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Abstract

A key process of the geometry processing pipeline is the reconstruction of surfaces from

point clouds. The traditional problem addressed by surface reconstruction is to recover

the digital representation of the shape that has been inputted, where the data could

potentially contain a wide variety of drawbacks. The goal of this thesis would be to

test the Bilaplacian Smoothness in order to enforce the smooth prior to the surface

reconstruction. By considering our thesis goal we will build an application that not only

will solve different sparse linear systems of equations using different possible methods

for position, normal, and smoothness equation’s constraints but also will make use

of more complex and effective surface reconstruction solving techniques such as the

multigrid or quadree reconstruction.
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Chapter 1

Introduction

1.1 Introduction to Point Cloud Surface Reconstruction

The modeling, recognition, and analysis of the elements that encompass us is a long-
term goal in the Computer Graphics field. One of the main objectives is obtaining a
digital representation of input data that possibly contains relevant information if we
take a look at it. Surface reconstruction is concerned with recovering such information,
where the basic problem is to capture a point cloud that could not necessarily be a
sample of the real world and reconstruct as much information as possible concerning
the inputted data.

Surface reconstruction came to importance primarily as a result of the ability to acquire
point clouds thanks to many different techniques and hence there are very close ties
between how the data is acquired and the method used to reconstruct it. Early on,
these techniques ranged from active methods such as optical laser-based range scanners,
structured light scanners, and LiDAR scanners, as well as passive methods such as
multi-view stereo scanners. Recently, a recent trend has seen the massive proliferation
of point clouds from real-time domestic scanners such as the Microsoft Kinect. As the
diversity, ease of use, and popularity of 3D acquisition methods continues to increase,
also does the need for the development of new surface reconstruction techniques.

Most acquisition methods tend to produce point clouds containing a variety of prop-
erties and imperfections that implies significant challenges for surface reconstruction
methods. These properties, in conjunction with the scanned shape’s complexity, condi-
tions the kind of reconstruction methods that will be faster or even optimal. The diverse
set of techniques used will not be constrained to any kind of shape or form and should
be able to generate a satisfying solution depending on the quality of the point cloud.
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For our research, we will receive as input a document with a point cloud list and its
respective associated normals. As for output, we want to compute the resulting im-
plicit function of the point cloud list which we will use to extract its polygonal mesh
pattern through algorithms such as the Marching Cubes. We will obtain those solu-
tions by forcing the implicit function to pass through the point cloud’s relative position
with a gradient close to its normal value and supposing that the 0-isosurface has to be
soft. In our implementation, we will stick to the 2-dimensional coordinates in order to
implement all our presented algorithms.

The rich quantity of algorithms used either for the equation system construction or the
solver would provide a strong variety of possibilities, making use of the main aptitudes
of each possible combination and providing a detailed taxonomy of existing methods’
efficiency and performance.
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Chapter 2

Related Work

There are many papers related to the point cloud reconstruction; some of them focus on
the Surface or Volumetric Smoothness while others prioritize the Geometric Primitives
or the Global Regularity of the output surface. In our case, we want to focus on the
efficiency and performance of the reconstruction in terms of execution time.

One of the most notorious papers which are related to our approaches is the SSD:
Smooth signed distance surface reconstruction [1]. In this paper, the authors propose
a new variational formulation for the problem of reconstructing a watertight surface
defined by an implicit equation from a finite set of oriented points. As in the Poisson
Surface Reconstruction approach, discretizations of the continuous formulation are re-
duced to the solution of sparse linear systems of equations. But rather than forcing the
implicit function to approximate the indicator function of the volume bounded by the
implicit surface, in this formulation the implicit function is forced to be a smooth ap-
proximation of the signed distance function to the surface. Since an indicator function
is discontinuous, its gradient does not exist exactly where it needs to be compared with
the normal vector data. The smooth signed distance has an approximate unit slope in the
neighborhood of the data points. As a result, the normal vector data can be incorporated
directly into the energy function without implicit function smoothing.

Strictly related to the previously mentioned one we have the Smooth Signed Distance
Surface Reconstruction and Applications [2] paper in which the authors present a sim-
ilar formulation where the implicit function is forced to be a smooth approximation of
the signed distance function to the surface. The formulation allows for a number of
different efficient discretizations, reduces to a finite-dimensional least squares problem
for all linearly parameterized families of functions that do not require the specification
of boundary conditions, and it is particularly good at extrapolating missing and/or ir-
regularly sampled data. The resulting algorithms are significantly simpler and easier
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to implement than alternative methods. The implementation of the authors is based on
a primal-graph octree-based hybrid finite element-finite difference discretization, and
the Dual Marching Cubes isosurface extraction algorithm is very efficient and produces
high quality crack-free adaptive manifold polygon meshes. After the geometry and
topology are reconstructed, the color information from the points is smoothly extrap-
olated to the surface by solving a second variational problem which also reduces to a
finite-dimensional least-squares problem.

Another relevant paper is the Reconstruction of Solid Models from Oriented Point Sets
[3] which presents a novel approach to the surface reconstruction problem that takes
as its input an oriented point set and returns a solid, water-tight model. The idea of
this approach is to compute the characteristic function of the model (the function that
is equal to one inside the model and zero outside of it). Specifically, it provides an
efficient method for computing the Fourier coefficients of the characteristic function
using only the surface samples and normals, computing the inverse Fourier transform
to get back the characteristic function and using isosurface techniques to extract the
boundary of the solid model. The advantage of our approach is that it provides an
automatic, simple, and efficient method for computing the solid model represented by
a point set without requiring the establishment of adjacency relations between samples
or iteratively solving large systems of linear equations.

Relating to the most recent stage of development we can mention the State of the Art
in Surface Reconstruction from Point Clouds [4]. This survey focuses on those relating
to the reconstruction from point clouds of static objects and scenes acquired through
3D scanners, wherein the point cloud contains a considerable level of imperfection.
Furthermore, they concentrate on methods that approximate the input point cloud.

Given a surface with boundaries, there exist many methods for painting and surface
completion for handling missing data. Though one may use such approaches for recon-
struction by first reconstructing a surface with boundary from a point cloud, this can be
quite challenging given other imperfections in the data. These methods are not covered
in this survey and we refer the reader to the recent survey on surface completion [5].

The paper Evaluating surface reconstruction of open scenes [6] addresses the evalua-
tion of algorithms that are meant to reconstruct a watertight surface from a point cloud
acquired on an open scene. The objective of the authors is to set a rigorous protocol
measuring the quality of the reconstruction and to propose a quality metric that is in-
formative with respect to the various qualities that such an algorithm should have, and
in particular it’s capacity to interpolate and extrapolate accurately. In addition, they use
publicly available data and our implementation is open-source. The authors argue that a
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rigorous evaluation of surface reconstruction of open scenes needs to be performed on
synthetic data where a perfect continuous ground truth surface is available. Moreover,
the authors developed their own LiDAR simulator of which they give a description in
the present paper.

One of the main problems we will deal with is going to be the point cloud data. The
point cloud is considered an unstructured form when it does not contain any connec-
tivity information between adjacent points and structure information. In the paper, A
survey on surface reconstruction techniques for structured and unstructured data [7] var-
ious types of surface reconstruction techniques are proposed to overcome the problems
of point cloud and the limitations of existing techniques. Besides, the authors make use
of soft computing techniques to enhance the performance and overcome the downsides
of existing techniques. Therefore, the objective of this paper is to conduct a survey
of the existing techniques in the surface reconstruction on structured or unstructured
data. Generally, the authors will only focus on the interpolation and approximation
techniques, learning-based techniques, and soft computing techniques. The outcome of
this paper can be used to help the readers in understanding and finding suitable surface
reconstruction techniques in representing the objects and solving their case studies.

Another paper that is worth being mentioned is the Poisson Surface Reconstruction [8]
In which a novel approach expresses surface reconstruction as the solution to a Poisson
equation. The main difference of this approach compared to our implementation is that
they don’t take into account the point positions on the equations, leading to produc-
ing a mesh with the same form but not necessarily the same size. This was improved
on the Screened Poisson Surface Reconstruction [9] where they extend the previously
mentioned technique to explicitly incorporate the points as interpolation constraints.

Furthermore, the Robust Poisson Surface Reconstruction paper [10] proposes a method
to reconstruct surfaces from oriented point clouds with non-uniform sampling and noise
by formulating the problem as a convex minimization that reconstructs the indicator
function of the surface’s interior. Compared to previous models, the presented recon-
struction is robust to noise and outliers because it substitutes the least-squares fidelity
term by a robust Huber penalty [11]. This allows to recover sharp corners and avoids the
shrinking bias of least squares. The authors choose an implicit parametrization to re-
construct surfaces of unknown topology and close large gaps in the point cloud. For an
efficient representation, they approximate the implicit function by a hierarchy of locally
supported basis elements adapted to the geometry of the surface. The hierarchical struc-
ture of the basis speeds up the minimization and efficiently represents clustered data.
They also advocate for convex optimization, instead of isogeometric finite-element
techniques, to efficiently solve the minimization and allow for non-differentiable func-
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tionals.

The Progressive Discrete Domains for Implicit Surface Reconstruction [12] paper pro-
pose a progressive coarse-to-fine approach that jointly refines the implicit function and
its representation domain, through iterating solver, optimization, and refinement steps.
Many global implicit surface reconstruction algorithms formulate the problem as a vol-
umetric energy minimization, trading data fitting for geometric regularization. As a
result, the output surfaces may be located arbitrarily far away from the input sam-
ples. This breaks the strong assumption commonly used by popular octree-based and
triangulation-based approaches that the output surface should be located near the input
samples. As these approaches refine during a pre-process, their cells near the input
samples, the implicit solver deals with a domain discretization not fully adapted to the
final isosurface. There are several advantages to this approach: the discretized domain
is adapted near the isosurface and optimized to improve both the solver conditioning
and the quality of the output surface mesh.

Reconstruction of implicit curves and surfaces via RBF interpolation [13] paper focuses
on theoretical and practical issues in using radial basis functions (RBF) for reconstruct-
ing implicit curves and surfaces from point clouds. The authors study the conditioning
of the problem and give some insight on how the problem parameters and the results
have to be taken in order to achieve meaningful solutions and avoid artifacts. Moreover,
a strategy for decreasing the conditioning of the problem is suggested and a general
framework for preconditioning and solving the problem, even for large datasets, is also
provided.

For the optimized tree structure, we can refer to the paper Quad Trees: A Data Structure
for Retrieval on Composite Keys [14] in which appears the keyword and concept of
Quadtree for the first time.

Finally, for the Multigrid optimization, we can cite the P. Wesselling book in which
presents many choices of multigrid methods with varying trade-offs between the speed
of solving a single iteration and the rate of convergence with said iteration [15]. We
will also make reference to the An Introduction to Algebraic Multigrid paper [3] which
presents the Algebraic Multigrid (AMG) for solving linear systems based on multigrid
principles, but in a way that only depends on the coefficients in the underlying matrix.
This technique is the same multigrid technique used for the iterative solvers of the Eigen
library.

Last but not least, is it worth mentioning the book Foundations of Multidimensional
and Metric Data Structures [16]. This book provides a thorough treatment of mul-
tidimensional point data, object and image-based representations, intervals and small
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rectangles, and high-dimensional datasets, providing this way an excellent and valuable
reference tool for our implementations.
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Chapter 3

Point Cloud Data Description

3.1 Description of the Input Data

Point Clouds can be presented in many different ways. Often reconstruction methods
have different types of input requirements associated with the point cloud input. The
minimum requirement would be a set of points that sample the surface. Working with
the bare points, however, may have the problem of not having enough information for
the reconstruction of certain types of point cloud algorithms. On the other side, other
types of input can be extremely beneficial in reconstruction from challenging point
clouds.

As we previously mentioned, providing just the point that samples the surface would not
be enough for our purposes. We want to know more input information, in particular, the
orientation of the inputted surface or the smoothness of the surface. Thus, the presence
of per-vertex surface normals in our input data is a must.

Surface normals are extremely useful input for reconstruction methods. For smooth
surfaces, the normal, uniquely defined at every point, in the direction perpendicular to
the point’s tangent space. The tangent space intuitively represents a localized surface
approximation at a given point. Surface normals may be oriented, where each normal
is consistently pointing inside or outside of the surface, or unoriented and lack such a
direction. Normals that are oriented provide extremely useful cues for reconstruction
algorithms and hence, we will use this type for our input data. Note that if certain
information associated with the point cloud is not present, obtaining an orientation can
be challenging.

Therefore, the input file will have the following scheme shown in figure 3.1
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Figure 3.1: Format schema that presents the Input data providing both vertex and nor-
mals values for each point of the cloud.

Note that not only the surface normals have a normalized value which is obvious but
also the coordinate points are also normalized. This will be needed for solving our
equation system since for obtaining a valid approximation of the surface reconstruction,
the equation values that are provided to the solver must be between 0 and 1.

3.2 Point Cloud Artifacts

As we previously discussed in the previous chapter, there are many different ways of
generating a point cloud input. Most of them are generated by gadgets which sometimes
are not accurate at all. Those points representations could have downsides or artifacts,
which are an important factor to take into account for surface reconstruction. Most of
those properties will have an important impact on the behavior of reconstructing the
surface. Now, we will proceed to describe some of the most important elements that
may affect the performance of our reconstructions:

• Sampling density. The distribution of the points sampling the surface is referred
to as sampling density. Scans typically produce a non-uniform sampling on the
surface, where the sampling density spatially varies. This can be due to the dis-
tance from the shape to the scanner position, the scanner orientation, as well as
the shape’s geometric features Ideally, we would like to have a uniform point dis-
tribution where each point is equidistant from its neighbor. However, this is far
from reality and we typically receive a nonuniform sampling of the surface. Many
surface reconstruction algorithms must be able to estimate a notion of sampling
density at every point, and hence the level of non-uniformity in the sampling can
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have a great impact on estimation accuracy.

Sampling density is important in surface reconstruction for defining a neighbor-
hood. A neighborhood is a set of points close to a given point that captures the
local geometry of the surface, such as its tangent plane. A neighborhood should
be large enough so that the points sufficiently describe the local geometry, yet
small enough so that local features are preserved. Under uniform sampling den-
sity, a neighborhood may be constructed at every point in the same manner. For
instance, one can define a neighborhood at a point p ∈ P via an ε – ball, defined
as the set of points Nε(p) ⊂ P such that each y ⊂ Nε(p) satisfies ‖py‖ < ε,
under a single value ε used at all points.

Figure 3.2: Both top and bottom images represent a point cloud. The green line repre-
sents the theoretical surface to reconstruct whereas the red dots represent the captured
points. As we can observe, the top image presents a good sampling density whereas the
bottom image presents a poor sampling density.

• Noise and Outliers. The noise and outliers are commonly due to structural ar-
tifacts in the acquisition process. Points that are randomly distributed near the
surface are traditionally considered to be noise. The goal of surface reconstruc-
tion algorithms is to produce a surface that passes near the points without over-
fitting the noise. Since our iterative solver will impose smoothness on the output,
which will be able to correct the surface noise. Points that are far from the true
surface are classified as outliers. Note that spatially varying noise poses a signif-
icant challenge for the surface reconstruction algorithms, therefore we will use
Gaussian noise during our surface reconstruction in which the values at any pair
surface points are identically distributed and statistically independent and hence
uncorrelated.



CHAPTER 3. POINT CLOUD DATA DESCRIPTION 11

Figure 3.3: Image of a point cloud representation with noise and outliers. The green
line represents the theoretical surface to reconstruct whereas the red dots represent the
captured points. As we can observe, while the noise tends to follow the shape of the
surfaces despite he deviates, the outliers are from being a trustworthy representation.

• Missing data. A motivating factor behind many reconstruction methods is deal-
ing with missing data. Missing data is due to such factors as limited sensor range,
high light absorption, and occlusions in the scanning process where large portions
of the shape are not sampled. Although the aforementioned artifacts are continu-
ally improved upon, missing data tends to persist due to the physical constraints
of the device. We note that missing data differs from nonuniform sampling, as
the sampling density is zero in such regions

Figure 3.4: Image of a point cloud representation with missing data. The green line rep-
resents the theoretical surface to reconstruct whereas the red dots represent the captured
points. As we can observe, there are some chunks where the point data is missing.

3.3 Surface Normals

Surface normals are extremely useful input for reconstruction methods. For smooth
surfaces, the normal, uniquely defined at every point, in the direction perpendicular to
the point’s tangent space. The tangent space intuitively represents a localized surface
approximation at a given point. Surface normals may be oriented, where each normal
is consistently pointing inside or outside of the surface or may lack such a direction.
Normals that are oriented provide extremely useful cues for reconstruction algorithms.
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Normals that have consistent directions, either pointing in the inside or the outside of
the surface are referred to as being oriented. Knowledge of the exterior and interior of
the surface has proven extremely useful in surface reconstruction.

There are numerous ways to compute oriented normals. If the original 2D range scans
are known, then the 2D lattice structure provides a way of performing consistent ori-
entation since one always knows how to turn clockwise around a given vertex. For
instance, if we denote the point in a range scan at point (x,y) as px,y then one can take
the normal at px,y simply as the cross product between (px+1,y) and (px,y+1). If the
point cloud is noisy, then this method can produce rather noisy normals, since it does
not use nearby points in overlapping scans.

3.4 Surface Smoothness

The surface smoothness prior constrains the reconstructed surface to satisfy a certain
level of smoothness, while ensuring the reconstruction is a close fit to the data. The
most general form is the local smoothness, which strives for smoothness only in close
proximity to the data. The output of such approaches are typically surfaces that smooth
out noise associated with the acquisition while retaining boundary components where
there exists insufficient sampling (or simply no sampling). Due to their generality, these
methods can be applied to many shapes and acquisition devices, yet absent of additional
assumptions handling severe artifacts poses a significant challenge.

In contrast, global smoothness (such as Laplacian or Bilaplacian) seeks higher-order
smoothness, large-scale smoothness, or both. High order smoothness relates to the
variation of differential properties of the surface: area, tangent plane, curvature, etc.
Large-scale relates to the spatial scale where smoothness is enforced, not just near the
input. It is common for these methods to focus on reconstructing individual objects,
producing watertight surfaces. As a result, this limits the class of shapes to objects that
can be acquired from multiple views, captured as completely as possible.
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Chapter 4

Methodology

4.1 Continuous Formulation

We are concerned with the problem of reconstructing a watertight surface S defined
by an implicit equation S = {x : f(x) = 0} approximating a finite set of oriented
points D = (p1, n1), ..., (pN , nN), where pi is as surface location sample, and ni is the
corresponding surface normal sample oriented towards the outside of the object. If the
function is continuous, then this surface is watertight (closed). We will assume that
f(x) < 0 inside and f(x) > 0 outside of the object. In both Surface Reconstruction
[3] and Poisson Reconstruction [9] the implicit function is forced to be the indicator
function of the volume bounded by the surface S. This function is identically equal to
zero outside, to one inside, and discontinuous exactly on S, as shown in the Figure 4.3.

Figure 4.1: A 2D oriented point cloud as a sample of a 2D curve represented as a level
set of an indicator function(gray=1,white=0).
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Since the points pi are regarded as samples of the surface S, and the normal vectors as
samples of the surface normal at the corresponding points, the implicit function should
satisfy f(pi) = 0 and ∇f(pi) = ni for all the points i = 1, ..., N in the data set. In-
terpolating schemes, which require parameterized families of functions with very large
numbers of degrees of freedom, are not desirable in the presence of measurement noise.
For an approximating scheme, which is what we are after, we require that these two
interpolating conditions are satisfied in the least-squares sense. Moreover, we will add
the smoothing prior condition. As a result, we consider the problem of minimizing the
following data energy:

ε = λ0εD0(f) + λ1εD1(f) + λ2εR(f) (4.1)

λ0 and λ1 are positive constants used to give more or less weight to each one of the
two energy terms. The normalization by the number of points is introduced to make
these two parameters independent of the total number of points. λ2 is another positive
parameter. Increasing λ2 concerning λ0 and λ1 produces a smoother result. To solve
this problem, we will construct an equation system Ax = b and will make use of an
iterative solver in order to obtain a truthful reconstruction of the surface. We can divide
the equations into three types; equations based on point cloud position, equations based
on the surface normal, and equations based on the smoothing prior.

4.2 Point Equations

The point equations are meant to force the reconstructed isosurface to pass through the
input points. Given the point cloud points, we will compute its enveloping field box of
the size of the desired outputted resolution dividing the space into many nodes. For each
point p we will obtain the node nij to get its relative coordinates. The interpolation of
the 4 node corner points has to be ∅. This way, for each point of the point cloud
p = (x, y) and its respective grid node v = {v0,0, v1,0, v0,1, v1,1}, we could add the
following equation to our system:

(1− y)[(1− x)v0,0 + xv1,0] + y[(1− x)v0,1 + xv1,1] = 0 (4.2)
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Figure 4.2: Graphical example about the point p = (x, y) and the four node corners
v = {v0,0, v1,0, v0,1, v1,1} that conforms the grid cell.

4.3 Normal Equations

4.3.1 Gradient Equations

The gradient∇f(x) of a function f(x) which presents first-order continuous derivatives
is a vector field normal to the level sets of the function, and in particular to the surface
S. If the gradient∇f(x) does not vanish on the surface S, then S is a manifold surface
with no singular points.

Without loss of generality, we will further assume that the gradient field on the surface S
is unit length, which allows us to directly compare the gradient of the function with the
point cloud normal vectors. Since the points pi are regarded as samples of the surface S,
and the normal vectors as samples of the surface normal at the corresponding points, for
an interpolatory scheme the implicit function should satisfy f(pi) = 0 and∇f(pi) = ni

for all the points i = 1, ..., N in the data set. This way, for each sampled point, we will
have to add a point equation to our system:

∇f(p) = (
∂f(p)

∂x
,
∂f(p)

∂y
) = n (4.3)

∂f(p)

∂x
= nx (4.4)

∂f(p)

∂y
= ny (4.5)
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4.3.2 Sampling Equations

The sampling equation is an alternative to the gradient method. The main objective of
the sampling equations is to reduce the number of equations we have in our system to
obtain a smaller matrix which could improve the solver resolution time. However, with
the sampling method, we are losing the trustworthiness resolution of the reconstructed
surface.

In order to add the sampling equations we will perform as follows: We will add two
extra point equations the same way we described in the previous chapter. These two
points will be samples by displacing the original point of the cloud through the two
possible directions of its normal. The displacement has to be a very small value in
order to not create any undesired distortion (in our case we have selected the value 1/64

for the displacement).

Figure 4.3: An illustrated example about how to obtain the sampling points s1 and s2
from the given point of the point cloud p.

4.4 Smoothing Equations

The smoothing equations are built through a Laplacian smoothing. The Laplacian
smoothing is an algorithm meant to smooth a polygonal mesh. For each corner in a
mesh that is not on the margins of the field, the energy is chosen based on local in-
formation of the corners neighbors of the field grid. Our case in which a mesh is
topologically a rectangular grid in which each internal vertex is connected to exactly
four neighbors. Afterward, this operation produces the Laplacian of the mesh. More
formally, the smoothing equations may be described per-vertex as:

x̄i =
1

N

N∑
j=1

x̄j (4.6)
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WhereN is the number of adjacent node corners, i,x̄j is the position of the j-th adjacent
corner neighbor and x̄i is the new energy value for the i-th corner. For our surface
reconstructor we have implemented two different possible systems in order to add the
smoothing equations:

• One Dimensional Laplacian (1D). In this case, we will iterate through each node
corner of the field two times. In the first pass, we will add one equation per node
corner taking into account only the horizontal neighbor corners (left, and right).
Later in the second pass, we will only take into account the vertical neighbor
corners (top and bottom).

• Two Dimensional Bilaplacian (2D). In this case, we will first iterate through each
node corner once. On this pass, we will add one equation per node corner tak-
ing into account the four neighbor nodes (left, right, top and bottom). Later we
will iterate through the neighbors that are two positions away from the objective
corner.

4.5 Iterative Solvers

An iterative solver method is a mathematical procedure that uses an initial value to gen-
erate a sequence of improving approximate solutions for a class of problems, in which
the n-th approximation is derived from the previous ones. An iterative method is called
convergent if the corresponding sequence converges for given initial approximations.

Direct methods attempt to solve the problem by a finite sequence of operations. In the
absence of rounding errors, direct methods would deliver an exact solution. However,
iterative methods are often useful even for linear problems involving many variables,
where direct methods would be prohibitively expensive even with the best available
computing power.

We will make use of the iterative solving sparse linear systems of Eigen library [17]. In
Eigen, there are several methods available to solve linear systems when the coefficient
matrix is sparse. Because of the special representation of this class of matrices, special
care should be taken to get a good performance. Depending on the properties of the
matrix, the desired accuracy, Eigen solvers allow tuning those steps to improve the per-
formance. The three iterative solvers that present Eigen are the Conjugate Gradient,
the Least Squares Conjugate Gradient and the BiCGSTAB solvers.

The conjugate gradient method means to be the classic iterative conjugate gradient
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method whose matrix is positive-definite (a symmetric matrix A is called positive def-
inite if the real number xTAx is positive for every nonzero real column vector x [18]).
From now on we will suppose our build-in matrix A is positive definite. This method is
recommended for large symmetric problems, therefore is a potential solver option.

The least-squares conjugate gradient is a conjugate gradient solver for sparse or dense
rectangular least-square problems. This least-squares conjugate gradient solves for min
|A′Ax− b|2 without forming A’A, therefore there is no need to compute the transposed
matrix of A.

Finally, the biconjugate gradient stabilized method (BiCGSTAB), is a variant of the
biconjugate gradient method (BiCG) with a faster and smoother convergence than the
original BiCG. The vectors x and b can be either dense or sparse. To speed up the
convergence, we can add the IncompleteLUT preconditioner. If we add the Incom-
pleteLUT preconditioner two dropping rules are used :

1. Any element whose magnitude is less than some tolerance is dropped. This toler-
ance is obtained by multiplying the input tolerance droptol by the average mag-
nitude of all the original elements in the current row.

2. After the elimination of the row, only the fill largest elements in the L (lower)
part and the fill largest elements in the U (upper) part are kept (in addition to the
diagonal element ).

Note that fill is computed from the input parameter fill factor which is used the ratio to
control the fill relatively to the initial number of nonzero elements.

4.6 Multithreading

Some of Eigen’s sparse iterative solver methods can exploit the multiple cores present
in the hardware. In particular, Eigen uses the number of threads specified by OpenMP.
We have to take into account that in most operating systems it is very important to limit
the number of threads to the number of physical cores, otherwise, significant slowdowns
may occur, especially for operations involving dense matrices.

However, Eigen’s matrix-matrix product kernel is fully optimized and already exploits
nearly 100 percent of the CPU capacity. Consequently, there is no room for running
multiple such threads on a single core, and the performance would drop significantly
because of cache pollution and other sources of overheads. Eigen does not limit itself
to the number of physical cores because OpenMP does not allow to know the number
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of physical cores, and thus Eigen will launch as many threads as cores reported by
OpenMP.

4.7 Multigrid

In numerical analysis, a multigrid method is an algorithm for solving differential equa-
tions using a hierarchy of discretizations. They are an example of a class of techniques
called multiresolution methods which are very useful in problems exhibiting multi-
ple scales of behavior. Multigrid can solve a linear system with N unknowns with an
asymptotic cost of only O(N).

Multigrid methods achieve optimality by employing two complementary processes:
smoothing and coarse-grid correction; The main idea of multigrid is to accelerate the
convergence of a basic iterative method (known as relaxation, which generally reduces
short-wavelength error) by a global correction of the fine grid solution approximation
from time to time, accomplished by solving a coarse problem. The coarse problem,
while cheaper to solve, is similar to the fine grid problem in that it also has short- and
long-wavelength errors. It can also be solved by a combination of relaxation and appeal
to still coarser grids. This recursive process is repeated until a grid is reached where the
cost of direct solution there is negligible compared to the cost of one relaxation sweep
on the fine grid. The multigrid cycle typically reduces all error components by a fixed
amount bounded well below one, independent of the fine grid mesh size.

In contrast to other methods, multigrid methods are general can treat arbitrary regions
and boundary conditions and they do not depend on the separability of the equations or
other special properties of the equation. The multigrid approach often scales linearly
with the number of discrete nodes used. In other words, it can solve these problems to
a given accuracy in several operations that are proportional to the number of unknowns
having this way the advantage over other methods.

Our multigrid implementation is simple can be resumed as follows:

• Start with a low resolution system Ax0 = b and find the solution x0.

• Use x0 as guess initial solution for the system Ax1 = b.

• Reproduce the previous steps until we reach the xi solution.
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Chapter 5

Quadtree Reconstruction

5.1 Introduction to Quadtree

A quadtree is a data structure in which each internal node has exactly four children.
A quadtree is an appropriate structure for storing information that will be retrieved on
composite keys. Quadtrees are the two-dimensional analog of octrees and are most
often used to partition a two-dimensional space by recursively subdividing it into four
quadrants or regions.

The location of the points records with two-dimensional keys will be stored in a tree
with out-degree four at each node corner. Each node corner will store one record and
will have up to four sons, each a node corner. The root of the tree divides the universe
into four quadrants, namely for example TopLeft, TopRight, BottomLeft, and Bottom-

Right corners. The following Figure 5.1 shows the correspondence between a simple
tree and the records it represents.

Quadtrees may be classified according to the type of data they represent, including
areas, points, lines, and curves. Quadtrees may also be classified by whether the shape
of the tree is independent of the order in which data is processed. The most common
type of quadtree is the Region Quadtree which is also the one that we will use for our
surface reconstruction.



CHAPTER 5. QUADTREE RECONSTRUCTION 21

Figure 5.1: Correspondence of a quad tree to the records it represents. Records A, B,
C, D, E, F, G. Null subtrees are indicated by boxes, but they do not appear explicitly in
computer memory.

The region quadtree represents a partition of space in two dimensions by decompos-
ing the region into four equal quadrants, sub-quadrants, and so on with each leaf node
containing data corresponding to a specific subregion. Each node in the tree either has
exactly four children or has no children (a leaf node). The height of quadtrees that
follow this decomposition strategy (i.e. subdividing sub-quadrants as long as there is
interesting data in the sub-quadrants for which more refinement is desired) is sensi-
tive to and dependent on the spatial distribution of interesting areas in the space being
decomposed. The region quadtree is a type of prefix tree.

A region of a quadtree with a depth of n may be used to represent a grid consisting of
2n2n cells, where each cell will contain surface points, or otherwise, it will be empty.
The root node represents the entire grid region. If the cell in any region is not entirely
surface’s points, it is subdivided. The tree resolution and overall size are bounded by
the cell and point sizes. Since our region quadtree is used to represent a set of surface
point data, regions are subdivided until each leaf contains at most a single point.

Potential savings in terms of space when these trees are used for storing for example
images; images often have many regions of considerable size that have the same color
value throughout. Rather than store a big 2-D array of every pixel in the image, a
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quadtree can capture the same information potentially many divisive levels higher than
the pixel-resolution-sized cells that we would otherwise require.

5.2 Adding Surface Equations from a Quadtree

The methodology that we will use to resolve our system equation will be exactly the
same as the one we used on the iterative implementation. However, The number of
equations generated will be significantly reduced, since we will through each corner,
avoiding navigating through all the divided grids. Therefore, in order to perform it we
need to be able to do some steps efficiently:

• Collect all the corners of the terminal quadtree nodes without repetitions. These
will become variables in our system. It will also be useful to be able to compare
them and sort them so that we can have a structure that translates from a corner
to a variable id.

• For the point’s positions equations we will find the terminal node that contains
the point and will build the equation from the node’s corners and the position of
the point inside the node.

• For the point’s normal equations, regardless of the approach (gradient or sam-
pling), we may follow the same strategy used previously.

• For the smoothing prior equations:

– Build one equation (or two if it is implemented the 1D solution) for each
variable for each corner of a terminal node of the quadtree.

– The neighbors in the smoothing prior equation are sampled at maximum
resolution, but they may not be variables. Those that are not variables will
have to be interpolated from the available corners.

– Only equations that use samples from inside the scalar field will be kept.
For this, we need to implement a function that given a sample position in
the scalar field tells us if it’s inside and another function that tells us the
corners we need to interpolate to get the value at that sample’s position and
with which weights.

Keeping this in mind, we can state that:
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• The maximum resolution should be of the form 2k + 1, where k is the maximum
depth of the quadtree.

• Any corner of any node has a pair (i, j), where(0i < 2k + 1)(0j < 2k + 1), that
identifies it and allows to define an order via an operator < .

• This pair can be computed from a given node if each of them has its box defined
in those coordinates. Therefore, the operator needed to establish an order would
be as shown in the below figure 5.2:

Figure 5.2: Code structure in C++ used to define the corner’s order.

Figure 5.3: Example of a scalar field of size 257x257. The highlighted node has a box
of (128, 64) (192, 128). Hence, its corners are: (128, 64),(192, 64),(128, 128),(192,
128)

The smoothing prior equation takes samples around each corner of a quadtree node.
These samples are taken at maximum resolution. Using the 5.3, for corner (128, 128),
the locations of the 5 samples needed for the smoothing prior equation would be: (128,
128) for the corner itself, (129, 128) for the right neighbor corner, (127, 128) for the left
neighbor corner, (128, 129) for the top neighbor corner, and (128, 127) for the bottom
neighbor corner.

Therefore, determining if a sample is inside the scalar field is easy. For sample, given
the sample s with location (i, j), s is inside if (0 ≤ i < 2k+1)∧(0 ≤ j < 2k+1). If we
find the node that contains the sample, it is easy to extract its corners and interpolation
weights. If we take the neighbor samples and all samples are corners we will have the
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easiest case in which the prior equation formula will have a direct solution. Nonetheless,
let’s take a look at the case below :

Figure 5.4: Example of a scalar field of size 5x5. Note than the sample (1, 2) is not a
corner, thus not having an assigned variable.

The samples for the prior equation would be (2, 2), (1, 2), (3, 2), (2, 1), (2, 3). However,
if we take a look at the sample (1, 2) we can observe that it is not a corner, thus it
is not having an assigned variable. Moreover, this node is located in the middle of
an edge between two nodes. If the values of the scalar field at those locations are
v2,2, v1,2, v3,2, v2,1, v2,3 then the prior equation is:

v1,2 + v3,2 + v2,1 + v2,34v2,2 = 0

As sample v1,2 is not a corner, we have to obtain it from the interpolation of corners:

v1, 2 = 1/2v0,2 + 1/2v2,2

If we substitute the final equation only uses values that will be variables in our system:

1/2v0,2 + v3,2 + v2,1 + v2,37/2v2,2 = 0

Figure 5.5: Example case in which the sample (1, 2) is not a corner, thus not having an
assigned variable. Since the sample is located into an edge conformed by two corners,
the value of the sample (1, 2) will have an interpolated value between (0, 2) and (2, 2).
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Now let’s talk about another corner case example. In this case, the sample will not be
located on an edge between two corners but will be located in the middle of a cell. Let’s
take a look a the below figure 5.6:

Figure 5.6: Example case in which the sample (1, 1) is not a corner, thus not having an
assigned variable. Since the sample is located into a cell conformed by four corners,
the value of the sample (1, 1) will have an interpolated value between (0, 0), (0, 2), (2,
0), and (2, 2).

The samples for the prior equation would be (2, 1), (1, 1), (3, 1), (2, 0), (2, 2) where
only sample (1, 1) is not a corner. Moreover this node is located in the middle of a cell
between four nodes corners . The prior equation is:

v3,1 + v1,1 + v2,0 + v2,24v2,1 = 0

Since the sample v1,1 is not a corner, we have to obtain it from the interpolation of
corners:

v1,1 = 1/4v0,0 + 1/4v2,0 + 1/4v0,2 + 1/4v2,2

Finally, if we substitute:

v3,1 + 1/4v0,0 + 1/4v0,2 + 5/4v2,0 + 5/4v2,2 - 4v2,1 = 0
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Chapter 6

Experimental Results

6.1 Description of the tested models

To perform our experiments, we have generated 10 different models, each with dif-
ferent forms and shapes. When we generated the models we have taken into account
different aspects that could impact the performance of our surface reconstructor. Hence
we present from very simple models such a the Sphere model, which is only a simple
curvature, to more complex models such as the Superman logo which not only combine
curves and sharp edges but also presents different levels of layers with inner and outer
normal directions.

Moreover, we constructed models whose bounding box presents elongated shapes such
as the Key or the Capsule Models while others tend to have a squared bounding box
such as the Circle or the Suzanne models.

Finally, for each model we have two different versions; the high-level resolution ver-
sion, which contains a high level of points on the cloud, and the low-level resolution,
which contains at least (or even less) half of the points on the cloud. The mentioned
models will be displayed during the following sections.
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6.2 Analysis of the Point Cloud Artifacts

6.2.1 Analysis of the impact of the sampling density

In this section, we will evaluate the impact of the noise and the outliers. For this ex-
periment, we are going to make use of the high and low level point clouds of the given
data models. The low-level models try to maintain a uniform distance between the sam-
pled points in order to not mix it with the missing data artifact. Moreover, we will try
to maintain the neighborhood large enough so that the points sufficiently describe the
local geometry.

Figure 6.1: Image showing surface reconstruction with a high level of points on the
cloud for the Batman model. The left image shows the point’s and normal’s cloud in-
formation. The right image shows to reconstructed surface’s output image. The relative
error is 0,591749.

Figure 6.2: Image showing surface reconstruction with a low level of points on the cloud
for the Batman model. The left image shows the point’s and normal’s cloud information.
The right image shows to reconstructed surface’s output image. The relative error is
0,799591.
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Figure 6.3: Image showing surface reconstruction with a high level of points on the
cloud for the Clip model. The left image shows the point’s and normal’s cloud informa-
tion. The right image shows to reconstructed surface’s output image. The relative error
is 0,681038.

Figure 6.4: Image showing surface reconstruction with a low level of points on the cloud
for the Clip model. The left image shows the point’s and normal’s cloud information.
The right image shows to reconstructed surface’s output image. The relative error is
0,798002.

After taking a look at the figures 6.1, 6.2, 6.3, and 6.4 we can state than number of points
on the cloud impacts directly to the quality of the reconstructed surface. The relative
error is much lower on the models with a high number of points on the cloud rather
than a lower number of points. The reconstructed surfaces of the models with a lower
number of points omit the more complex shapes and forms. However, the sections with
straight lines or obtuse curves are quite well represented for the low number of data
info.
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6.2.2 Analysis of the impact of the noise and outliers

In this section, we will evaluate the impact of the noise and the outliers. The noise and
outliers impacts directly surface properties, scattering the characteristics of the surface
to reconstruct. Therefore, a model with a high level of noise and outliers could deform
the surface provoking to completely change the shape of the reconstructed surface or
generate a totally different surface shape.

For this experiment, we have added an extension to our executable which will add Gaus-

sian noise to the point cloud points before the model is processed. Note that there is no
sense in using big values for the standard deviation on the Gaussian noise since it would
displace the points so much that the model to reconstruct would be unrecognizable.

Figure 6.5: Result of reconstructing the Superman surface logo with a standard devia-
tion of 0.0 applied to the point cloud. The relative error was 0,723597.

Figure 6.6: Result of reconstructing the Superman surface logo with a standard devia-
tion of 0.005 applied to the point cloud. The relative error was 0,699843.
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Figure 6.7: Result of reconstructing the Superman surface logo with a standard devia-
tion of 0.01 applied to the point cloud. The relative error was 0,746836.

Figure 6.8: Result of reconstructing the Superman surface logo with a standard devia-
tion of 0.015 applied to the point cloud. The relative error was 0,809152.



CHAPTER 6. EXPERIMENTAL RESULTS 31

Figure 6.9: Result of reconstructing the Superman surface logo with a standard devia-
tion of 0.02 applied to the point cloud. The relative error was 0,840021.

Figure 6.10: Result of reconstructing the Superman surface logo with a standard devia-
tion of 0.025 applied to the point cloud. The relative error was 0,873228.

If we take a loot at the figures 6.5, 6.6, 6.7, 6.8, 6.9, and 6.10 we can observe the
reconstructed surface given a point cloud set, each figure with a higher value of standard
deviation of the Gaussian noise applied to it.

In general terms, we can say that the performance of our implemented system is quite
good. We can appreciate that the relative error increases at the time we increase the
standard deviation. This is normal since when we increase the deviation the shape of
the model to reconstruct becomes more ambiguous. Moreover, if we take a look at
the figure 6.10 which presents a high value of standard deviation and where all the
points are mostly outliers, despite the relative error value being really high, he mostly
preserved the general shape and holes of the original surface.
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6.2.3 Analysis of the impact of missing data

In this section, we will evaluate the impact of the missing data. The models with missing
data will present sections where the sampling density of points of the cloud will be zero.
Note that we will refer to the density in tan percent being 100 percent a model with all
the points information on the cloud and 0 percent a model with no point content.

For this experiment, we have added an extension to our executable which will add
specify the sampling density we desire and it will generate chunks on the surface model
in which the sampling density will be zero.

Figure 6.11: Image showing surface reconstruction of the Pharmacy Cross model using
the 100 per cent of the point cloud points.

Figure 6.12: Image showing surface reconstruction of the Pharmacy Cross model using
the 90 per cent of the point cloud points.
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Figure 6.13: Image showing surface reconstruction of the Pharmacy Cross model using
the 80 per cent of the point cloud points.

If we take a look at the Figures 6.11, 6.12, and 6.13 we can state that the models with big
chunks where the sampling density is zero will have a big impact on the reconstructed
surface. Moreover, the overall sampling density of the input models will have a direct
relationship with the missing data artifact. With a low level of sampling density, the
missing data behavior will increase since the quality of the sampled details will be
more prone to delete the original path and merge it with the adjacent ones.
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6.3 Analysis of the Implemented Methods

6.3.1 Analysis of the performance of the Normal Equations

As we previously mentioned on the section 4.3, we have implemented two different
implementations to construct the normal equations. In this chapter, we will analyze the
performance of the obtained results comparing the execution time as well as the result-
ing quality of the reconstructed surfaces for each implemented method. For this study,
we have fixed the smoothing equations to 1D and the iterative solver to Conjugate Gra-

dient. We also fixed the number of threads to 8. Moreover, we have run the executable
25 times to obtain the average of the execution time for each iteration:

Normal Sys (ms) Mat (ms) Solver (ms) Total (ms) Iterations Error Rel Error
Gradient 26,7 27,9 2714,6 2769,2 2963 9.0753e-06 0.447545
Sampling 26,9 30,6 2553,2 2610,5 2790 9.0562e-06 0.365539

Table 6.1: Content table of average results obtained for the Normals equation’s perfor-
mance analysis with the Biharmonic method for Suzane model. The System, Matrix,
Solver, and Total times are represented in milliseconds. The field size used for the
surface reconstruction was 65.

Normal Sys (ms) Mat (ms) Solver (ms) Total (ms) Iterations Error Rel Error
Gradient 196,7 75,8 3543,4 3815,9 1472 9.7198e-06 0.82808
Sampling 195.3 77.2 3251.3 3523.8 1345 9.6823e-06 0.73078

Table 6.2: Content table of average results obtained for the Normals equation’s per-
formance analysis with the Quadtree method for Suzane model. The System, Matrix,
Solver, and Total times are represented in milliseconds. The field size used for the
surface reconstruction was 1025.

We can appreciate to resulting tables 6.1 and 6.2 than the Sampling Normal system
equations outperforms the Gradient one. Not only the number of iterations performed
by the solver to reach a feasible solution of both Biharmonic and Quadtree surface re-
construction methods was lesser on the Sampling system rather than the Gradient one,
but also the given relative error of the equation system is lesser using the Sampling

Equations compared to the Gradient Equations. As for the execution time we can state
than are almost equivalent (it’s logical since both presented the same number of equa-
tions and unknowns).

This error difference can be appreciated on the 6.14 table where we can observe the
surface reconstruction’s output images generated by both Biharmonic and Quadtree

methods using the different Normal equation systems. If we take a look at the output
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images for the Biharmonic we cannot appreciate almost any difference between the
two reconstructions. However for the Quadtree surface reconstruction we can clearly
notice the difference between the different methods. Using the Sampling method we
can obtain a more faithful representation of the surface model, with more clear-shaped
lines and lesser noise rather than the Gradient system which creates noise inside and
outside our reconstructed surface which would have a great impact on the quality.

This way, despite we implemented the Sampling equations as a simplification of the
Gradient ones, we can state that adding Sampling equations rather than the Gradient

equations will generate a better quality solution not only on the gradient field quality
but also with a much better solver time, performing less iteration in order to obtain a
solution with a smaller error.

Reconstructed surface output at 64px. for
the Gradient eq. using Biharmonic method.

Reconstructed surface output at 64px. for
the Sampling eq. using Biharmonic method.

Reconstructed surface output at 1024px. for
the Gradient eq. using Quadtree method.

Reconstructed surface output at 1024px. for
the Sampling eq. using Quadtree method.

Figure 6.14: Images obtained from reconstructing Suzane model with the Gradient and
Sampling system equations with the Biharmonic and Quadtree methods.
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6.3.2 Analysis of the performance of the Smoothing Equations

In the chapter 4.4 we talked about the Laplacian (1D) and Bilaplacian (2D) smoothing
equations. In this section, we will evaluate the performance of both methods and the
impact in terms of execution time and quality of the resulting from the reconstructed
surface. For this study, we have fixed the normal equations to Sampling and the iterative
solver to Conjugate Gradient. We also fixed the number of threads to 8. Moreover, we
have run the executable 25 times to obtain the average of the execution time for each
iteration:

Smoothing Num Eq Num Unk. Total (ms) Iterations Error Rel Error
1D 6381 4225 2610,5 2790 9.0753e-06 0.365539
2D 10350 4225 3920.6 3877 8.98361e-06 0.405216

Table 6.3: Content table of average results obtained for the Smoothing equations’s per-
formance analysis with the Biharmonic method for Suzane model. The Total times are
represented in milliseconds. The field size used for the surface reconstruction was 65.

If we take a look at the table 6.3 we can see that the 2D smoothing equation system has
generated a bigger number of system equations and consequently, the total execution
time and the number of iterations is performed to reach a feasible solution was bigger
than the system than used the 1D smoothing equations. Moreover, the relative error
obtained by the 1D smoothing was lower than the obtained by the system that used the
1D smoothing equations, meaning that the reconstruction obtained better results if we
used the 1D Laplacian smoothing rather than the 2D Bilaplacian equation system.

In fact, if we take a look at the figure 6.16 we can appreciate some lightweight green
tones outside the reconstructed surface model but not inside it. However, if we take a
look at the figure 6.16 we can see pink spots inside the reconstructed surface, meaning
that there is some difference between the two reconstructed surface outputs. Nonethe-
less, we cannot see any spot that falls just in the middle of the reconstructed silhouette
which is the most important part.
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Reconstructed surface output at 64px. for the
1D eq. using Biharmonic method.

Reconstructed surface output at 64px. for the
2D eq. using Biharmonic method.

Figure 6.15: Images obtained from reconstructing Suzane model with the Gradient and
Sampling system equations with the Biharmonic and Quadtree methods.

Image showing the main differences repre-
sented in greenscale of using 1D and 2D

smoothing eq with the Biharmonic method.

Image showing the main differences repre-
sented with pink stains of using 1D and 2D
smoothing eq with the Biharmonic method.

Figure 6.16: Images representing the main differences obtained by representing Suzane
model with the 1D and 2D smoothing equations with the Biharmonic method.
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6.3.3 Analysis of the performance of the Iterative Solvers

As we already introduced on the section 4.5, Eigen presents three iterative linear solvers
to solve equation systems of the form Ax = b. This chapter aims to analyze the perfor-
mance of the obtained results in terms of execution time as well as the resulting quality
of the reconstructed surfaces for each iterative linear solver. For this study, we have
fixed the smoothing equations to 1D and the iterative normal equations to Sampling.
We also fixed the number of threads to 8. Moreover, we have run the executable 25
times to obtain the average of the execution time for each iteration:

It Solver Sys (ms) Mat (ms) Solver (ms) Total (ms)
BiCGSTAB 26,3 15,9 3166,1 3208,3
ConjGrad 26,9 30,6 2553,2 2610,5

LstSqrConjGrad 20,6 0 7733,3 7753,9

Table 6.4: Content table of average times obtained for the iterative solver’s performance
analysis with the Biharmonic method for Suzane model. The System, Matrix, Solver,
and Total times are represented in milliseconds. The field size used for the surface
reconstruction was 65.

It Solver Iterations Error Rel Error
BiCGSTAB 1784 8,4094e-06 0,365542
ConjGrad 2790 9,0562e-06 0,365539

LstSqrConjGrad 2790 9,8060e-06 0,365539

Table 6.5: Content table of the error results obtained for the iterative solver’s perfor-
mance analysis with the Biharmonic method for Suzane model. The field size used for
the surface reconstruction was 65.

As we can appreciate to resulting tables 6.4 and 6.6 the iterative linear system with
better execution time is the Conjugate Gradient solver. However, if we take a look at
tables 6.5 and 6.7 the BICGSTAB solver has performed a lesser number of iterations
to reach a feasible solution and its error is lower than the other ones, meaning that he
found a more precise reconstruction for the surface. Finally, we can state that the Least

Squares ConjugateGradient obtained the worst performance. Not only it was over three
times slower than the Conjugate Gradient but also obtained the worst error meaning that
he reached the worst surface reconstruction.
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It Solver Sys (ms) Mat (ms) Solver (ms) Total (ms)
BiCGSTAB 195,6 72,6 8021,7 8289,9
ConjGrad 195,3 77,2 3251,3 3523,8

LstSqrConjGrad 160,2 0 9233,2 9393,4

Table 6.6: Content table of average time results obtained for the iterative solver’s per-
formance analysis with the Quadtree method for Suzane model. The System, Matrix,
Solver, and Total times are represented in milliseconds. The field size used for the
surface reconstruction was 1025.

It Solver Iterations Error Rel Error
BiCGSTAB 1729 8,4610e-06 0.73078
ConjGrad 1345 9.6823e-06 0.73078

LstSqrConjGrad 1345 9.8806e-06 0.73078

Table 6.7: Content table of the error results obtained for the iterative solver’s perfor-
mance analysis with the Quadtree method for Suzane model. The field size used for the
surface reconstruction was 1025.

Although the Matrix Build time is zero, the impact of this computation is insignificant
compared to the other times. Despite the error of the BICGSTAB being less than the
other two, if we take a look at the figure 6.17 we cannot appreciate any significant
difference between the reconstructed images obtained for each of the iterative linear
solvers.

However, if we take a look at the figure 6.18, we can see the main differences between
the three methods. As we can observe the differences between the Conjugate Gradient

and the Least Squares Conjugate Gradient are null meaning they performed the same
surface output reconstructions. Nonetheless, with the BICGSTAB comparisons we can
appreciate a light difference especially outside the reconstructed surface, but inside or
across the reconstructed surface of the model the are no significant differences. Hence,
we can state that the Conjugate Gradient is the best choice since it outperforms the
other ones in terms of execution time.
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Reconstructed surface output at 64px. for the
BICGSTAB solver using Biharmonic method.

Reconstructed surface output at 1024px. for the
BICGSTAB solver using Quadtree method.

Reconstructed surface output at 64px. for the
ConjugateGradient solver using Biharmonic method.

Reconstructed surface output at 1024px. for the
ConjugateGradient solver using Quadtree method.

Reconstructed surface output at 64px. for the
LeastSquares solver using Biharmonic method.

Reconstructed surface output at 1024px. for the
LeastSquares solver using Quadtree method.

Figure 6.17: Images obtained from reconstructing Suzane model with the BICGSTAB,
ConjugateGradient, and LeastSquaresConjugateGradient iterative linear solvers with
the Biharmonic and Quadtree methods.
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Image showing the main differences repre-
sented in colorscale of using BICGSTAB and

ConjugateGradient solvers with the
Quadtree method.

Image showing the main differences repre-
sented with pink spots of using BICGSTAB

and ConjugateGradient solvers with the
Quadtree method.

Image showing the main differences repre-
sented in colorscale of using ConjugateGradient

and LeastSquares solvers with the
Quadtree method.

Image showing the main differences repre-
sented with pink spots of using ConjugateGradient

and LeastSquares solvers with the
Quadtree method.

Image showing the main differences repre-
sented in colorscale of using BICGSTAB and

LeastSquares solvers with the
Quadtree method.

Image showing the main differences repre-
sented with pink spots of using BICGSTAB

and LeastSquares solvers with the
Quadtree method.

Figure 6.18: Images representing the main differences obtained by representing Suzane
model with the different iterative solvers with the Quadtree method.
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6.3.4 Analysis of the performance of the Multigrid

In this section, we will perform a depth analysis of the performance in terms of execu-
tion time and quality of the resultant reconstructed surface of the multigrid against the
conventional Biharmonic solver. As we talked about in the chapter 4.7, the multigrid
should improve the performance time of resolving the iterative linear system, since at
each integration we will introduce a "Guess" input as the initial solution. However,
we don’t know how it will impact the performance of the resultant solution in terms of
quality and error. Furthermore, we will iterate many times and we don’t know if, in the
end, it will be more time-consuming.

For this study, we have fixed the normal equations to Sampling and the smoothing equa-
tions to 1D. We also fixed the number of threads to 8. For the multigrid cases, we will
also analyze the performance of using a different number of iterations to reach the de-
sired resolution, which will be the same as the resolution computed by the conventional
Biharmonic solver. Moreover, we have run the executable 25 times to obtain the average
of the execution time for each iteration:

Resolution Num Eq Num Un Iter Sys Time (ms) Error Rel Error
129 34926 16641 11328 43965,2 9,86181e-06 0,361221

Table 6.8: Content table of average results for the surface reconstruction analysis with-
out multigrid obtained with the Biharmonic method for Suzane model. The Total times
are represented in milliseconds. The field size used for the surface reconstruction was
129.

Iter no
¯ Resolution Num Eq Num Un Iter Total Time (ms) Error Rel Error

0 65 10350 4225 2790 2714,4 9,05617e-06 0,365539
1 129 34926 16641 5124 18923,5 9,98973e-06 0,361221

Average Total Time for all Multigrid iterations: 21637,9 ms.

Table 6.9: Content table of average results for the surface reconstruction analysis us-
ing multigrid obtained with the Biharmonic method for Suzane model. The multigrid
algorithm performed 1 iteration. The Total times are represented in milliseconds. The
resulted field size of surface reconstruction was 129.
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Iter no
¯ Resolution Num Eq Num Un Iter Total Time (ms) Error Rel Error

0 33 4206 1089 714 357,7 8,4196e-06 0,397721
1 65 10350 4225 1288 1271,1 9,9957e-06 0,365539
2 129 34926 16641 5180 18923,5 9,9893e-06 0,361221

Average Total Time for all Multigrid iterations: 20473,1 ms.

Table 6.10: Content table of average results for the surface reconstruction analysis us-
ing multigrid obtained with the Biharmonic method for Suzane model. The multigrid
algorithm performed 2 iteration. The Total times are represented in milliseconds. The
resulted field size of surface reconstruction was 129.

Iter no
¯ Resolution Num Eq Num Un Iter Total Time (ms) Error Rel Error

0 17 2670 289 175 2714,4 9,0329e-06 0,565278
1 33 4206 1089 527 272,4 9,8383e-06 0,397721
2 65 10350 4225 1290 1338,3 9,9830e-06 0,365539
3 129 34926 16641 5182 18814,2 9,8971e-06 0,361221

Average Total Time for all Multigrid iterations: 20464 ms.

Table 6.11: Content table of average results for the surface reconstruction analysis us-
ing multigrid obtained with the Biharmonic method for Suzane model. The multigrid
algorithm performed 3 iterations. The Total times are represented in milliseconds. The
resulted field size of surface reconstruction was 129.

As we can observe on the tables 6.8, 6.9, 6.10 and 6.11 the multigrid outperformed the
conventional biharmonic solver in terms of execution time. The results showed than the
multigrid can reach with a feasible solution with half of the execution times than needs
the biharmonic solver.
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6.3.5 Analysis of the performance of the Multithreating

In the section 4.5 we talked about the possibility to exploit the multiple cores present in
the hardware in order to increase the performance of the iterative linear solvers in terms
of execution time. This chapter aims to analyze the performance of the obtained results
in terms of execution time when we try different values for the threads used during the
system solving. For this study, we have fixed the smoothing equations to 1D and the
iterative normal equations to Sampling. We also used the Conjugate Gradient iterative
solver. Moreover, we have run the executable 25 times to obtain the average of the
execution time for each iteration.

Num Threads Num Eq Num Unknowns Iterations System Time ms
24 22221 10046 1345 5517,4
22 22221 10046 1345 4253,8
20 22221 10046 1345 3576,8
18 22221 10046 1345 3552,4
16 22221 10046 1345 3423,6
14 22221 10046 1345 3351,6
12 22221 10046 1345 3345,4
10 22221 10046 1345 3391,6
8 22221 10046 1345 3523.8
6 22221 10046 1345 3708,2
4 22221 10046 1345 4238,8
2 22221 10046 1345 5468,8

Table 6.12: Content table of average results for multhitreading analysis obtained with
the Biharmonic method for Suzane model. The Total times are represented in millisec-
onds. The field size used for the surface reconstruction was 1025.

If we take a look at the table 6.12 and chart figure 6.19 we can see the performance
difference than we obtain if we use a different number of threads for the iterative linear
solver. As we expected using a low number of threads is not the best choice since
the solving calculations could be improved in terms of parallelism, having just a few
threads for computing a large number of matrix chunks it’s not cost-efficient.

However, if have a high value of threads, the obtained are also bad, even could be
higher than using a low number of threads. This is because each thread will have a
fewer number of matrix chunks and be more expensive to communicate between them
and put the resulted data in common rather than computing its respective calculus.
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Figure 6.19: Line plot chart showing the linear system resolution time performance of
the surface reconstruction for field of resolution 1025.

Last but not least, we must take into account that the optimal number of threads is
directly related to the size of the build-in equation system and the number of equations
and number of unknowns we introduce to the iterative linear system. A clear example
can be observed at the below table 6.13 and the plot chart 6.20. For a system with a
low number of equations and unknowns, the optimal number of threads will be on small
values rather than using a bigger number of threads.

Num Threads Num Eq Num Unknowns Iterations System Time ms
24 3843 857 97 53
22 3843 857 97 49,6
20 3843 857 97 49,4
18 3843 857 97 48,2
16 3843 857 97 47,8
14 3843 857 97 47,9
12 3843 857 97 47,4
10 3843 857 97 47,6
8 3843 857 97 47
6 3843 857 97 46,8
4 3843 857 97 46,9
2 3843 857 97 45,2

Table 6.13: Content table of average results for multhitreading analysis obtained with
the Biharmonic method using Sampling normal equations and 1D smoothing. The Total
times are represented in milliseconds. The field size used for the surface reconstruction
was 65.
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Figure 6.20: Line plot chart showing the linear system resolution time performance of
the surface reconstruction for field of resolution 65.
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6.4 Analysis of the performance of the Biharmonic vs
Quadtree Solvers

In the section 5 we talked about the Quadtree and the capability to partition a two-
dimensional space by recursively subdividing it into four quadrants or regions. Unlike
the Biharmonic system approach, the Quadtree structure will only store information
of the node corners of the cells which contains a point data of the cloud. The aim of
this experiment is to compare the performance of the Quadtree against the Biharmonic

approach in terms of execution time and quality of the resulting from the reconstructed
surface. For this study, we have fixed the normal equations to Sampling, the smooth-
ing equations to 1D and the iterative solver to Conjugate Gradient. We also fixed the
number of threads to 8. Moreover, we have run the executable 25 times to obtain the
average of the execution time for each iteration:

Resol Equations Unknowns Sys (ms) Mat (ms) Solver (ms) Total (ms)
17 2670 289 10,3 3,9 4 18,3
33 2097 389 12,1 74.6 338.4 358,1
65 10350 4225 26,9 30,6 2533,2 2610,5
129 34926 16641 578,4 286,7 42533,9 43965,2

Table 6.14: Content table of average time results obtained for the Biharmonic method
for different resolutions using the Suzane model. The times are represented in millisec-
onds.

Resol Iterations Error Rel. Error
17 38 7,049e-06 0,651502
33 58 9,3947e-06 0,459492
65 2790 9,6823e-06 0,365539
129 11328 9,86181e-06 0,361221

Table 6.15: Content table of the error results obtained for the Biharmonic method for
different resolutions using the Suzane model.
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Figure 6.21: Line plot chart showing the total execution time using the Biharmonic
system for different fields of different resolutions.

Resol Eq Unk Sys (ms) Mat (ms) Solver (ms) Total (ms)
17 2463 167 8,4 4 25,8 38,2
33 2907 389 12 7,4 338,6 358
65 3843 857 21,2 8,7 52,9 82,8

129 5737 1804 37,1 24,3 121,7 183,1
257 9411 3641 70,8 38,1 353,4 462,3
513 15257 6564 131,1 57,8 1221,4 1410,3
1025 22221 10046 195,3 77,2 3251,3 3523,8
2049 29379 13625 257,8 99 8971,1 9327,9
4097 36549 17210 308,6 127,2 20804 21239,8

Table 6.16: Content table of average times obtained for the Quadtree for different res-
olutions using the Suzane model. The System, Matrix, Solver, and Total times are
represented in milliseconds.



CHAPTER 6. EXPERIMENTAL RESULTS 49

Resol Iterations Error Rel Error
17 38 7,049e-06 0,651502
33 58 9,3947e-06 0,459492
65 97 9,6111e-06 0,420518
129 204 9,7214e-06 0,468835
257 367 9,8558e-06 0,537750
513 759 9,5630e-06 0,632958

1025 1345 9,6823e-06 0,730780
2049 2679 9,7429e-06 0,771719
4097 4989 9,7688e-06 0,781172

Table 6.17: Content table of average results obtained for the Quadtree for different
resolutions using the Suzane model.
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Figure 6.22: Line plot chart showing the total execution time using the Quadtree system
for different fields of different resolutions.

As we can appreciate on the tables 6.14, 6.15, 6.16, and 6.17 the Quadtree system
outperforms the Biharmonic system in terms of execution time. If we take a look at the
plot 6.21 we can see that when we exceed the field resolution of 65 approximately, the
slope of the chart significantly grows.

Moreover, if we take a look a the plot 6.23 we can visually appreciate the big difference
between the two different approaches. The difference is so huge that reconstructing a
surface with a field size of 129 with the Biharmonic method takes about the double of
time as reconstructing a surface with a field size of 4097 using the Quadtree approach.
Obtaining high-resolution reconstructions with the Biharmonic method is unfeasible.
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However, with the Quadtree approach we can obtain high-resolution images using the
Quadtree system.
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Figure 6.23: Line plot chart showing comparison of the total execution time using the
Biharmonic system against the Quadtree system for different fields of different resolu-
tions.

Nonetheless, if we refer to the quality of the resultant reconstructed surface, we can
state that the Biharmonic system will produce better quality solutions compared to the
Quadtree approach. Not only produces solutions with lesser relative error but if we take
a look at the chart plots 6.24 and 6.25 we can see that at the time we increase the field
size using the Biharmonic system, the relative error decreases. However, at the time we
increase the field resolution on the Quadtree approach, the relative error increases too.
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Figure 6.24: Line plot chart showing the relative error using the Biharmonic system for
different fields of different resolutions.
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Figure 6.25: Line plot chart showing the relative error using the Quadtree system for
different fields of different resolutions.
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6.5 The importance of properly aligning the model to
the field

As we know, the Quadtree reconstruction will not subdivide the space field with subdi-
visions of equal size. On the contrary of the Biharmonic solver, which will subdivide
the all field into quadrants subdivisions of the same unitary size, the size of the sub-
divisions of the Quadtree may vary depending on the point information and in which
section of the field is falling too. Therefore, the obtained subdivided grid may not be
perfectly equal or symmetrical.

This matter could drastically impact the quality and the results of our reconstructed
surface. Placing the same model in a different position will mean that the resulted grid
will be different. Moreover, depending on the number of subdivision levels that the
Quadtree has fulfilled on the field space, the difference could be even bigger.

Finally, we can discern the models between symmetrical and non-symmetrical. For the
non-symmetrical, it would be inevitable to have equally symmetrical subdivisions on
the X-Y Cartesian coordinates that would split the field. However, for the symmetrical
models that are not equally subdivided in, the resulting output could be disastrous,
provoking to the generated output undesired noise and bubbles.

Subdivisions obtained by perfectly aligning
the Circle model to the gradient field.

Subdivisions obtained by displacing 0.15 units
the Circle model to the gradient field.

Figure 6.26: Images showing the subdivisions representations of the Quadtree model
with a depth level of 210. A small displacement means a significant difference between
both subdivisions.
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Reconstructed surface output at 64px.
of the Circle model aligned to the field

using the Biharmonic reconstruction method.

Reconstructed surface output at 64px.
of the Circle model unaligned to the field.

using the Biharmonic method.

Reconstructed surface output at 1024px.
of the Circle model aligned to the field

using the Quadtree reconstruction method.

Reconstructed surface output at 1024px.
of the Circle model unaligned to the field.

using the Quadtree method.

Figure 6.27: Images obtained from reconstructing Circle model with the Gradient and
Sampling system equations with the Biharmonic and Quadtree methods.

Despite the resultant surface reconstruction of the Biharmonic solver being perfectly
equal, we can appreciate on the figure 6.27 that the reconstructed surface outputs ob-
tained by using the Quadtree method are different. The reconstruction with a centered
symmetrical model such as the Sphere model obtained some noise on the corners of
the field, which is irrelevant and could be discarded very easily. However, the noise
obtained by reconstructing the Sphere model with light displacement concerning the
field center provokes a substantial impact on the obtained reconstructed surface. Not
only does it provoke an inner hole inside the reconstructed surface but also the corner
generated bigger bubbles which are pretty close to the reconstructed surface outline.
Those two noise artifacts could cause struggles to generate a quality representation of
the surface.
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6.6 Additional Results

Now, we will proceed to show some of the additional reconstructed results obtained by
running our executable with different inputs and configurations:

Surface reconstruction using the Quadtree system
with Gradient normal eq. The total execution time

was 875 ms. The relative error is 0,847308.

Surface reconstruction using the Quadtree system
with Sampling normal eq. The total execution time

was 653 ms. The relative error is 0,757691.

Figure 6.28: Comparison of the performance of the Gradient vs. Samping normal equa-
tions on the Superman model with a field resolution of 256.

Surface reconstruction using the Quadtree system
with Gradient normal eq. The total execution time

was 119 ms. The relative error is 0,758942.

Surface reconstruction using the Quadtree system
with Sampling normal eq. The total execution time

was 71 ms. The relative error is 0,547536.

Figure 6.29: Comparison of the performance of the Gradient vs. Samping normal equa-
tions on the Capsule low resolution model with a field resolution of 256.
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Surface reconstruction using the Biharmonic system
with 1D smoothing eq. The total execution time

was 1144 ms. The relative error is 0,703391.

Surface reconstruction using the Biharmonic system
with 2D smoothing eq. The total execution time
was 1844 ms. The relative error is 0,756499.

Figure 6.30: Comparison of the performance of the 1D vs. 2D smoothing equations on
the Pharmacy Cross model with a field resolution of 65.

Surface reconstruction using the Biharmonic system
with 1D smoothing eq. The total execution time

was 2782 ms. The relative error is 0,596682.

Surface reconstruction using the Biharmonic system
with 2D smoothing eq. The total execution time
was 3870 ms. The relative error is 0,642997.

Figure 6.31: Comparison of the performance of the 1D vs. 2D smoothing equations on
the Batman model with a field resolution of 65.
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Point Cloud viewer with data displacement. Surface reconstruction using the Quadtree system
with 1D smoothing eq. The total execution time

was 358 ms. The relative error is 0,81699.

Figure 6.32: Impact of sampling displacement when reconstructing the Crocodile Clip
model using the Quadtree method with gradient normal equations and a field resolution
of 257.

Point Cloud viewer with data displacement. Surface reconstruction using the Biharmonic system
with 1D smoothing eq. The total execution time

was 3317 ms. The relative error is 0,57324.

Figure 6.33: Impact of sampling displacement when reconstructing the Key model using
the Biharmonic method with gradient normal equations and a field resolution of 65.
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Chapter 7

Conclusions

7.1 Conclusions

In this project, we addressed the problem of surface reconstruction by introducing a
variational formulation for the problem of reconstructing a watertight surface defined
by an implicit equation from a finite set of oriented points. We built an application
that not only solves different sparse linear systems of equations using different possible
methods for position, normal, and smoothness equation’s constraints but also makes
use of more complex and effective surface reconstruction solving techniques such as
the Multigrid or Quadree reconstruction. Those implemented methods highlight the
strengths and limitations that currently exist in the field, making potential connections
across input assumptions, point cloud properties, and implemented approaches that have
not been previously considered.

Despite Bilaplacian smoothness was meant to enforce a smooth prior to the surface
reconstruction, the obtained results were not as expected, presenting a higher execution
time and relative error compared to the Laplacian smoothness.

The Quadree method outperforms the Biharmonic approach in terms of execution time,
allowing to reconstruct the watertight surface with higher resolutions. However, the
relative error is lower using the Biharmonic approach, providing more precise recon-
structions.

The optimal number of threads to use in each of the surface´s reconstruction is directly
related to the number of points of the cloud. A huge number of threads could provoke
overhead noise and significaly drop the performance.



CHAPTER 7. CONCLUSIONS 58

7.2 Future Prospects of Our Work

Many different adaptations, tests, and experiments have been left for the future due to
lack of time (i.e. the experiments with data are usually very time-consuming, requiring
even hours to finish a single run). Future work concerns deeper analysis of particular
algorithms, new proposals to try different methods, or simply curiosity.

There are some ideas that I would have liked to try during the description and the de-
velopment of the fitness functions in Chapter 4. This thesis has been mainly focused
on the surface reconstruction of point clouds for two-dimensional models, leaving the
study of third-dimensional ones outside the scope of the thesis.

Despite the surface reconstruction of the Quadtree approach outperformed the Bihar-
monics approach in terms of execution time, the quality of the presented reconstructed
surface of the Quadtree leaves much to be desired. The quality of the reconstructed
surface of the Biharmonic approach was smooth and polished and seemed to less point
dependant on the quantity and quality of the sampled points, whereas the reconstructed
surface of the Quadtree presented few noise and bubbles which impacted the output
quality, especially when the mesh was not perfectly centered or the subdivisions were
not symmetrical. The following ideas could be tested to improve the quality of the
Quadtree:

1. One possible solution in order to avoid the noise bubbles to be merged with the
reconstructed surface could be to create a series of extra unitary subdivisions dur-
ing the Quadtree subdivision around the contour of the surface to generate more
accuracy on the surface´s reconstructed limits. This way the contrast between big
subdivisions and small unitary subdivisions which contain point information will
be decreased and separated and hence reducing the chances of merging the noise
bubble with the reconstructed surface. Moreover, the artifacts that appear inside
the reconstructed surface could be drastically reduced.

2. Another possible optimization that could improve the quality of the results could
be to perform a cubical interpolation instead of linear interpolation. In gen-
eral, cubic interpolation is better than linear interpolation in most aspects such
as smoothness of the function and higher accuracy in approximating the original
function.

However, there is at least one aspect where linear interpolation is better: the linear
interpolation will not produce the "overshoot" situation. For example, if we have
a function that always produces positive y values, using cubic interpolation to
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approximate this function might give a function that "overshoots" to negative y-
axis territory even when all the interpolated y values are positive. This fact must
be taken into account at the time we perform our interpolations since we don’t
want to generate negative values.

Last but not least, during the performance of our Quadtree experiments we have
detected some kind of bubble noise, especially at the diagonal corners. This could
be possible neglect of the system equations (despite we have meticulously revised
the quality of the already implemented ones) or some rule or corner case we
forgot to take into account during the implementation of the method. Despite
they being meticulously revised, as future work, it would be a good idea to revise
that bubbling noise on the diagonal corners.
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Appendix A

Description of the executable

Our presented executable is meant to be a complete environment for testing not only
the performance of the algorithms and iterative solvers but also to analyze the impact
of the noise and artifacts. Here is a quick overview of the executable usage:

Usage:

reconstruction.exe [ -f | -b ] [ Surface Reconstruction |Model Generation ]

• The flag -f is meant to activate the Surface Reconstruction Mode. It will require
the path to the .svg or the .txt file. If the inputed is an svg extension the program
will parse the file and generate the proper .txt file in order to make the reconstruc-
tion. If the inputed file is the .txt file it will start the surface reconstruction with
the default parameters established.

• The flag -b is used in case the user it has neither .svg nor .txt files. In this case the
executable will generate a basic .txt geometric model in order to proceed with the
analysis.

Optional Parameters:

[ -c |Which Methods will Execute (Biharmonic, Quadtree, or Both) ]

• This flag specifies which solvers we want to execute. If we choose Biharmonic

or Quadtree it will only execute the Biharmonic or the Quadtree reconstructors
respectively. If the input is Both it will execute first execute the Biharmonic
reconstruction and then it will proceed with the Quadtree reconstruction. By
default, the selected choice will be Both.



APPENDIX A. DESCRIPTION OF THE EXECUTABLE 63

[ -n | normal’s size ]

• This flag is used to specify the length size of the normals represented on the
main viewer window. We have to take into account that relative positions are
normalized to one. This way, we suggest keeping small values for the normals
size since it could provoke to generate an incredible huge normal that could reach
the out of the screen, covering the representation of the points. By default, the
normal size is established to 0.2.

[ -z | Gaussian noise (between 0-0.025 recommended) ]

• This flag is meant to generate Gaussian noise and displace the relative position of
the points. All the displacements are relative to the normal’s direction. This op-
tional flag is meant to test the impact of noise and outliers artifacts in our surface
reconstruction. Applying a big Gaussian value could cause a big displacement
disfiguring the aiming model. By default, the Gaussian noise will be set to 0. We
recommend not to exceed a value of 0.025.

[ -d | Sampling Density (between 0-100) ]

• This flag is meant to test sampling density and missing data artifacts, undersam-
pling the number number of points of the point cloud. The value is tan percent
and it means the probability that a point p is taken into account for the surface
reconstruction. When a point falls out of the probability it will not be represented
as well as it will not represent a few numbers of the upcoming ones which are
chosen randomly to generate a missing data chunk. By default, the sampling den-
sity will be set to 100 percent (a point will always be taken into account for the
surface representation).

[ -r | Resolution ]

• This flag means the resolution of the scalar field of the resulted reconstructed
surface. We recommend to input values of 2k + 1 were k is a natural number
N1 = {1, 2, 3, ....} , specially if we are using the Multigrid solving. By default it
will have a resolution of 65.

[ -a | normal algorithm (gradient or sampling) ]
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• This flag specifies which kind of normal equations we will add to our solver,
gradient equations or sampling equations for our reconstruction. By default it
will be set to gradient.

[ -s | smoothing algorithm (1D or 2D) ]

• This flag specifies which kind of smoothing equations we will add to our solve,
one dimensional equations (1D) or two dimentional equations (2D). By default it
will be set to 2D.

[ -x | solver method (Conjugate, Biconjugate or LeastSquares) ]

• This flag specifies which iterative solver it will be used to solve or equation sys-
tem, the Conjugate Gradient, the Biconjugate Gradient or the Least Squares Con-

jugate Gradient. By default, it will be set to Conjugate Gradient (Conjugate).

[ -m |Multigrid Solving Mode on (0 or 1) ]

• This flag specifies if the surface reconstruction will be made through a Multi-
grid or not. Note that this flag will only take into account if we are making a
Biharmonic solving. By default, its value will be set to 0.

[ -i |Multigrid Iterations ]

• This flag specifies how many Multigrid iterations will generate for our surface re-
construction. Note than this flag will only have sense if we are using the multigrid
mode for the Biharmonic solver. By default the number of iterations to execute
will be 2.

[ -t | Number Threads (default 8) ]

• This flags specify how many threads are specified by OpenMP. By default, the
number of threads will be set to 8.

[ -l | Quadtree Subdivision Levels (default 8) ]

• This flag specifies the number of subdivisions that will perform the Quadtree

reconstruction. The generated field of the Quadree will be on par of 2n where n
is the input value. The default number of subdivisions of the Quadree will be 8.
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[ -g | Quadtree Full Grid Division (0 or 1) ]

• This flag forces the Quadree to be fully subdivided with unitary texels. By default
it will be disbled (zero).

[ -p | print logs (0 or 1) ]

• This flag enables/disables the print traces than provides information of the execu-
tion process. By default it will be enabled (one).

[ -q | In Depth Study ]

• This flag allows to make multiple surface reconstructions at once. By default,
given an established aimed Resolution the executable will run all the possible
combinations that the executable allows. All the results are stored in a .csv table as
well as into a .txt file. Moreover, all the generated images for every combination
are stored in a compressed folder.

• If we specify any of the previously mentioned flags he will ONLY test with that
specified value and will not perform the other ones. For example, if we introduce
the flag -x Conjugate he will perform all the possible combinations but only with
the Conjugate Gradient as a solver. This flag doesn’t require any input parameter.

• This flag is also conditioned by the -c flag, which will specify if it has to perform
a depth study only for the Biharmonic or the Quadtree methods or it will perform
Both in-depth studies, each with its own generated files and compressed folders.

[ -y | Color Transfer Max Value ]

• This flag allows to set the max value of the Scalar Field color transfer function
that will generate the output reconstructed image. By default, the Biharmonic

approach will have a value of 16 while the Quadtree will have an of 1 (for the
Quadtree we recommend low values since higher values could generate images
with pale colors where we cannot appreciate the reconstruction with clarity).
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