
0

DEPLOYMENT OF A DECENTRALIZED APPLICATION OVER A

PERMISSIONED BLOCKCHAIN BASED ON BESU

A Master's Thesis

Submitted to the Faculty of the

Escola Tècnica d'Enginyeria de Telecomunicació de

Barcelona

Universitat Politècnica de Catalunya

by

Marc Muro Barbé

In partial fulfilment

of the requirements for the degree of

MASTER IN CYBERSECURITY

Advisor: José Luís Muñoz

 1

Barcelona, September 2021

0

 1

Title of the thesis: Deployment of a decentralized application over a permissioned

blockchain based on Besu

Author: Marc Muro Barbé

Advisor: José Luís Muñoz

 2

Abstract

The transparent nature of for public chains like, allows all the participants to view the
transactions, limiting the potential of developing blockchain-based applications. This
paper attempts to study and deploy an Hyperledger Besu Network with Orion. Orion is a
promising private transaction manager, which as the name indicates, keeps transactions
in a Blockchain network private. Furthermore, we will deploy the network using Docker in
order to make it easier to replicate the deployment of the network in other systems.

 3

Acknowledgements

I want to thank my advisor, José Luís Muñoz, for all the help and support that I received
from him. Moreover, I want to thank every member of the Hyperledger Besu community
that has left detailed planned and explanations to make sure that even newer people on
the field can understand and solve all their problems.

 4

Revision history and approval record

Revision Date Purpose

0 31/08/2021 Document creation

1 10/09/2021 Document revision

2 19/09/2021 Document revision

3 26/01/2021 Document revision

Written by: Reviewed and approved by:

Date 31/08/2021 Date 26/09/2021

Name Marc Muro Barbé Name José Luís Muñoz

Position Project Author Position Project Supervisor

 5

Table of contents

DEPLOYMENT OF A DECENTRALIZED APPLICATION OVER A PERMISSIONED

BLOCKCHAIN BASED ON BESU .. 0

Abstract .. 2

Acknowledgements .. 3

Revision history and approval record .. 4

Table of contents .. 5

List of Figures ... 7

List of Tables .. 8

1. Introduction .. 9

1.1. Statement of purpose ... 9

1.2. Requirements and specifications .. 10

1.3. Methods and procedures .. 10

1.4. Work Plan ... 11

1.5. Gannt Diagram ... 13

1.6. Derivations ... 16

2. State of the art of the technology used or applied in this thesis 17

2.1. Enterprise Ethereum ... 17

2.2. Hyperledger Besu ... 17

2.2.1 Hyperledger Besu Architecture ... 18

2.2.2 Privacy .. 20

2.2.3 Permissioning ... 22

2.3. Orion .. 25

2.3.1. Privacy groups ... 26

2.3.2. Processing Private Transactions ... 28

2.3.3. Multi-Tenancy .. 29

2.4. Docker .. 30

3. Methodology / project development ... 31

3.1. Introduction to the project ... 31

3.2. First test: Run Besu from a Docker Image .. 31

3.3. Second Test: Create a permissioned network .. 36

3.4. Third Test: Create a permissioned network with Docker 38

 6

3.5. Fourth Test: Create an Hyperledger Besu Network with Docker Compose to send

transactions... 40

3.6. Fifth Test: Create an Hyperledger Besu Network with Docker Compose 43

3.6.1. Fifth Test: Problems and Solutions .. 46

4. Results .. 47

4.1. First Network .. 47

4.2. Fifth Network .. 51

4.3. Modifying the Network .. 53

5. Budget ... 54

6. Conclusions and future development ... 55

7. Bibliography ... 56

8. Glossary .. 59

 7

List of Figures

Figure 1 Private Transaction Manager .. 10

Figure 2 Hyperledger Besu's Architecture ... 19

Figure 3 Alice sends a transaction to Bob using Orion in an Hyperledger Besu Network 21

Figure 4 Node-level permissions are a useful system of governance to control connections

to an individual node. .. 22

Figure 5 Using account permissions a consortium blockchain can limit which accounts a

node accepts transactions from, and which it rejects. ... 23

Figure 6 Local and onchain permissioning rules in Hyperledger Besu 24

Figure 7 Orion supports TLS communication .. 26

Figure 8 Privacy groups in Hyperledger Besu ... 27

Figure 9 Private transaction processing in Hyperledger Besu ... 28

Figure 10 Multi-Tenancy in Hyperledger Besu with Orion ... 29

Figure 11 Docker's containers compared to a virtual machine .. 30

Figure 12 Block Explorer .. 32

Figure 13 Block Explorer block searcher... 32

Figure 14 Grafana’s user interface .. 34

Figure 15 Volumes in Docker .. 39

Figure 16 Test 5 network schematic ... 43

Figure 17 Quorum developer quickstart .. 47

Figure 18 Launching an Hyperledger Besu network using Docker part 1/2 48

Figure 19 Launching an Hyperledger Besu network using Docker part 2/2 48

Figure 20 List of available services in Hyperledger Besu .. 48

Figure 21 Block Explorer of our Hyperledger Besu network .. 49

Figure 22 Best Block in our Hyperledger Besu network .. 49

Figure 23 Grafana's Dashboard of our Hyperledger Besu network 50

Figure 24 Launching our Hyperledger Besu network with Orion 51

Figure 25 Removing the network .. 52

Figure 26 Network functioning .. 52

Figure 27 Virtual Machine cost calculator ... 54

 8

List of Tables

Table 1 Node's addresses and keys ... 45

 9

1. Introduction

1.1. Statement of purpose

This objective of this project is to deploy an Hyperledger Besu Blockchain network in a

virtual environment. We will use Docker and Docker compose to launch the network so

there are no compatibility problems when someone wants to replicate the launched network

somewhere else.

Regarding the Network, it will be a three-node network with privacy (Orion) and monitored

with Prometheus and Grafana. The privacy part is one of the main driving parts of this

project. We also studied the options of adding or removing nodes by modifying the docker

compose file and checked that the network worked without issues.

Why a privacy layer in blockchain?

While blockchain allows users to collaborate with new trust models, businesses do not trust

each other to know the details of their transactions. Moreover, blockchain does not remove

the regulations for businesses to keep data and transactions private. Most data must be

kept private to those with a business need-to-know. [1]

Processing private transactions involves both the private transaction and the privacy maker

transaction. The private transaction is distributed to involved participants and the privacy

marker transaction is included on the public blockchain.

Private transactions are not submitted in a transaction pool. Private transactions are

distributed directly to participants in the transaction while the privacy marker transaction is

distributed to the transaction pool.

Private transaction managers such as Orion allow shared business logic in smart contracts.

They turn all transactions and their respective states private. The installation of the contract

is also recorded on the main blockchain via a hash. Participants execute the private

transaction, and update their private data, as the hash is ordered and distributed via the

blockchain network.

Figure 1 is an example of how a privacy transaction manager works.

 10

Figure 1 Private Transaction Manager

1.2. Requirements and specifications

During the first month of the project, I had to learn about Hyperledger, Besu and Orion. To

do so I used different resources but mostly the Hyperledger Besu Wiki and documentation

pages as well as Orion’s.

Then on the following weeks I had to learn about Docker and Docker Compose. From why

are they used to how.

As for other requirements a basic knowledge of Linux and Latex were needed as well.

1.3. Methods and procedures

This project studied different methods to deploy an Hyperledger Besu Network with Orion

as a privacy method. We tested different networks until we found a GitHub with multiple

sample networks. One of such samples was a three-node network with Orion. It wasn’t as

simple as just launching the network, we had to study it first and fix the errors that occurred.

Furthermore, we needed to test the network with different smart contracts and studied the

possibility of modifying the network to ass or remove nodes.

 11

1.4. Work Plan

Project: Learning about Hyperledger and

Orion

WP ref :WP 1

Reading and understanding Hyperledger,

Besu and Orion. Learning the main

differences between Orion and Tessera.

Start date: 14/02

End Date: 17/03

Project: Learning about Docker and Docker

Compose

WP ref :WP 2

Reading and understanding Docker and

Docker compose; the main commands and

how they work.

Start date: 17/03

End Date: 31/03

Project: Investigating how to launch

Hyperledger Besu using Docker

WP ref :WP 3

Using the Hyperledger Besu

Documentation to try to launch

Hyperledger using docker and then with

Orion.

Start date: 31/03

End Date: 07/05

Project: Investigating how to launch

Hyperledger Besu with Orion using Docker

Compose

WP ref :WP 4

Using different projects on Hyperledger

from GitHub to try to launch Hyperledger

Besu with Orion using docker compose.

Start date: 07/05

End Date: 28/05

 12

Project: Fixing the problems of the Docker

Compose Network

WP ref :WP 5

Solving the problems that arose when we

try to launch the Network. These issues

included compatibility and connection

problems.

Start date: 15/05

End Date: 28/05

Project: Testing and Modifying the Network WP ref :WP 6

Testing the network and experimenting if

the network can be modified to fit different

needs that may arise in the future.

Start date: 28/05

End Date: 06/08

13

1.5. Gannt Diagram

WP 1 and 2

 14

WP 3, 4 and 5

 15

WP 6

16

1.6. Derivations

Finding a Docker Hyperledger Besu network that worked with Orion took more time than

expected and the progress on my end was slower than expected. Moreover, some errors

appeared when we tried to test the different networks which took some time to solve.

 17

2. State of the art of the technology used or applied in this

thesis

The project consists on launching an Hyperledger Besu Blockchain Network that uses

Orion. Hyperledger Besu is an open-source Ethereum client developed with an Apache 2.0

license. Besu implements Proof of Work and Proof of consensus mechanisms.

Orion is an open-source private transaction manager developed with Apache 2.0 license.

The main application of Orion is as the private transaction manager for Hyperledger Besu.

Hyperledger Besu is a solution that allows enterprises build scalable, high-performance

applications on a private network Furthermore it comes with the support of permissioning

and privacy.

2.1. Enterprise Ethereum

Enterprise Ethereum is a private variation of the Ethereum blockchain. Enterprise

Ethereum not only works as a normal Ethereum network does but adds permission features

along with identity management to offer a permissioned network. Moreover, it increases

the privacy level in order to increase scalability and performance. It even introduces

different consensus algorithms other than proof of work. [2]

In conclusion, an Enterprise Ethereum can do the following:

• Create an execution environment in Ethereum blockchain for processing

transactions

• Persistent data storage including storing transaction execution

• Enable peer-to-peer (P2P) network communication between nodes

• Offers APIs for secure development and blockchain interaction

• JSON RPC APIs for application developers to interact with the blockchain

2.2. Hyperledger Besu

Hyperledger Besu is an open-source Ethereum client that is developed with an Apache 2.0

license. It written in Java and makes use of the Ethereum public network. [3]

As an Ethereum client, Hyperledger Besu can be used the same things an Ethereum

network is capable of: [4]

• Decentralized app (dApp) development

• Smart contract development

• Ether mining

As for the consensus method, Hyperledger Besu utilizes Proof of Authority (Clique and

IBFT 2.0) and Proof of Work (Ethash).

 18

Hyperledger Besu is the ideal network for enterprises as it was aimed towards building a

private and public network for enterprises.

The Notable Features of Hyperledger Besu are: [2] [4]

• Ethereum Virtual Machine (EVM): Enables deployment and execution of smart

contracts through transactions within an Ethereum blockchain.

• Consensus protocols: The consensus algorithms of Besu are Proof-of-Authority

and Proof-of-work. These consensus algorithms are involved in block validation,

transaction validation, and block production.

• Storage: Hyperledger Besu uses a key-value database for persisting chain data

locally.

• Monitoring: Node and network performance can be monitored using Besu. Nodes

are monitored through Prometheus or Grafana. Network performance is monitored

using Block Explorer.

• Privacy: The private transaction manager of Besu, in our case Orion, implements

privacy and does not allow other parties to access the transaction content, sending

party, and the list of participating parties.

• Permissioning: Besu allows only specific nodes and accounts to participate in the

network.

2.2.1 Hyperledger Besu Architecture

We will now discuss some of the significant elements of the Hyperledger Besu architecture.

The key three core components of the Besu include the following: [5]

• Storage

• Ethereum Core

• Networking

 19

Figure 2 showcases Hyperledger Besu’s architecture.

Figure 2 Hyperledger Besu's Architecture

Ethereum Core

The main component of the Ethereum core is the Ethereum Virtual Machine which is

responsible for any executing any transaction. The Transaction Processor helps the

Ethereum Virtual Machine to function efficiently and effectively, the Transaction Pool stores

transaction-related information and the Synchronizer helps to synchronize all the nodes

and the network. [2]

Consensus methods are also a part of the Ethereum core. Here we have consensus

algorithms including PoW, Clique, and IBFT2. [4]

Regarding PoW, Ethash is a proof-of-work mining algorithm implemented by the Ethereum

network. Ethash was developed with protection from ASIC (Application Specific Integrated

Circuits) in mind.

Besu implements Clique Proof-of-Authority consensus protocol. In Clique networks,

approved accounts, which are also known as signers, validate transactions and blocks.

Signers take turns to create the next block. The signers that are already on the network

can propose and vote to add or remove signers. [6]

Besu also implements the IBFT 2.0 Proof-of-Authority consensus protocol. In IBFT 2.0

networks, approved accounts, also known as validators, can validate transactions and

blocks. Just like signers in clique, validators take turns to create the next block. Before

inserting the new block onto the chain; a majority, that has to greater than 66% of validators,

must first sign the block. IBFT 2.0 is a robust and stable consensus algorithm suitable for

enterprise use cases in a private network. [7]

While the core client architecture is relatively simple, it can be easily expanded with plugins.

Users can use existing open-source Besu plugins or build their own plugins. This approach

is what enables Hyperledger Besu’s to be modular.

 20

Storage and Networking

In a storage setup, the data is divided into two sub-categories, Blockchain and World State.

The Blockchain is made of block headers, block bodies and transaction receipts. Block

headers are used to verify the blockchain stat. Block bodies contain a list of ordered

transactions and are included in each block. Transaction receipts contain metadata related

to the execution of transactions, including transaction logs. [2] [4]

Every block header references a world state through a hash. World state is a map from

addresses to accounts.

On the Networking part, Besu implements Ethereum’s devp2p network protocols for inter-

client communication and a sub-protocol for IBFT2. The main components include:

Discovery, a UDP-based protocol to find users on the network; RLPx, A TCP-based

protocol that is used for communication between peers through sub-protocols; ETH sub-

protocol; and an IBF Sub-Protocol.

2.2.2 Privacy

In Besu, privacy refers to the ability to keep transactions private between the participants

in the network. Other participants will not be able to access the transaction content or list

of participants. [8]

Besu uses a private transaction manager, in our case Orion, to implement privacy. Each

Besu node that sends or receives private transactions will require an associated Orion node.

 21

In figure 3 we can see how Alice sends a transaction to Bob using Orion in Hyperledger

Besu.

Figure 3 Alice sends a transaction to Bob using Orion in an Hyperledger Besu Network

Private transactions pass from the Besu node to the associated Orion node. The Orion

node then proceeds to encrypt and distribute directly the private transaction to the other

Orion nodes participating in the transaction.

Each participant in a privacy network uses its own Besu and Orion node. Multi-tenancy

allows more than one participant to use the same Besu and Orion node.

Besu and Orion nodes both have public and private key pairs identifying them. A Besu

node sends a private transaction to an Orion node so it signs the transaction with the Besu

node private key.

We will expand on Privacy when we talk about Orion.

 22

2.2.3 Permissioning

A permissioned network allows only specified nodes and accounts to access the network

by enabling node permissioning and account permissioning. [9]

In order to obtain permissioning we need a distributed network of trust across the network

where participants must agree to follow the rules. If one bad actor decides not to follow the

rules, the other nodes can take action to prevent the bad actor adding to the chain but they

cannot prevent the bad actor from allowing access to the chain.

Node permissioning

Node permissioning is used to restrict access to known participants in case a bad actor

appears. [9]

Node-level permissions are a useful system of governance to control connections to an

individual node.

We can see how node-level permissioning works in Hyperledger Besu in figure 4.

Figure 4 Node-level permissions are a useful system of governance to control connections

to an individual node.

 23

Account permissioning

Account permissioning is used to enforce onboarding or identity requirements, suspend

accounts, exclude broken contracts using a deny-list and restrict the actions an account

can perform. [9]

Using account permissions in Hyperledger Besu, a consortium blockchain can limit which

accounts a node accepts transactions from, and which it rejects.

In figure 5, we can observe account permissioning in Hyperledger Besu.

Figure 5 Using account permissions a consortium blockchain can limit which accounts a

node accepts transactions from, and which it rejects.

 24

Specifying permissioning

You can specify permissioning locally or onchain. [9]

The following diagram, figure 6, illustrates applying local and onchain permissioning rules.

Figure 6 Local and onchain permissioning rules in Hyperledger Besu

Local permissioning works at the node level to do so, each node in the network needs to

have a permissions configuration file.

Local permissioning affects a node but not the rest of the network. Local permissioning is

used to restrict use of a node. For example, customers able to access your node.

As local permissioning does not require co-ordination with the rest of the network, the user

can act immediately to protect their node.

Onchain permissioning works on the network through a smart contract. Using smart

contracts, onchain permissioning stores and administers the nodes, accounts, and admin

allowlists. Using onchain permissioning enables all nodes to read the allowlists from a

single source, the blockchain. [10]

Onchain permissioning enables all nodes to read and update permissioning configuration

from one location. To do so, Onchain permissioning requires co-ordination to update the

rules.

When you onchain permissioning is updated, the new rules will apply across the network

and new blocks automatically abide by the updated rules.

 25

2.3. Orion

Orion is an open-source private transaction manager developed under the Apache 2.0

license and written in Java. [11]

Orion is mainly used as the private transaction manager for Hyperledger Besu. Orion

generates and maintains private/public key pairs, stores privacy group details, self

manages and discovers all nodes in the Orion network and provides an API for

communicating between Orion nodes and an API for communicating with Ethereum clients

like Hyperledger Besu.

Besu and Orion use separate keys and nonces for the private part of the transaction. Orion

uses different transaction signing keys for the private payload of the transaction and the

transaction that is sent to the main blockchain. [1] [12]

Orion uses three different keys:

• The Ethereum key that signs the private transaction

• The Ethereum key that signs the public transaction

• The key that is used to encrypt and transfer the payload to remote participants in

the transaction

Besu and Orion use a Smart Contract address on the main chain to track transactions. The

transactions that appear on the main blockchain network for Orion will all have the same

to address. This address is a special address of a special smart contract that records all of

the transactions.

Besu and Orion require explicit management of privacy groups. When submitting

transactions to Orion, the target for the private transaction will be a privacy group.

Privacy groups have lifecycles and identities. The existence of privacy groups is broadcast

to all participants. Each privacy group is a separate isolated piece of state. [13]

The consequences of this are:

• Multiple privacy groups may have the same sets of participants

• The privacy group must be stated when submitting transactions as well as when

reading state

In order to enable disaster recovery, Orion uses a relational database and backup. Orion

supports using relational databases PostgreSQL and Oracle. Were the case to happen

where the Orion database is deleted or corrupted, all private transaction payloads for the

node will be lost. And without a backup users will not be able to recover a lost database.

[14]

Furthermore, Orion supports TLS to secure communication to a client and to other Orion

nodes. The client, in our case Hyperledger Besu, must be configured to send and accept

TLS communication between itself and Orion. [15]

We can observe an Hyperledger Besu Network with Orion using TLS communication in

figure 7.

 26

Figure 7 Orion supports TLS communication

Orion also supports multi-tenancy. Usually, every participant in a privacy network uses its

own Hyperledger Besu and Orion node. Orion supports multi-tenancy by allowing multiple

participants in a privacy network to use the same Besu and Orion node. [16]

2.3.1. Privacy groups

A privacy group is a group of nodes identified by a unique privacy group ID by Orion. Orion

stores each private transaction with the privacy group ID. [17]

The Besu nodes maintain the public world state for the blockchain and a private state for

each privacy group. The private states contain data that is not shared in the globally

replicated world state.

Besu implements two types of privacy: Enterprise Ethereum Alliance (EEA) privacy and

Besu-extended privacy. Both privacy types create privacy groups and store private

transactions with their privacy group in Orion.

A contract in a privacy group can read or write to a contract in the same privacy group, can

read from the public state including public contracts but cannot access contracts from a

different privacy group as a public contract cannot access a private contract.

 27

Figure 8 Privacy groups in Hyperledger Besu

Figure 8 illustrates two privacy groups enabling:

• A, B, and C to send transactions that are private from D.

• A, C, and D to send transactions that are private from B.

In the previous diagram, to send private transactions between A, B, and C, A creates a

privacy group consisting of A, B, and C. The privacy group ID is specified when sending

private transactions and A, B, and C are recipients of all private transactions sent to the

privacy group.

To send private transactions between A, C, and D, A creates a privacy group consisting of

A, C, and D. The privacy group ID of this group is specified when sending private

transactions with A, C, and D as recipients.

 28

2.3.2. Processing Private Transactions

Processing Private transactions involves two things: [18]

• Precompiled Contract: A precompiled contract is a smart contract compiled from

the source language and stored by an Ethereum node to execute later.

• Privacy Marker Transaction: A privacy marker transaction involves a public

Ethereum transaction with a payload of the enclave key. The enclave key points to

the private transaction in Orion.

Private transaction processing is illustrated in figure 9.

Figure 9 Private transaction processing in Hyperledger Besu

We will explain step by step the diagram:

1. The process starts by submitting a private transaction using

eea_sendRawTransaction. The signed transaction includes transaction attributes

that specify the list of recipients, sender and if the transaction is of type restricted.

2. The private transaction is passed to the Private Transaction Handler.

3. The Private Transaction Handler sends the private transaction to Orion.

4. Orion distributes the private transaction directly to the Orion nodes previously

specified or that belonging to a previously specified privacy group. All recipient

 29

Orion nodes store the transaction. Orion associates the stored transaction with the

transaction hash and privacy group ID.

5. Orion returns the transaction hash to the Private Transaction Handler.

6. The Private Transaction Handler creates a Privacy Marker Transaction for the

private transaction. Just like in an Ethereum transaction, the Private Transaction

Handler propagates the Privacy Marker Transaction.

7. Besu mines the Privacy Marker Transaction into a block and the Privacy Marker

Transaction is distributed to all Ethereum nodes in the network.

8. The Mainnet Transaction Processor processes the Privacy Marker Transaction in

the same way as any other public transaction.

9. Orion is queried by the privacy precompile contract for the private transaction and

privacy group ID using the transaction hash.

10. The privacy precompile contract passes the private transaction to the Private

Transaction Processor. The privacy group ID specifies the private world state to

use.

11. The Private Transaction Processor executes the transaction.

2.3.3. Multi-Tenancy

As previously stated, each participant in a privacy network uses its own Besu and Orion

node.

Multi-tenancy allows multiple participants to use the same Besu and Orion node. Each

participant is a tenant, and the operator is the owner of the Besu and Orion node. [19]

In figure 10 we can observe

Figure 10 Multi-Tenancy in Hyperledger Besu with Orion

Multi-tenancy validates that tenants have permission to use the specified HTTP or

Websocket JSON-RPC requests, and the tenant has access to the requested privacy data.

.

 30

2.4. Docker

Docker is an open-source project that automates the deployment of software applications

inside containers by providing an additional layer of abstraction and automation of OS-level

virtualization on Linux. In simpler words, Docker is a tool that allows its users to easily

deploy their applications in a sandbox, called containers, to run on the host operating

system. The main benefit of Docker is that it allows its users to store an application,

including all of its dependencies, into a standardized unit. [20]

By leveraging the low-level mechanics of the host operating system, containers provide

most of the isolation of virtual machines at a fraction of the computing power.

In figure 11 we can observe the difference in the structure of a Docker Container with that

of a virtual machine

Figure 11 Docker's containers compared to a virtual machine

Docker Compose

There are a bunch of other open-source tools which combine well with Docker. One of said

tools is Docker Compose. [21]

Compose is a tool that is used for defining and running multi-container Docker apps in an

easy way. It provides a configuration file called docker-compose.yml that can be used to

bring up an application and the suite of services it depends on with just one command.

Compose works in all environments: production, staging, development, testing, as well as

CI workflows, although Compose is ideal for development and testing environments.

 31

3. Methodology / project development

3.1. Introduction to the project

My goal was to launch a functional Hyperledger Besu Network on a Virtual Machine with

use Orion as a privacy transaction manager. The network had to be launched using Docker

in order to avoid complications if the need to launch the network in another environment

arises.

3.2. First test: Run Besu from a Docker Image

Besu provides a Docker image to run a Besu node in a Docker container. We used this
Docker image to run a single Besu node without installing Besu. [22]

Prerequisites

• One of the following operating systems is required:

o Linux on x86_64 architecture

o macOS on an Intel processor (M1 processor not supported yet)

o Windows 64-bit edition, with:

▪ Windows Subsystem for Linux 2.

▪ Docker desktop configured to use the WSL2-based engine.

• Docker and Docker-compose.

Generate the tutorial blockchain configuration files

To create the tutorial docker-compose files and artifacts we run:

• npx quorum-dev-quickstart

Start the network

To start the services and the network we launch a terminal in the installation directory and
run:

• ./run.sh

The script builds the Docker images, and runs the Docker containers. Four Besu IBFT 2.0
validator nodes and a non-validator node are created to simulate a base network.

When execution is successfully finished, the process lists the available services:

• Use the JSON-RPC HTTP service endpoint to access the RPC node service from
your dapp or from cryptocurrency wallets such as MetaMask.

• Use the JSON-RPC WebSocket service endpoint to access the Web socket node
service from your dapp.

• Use the Web block explorer address to display the block explorer Web
application.

 32

• Use the Prometheus address to access the Prometheus dashboard. Read more
about metrics.

• Use the Grafana address to access the Grafana dashboard. Read more about
metrics.

• Use the Kibana logs address to access the logs in Kibana. Read more about log
management.

To display the list of endpoints again, we run:

• ./list.sh

Block Explorer

The block explorer displays a summary of the private network, indicating four peers.

We can obtain the block details by clicking the block number to the right of Best Block.
We can see an example of block explorer in image 12.

Figure 12 Block Explorer

We can explore blocks by clicking on the blocks under Bk on the left-hand side.

We can search for a specific block, transaction hash, or address by searching in the top
left-hand corner. As seen in image 13.

Figure 13 Block Explorer block searcher

 33

Monitor nodes with Prometheus and Grafana

The sample network also includes Prometheus and Grafana monitoring tools to let you
visualize node health and usage. We can directly access these tools from your browser at
the addresses displayed in the endpoint list.

We can observe Grafana’s user interface in figure 14.

 34

Figure 14 Grafana’s user interface

 35

Stop and restart the private network without removing containers

To shut down the private network without deleting the containers we run:

• ./stop.sh

This command stops the containers related to the services specified in the docker-
compose.yml file. And to restart the private network we run:

• ./resume.sh

Stop the private network and remove containers
To shut down the private network and delete all containers and images created from
running the sample network

• ./remove.sh

 36

3.3. Second Test: Create a permissioned network

The second test consisted on trying to make a permissioned network using docker and the

permissioned network example in the Hyperledger Besu documentation page. [23]

Prerequisites

• Hyperledger Besu

• Curl

Configure Orion in our Network

Each node requires a data directory for the blockchain data. When the node starts, Besu

saves the node key in this directory.

We create directories for each of the three nodes of the permissioned network and a data

directory for each node.

In the following schematic we can observe the folder directory for the nodes of an

Hyperledger Besu Network.

Permissioned-Network/

├── Node-1

│ ├── data

├── Node-2

│ ├── data

└── Node-3

 ├── data

In networks that use Clique, we must include the address of at least one initial signer in the

genesis file. We will use Node-1 as the initial signer. This requires obtaining the address

for Node-1.

• besu --data-path=data public-key export-address --to=data/nodeAddress1

The genesis file defines the genesis block of the blockchain, the start of the blockchain.

The Clique genesis file includes the address of Node-1 as the initial signer in the extraData

field. All nodes in a network must use the same genesis file.

 37

We create a file called cliqueGenesis.json and save it in the Permissioned-Network

directory:

{
 "config":{
 "chainId":1981,
 "constantinoplefixblock": 0,
 "clique":{
 "blockperiodseconds":15,
 "epochlength":30000
 }
 },
 "coinbase":"0x00",
 "difficulty":"0x1",

"extraData":"0x00
00<Node 1
Address>000
000",
 "gasLimit":"0xa00000",

"mixHash":"0x00
",
 "nonce":"0x0",
 "timestamp":"0x5c51a607",
 "alloc": {
 "fe3b557e8fb62b89f4916b721be55ceb828dbd73": {
 "privateKey":
"8f2a55949038a9610f50fb23b5883af3b4ecb3c3bb792cbcefbd1542c692be63",
 "comment": "private key and this comment are ignored. In a real
chain, the private key should NOT be stored",
 "balance": "0xad78ebc5ac6200000"
 },
 "627306090abaB3A6e1400e9345bC60c78a8BEf57": {
 "privateKey":
"c87509a1c067bbde78beb793e6fa76530b6382a4c0241e5e4a9ec0a0f44dc0d3",
 "comment": "private key and this comment are ignored. In a real
chain, the private key should NOT be stored",
 "balance": "90000000000000000000000"
 },
 "f17f52151EbEF6C7334FAD080c5704D77216b732": {
 "privateKey":
"ae6ae8e5ccbfb04590405997ee2d52d2b330726137b875053c36d94e974d162f",
 "comment": "private key and this comment are ignored. In a real
chain, the private key should NOT be stored",
 "balance": "90000000000000000000000"
 }
 },
 "number":"0x0",
 "gasUsed":"0x0",

"parentHash":"0x000
000"

}

In extraData we replace <Node 1 Address> with the address for Node-1, excluding the 0x

prefix.

 38

Then we create the permissions configuration file that defines the nodes and accounts

allowlists. We create a file called permissions_config.toml and save a copy in the data

folder of each node. The permissions configuration file includes the first two accounts from

the genesis file:

accounts-allowlist=["0xfe3b557e8fb62b89f4916b721be55ceb828dbd73",
"0x627306090abaB3A6e1400e9345bC60c78a8BEf57"]

nodes-allowlist=[]

Finally, we start the first node:

• besu --data-path=data --genesis-file=../cliqueGenesis.json --permissions-nodes-

config-file-enabled --permissions-accounts-config-file-enabled --rpc-http-enabled --

rpc-http-api=ADMIN,ETH,NET,PERM,CLIQUE --host-allowlist="*" --rpc-http-cors-

origins="*"

The command line allows us to enable nodes and accounts, the JSON-RPC API , tge

ADMIN, ETH, NET, PERM, and CLIQUE APIs, all-host access to the HTTP JSON-RPC

API and all-domain access to the node through the HTTP JSON-RPC.

We proceed by starting the second node:

• besu --data-path=data --genesis-file=../cliqueGenesis.json --permissions-nodes-

config-file-enabled --permissions-accounts-config-file-enabled --rpc-http-enabled --

rpc-http-api=ADMIN,ETH,NET,PERM,CLIQUE --host-allowlist="*" --rpc-http-cors-

origins="*" --p2p-port=30304 --rpc-http-port=8546

And third node:

• besu --data-path=data --genesis-file=../cliqueGenesis.json --permissions-nodes-

config-file-enabled --permissions-accounts-config-file-enabled --rpc-http-enabled --

rpc-http-api=ADMIN,ETH,NET,PERM,CLIQUE --host-allowlist="*" --rpc-http-cors-

origins="*" --p2p-port=30305 --rpc-http-port=8547

3.4. Third Test: Create a permissioned network with Docker

The third test consisted on doing the previous test while using Docker. The initial thought

process was to do exactly the same as the previous test but adding the appropriate docker

commands before the command lines seen on test 2. [24]

While initially it seemed to work, we couldn’t figure out why we were getting errors when

we tried to start the first node claiming it was unable to find the necessary files

After some investigation we found out the cause. The way docker works is that when we

use an image everything, from the code, runtime, systemtools, and even libraries and

folders are stored in a package called volumes. Thus, when we were trying to launch the

code using docker it would search its own folders to find the files and not the folders we

created. [25]

 39

Figure 15 Volumes in Docker

While it is possible to link the Docker Image’s folders and files with those of the Virtual

Machine. This process is called volume mounting. We can see how volumes and the

filesystem interact with each other in figure 13.

However, we decided against it as it is quite complex.

 40

3.5. Fourth Test: Create an Hyperledger Besu Network with Docker Compose to

send transactions

After seeing the complications of making a more complex network with Hyperledger Besu

using Docker we thought of the idea of searching working networks that were established

using Docker Compose instead of Docker.

It is an example network with three Besu nodes ready to use private transactions. It

contains Orion, Besu and EthSigner. [26]

Prerequisites

Docker

Docker Compose

Network Mapping

• Besu 1 - http://localhost:8515

• Orion 1 - http://localhost:8881

• Besu 2 - http://localhost:8525

• Orion 2 - http://localhost:8882

• Besu 3 - http://localhost:8535

• Orion 3 - http://localhost:8883

• EthSigner - http://localhost:9545

Keys Used

• Orion 1 Public Key: GGilEkXLaQ9yhhtbpBT03Me9iYa7U/mWXxrJhnbl1XY=

• Orion 2 Public Key: KkOjNLmCI6r+mICrC6l+XuEDjFEzQllaMQMpWLl4y1s=

• Orion 3 Public Key: eLb69r4K8/9WviwlfDiZ4jf97P9czyS3DkKu0QYGLjg=

How to use

First, we execute docker-compose up to start the services and run ./send-private-tx.sh to

send a private transaction. This command will output the hash of the private tx.

If we run ./get-private-tx.sh <HASH> we can obtain the details of the the private transaction.

Finally, we run ./purgedb.sh to purge the database and start your network from scratch.

http://localhost:8515/
http://localhost:8881/
http://localhost:8525/
http://localhost:8882/
http://localhost:8535/
http://localhost:8883/
http://localhost:9545/

 41

Example

$./send-private-tx.sh
>>
{
 "jsonrpc" : "2.0",
 "id" : 1,
 "result" :
"0x1b628d80b8f3db873adea6a2f7a775a62c83d4381ad4f19d7ba87fb05472630c"
}

$./get-private-tx.sh
0x1b628d80b8f3db873adea6a2f7a775a62c83d4381ad4f19d7ba87fb05472630c
>>
{
 "jsonrpc" : "2.0",
 "id" : 1,
 "result" : {
 "from" : "0xfe3b557e8fb62b89f4916b721be55ceb828dbd73",
 "gas" : "0x15f90",
 "gasPrice" : "0x0",
 "hash" :
"0xbab7f61c4a14942ed8eefd3543a4a197b946f6787faba6e409985ff764b709c7",
 "input" :
"0x608060405234801561001057600080fd5b5060dc8061001f6000396000f300608060405260
0436106049576000357c01000
0900463ffffffff1680633fa4f24514604e57806355241077146076575b600080fd5b34801560
5957600080fd5b50606060a0565b6040518082815260200191505060405180910390f35b34801
5608157600080fd5b50609e6004803603810190808035906020019092919050505060a6565b00
5b60005481565b80600081905550505600a165627a7a723058202bdbba2e694dba8fff33d9d09
76df580f57bff0a40e25a46c398f8063b4c00360029",
 "nonce" : "0x5",
 "to" : null,
 "value" : "0x0",
 "v" : "0xfe8",
 "r" :
"0xc2a1eb89d18c59c7a1b6ee9da8c70ef0d74f1da550786dccff3240b7ae7f78a6",
 "s" :
"0x4f96f9609899b5c3f0ff17a5b167c8769a509a345811e5fb38259e959a764d70",
 "privateFrom" : "GGilEkXLaQ9yhhtbpBT03Me9iYa7U/mWXxrJhnbl1XY=",
 "privateFor" : ["GGilEkXLaQ9yhhtbpBT03Me9iYa7U/mWXxrJhnbl1XY="],
 "restriction" : "restricted"
 }
}

$./find-privacy-group.sh
>>
{
 "jsonrpc" : "2.0",
 "id" : 1,
 "result" : [{
 "privacyGroupId" : "OGD/4dkDZWb4VqgDfElovjYMDAcSiRUiB6fLtFRmugU=",
 "name" : "legacy",
 "description" : "Privacy groups to support the creation of groups by
privateFor and privateFrom",
 "type" : "LEGACY",
 "members" : ["KkOjNLmCI6r+mICrC6l+XuEDjFEzQllaMQMpWLl4y1s=",
"GGilEkXLaQ9yhhtbpBT03Me9iYa7U/mWXxrJhnbl1XY="]

 42

 }]
}

$./get-transaction-count.sh 0xfe3b557e8fb62b89f4916b721be55ceb828dbd73
OGD/4dkDZWb4VqgDfElovjYMDAcSiRUiB6fLtFRmugU=
>>
{
 "jsonrpc" : "2.0",
 "id" : 1,
 "result" : "0x2"
}

$./get-eea-transaction-count.sh
>>
{
 "jsonrpc" : "2.0",
 "id" : 1,
 "result" : "0x2"
}

Conclusion

While this network was what we wanted, an Hyperledger Besu Network with Orion set up

with Docker, it was very limiting in what it allowed the user to do. We decided to search a

bit more to see if we could find something more promising. In case we couldn’t we could

work around this configuration to make our own network.

 43

3.6. Fifth Test: Create an Hyperledger Besu Network with Docker Compose

After digging up a bit we found what would make our fifth and final test. From a repository

created by Lucas Aldhana. [27]

The repository includes multiple sample networks, each of them has a POW and POA

example. We can choose the default setup which is made by a 4-node network with Block

Explorer and Prometheus and Grafana dashboard to track the progress of the chain.

The network we will make can be viewed in figure 16.

Figure 16 Test 5 network schematic

The network has four validators, 3 called as such seen in the picture above and the

Bootnode. The RPCNode is used to make queries and the Block Explorer shows us the

progress of the network. Furthermore, we have three Besu nodes, each one of them with

an Orion node.

When we send a contract or transaction between two nodes (Node1 and Node2) and check

all three nodes information we should see that only Node1 and Node2 have this information

 44

because they were involved in the transaction and that Orion3 responds with a 0x value for

reads at those addresses.

45

The node details can be seen in table 1.

Table 1 Node's addresses and keys

Name Besu Node Address Orion Node Key Host

Node1 0x866b0df7138daf807300ed9204de733c1eb6d600 9QHwUJ6uK+FuQMzFSXIo7wOLCGFZa0PiF771OLX5c1o= http://localhost:20000

Node2 0xa46f0935de4176ffeccdeecaf3c6e3ca03e31b22 qVDsbJh2UluZOePxbXAL49g0S0s2gGlJ3ftQceMlchU http://localhost:20002

Node3 0x998c8bc11c28b667e4b1930c3fe3c9ab1cde3c52 T1ItOQxwgY1pTW6YXb2EbKXYkK4saBEys3CfJ2OIKHs http://localhost:20004

http://localhost:20000/
http://localhost:20002/
http://localhost:20000/

46

Prerequisites

Docker

Docker Compose

Nodejs

Starting the Services and Network

In order to start eh network we have to input the following command

• ./run-privacy.sh to start all the docker containers in POW mode

Or

• ./run-privacy.sh -c ibft2 to start all the docker containers in POA mode using the

IBFT2 Consensus algorithm

Additionally, we can add the -e parameter which will provide centralised logging

functionality via ELK.

In order to start the image, we need to run:

• docker-compose -f docker-compose_privacy_poa.yml up

To stop the services, we use then ./stop.sh, which stops all the docker containers created

and ./remove.sh which stops and removes all the containers and volumes.

3.6.1. Fifth Test: Problems and Solutions

The first problem was related to permissions, the Docker compose code launches an

update command that installs a dos 2 unix EOL converter (supporting either alpine or

ubuntu images). In Linux an update normally needs root permission every time its launched

and this time it was no exception. However, the root permission can’t be given just from

running the Docker command with root permissions.

What we did to solve the problem was change a bit the Dockerfile and give root access just

before it tries to update.

Next, we had so timeouts problems. In order to solve this problem, we decided to make

sure that the ports for all nodes were open, from port 2000 to 2005. Also we decided to just

in case stop all processes and restart the terminal as well.

 47

4. Results

The first part of the results section will be dedicated into showcasing two of the tested

networks, the first and the fifth, working. The second part will be a theorical one on how

should an user modify the documents in the given repository in order to add or delete nodes

in the network.

4.1. First Network

Before starting the network, we will run again npx quorum-dev-quickstart, so that it installs

any updates. In figure 18, we can observe the quickstart developer quickstart.

Figure 17 Quorum developer quickstart

To launch the network then we run ./run.sh, which will build the Docker images and

containers. Which we can see in figures 18 and 19.

 48

Figure 18 Launching an Hyperledger Besu network using Docker part 1/2

Figure 19 Launching an Hyperledger Besu network using Docker part 2/2

When execution is successfully finished, the process lists the available services. Which we

can see on figure 20.

Figure 20 List of available services in Hyperledger Besu

From these services we will check Block explorer and Grafana:

 49

The block explorer displays a summary of the private network, indicating seven peers. It

can be observed on figure 21

Figure 21 Block Explorer of our Hyperledger Besu network

If we click on the number to the right of Best Block to display the block details as seen in

figure 22.

Figure 22 Best Block in our Hyperledger Besu network

The services of the tested network the Grafana Dashboard monitoring tool. Grafana lets

you visualize node health and usage. We can see Grafana’s dashboard in figure 23.

 50

Figure 23 Grafana's Dashboard of our Hyperledger Besu network

 51

4.2. Fifth Network

Once everything is set up, we just need to open the terminal on the folder we have all the

scripts for the sample networks and run sudo ./run-privacy.sh -c ibft2.

Figure 24 Launching our Hyperledger Besu network with Orion

The first thing to note, as we can observe in figure 24, is the different nodes that appear as

done, including the Orion ones. We can also observe how the same services as the first

network open like block explorer and Grafana.

In order to stop the network and services, we run ./stop.sh.

When we are done, we run ./remove.sh to remove all containers and volumes. Which can

be observed in figure 2.

 52

Figure 25 Removing the network

Once the image is set up, we will run, as seen in image 26, docker-compose -f docker-

compose_privacy_poa.yml up. In the image we can see the network running.

Figure 26 Network functioning

 53

4.3. Modifying the Network

While we could not do this as we were testing until the last day and worried touching the

network might have adverse effect, we studied the different parts of the network to find out

how to add or remove more nodes in the case it is needed in the future.

In order to do so, two files need to be changed.

First of all, if we want to add nodes, we should check the config/orion/networkFiles folder,

there we can observe that there are only three folders one for each possible Orion node in

the sample network.

If we want to add more nodes then what we need would be to create a new folder for the

node adding there the 3 files we find inside: the public and private key of the node as well

as a configuration file for orion.

In the case of the configuration file, it is almost the same for each orion node, the only

difference would be nodeurl field where it should be orion4 in this case.

As for the keys they can be obtained the same way we obtained them in our second test.

Finally, we need to change the yml file of whatever Docker-compose sample network we

want to modify. In this case we will call it node3 as it starts with bootnode (node0).

Node3

:

 image: sample-network/besu:${BESU_VERSION}

 environment:

 - BESU_PUBLIC_KEY_DIRECTORY=${BESU_PUBLIC_KEY_DIRECTORY}

 - LOG4J_CONFIGURATION_FILE=/config/log-config.xml

 command: *base_options

 volumes:

 - public-keys:${BESU_PUBLIC_KEY_DIRECTORY}

 - ./config/besu/config.toml:/config/config.toml

 - ./logs/besu:/var/log/

 - ./config/besu/log-config.xml:/config/log-config.xml

- ./config/besu/ibft2GenesisPermissioning.json:/config/genesis.js

on

 - ./config/besu/networkFiles/node2/keys:/opt/besu/keys

 - node4:/opt/besu/data

 depends_on:

 - bootnode

 networks:

 sample:

 ipv4_address: 172.24.2.13

 54

5. Budget

The realization of this project was fairly simple when counting costs:

- Acer Aspire 3 a315-41-r8zc - 500€

- Virtual Machine Server – 245€

- Junior engineer - 3750€

The total rounds up to 4500 €.

For the Laptop, the virtual machine can be accessed by cheaper computers.

The salary for junior engineers is 21.948 € per year which would translate to approximately

the amount specified on the costs, taking into account it is a salary for nine daily working

hours.

For the Virtual Machine we calculated cumulative costs of seven months for using an online

virtual machine. As seen in figure 26. [28]

Figure 27 Virtual Machine cost calculator

While the cost may seem initially high, this project will allow to future testers of the network

to save time when launching the network as with Docker Compose it can be launched in

any machine without worrying about compatibility issues.

 55

6. Conclusions and future development

Hyperledger Besu with the help of private transaction managers offers a great potential to

the development of blockchain-based applications. The objective of this project was to find

a way to easily set up an Hyperledger Besu with Orion. Thanks to Docker and Docker

Compose, the interested user will not have to worry about dependencies or the Operating

System they are on, making it easier for them to study the network or develop applications

for it.

The continuation of this project could be the study of different smart contracts or

applications; including banking, healthcare, financial services or supply chain management,

being deployed using a docker based blockchain network showcasing the strengths of

Hyperledger Besu and specially of Orion. [29] [30]

Another possible take would be updating the network, short before the project ended, Orion

was absorbed into Tessera. Tessera supports the same endpoints and functionality,

nothing needs to be changed in the Besu deployment to migrate. However, as Orion and

Tessera cannot communicate, it should go into the user’s interest to update to Tessera.

A utility is included in Tessera which enables migration of an Orion configuration file and

database to a Tessera configuration file and database.

Moreover, since we tested it, Quorum developer quickstart has been updated to include

privacy.

 56

7. Bibliography

[1] P. Broadhurst, “Kaleido,” 19 December 2019. [Online]. Available:

https://www.kaleido.io/blockchain-blog/private-transactions-on-blockchain-with-

hyperledger-besu-and-orion.

[2] “101 Blockchains,” 10 October 2019. [Online]. Available:

https://101blockchains.com/hyperledger-besu/.

[3] R. Jones, “Hyperledger Besu Wiki,” 02 June 2021. [Online]. Available:

https://wiki.hyperledger.org/display/BESU/Hyperledger+Besu.

[4] T. K. Sharma, “Blockchain Council,” 14 October 2019. [Online]. Available:

https://www.blockchain-council.org/blockchain/hyperledger-besu-an-exhaustive-

guide/.

[5] “Hyperledger Besu Architecture Overview,” 18 March 2021. [Online]. Available:

https://besu.hyperledger.org/en/stable/Concepts/ArchitectureOverview/.

[6] “Hyperledger Besu Clique,” 7 September 2021. [Online]. Available:

https://besu.hyperledger.org/en/stable/HowTo/Configure/Consensus-

Protocols/Clique/.

[7] “Hyperledger Besu IBFT 2.0,” 7 September 2021. [Online]. Available:

https://besu.hyperledger.org/en/stable/HowTo/Configure/Consensus-

Protocols/IBFT/.

[8] “Hyperledger Besu Privacy Overview,” 20 January 2021. [Online]. Available:

https://besu.hyperledger.org/en/21.1.5/Concepts/Privacy/Privacy-Overview/.

[9] “Hyperledger Besu Permissioning Overview,” 14 December 2020. [Online]. Available:

https://besu.hyperledger.org/en/stable/Concepts/Permissioning/Permissioning-

Overview/.

[10] “Hyperledger Besu Onchain Permissioning,” 8 September 2021. [Online]. Available:

https://besu.hyperledger.org/en/stable/Concepts/Permissioning/Onchain-

Permissioning/.

[11] “Orion Documentation,” 1 November 2020. [Online]. Available:

https://docs.orion.consensys.net/en/stable/.

[12] “Hyperledger Besu Private Transactions,” 14 December 202. [Online]. Available:

https://besu.hyperledger.org/en/21.1.5/Concepts/Privacy/Private-Transactions/.

 57

[13] “Orion Privacy Groups,” 23 September 2020. [Online]. Available:

https://docs.orion.consensys.net/en/stable/Concepts/Privacy-Groups/.

[14] “Orion Disaster Recovery,” 23 September 2020. [Online]. Available:

https://docs.orion.consensys.net/en/stable/Concepts/Disaster-Recovery/.

[15] “Orion TLS Communication,” 23 September 2020. [Online]. Available:

https://docs.orion.consensys.net/en/stable/Concepts/TLS-Communication/.

[16] “Orion Multi-Tenancy,” 23 September 2020. [Online]. Available:

https://docs.orion.consensys.net/en/stable/Concepts/Multi-Tenancy/.

[17] “Hyperledger Besu Privacy Groups,” 29 September 2020. [Online]. Available:

https://besu.hyperledger.org/en/21.1.5/Concepts/Privacy/Privacy-Groups/.

[18] “Hyperledger Besu Processing Private Transactions,” 14 December 2020. [Online].

Available: https://besu.hyperledger.org/en/21.1.5/Concepts/Privacy/Private-

Transaction-Processing/.

[19] “Hyperledger Besu Multi-Tenancy,” 20 January 2021. [Online]. Available:

https://besu.hyperledger.org/en/21.1.5/Concepts/Privacy/Multi-Tenancy/.

[20] P. Srivastav, “Docker for beginners,” 22 March 2015. [Online]. Available:

https://docker-curriculum.com/#introduction.

[21] “Docker Docs Compose,” [Online]. Available: https://docs.docker.com/compose/.

[Accessed 04 2021].

[22] “Hyperledger Besu Developer Quickstart,” 30 Ocotber 2020. [Online]. Available:

https://besu.hyperledger.org/en/21.1.5/Tutorials/Developer-Quickstart/.

[23] “Hyperledger Besu Create a permissioned network,” 14 December 2020. [Online].

Available: https://besu.hyperledger.org/en/21.1.5/Tutorials/Permissioning/Create-

Permissioned-Network/.

[24] B. S, “PolarSPARC Hyperledger Besu Private Network using Docker,” 16 May 2020.

[Online]. Available:

https://www.polarsparc.com/xhtml/BesuPrivateCliqueDocker.html.

[25] “Docker Docs Use Bind Mouts,” [Online]. Available:

https://docs.docker.com/storage/bind-mounts/.

[26] L. Saldanha, “Github Besu Three Nodes Example,” 10 January 2020. [Online].

Available: https://github.com/lucassaldanha/besu-three-nodes-example.

[27] L. Saldanha, “Github Besu Sample Networks,” 17 February 2020. [Online]. Available:

https://github.com/lucassaldanha/besu-sample-networks.

 58

[28] “Clouding.io,” [Online]. Available: https://clouding.io/. [Accessed 20 September 2021].

[29] “Hyperledger,” [Online]. Available: https://www.hyperledger.org/use. [Accessed

September 2021].

[30] L. P. &. R. D. Purathani Praitheeshan, “Private and Trustworthy Distributed Lending

Model Using Hyperledger Besu,” SN Computer Science, vol. 2, no. 115, 2021.

 59

8. Glossary

TX - Transaction

API - Application Programming Interface

JSON - JavaScript Object Notation

RPC - Remote Procedure Call

IBFT - Istanbul Byzantine Fault Tolerant

EVM - Ethereum Virtual Machine

POW - Proof of Work

POA - Proof of Authority

RLPx - The name is not an acronym and has no particular meaning.

ETH - Ethereum

UDP - User Datagram Protocol

TCP - Transmission Control Protocol

ID - Identity

EEA - Enterprise Ethereum Alliance

JWT - JSON Web Token

HTTP - Hypertext Transfer Protocol

OS - Operating System

