute anelastic wave velocities (Vs and Vp ) of mantle rocks as (J. C. Afonso299

et al., 2005, 2008, 2010):300

Vs = Vs0(T, P )[1− (1/2)cot(απ/2)Q−1s (To, T, P, d)], (10)

Vp = Vp0(T, P )[1− (2/9)cot(απ/2)Q−1s (To, T, P, d)], (11)

where Vs0 and Vp0 are the unrelaxed, high-frequency (anharmonic) wave velocities at a301

given temperature (T) and pressure (P) (cf. J. C. Afonso et al., 2010). Without loss of302
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generality, here we compute them as303

Vp0 = V refp +
∂Vp
∂T

∆T +
∂Vp
∂P

∆P, (12)

Vs0 = V refs +
∂Vs
∂T

∆T +
∂Vs
∂P

∆P, (13)

where V refp and V refs are reference velocities at Tref and Pref ; ∆T = T − Tref and
∆P = P−Pref . The factor Q−1s is obtained as (Jackson et al., 2002; Jackson & Faul,
2010)

Q−1s = A
[To
d

exp(
−E + V P

RT
)
]α
, (14)

where To is the oscillation period, d is grain size, E is the activation energy, V is the ac-304

tivation volume, α is an empirical exponent, A is a pre-exponential constant and R is305

the universal gas constant. Although more sophisticated/realistic approaches for com-306

puting anelastic seismic velocities are possible (e.g. Matas & Bukowinski, 2007; Khan307

et al., 2008; J. Afonso et al., 2013a; J. C. Afonso et al., 2013b; Vozar et al., 2014), the308

set represented by Eqs. 10-14 is sufficient for the goals of this paper.309

4 Model Parameterization and Discretization310

A key difficulty in the joint inversion of two or more disparate geophysical data sets311

is how to define the interdependence between model parameters in an internally consis-312

tent manner. For instance, if our goal was to jointly invert first arrivals of compressional313

waves (Vp) and gravity anomalies (a common approach in geophysics), we would need314

to answer the following question: how is Vp related to bulk density in our medium? A315

typical assumption in this case is considering a linear correlation between Vp and den-316

sity (e.g. Birch, 1961, 1964; Feng et al., 1986; Yasar & Erdogan, 2004). While this is a317

popular and practical assumption, the actual relationship between Vp and density also318

depends on temperature, pressure and bulk composition (see e.g. J. Afonso et al., 2013a;319

Guerri et al., 2016). Several authors therefore distinguish between primary and secondary320

parameters (e.g. Bosch, 1999; Khan et al., 2006; J. Afonso et al., 2013a). The latter are321

the most commonly used in geophysical inversions and refer to those that enter the gov-322

erning equations of the forward problems (e.g. Vp, density, electrical conductivity); the323

former are more fundamental in their nature and thus control the values of the secondary324

ones (e.g. temperature, porosity, pressure).325

In the case of joint inversions of SW and MT data, the primary parameters con-326

trolling both the seismic velocities and electrical conductivity (σ) in the mantle are tem-327

perature (T ), bulk major-element composition (C) and pressure P (e.g Jones et al., 2009;328

Fullea et al., 2011; R. Evans, 2012; Selway, 2014). Using empirically calibrated equations329

of state of the type Vp(T, P,C), Vs(T, P,C) and σ(T, P,C), and thermodynamic constraints,330

we can establish direct relationships between the primary and secondary parameters (Bosch,331

1999; Xu et al., 2000; Khan et al., 2006; Jones et al., 2009; Yoshino, 2010; Fullea et al.,332

2011). Since the electrical conductivity is also highly sensitivity to hydrogen content, mi-333

nor conductive constituents and localized melt/fluid pathways, we can explicitly write334

σ(T, P,C,X), where X stands for any factor other than the bulk major-element com-335

position of the rock. This distinction emphasizes the fact that although both seismic ve-336

locities and electrical conductivity can constrain the background T -P -C field, the elec-337

trical conductivity offers sensitivity to additional factors. The chosen model parameter-338

ization should thus be able to accommodate representative variations in both primary339

parameters (that simultaneously control Vp, Vs and σ) and those responsible for conduc-340

tivity anomalies above the background values. At the same time, as in any other inverse341

geophysical problem, the choice of model parameterization needs to be based on the prin-342

ciples of i) flexibility, ii) parsimony, iii) parameter identifiability and iv) suitability for343

the intended use.344
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With all of these in mind, and given our particular interest in lithospheric-scale imag-345

ing, we focus on a mixed parameterization of the conductivity distribution as the super-346

position of two contributions: a background conductivity related to the long-wavelength347

thermo-physical state of the lithosphere and an anomalous conductivity distribution as-348

sociated with the presence of features such as fluid pathways, melt-rich regions, hydrogen-349

rich domains, anomalous mineral assemblages, etc. Following J. Afonso et al. (2013a);350

J. C. Afonso et al. (2013b), we choose the depth to the lithosphere-asthenosphere bound-351

ary (LAB) and the bulk mantle composition as the main model parameters to constraint352

the background velocity and conductivity structures. We discuss this paramaterization353

in more detail in Section 4.1. In order to account for smaller-scale conductivity anoma-354

lies superimposed on the background, we use a more standard paramaterization based355

on conductivity nodes. This paramaterization is only relevant to the MT forward prob-356

lem and it is described in detail in Section 4.2. As shown in the numerical examples of357

Section 6, the advantage of using this combined parameterization is that a rapid con-358

vergence is achieved by using the LAB depths to constrain the first-order conductivity359

background at the beginning of the inversion. Once this first-order convergence has been360

achieved, the nodal values are used to locally modify the background to fit the smaller-361

scale features of the data.362

4.1 Background parameterization363

The 3D numerical model is made up of a collection of Mcol columns (see Fig 1.b).
Each individual column is characterized by its own LAB depth. Here, we identify the
LAB with the depth to the 1250◦C isotherm (cf. J. C. Afonso, Moorkamp, & Fullea, 2016).
In order to obtain the background conductivity structure from the LAB structure, we
first compute the thermal profile of each column by solving the steady-state heat trans-
fer problem with Dirichlet boundary conditions at the surface (T0=10◦C) and bottom
of the lithosphere (TLAB=1250◦C). For simplicity, but without loss of generality, we as-
sume a linear temperature gradient between the LAB and 410 km depth, where the tem-
perature is fixed at T410=1550◦C. This gradient is extrapolated to the bottom of the nu-
merical domain (460 km). A pressure profile is also computed in each column using the
following quadratic lithostatic-type approximation:

P (z) = 0.99× (4.4773× 10−3z2 + 3.2206× 104z − 1.284278× 108), (15)

where P is pressure in Pa and z is depth in meters.364

As a further simplification, we assume a dry and homogeneous mantle composition365

with the following mineral modes: 56, 18.2 ,10.8 and 15 vol% for olivine, orthopyroxene,366

clinopyroxene and garnet, respectively. While more realistic/sophisticated approaches367

to map major-element composition into mineral phases should be used when working with368

real data (e.g. Khan et al., 2006; J. Afonso et al., 2013a; J. C. Afonso et al., 2013b; J. C. Afonso,369

Rawlinson, et al., 2016; Jones et al., 2017), this simplification does not affect the main370

results and conclusions of this paper. The electrical conductivity for each mineral phase371

is obtained using Eq. A3 with parameters specified in Table A1 and the bulk electrical372

conductivity (i.e. that of the mineral aggregate or rock) of each FE cell in the mantle373

is computed using the Hashin-–Shtrikman averaging scheme (Hashin & Shtrikman, 1962,374

1963). In the numerical examples shown here, the conductivity in the crust (Moho at375

49 km depth) is held constant and equal to 20, 000 Ωm.376

For the surface-wave dispersion problem, each 1D column is further subdivided into
60 layers, each with constant density and wave velocities. The density of each layer is
computed as a function of T and P values at the depth of its mid-point as follows:

%(P, T ) = %0 + 1− α(T − T0) + β(P − P0), (16)

with %0 = 3355 kg/m3, T0 = 10◦C, P0 = 0 Pa, α = 3.6 × 10−5 1/◦C and β = 1.1 ×377

10−111/Pa. For a particular layer, the Vp and Vs are obtained using Eqs. 10 and Eq. 14378

–10–



manuscript submitted to JGR: Solid Earth

Table 1: Parameters used in the computation of Vs0 and Vp0.

Tref 800.0◦C
Pref 0 Gpa
∂Vp/∂T −5.1× 10−4 (km/sC)
∂Vp/∂P 0.110 (km/sGPa)
∂Vs/∂T −3.3× 10−4 (km/sC)
∂Vs/∂P 0.03 (km/sGPa)

with the following values: Av = 750s−α µmα, α = 0.26, E = 424 kjmol−1, V = 1.3×379

10−5 m3mol−1 and grain size d = 5.0 µm. Given the periods of interest for surface380

waves, we adopt To = 50 s in Eq. 14 (Liu et al., 1976; Lebedev & Van Der Hilst, 2008;381

Moorkamp et al., 2020). The values for the parameters used in Eqs. 12 and 13 are listed382

in Table 1 (after J. C. Afonso et al., 2010).383

4.2 Node-based parameterization384

Any conductivity anomaly that departs from the background is described with Nnodes385

nodes located within the numerical domain. In order to define the nodal locations (Fig.386

8), the domain is first sub-divided into horizontal layers of variable thickness. The mid-387

points of these layers correspond to the nodal depths. Considering that bodies with di-388

mensions smaller than the electromagnetic skin depth cannot be resolved by the MT data,389

the horizontal distance between different locations within each layer is chosen relative390

to the skin depth for the range of periods and apparent resistivities shown in the observed391

data (see for example Figs. 13). The parameters of interest to be retrieved by the in-392

version are the conductivity values of these nodes. During the probabilistic inversion,393

the nodal values are interpolated to each FE cell of the numerical domain via kriging in-394

terpolation (see e.g. Cressie, 1993; Omre, 1987; Williams & Rasmussen, 1996) using spa-395

tially varying correlation lengths (Section B1). Details about the implementation of the396

interpolation are given in Section Appendix B of the Appendix.397

Intuitively, the range of anomalous conductivity values for the nodes should allow398

for positive and negative perturbations with respect to the background. However, as the399

electrical conductivity values can span several orders of magnitude, nodal values are typ-400

ically obtained from proposal distributions defined in logarithmic scale (e.g. Jeffreys and401

log-normal distributions). Since the domain of the logarithmic function is the set of all402

positive real values, the sampled conductivity values (in linear scale) are always positive.403

In practice, this is not a limitation, as resistive structures (i.e. negative perturbations404

from the background) are generally determined solely by changes in the thermo-physical405

state (e.g. temperature and/or composition changes) whereas anomalous features of in-406

terest, such as presence of melt an/or fluid, hydrogen content, grain-boundary graphite407

films and interconnected sulfides produce positive conductivity anomalies (e.g. Selway,408

2014; Hu et al., 2017).409

5 Sampling Strategy410

The sampling strategy is specifically tailored to take advantage of the differential411

sensitivities of the SW and MT data sets to the conductivity structure of the lithosphere.412

With this in mind, we subdivide the MCMC inversion into four main stages. The first413

stage aims to constrain the background conductivity associated with the first-order tem-414

perature structure defined by the LAB depths (if we were interested in inverting for bulk415

chemical composition, we would also sample this parameter). In the second stage, con-416
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ductivity anomalies over the background start to be sampled. During these first two stages,417

we sample both the LAB depths and the conductivity nodes using a metropolized-independent418

sampler. Once enough information (i.e. enough samples) has been acquired for both sets419

of parameters, we incorporate adaptive strategies to efficiently sample the full param-420

eter space during the third and fourth stages. We briefly describe each of these stages421

below.422

5.1 First stage: focus on background fields423

i Randomly select a column in the 3D domain using a metropolized-independent sam-424

pler.425

ii Randomly propose an LAB depth for that column from its proposal distribution.426

iii Re-compute the temperature and pressure profiles and update the conductivity and427

wave velocities (mt), as explained in Section 4.1.428

iv Evaluate the first partial likelihood P1(mt|d) with the SW solver.429

v Evaluate P2(mt|d) with probability P =P1(mt|d)/P1(mt−1|d) using the MT for-430

ward solution:431

(a) Seek for a surrogate RB solution to the 3D MT forward problem (Section 3.1.2).432

(b) If RRB < β for all frequencies, mt is accepted or rejected according to the Metropolis-433

Hastings criterion.434

(c) If any RRB > β, the high-fidelity FE solution is computed at mt. The RB sur-435

rogate is recomputed at mt−1 and the algorithm proposes a new move in the vicin-436

ity of mt whose acceptance is evaluated with a Delayed Rejection criterion (Sec-437

tion 3.1.2).438

5.2 Second stage: conductivity nodes begin to be sampled439

When the number of MCMC steps reaches a predefined number of simulations (LAB-440

stage):441

i Randomly chose a type of parameter to sample (i.e. LAB depths or nodes) at each442

MCMC step.443

ii If chosen parameter = LAB, the algorithm follows the first stage.444

iii If chosen parameter = conductivity nodes:445

(a) Randomly select n1 nodes at a time, with all nodes having the same probability446

of being chosen.447

(b) Assign a random conductivity value to each node from their individual proposal448

distributions.449

(c) Update the 3D conductivity model via kriging interpolation.450

(d) P1(mt|d) remains unchanged, i.e. it only changes when a new LAB value is pro-451

posed.452

(e) Evaluate P2(mt|d) with the MT solver following items (a)-(c) of the first stage.453

5.3 Third stage: adaptive strategy for the LAB depths454

When the number of MCMC steps reaches a predefined number of simulations (LAB-455

adapt):456

i Compute a new multivariate Gaussian proposal distribution (via the Adaptive Metropo-457

lis algorithm of Haario et al. (2001)) using the history of the MCMC chains. This458

proposal now has information about spatial correlations in the LAB.459

ii Randomly chose a type of parameter to sample (i.e. LAB depths or nodes) at each460

MCMC step.461
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iii If chosen parameter = LAB:462

(a) Randomly select m columns at a time, with all columns having the same prob-463

ability of being chosen.464

(b) Propose a new sample for the selected LAB depths using the global multivariate465

Gaussian proposal.466

(c) Follow items (iii)-(v) of the first stage.467

iv If chosen parameter = conductivity nodes, the algorithm follows items (a)-(f) of the468

second stage.469

5.4 Fourth stage: adaptive strategy for the conductivity nodes470

When the number of MCMC steps reaches a predefined number of simulations (nodes-471

adapt):472

i Compute a multivariate log-normal proposal distribution via the Adaptive Metropo-473

lis algorithm using the MCMC chains of all nodes.474

ii Randomly chose a type of parameter to sample (i.e. LAB depths or nodes) at each475

MCMC step.476

iii If chosen parameter = LAB, follow item (iii) of the third stage.477

iv If chosen parameter = conductivity nodes:478

(a) Randomly select n2 nodes with a metropolized-independent sampler.479

(b) Use the multivariate log-normal distribution to propose new conductivity values480

for the n2 random nodes with probability q(·|·) defined in Eq. C2.481

(c) Follow items (c)-(f) of the second stage.482

The first stage only needs a moderate number of models to significantly reduce the483

original range of possible LAB values. This rapid convergence is due to the strong com-484

bined sensitivity of SW and MT to the background field; it also allows the MCMC in-485

version to focus on the last three stages (i.e. on conductivity anomalies not related to486

the background T -P -C conditions) while still allowing a continuous improvement of the487

background field. Additional gain in convergence efficiency is obtained with adaptive sam-488

pling strategies applied to both LAB and conductivity nodes. The implementation of489

these strategies is almost imperative given the high-dimensionality of the problem. While490

more advanced sampling strategies (e.g, parallel tempering, differential evolution, auto-491

regressive chains) can be implemented to further improve efficiency, we deliberately use492

this practical (and basic) four-step adaptive strategy to test our joint inversion algorithm493

under adverse circumstances.494

6 Numerical Examples495

In this section we consider two numerical examples of joint probabilistic inversion496

of SW and 3D MT data within the context of whole-lithosphere structure. The synthetic497

data correspond to two complex large-scale lithospheric models with dimensions 1600×498

1600×460 km (Figs. 1 and 8). In both cases, the computational domain is discretized499

with 40× 40× 20 finite elements.500

6.1 Synthetic Data501

The MT synthetic data are the off-diagonal apparent resistivities and phases for502

Example 1 and the full impedance tensor for Example 2. Each dataset is computed for503

12 periods between 3.2 and 104 seconds at 400 stations. The stations are located on a504
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grid of 20×20 (Fig. 1.a) with an inter-station distance of 80 km. The data errors are505

assumed to be uncorrelated and normally distributed. In Example 1 we use a standard506

deviation of 12% for the apparent resistivities and 1.5 degrees for the phases, whereas507

in Example 2 the standard deviation is assumed as 5% of max(|Zxx|, |Zxy|) for the com-508

ponents Zxx and Zxy of the impedance tensor, and 5% of max(|Zyy|, |Zyx|) for the com-509

ponents Zyy and Zyx.510

For the case of the SW, the synthetic data are the normal mode Rayleigh wave phase511

velocities for periods between 15 and 175 seconds, computed at the locations of the MT512

stations. We assume normally distributed data errors with a representative standard de-513

viation (std) of 20% of the period for Example 1 (that is, 2∗std = 10m/s for 25s and514

2 ∗ std = 80m/s for 200s). For the second example, we consider a standard deviation515

of 1% of the velocity in meters, which is comparable to the data errors expected for real516

SW data in dense arrays (Moorkamp et al., 2010; ?; Wang et al., 2020).517

To minimise the so-called ‘inversion crime’, we compute the actual synthetic data518

of the first example with a finer FE mesh than that used in the inversion. In the second519

example, while the models used during the inversion are obtained via interpolation of520

the nodes’ values, the MT data is generated with the true conductivity value for each521

FE cell. While this avoids the inversion crime, it also implies that a perfect data fit may522

not be achievable.523

6.2 Data Misfits524

The SW and MT misfits, φSW and φMT , are computed as525

φSW = −1

2

Nsta∑
i=1

Nper∑
j=1

(gij − dij
stdij

)2
(17a)

φMT = − 1

2 ·Ndat

Nsta∑
i=1

Nper∑
j=1

(gij − dij
stdij

)2
(17b)

where Nsta and Nper are the number of stations and periods for each dataset; dij and526

gij correspond to the observed and computed data (with the MT or the SW forward)527

for station i and period j, and stdij is the standard deviation for data dij . Ndat is the528

total number of MT data used for each station and frequency, e.g. Ndat = 8 when we529

invert for the real and imaginary parts of the full impedance tensor. The factor 1/Ndat530

is used here to assure that both data sets have similar absolute contributions in the joint531

inversion, i.e. that their weights in the overall misfit are not controlled by the number532

of data points in one of the data sets (e.g. Kalscheuer et al., 2013).533

6.3 Example 1: Large-scale Thermal Lithospheric Structure534

6.3.1 Model Setup535

The inversion area is sub-divided into 18×18 columns (white squares in Fig. 1.b)536

of size 80×80×460 km. Each column is comprised of 4×4×20 FE cells. The model537

parameters are the depths to the LAB of the 324 columns within the inversion area, i.e.538

there is one model parameter per column. The true conductivity model is shown in Figs.539

1 and is controlled by the subsurface thermal structure. The goal of this example is to540

assess the identifiability of the background conductivity distribution (via the recovery541

of the model parameters) from noisy MT and SW data. Accordingly, we only use the542

LAB parameterization in the first and third stages (Sections 5.1 and 5.3).543

–14–



manuscript submitted to JGR: Solid Earth

Figure 1. 3D rendering views of the true conductivity structure where the iso-surface of -2.8

log10 S/m is plotted as a reference. The white rectangle in (a) indicates the region used for the

inversion. Panel (a) illustrates the 20x20 station-grid in black and eight of the 400 stations (black

triangles). The model parameters are the depths to the LAB of 324 columns. Panel (b) displays

the location of these columns (white small squares) and 96 column-parameters as a reference.

The reader is referred to Section 4.1 for details on the parameterization.

6.3.2 Prior and proposal distributions544

The priors for the LAB depths are uniform distributions defined in a range of ±70545

km, centered on the true value of each column. The proposals used in the first stage of546

the inversion are Gaussian distributions centered on the current sample with a standard547

deviation of 20 km. The proposal is adapted in the third stage and therefore it becomes548

a multivariate Gaussian distribution that reflects the spatial correlations between LAB549

values of all columns (see Section 5.3). The initial model (i.e. starting point of the MCMC550

inversion) has a flat LAB located at 180 km depth.551

6.3.3 Inversion results552

We ran a total of 600,000 MCMC simulations using 2 processors (Intel(R) Xeon(R)553

CPU E5-2680 v3 @ 2.50GHz processors) per frequency and variable RB tolerances of β =554

0.07 for the first 50,000 MCMC steps and β = 0.05 for the rest of the simulation. De-555

spite the small number of processors used, the joint inversion took only 25 hs, with a stag-556

gering average of 0.15 seconds per simulation. This means > 99.5 % gain in computa-557

tional efficiency compared to the high-fidelity solution (∼ 30 secs). For the same model,558

and using the same number and type of processors, the RB+MCMC inversion of MT559

data only (see Manassero et al., 2020) took ∼ 30 days (an average of 1.03 seconds per560

MCMC iteration) and convergence was achieved after 2,500,000 MCMC simulations. This561

dramatic gain in efficiency of the joint inversion is due mainly to i) the implementation562

of the CM algorithm, ii) the use of adaptive MCMC strategies and iii) the high sensi-563

tivity of SW data to the background thermal structure.564

The posterior PDFs of 60 of the 324 parameters are shown in Figure 2. The data565

PDFs for the dispersion curves at two illustrative stations and the data PDFs for MT566

at one station are shown in Figs. 3 and Figs. 4, respectively. Additional results can be567

found in the Supplementary material. The results clearly show that the posterior PDFs568

for all parameters are well behaved (i.e. single valued and approximately Gaussian) and569

include the true solution, which is always close to the peaks of the PDFs. The result-570
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Table 2: Root-mean-square (rms) values of the mean and MAP conductivity and LAB
models with respect to the true model. The rms values obtained after the RB+MCMC
inversion of 3D MT data only are also included (extracted from Manassero et al., 2020).

RMS conductivity (log10 Ωm) RMS LAB depth (km)

Best Model Mean Model Best Model Mean Model

Joint RB+MCMC 0.08 0.02 6.89 2.21
RB+MCMC 0.19 0.15 21.20 17.01

ing uncertainties affecting the LAB values are comparable to those obtained in real in-571

versions (e.g. J. C. Afonso, Moorkamp, & Fullea, 2016; A. Zhang et al., 2019). The data572

fit is excellent for both data sets (see Figs. 3 and 4) .573

The maximum a posteriori (MAP) and mean models are shown in Figs. 5, together574

with the 95% confidence intervals of the posterior PDFs. The root-mean-square (rms)575

values of the maximum a posteriori and mean conductivity models, as well as the rms576

for the LAB structure, are included in Table 2. As a comparison, we have also included577

the rms values obtained for the same model after the RB+MCMC inversion of 3D MT578

data only (see Manassero et al., 2020), which are considerable higher than those obtained579

with the joint inversion.580

The evolution of the misfits for MT and SW data, and the number of bases com-581

puted per frequency and field orientations are shown in Figs. 6 and 7, respectively. In582

all cases, a rapid increment in the basis size is observed during the first 100,000 simu-583

lations, which correlates with a rapid decrease in the overall misfits (Fig. 6). This in-584

crement in the number of bases is required to enrich the surrogate model and obtain rep-585

resentative solutions in the high-probability region of the parameter space. After 150,000586

MCMC steps, the basis size reaches a plateau (i.e. saturation of the surrogate) for all587

frequencies and orientations and only a small number of new bases are subsequently re-588

quired.589

These results demonstrate that our RB+MCMC approach successfully solves the590

joint probabilistic inversion problem and retrieves the first order conductivity structure591

(with its uncertainties) from noisy MT and SW data. Moreover, we demonstrate that592

the addition of the SW data increases the overall efficiency of the algorithm and signif-593

icantly reduces the range of acceptable conductivity models compared to those obtained594

from the inversion of MT data only.595

6.4 Example 2: Large-scale Lithospheric Structure with Conductivity596

Anomalies597

6.4.1 Model setup598

The true conductivity model (Fig. 8) includes the large-scale lithospheric model599

of Section 6.3 as a background (with an additional cut-off for resistivity values higher600

than 20,000 Ωm) plus three additional and localized conductive anomalies. The vector601

of model parameters contains 1155 conductivity nodes (black dots in Fig. 8.a) sparsely602

located within the inversion volume (1440 × 1440 × 410 km) and the LAB depths of603

the 324 columns. The conductivity value of each numerical cell is obtained by adding604

the background conductivity derived from the LAB structure (Section 4.1) and the anoma-605

lous conductivity obtained after interpolation of the nodes’ values (Section 4.2). The goal606

here is to assess the identifiability of the true conductivity structure, including background607

and conductivity anomalies, from noisy 3D MT and SW measurements.608
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Figure 2. Marginal posterior PDFs (blue bars) and best fitting distribution (black line) of

60 model parameters obtained after 600,000 RB+MCMC simulations. The real value, starting

value and prior bounds of each parameter are shown in green, red, and light blue vertical lines,

respectively. The numbers within each panel correspond to the columns highlighted in Fig. 1.b.
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Figure 3. Posterior PDFs of Rayleigh dispersion curve for station (a) 89 and (b) 355. Syn-

thetic data and error bars are plotted in green. The location of the stations are shown in Fig.

1.a.

Figure 4. Posterior PDFs of MT data for station 89. Synthetic data and error bars are plot-

ted in green. (a)-(b) Posterior PDFs of the off-diagonal apparent resistivity. (c)-(d) Posterior

PDFs of the off-diagonal apparent phases. The location of the stations are shown in Fig. 1.a.
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Figure 5. Conductivity structures corresponding to the (a) maximum a posteriori (best-

fitting) model; (b) mean model; and conductivity models corresponding to the lower (c) and

upper bound (d) of the 95% confidence interval of the posterior PDFs obtained after 600,000

MCMC simulations. The iso-surfaces of -2.8 and -2 log10 S/m are plotted as a reference.

Number of MCMC simula�ons
  -10,000

  -6,000

  -2,000
SW misfit
MT misfit

  100,000   200,000   300,000    400,000   500,000   600,000

Figure 6. Data misfits for the dispersion curves (red line) and MT (blue line) for each one of

the 600,000 RB+MCMC simulations.
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Figure 7. Basis size as a function of the MCMC simulations for different frequencies and field

orientations (S⊥ mode in blue and S mode in red).

Figure 8. 3D rendering views of the true conductivity structure. Conductivity anomalies

are highlighted in both (a) and (b) panels. Black dots in (a) indicate the position of the node-

parameters within the inversion volume. Panel (a) shows the iso-surface corresponding to -1.5

log10 (S/m), whereas iso-surfaces of -2.15, -1.5 and -4 log10 (S/m) are shown in (b).
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6.4.2 Prior and proposal distributions609

The prior and proposal distributions for the LAB parameters are the ones defined610

in Section 6.3.2. For the conductivity nodes, we use Gaussian prior distributions cen-611

tered on the background conductivity value (in log-scale) and standard deviation of 1.5612

log10(S/m). This prior information behaves as a regularization term, i.e. it penalizes the613

introduction of anomalies that are not required by the data. The proposals are log-normal614

distributions (Eq. C1) centered on the current node value mi
t−1 with standard devia-615

tions of 0.9 log10(S/m). During the fourth stage, we use an adapted multivariate log-616

normal distribution centered on the current sample (see Section 5.4). The starting con-617

ductivity model is the same as that used in Example 1 and contains no conductivity anoma-618

lies.619

The first stage was set to 3,000 steps where we sample LAB depths one column at620

a time. Once the second stage starts, the algorithm randomly decides to sample the LAB621

depth of one column or the conductivity values of n1 =2 nodes. The multivariate pro-622

posal for the LAB (start of the third stage) is computed when the chains achieve 250,000623

samples and it is adapted every 100,000 LAB samples during the the rest of the inver-624

sion. During this third stage, we propose conductivity values of n1 =2 random nodes625

or LAB depths (using the adapted multivariate distributions) of m=6 random columns626

(see Section 5.3). The multivariate log-normal proposal distribution for the nodes is com-627

puted when the nodes’ chain reach 400,000 samples (start of the fourth stage) and it is628

adapted every 100,000 steps. During this stage we randomly select n2 =10 nodes at a629

time or m=6 columns (see Section 5.4).630

6.4.3 Inversion results631

We ran a total of 1,000,000 MCMC simulations for 12 frequencies using 2 proces-632

sors (Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz) per frequency. The tolerances used633

were β = 0.068 for the first 150,000 steps and β = 0.058 for the remaining of the sim-634

ulation. Again, even with modest computational resources, the inversion took 14 days635

with an average of 1.2 seconds for each simulation. This represents a time reduction of636

∼ 96% for each forward computation. The difference in computational time compared637

to those presented in the accompanying paper (Manassero et al., 2020) is due to the cur-638

rent implementation of the kriging interpolation, which is faster than the Shepard’s in-639

terpolation previously used. We also note that the average time spent in each simula-640

tion is higher compared to the previous example. This is mainly due to the higher num-641

ber of bases (Fig. 14) that needs to be computed in order to explain the complexity of642

this 3D model.643

The MAP and mean models are shown in Figs. 9 together with the 95% confidence644

intervals of the posterior PDF. It can be observed that the background conductivity struc-645

ture and the location and volume of the conductivity anomalies are well resolved.646

The uncertainties of the conductivity models is well represented by the 95% con-647

fidence interval. This interval illustrates the range of conductivity models that are 95%648

confident contains the true mean.649

Depth slices from these 3D models are shown in Figs. 10, where we also include650

the depth slices for five mean models computed with 10 random samples of the poste-651

rior PDF.652

As expected, while random features appear in each individual mean model, the lo-653

cation and volume of the conductive anomalies within the background are well approx-654

imated in all of them. It is clear that the combination of MT and SW data greatly im-655

proves model resolution compared to the probabilistic inversion of MT data only (see656

results in Manassero et al., 2020). In particular and given the large SW data errors, the657
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Figure 9. 3D rendering views of the conductivity structure corresponding to the (a) maximum

a posteriori model; (b) mean model; (c) lower and (d) upper bound of the 95% confidence inter-

val of the posterior PDF obtained after 1,000,000 MCMC simulations. The iso-surfaces of -1.5,

-2.15 and -4 log10 S/m are plotted as a reference. The backgroung structure and the conductivity

anomalies are highlighted in all panels.

background conductivity structure is in very good agreement with the true structure.658

This agreement is also illustrated in Figs. 11 and Figs. S4-S10 of the Supplementary ma-659

terial where the true LAB depths are close to the mean value of the posterior PDFs for660

all parameters.661

Examples of the posterior PDFs of SW and MT data are shown in Figs. 12 and662

13; additional posterior PDFs are shown in the Supplementary Material. All of the dis-663

persion data points are contained within one standard deviation of the posterior PDFs.664

This is also the case for the great majority of the MT data, although a poor data fit (or665

bias) is observed in some stations. As mentioned in Section 6.1, the MT synthetic data666

is computed with the true conductivity model (Fig. 8), whereas the conductivity mod-667

els used in the actual inversion are derived from the interpolation of nodal values. This668

discrepancy or inadequacy between models is the main reason of the poor data fit seen669

at some stations (e.g. Smith, 2013).670

The sizes of the basis per frequency and the SW-MT data misfits for each of the671

1,000,000 steps are shown in Figs. 14 and 15, respectively. The number of bases rapidly672

increases during the first 3,000 steps. After this stage, the posterior models have SW data673

misfit values that are smaller than the number of data, meaning that we have obtained674

a good approximation of the background thermal structure and first-order conductiv-675

ity model. This is not the case for MT, as the misfit still accounts for the effect of the676

conductivity anomalies. As the MCMC chain samples the conductivity nodes, we ob-677

serve an increase in basis size for all frequencies (which corresponds with a rapid decrease678
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Figure 10. Columns (1)-(5): depth slices from the (1) true model; (2) the MAP, (3) mean

and conductivity models corresponding to (4) the 5% percentile and (5) the 95% percentile of the

posterior PDF. Columns (6)-(10): depth slices for five mean models computed with 10 random

samples of the posterior PDF. Selected depths are shown at the left of the figure.
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Figure 11. Marginal posterior PDFs (blue bars) and best fitting distribution (black line)

of 30 LAB depths obtained after 1,000,000 RB+MCMC simulations. The real value, starting

value and prior bounds of each parameter are shown in green, red, and light blue vertical lines,

respectively. The numbers within each panel correspond to the columns highlighted in Fig. 1.b.

Figure 12. Posterior PDFs of Rayleigh dispersion curve for station (a) 293 and (b) 248. Syn-

thetic data and error bars are plotted in green and the computed data for the initial model is

plotted in blue.. The location of the stations are shown in Fig. 1.a.
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Figure 13. Posterior PDFs of MT data for station 293. Synthetic data and error bars are

plotted in green and the computed data for the initial model is plotted in blue. (a)-(d) Posterior

PDFs of the real and imaginary parts of the off-diagonal components. (e)-(h) Posterior PDFs of

the real and imaginary parts of the diagonal components. The location of the station is shown in

Fig. 1.a.
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Figure 15. Data misfits for the dispersion curves (red line) and MT (blue line) for each of the

1,500,000 simulations.

for the MT misfit). The MT misfit and the basis size for all frequencies reach a plateau679

after ∼ 400,000 MCMC steps; no new full forward solutions are further needed.680

The results presented here demonstrate that our RB+MCMC algorithm, with the681

current parameterization and sampling strategy, successfully solves the joint probabilis-682

tic inverse problem and retrieves a very good approximation of the first order thermal683

structure, volume and location of the conductive anomalies with their uncertainties.684

7 Discussion685

The results presented in this manuscript demonstrate the capabilities and appli-686

cability of our approach for joint probabilistic inversions of 3D MT with other data sets687

for imaging the lithosphere and upper mantle. In the following, we discuss some prac-688

tical aspects relevant to real inversions and possible technical improvements of the al-689

gorithm.690

7.1 Inverting for the Crustal Structure and Mantle Composition691

Both MT and SW data are strongly sensitive to the crustal structure. In the case692

of MT, for example, shallow conductive features greatly affect the sensitivity to deeper693
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structures due to the screening effect (e.g. Jones, 1999). For simplicity, we have assumed694

here constant and homogeneous density, seismic velocities and electrical conductivity within695

the crust. We acknowledge, however, that in the context of real inversions it becomes696

almost imperative to include the properties of the crust as part of the inversion. For this,697

we could discretize the crust with layers of constant properties (e.g. bulk density, Vs,698

Vp and σ) within each 1D column and include them as new parameters. Another pos-699

sibility is to define crustal nodes with associated σ, density, V s, and V p and interpolate700

these values to each numerical cell within the crust. Alternatively, we can include the701

crustal signature as prior information in the inversion. This information can be easily702

obtained, for example, from a deterministic joint inversion of MT with other data sets703

or from previous independent studies.704

Throughout this work we have also considered constant mantle composition. We705

could easily include this as an additional parameter of the inversion by, e.g., following706

J. C. Afonso et al. (2013b); J. C. Afonso, Rawlinson, et al. (2016) and defining compo-707

sitional layers in each 1D column. Otherwise, we could select certain conductivity nodes708

within the numerical domain and link compositional parameters with them. In the lat-709

ter situation, the composition at the nodes should be interpolated in the whole 3D do-710

main.711

7.2 Parameterization and Efficiency of the Algorithm712

The given parameterization is specifically tailored to constrain the first-order con-713

ductivity background and to locally accommodate the smaller-scale features, i.e. it is suit-714

able for identifying the thermal and compositional structure of the lithosphere as well715

as smaller anomalies related with the presence of fluids and minor mineral constituents.716

This parameterization also allows for considerable model variance/flexibility, as it is ca-717

pable of approximating any conductivity structure, and it favors a rapid convergence at718

the beginning of the inversion. There are, however, two main drawbacks: i) it is almost719

impossible to know a priori the minimum number of parameters necessary to retrieve720

the true model; ii) the algorithm can be inefficient if the number and location of the nodes721

are not optimal, as an over-parameterization of the model can seriously compromise the722

convergence of the MCMC algorithm, whereas an under-paramaterization implies intro-723

duction of spurious features.724

In order to alleviate these drawbacks, more sophisticated parameterizations and725

sampling strategies can be adopted. For instance, we could implement trans-dimensional726

algorithms (e.g. Ray & Myer, 2019; Brodie & Jiang, 2018; Bodin & Sambridge, 2009)727

to identify the minimum dimensionality of the model (i.e. parsimony) as required by the728

data. Particularly, the combination of a trans-dimensional algorithm with the kriging729

interpolation, also known as Gaussian process regression (e.g. Ray & Myer, 2019), ap-730

pears as a very promising approach to tackle the under/over-parameterization.731

As noted before, the main gain in computational efficiency of our joint RB+MCMC732

inversion compared to the inversion of MT data only is due to the Cascaded-Metropolis733

algorithm and the adaptive sampling strategy. However, after the first adaptation of the734

LABs (stage three), we sample m LAB depths which means solving m surface-wave for-735

ward problems. Although this solver is fast, the computational cost linearly increases736

with m. A way to overcome this limitation is by parallelizing the surface-wave solver per737

columns. We also note that the computational time of each simulation increases with738

the number of bases. Since this is related to the algebra involved in the Reduced Basis739

method, we can further increase efficiency by parallelizing these computations.740
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7.3 Ergodicity of the Algorithm741

While the sampling strategy described in Section 5 brings in a number of impor-742

tant benefits to the joint RB+MCMC inversion, the first stage (with focus on constrain-743

ing the first-order temperature structure) can potentially affect the ergodicity of the chain.744

Given that we deliberately chose to sample one set of parameters (i.e. the LAB depths)745

for a pre-defined number of MCMC steps, the chain is precluded from reaching the states746

of the first stage once the second stage starts (i.e. it is not irreducible). As demonstrated747

in the examples, only a small number of iterations are necessary in the first stage for the748

LAB’s chains to approach the high-probability region of the posterior PDFs. We there-749

fore note that a sufficient condition to ensure the overall ergodicity (e.g. Meyn & Tweedie,750

2012) and correct convergence of the sampler requires the burn-in period to be larger751

than the total number of steps in the first stage (LAB-stage).752

8 Conclusions753

We have presented the first fully probabilistic joint inversion of 3D magnetotelluric754

(MT) and surface-wave (SW) data for imaging the electrical conductivity and velocity755

structures of the lithosphere. The success of our methodology relies on i) an efficient parallel-756

in-parallel structure to solve the 3D MT forward problem, ii) the combination of a re-757

duced order, MCMC-driven strategy (RB+MCMC) to compute fast and accurate sur-758

rogate solutions to the forward problem, iii) adaptive strategies for the MCMC algorithm759

and the surrogate and iv) an efficient parameterization to couple both data sets. This760

parameterization allows us image the background conductivity distribution given by the761

thermochemical structure of the lithosphere, and resolve the small scale conductivity fea-762

tures related the presence of melt, fluids and anomalous minerals. Our approach can be763

applied to a wide range of tectonic environments and it is attractive for distinguish fluid764

and melt content (important for mineralization events) from other temperature or com-765

positional effects. Perhaps more importantly, this joint probabilistic approach i) circum-766

vents the problems of non-uniqueness involved in traditional joint inversions of MT and767

SW, ii) minimizes the trade-off problem between temperature, composition and anoma-768

lous features in wave velocities and electrical conductivity, iii) offers critical insights into769

incompatibilities between traditional stand-alone methods (such as MT and seismic), iv)770

includes a complete treatment of data and parameter uncertainties, and v) can take full771

advantage of geological and thermochemical a priori information.772

The performance and efficiency of the RB+MCMC algorithm for joint probabilis-773

tic inversions are illustrated with two whole-lithosphere models. As shown in the numer-774

ical examples, the advantage of using the combined LAB-node parameterization is that775

a rapid convergence is achieved by using the LAB depths to constrain the first-order con-776

ductivity background at the beginning of the inversion. Once this first-order convergence777

has been achieved, the nodes are used to locally modify the background to fit the smaller-778

scale features of the data. We also showed that the inclusion of SW data and a simple779

Cascade-Metropolis algorithm resulted in drastic improvements in computational effi-780

ciency and quality of the recovered models compared to the RB+MCMC inversion of MT781

data only (Manassero et al., 2020). These results demonstrate the capabilities and ap-782

plicability of our framework for 3D multi-observable probabilistic inversions for imag-783

ing of the Earth’s interior.784

Appendix A Mapping Thermochemical Parameters to Electrical Con-785

ductivity786

The temperature dependence of electrical conductivity can be described with an
Arrhenius-type Equation:

σ = σ0 exp
(−∆H

kBT

)
, (A1)
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Table A1: Parameters used to compute mantle conductivity

Phase σ0 σ0i a b c d e f ∆V ∆Hi XFe

Olivine 2.70 4.73 1.64 0.246 -4.85 3.26 0.68 2.31 0.10
Opx 3.0 1.90 -2.77 2.61 -1.09 0.107
Cpx 3.25 2.07 -2.77 2.61 -1.09 5.84e−2

Garnet 4.96 2.60 -15.33 80.40 -194.6 202.6 -75.0 0.168

where σ0 is the so-called pre-exponential factor, T [K] is absolute temperature and kB787

[eV/K] the Boltzmann’s constant. ∆H [eV ] is the pressure-dependent activation enthalpy,788

defined as789

∆H = ∆E + P∆V, (A2)

where P is the pressure [GPa], ∆E and ∆V are the activation energy and activation vol-790

ume, respectively.791

The main bulk conduction mechanisms in mantle minerals are ionic conduction,792

small polaron (hopping) conduction and proton conduction (Yoshino, 2010). Each mech-793

anism follows an Arrhenius-type equation with particular activation energies depending794

on their charge mobility. These three conduction mechanisms can be integrated in a model795

for the electrical conductivity of mantle rocks as a function of pressure, temperature, wa-796

ter content, and composition (via Fe content) for each mineral phase (see also Yoshino797

et al., 2009; Fullea et al., 2011):798

σ = σ0 exp
(−∆H(XFe, P )

kBT

)
+ σ0i exp

(−∆Hi

kBT

)
+ σp (A3a)

σp = f(Cw) exp
(−∆Hwet(Cw)

kBT

)
, (A3b)

−∆H(XFe, P ) = a+ bXFe + cX2
Fe + dX3

Fe + eX4
Fe + fX5

Fe + P∆V , (A3c)

where σ0, σ0i [S/m] and f(Cw) are the small polaron, ionic and proton pre-exponential799

factors, respectively, ∆V [cm3/mol] is activation volume, ∆H, ∆Hi [eV ] and ∆Hwet are800

activation enthalpies and XFe is the bulk Fe content in wt%.801

The first term in the right-hand side of Equation A3a describes the contribution802

from small polaron conduction. As mentioned above, the activation enthalpy for this pro-803

cess depends on the iron content and pressure. This dependence is represented by a poly-804

nomial on XFe (Eq. A3c) plus a term that depends on pressure (the coefficients a, b, c, d, e, f805

are determined experimentally). The second term of Equation A3a represents ionic con-806

duction at high temperature and the third term (σp) represents the proton conduction807

due to the presence of “water” (hydrogen diffusion). f(Cw) and ∆Hwet are functions of808

the water content Cw [wt%] and they are obtained from laboratory experiments. The809

reader is referred to Fullea et al. (2011) and Pommier (2014) for a summary on results810

from different laboratories.811

Appendix B Kriging Interpolation812

Kriging, or Gaussian process regression, is one of the most common methods for
spatial interpolation (see e.g. Cressie, 1993; Rasmussen, 1997; Williams & Rasmussen,
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1996; Omre, 1987; M. Gibbs & MacKay, 1997; M. N. Gibbs, 1998). The main idea is to
predict (or interpolate) the value of a function Z at m locations from n observations by
computing average spatial weights (W ). In simple kriging, these weights are derived us-
ing a known covariance function c between observations (given by the matrix Kobs) and
between the observations and the m estimation locations (given by the covariance ma-
trix Kloc):

W = K−1obs ·Kloc, (B1)

where Kobs=

c(xobs1 , xobs1 ) ... c(xobs1 , xobsn )
... ... ....

c(xobsn , xobs1 ) ... c(xobsn , xobsn )

 and Kloc=

c(xobs1 , xloc1 ) ... c(xobs1 , xlocm )
... ... ....

c(xobsn , xloc1 ) ... c(xobsn , xlocm )

.813

814

The interpolation (or estimated value) at the m locations is then given by Zloc =815

W · Zobs, where Zobs is the vector containing the n observations.816

The covariance function c can take any form with the only constrain that it must
generate a non-negative definite covariance matrix. A common form is given by (e.g. M. Gibbs
& MacKay, 1997):

c(xm,xn) = θ1exp
(
− 1

2

∑
l

(xlm − xln)2

r2l

)
+ θ2, (B2)

where xln is the l component of xn. θ1 and θ2 are hyperparamaters, where θ1 represents817

the overall vertical scale relative to the mean field and θ2 gives the vertical uncertainty.818

rl is the correlation or scale length and it characterizes the distance in the direction l819

over which the value of Z varies significantly. It should be noted that since the spatial820

weights (W ) depends on the covariance function c, the interpolated values at the m lo-821

cations also depends on the chosen form for c.822

B1 Spatially varying length scales823

The covariance function of Eq. B2 assumes that the correlation length (rl) is fixed824

in each direction (l) and location (x). In the most general case, however, assuming a fixed825

rl might lead to a simplistic and poor representation of the conductivity model. We, there-826

fore, use a positive definite covariance function with spatially variable correlation lengths827

(M. Gibbs & MacKay, 1997; M. N. Gibbs, 1998):828

c(xm,xn) = θ1
∏
l

(
2rl(xm)rl(xn)

r2l (xm) + r2l (xn)

)1/2

exp
(
−
∑
l

(xlm − xln)2

r2l (xm) + r2l (xn)

)
(B3)

where rl(x) is an arbitrary parameterized function of position x defined in [−1, 1]2×[0, 1].829

The form of rl(x) as a function of the scaled coordinates (x, y, z) used in Examples 1 and830

2 in the main text is shown in Procedure 1. This covariance function has the property831

that the variance is independent of x and equal to θ1. Since a change in θ1 will produce832

changes in the vertical scale in the whole domain (see previous section), the inclusion833

of θ1 as an additional parameter of the inversion can (potentially) benefit the efficiency834

and convergence of the algorithm. The implementation of θ1 as an hyper-parameter of835

the inversion is left for future work.836

Appendix C Log-normal proposal distributions837

The log-normal distribution (Gaussian in log-scale) used in the second stage is de-838

fined as:839
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procedure rl(x)
if z >= 0.9 then

r3 = 0.5
r2 = r1 = 0.4

else if z < 0.9 and z >= 0.8 then
r3 = 0.45
r2 = r1 = 0.35

else if z < 0.8 and z >= 0.7 then
r3 = 0.4
r2 = r1 = 0.3

else if z < 0.7 and z >= 0.6 then
r3 = 0.38
r2 = r1 = 0.28

else if z < 0.6 and z >= 0.5 then
r3 = 0.35
r2 = r1 = 0.25

else if z < 0.5 and z >= 0.4 then
r3 = 0.33
r2 = r1 = 0.23

else if z < 0.4 and z >= 0.3 then
r3 = 0.3
r2 = r1 = 0.2

else if z < 0.34 and z >= 0.2 then
r3 = 0.28
r2 = r1 = 0.2

else if z < 0.2 then
r3 = 0.2
r2 =r1 = 0.18

end if
end procedure
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y(mi
t) =

1√
2πmi

ts
exp

(
− ln(mi

t)− µ
2s2

2
)
, (C1)

where y(mi
t) is the proposed value for node i, and µ and s are the mean and standard840

deviation in log-scale.841

In Section 5 we have chosen to define a multivariate Gaussian proposal of dimen-842

sion Nnodes×Nnodes, where Nnodes is the number of conductivity nodes in the model. Since843

the nodes’ conductivity values can span several orders of magnitude, the Gaussian pro-844

posal is defined in log-scale but we evaluate its probability q(·|·) in linear scale, i.e. a mul-845

tivariate log-normal PDF centered at the current state mt−1 with covariance Σ:846

q(mt|mt−1) =
1

(2π)
Nnodes

2 (det Σ)
1
2

∏Nnodes

j=1 mj
t

exp

[
−1

2
(ln(mt)− ln(mt−1))tΣ−1(ln(mt)− ln(mt−1))

]
, (C2)

where mt is the proposed value for all nodes and mt−1 is the current sample.847
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