
Characterizing Self-driving Tasks in
General-purpose Architectures
Pedro Henrique Exenberger Becker⇤,1,
Jose Maria Arnau⇤,1,
Antonio Gonzalez⇤,1

⇤ Department of Computer Architecture, Universitat Politècnica de Catalunya

ABSTRACT

Autonomous Vehicles (AVs) have the potential to radically change the automotive industry. How-
ever, computing solutions for AVs have to meet severe performance constraints to guarantee a safe
driving experience. Current solutions either exhibit high cost or fail to meet the stringent latency
constraints. Therefore, the popularization of AVs requires a low-cost yet effective computing sys-
tem. Understanding the sources of latency is key in order to improve autonomous driving systems.
Here, we present a detailed characterization of Autoware, a modern self-driving car system. We
analyze the performance of the different components and leverage hardware counters to identify
the main bottlenecks.

KEYWORDS: Autonomous Driving; Characterization

1 Introduction

Autonomous Vehicles (AVs) rely on a complex chain of algorithms to perform the percep-
tion of the surrounding world (e.g., object detection and object tracking) that is used to
perform the driving decisions (e.g., steering, accelerating, or braking). Notwithstanding, the
computing system must complete the execution of these algorithms prior to stringent time
deadlines, assuring the vehicle keeps a smooth drive and reacts in time to avoid accidents.
These requirements pressure the computing platform for high performance.

The first step to succeed in this challenging scenario and assure the improvement of AVs,
is to have a broad yet deep understanding of their software stack and its interaction with the
underlying hardware. In this work, we present a thorough characterization of a self-driving
architecture, detailing open problems in current software and hardware for future research
on AVs. The investigation is performed with a modern and fully open-sourced solution,
namely Autoware [aut], which is built upon cutting-edge algorithms for AVs.

Some of the novel findings are the following: i) Autoware cannot guarantee real-time per-
ception on a modern computer with a high-end GPU, as its end-to-end latency frequently
exceeds time requirements by more than twofold; ii) LiDAR-related components, that are

1E-mail: {pedro,jarnau,antonio}@ac.upc.edu

ACACES 2021 - Poster Abstracts 117

Table 1: Summary of important Autoware nodes.

Node Description

voxel_grid_filter Downsample an input point-cloud, reducing the amount of points to simplify further computations.

ndt_matching Localize the vehicle by matching LiDAR acquired point-cloud with a region of the HD map point-cloud.

euclidean_cluster Cluster LiDAR acquired points nearby each other, identifying volumes that can be perceived as objects.

YOLO / SSD DNN-based nodes used to detect and classify objects (e.g., vehicles, pedestrians) from images.

range_vision_fusion Combine LiDAR and image-based detected objects into the same coordinates.

ray_ground_filter Separate an input point-cloud in two: points that compose the ground, and points above the ground level.

imm_ukf_pda_tracker Track objects by assigning them an identification and keeping it coherent among subsequent frames.

naive_motion_prediction Extrapolate the current trajectory of different objects to predict where they will be in the future.

costmap_generator Determine drivable areas in the map, i.e., with no objects at the time or predicted to be in the near feature.

op_planner Global and local path planning based on the current scene and target location.

pure_pursuit Calculate the necessary motion (linear and angular acceleration and velocity) to follow the desired path.

twist_filter A low-pass filter applied over motion control to smooth the vehicle driving.

key to drive the car safely, are important contributors to end-to-end latency, showing exe-
cution times in the order of tens of ms; iii) Profiling nodes in isolation leads to a significant
underestimation of latency and predictability. A better approach to cover corner cases is to
do profiling while stimulating the complete software stack.

2 Autonomous Vehicles Architecture Overview

To introduce the main concepts of AVs we leverage the Autoware.ai project [aut, KTI+15]
(here referred to as Autoware) as a representative state-of-the-art AV software stack. The
inputs of the system are sensors (e.g., frames from camera and LiDAR), which feed the
computing platform with the traffic scene updates, and a High-Definition (HD) map, which
contains a point-cloud map enriched with annotations (lanes, crossings, etc.) of the region
where the car is driving. The inputs are computed by algorithms for perception (e.g., object
detection, object tracking, localization), and actuation (e.g., route planning, steering control).
Table 1 summarize some important algorithms featured by Autoware.

The software stack is divided into multiple nodes, each implementing an algorithm to
solve a task (e.g., detect an object) while globally collaborating towards a major goal (e.g.,
successfully self-drive a vehicle). The nodes communicate among each other through a publish-
subscribe arrangement: nodes publish their outputs into a shared memory space (topic) which
other nodes can subscribe to. When new messages are published, all subscriber nodes are no-
tified, being able to read and process data. This simple solution allows node collaboration.
More detail on the algorithms and how they collaborate can be found at [KTI+15, BAG20].

3 Characterization Analysis

Figure 1 depicts the end-to-end latency distribution of different computation paths (a pipeline
of algorithms that transform an input into relevant perception information) performed by
Autoware, with data from an eight-minute real-life drive. Results were performed with an

ACACES 2021 - Poster Abstracts 118

Intel i7-7700K CPU and an NVIDIA GeForce GTX 1080 GPU. The end-to-end latency ac-
counts for the time an input is processed along with a set of consecutive nodes until its final
contribution to perception. For example, costmap_vision_obj_yolo (in Figure 1c) indicates the
latency distribution of performing image-based object detection, fusion with recent-most
LiDAR data, object tracking, motion prediction, and generating a costmap of what are safe
spaces to drive by. Other measurements in Figure 1c are similar, but with different combi-
nations of algorithms, and using LiDAR data instead of camera images. Figures 1a and 1b
change the vision detection node (SSD instead of Yolo-v3). More information can be found
at [BAG20].

Some interesting observations can be taken from Figure 1. First, looking at the average
values of the distributions (small white circle), we can identify that computation paths which
do object detection are more demanding than others (for instance, localization). Thus im-
proving these computations should be prioritized. Also, we see that the tail latency (end
limits of the distribution range) frequently crosses the 100 ms barrier, which is commonly
accepted as a target time deadline for AVs [LZH+18]. This happens regardless of the vision
detection node, even though, on average, Yolo-v3 and SSD300 are faster than SSD500. This
means that current high-end systems are not sufficient to execute cutting-edge self-driving
algorithms under time deadlines. Here it is also important to highlight that computation
paths that handle LiDAR data also surpass the time constraint. This indicates that better
hardware support for speeding up LiDAR-based algorithms would be fruitful. Nonethe-
less, there is still a large research gap in optimizing computer architecture for LiDAR-based
algorithms compared to image-based neural networks.

Finally, we present Figure 2. In this case, we study the latency of an individual algorithm:
image-based object detection with Deep Neural Networks (DNNs). We experiment with two
different DNNs, namely SSD500 and Yolo-v3, accounting for the CPU and GPU share of time
for their executions. In each case, we provide inputs (frames) to the node while running alone
and while running along with the complete Autoware stack. With this, we assess the impacts
of resource sharing on the performance of a given node. Bars indicate the mean value, and
the vertical line on the top indicates the standard deviation of the data.

Two main points arise from these experiments. First, when nodes share the computing
platform, their mean latency increase. For instance, SSD500 mean latency increases from
73.45 ms (isolation) to 82.26 ms (all software stack); an increase of 12%. As for the Yolo-v3

(a) Autoware with SSD512 image
detector.

(b) Autoware with SSD300 image
detector.

(c) Autoware with Yolo-v3 image
detector.

Figure 1: Autoware’s end-to-end perception latency considering different image detectors.

ACACES 2021 - Poster Abstracts 119

(a) SSD512 image detector. (b) Yolo image detector.

Figure 2: The CPU and GPU time share for SSD512 and Yolo DNNs. Experiments consider
nodes running in isolation and together with the complete software stack.

node, the mean latency rises from 31.23 ms (isolation) to 33.14 ms (all software stack); a
6% increase in the mean latency. Thus, using single node measurements to assess latency
bottlenecks can be a pitfall, since threats may be under-considered as nodes perform better,
on average, when running in isolation. The second finding is that the standard deviation
of an individual node latency increases when other nodes are executing. For SSD500 the
standard deviation goes from 1.01 ms (isolation) to 4.81 ms (all software stack). Similarly,
the standard deviation for Yolo-v3 node latency goes from 0.88 ms (isolation) up to 4.05 ms
(all software stack). Thus, when all nodes are executing, the predictability of the latency for
each node is weakened. Since AVs should cope with worst-case scenarios, such as the ones
that cause tail latency, full system experimentation is best suited for profiling purposes. In
this case, the node’s variability increases, causing unpredictable behavior that cannot be
found when nodes run alone.

References
[aut] Autoware.AI · GitHub. https://github.com/Autoware-AI.

[BAG20] Pedro H E Becker, Jose Maria Arnau, and Antonio Gonzalez. Demystifying
Power and Performance Bottlenecks in Autonomous Driving Systems. In 2020
IEEE International Symposium on Workload Characterization (IISWC), pages 205–
215. IEEE, oct 2020.

[KTI+15] Shinpei Kato, Eijiro Takeuchi, Yoshio Ishiguro, Yoshiki Ninomiya, Kazuya
Takeda, and Tsuyoshi Hamada. An open approach to autonomous vehicles. IEEE
Micro, 35(6):60–68, 2015.

[LZH+18] Shih Chieh Lin, Yunqi Zhang, Chang Hong Hsu, Matt Skach, Md E. Haque,
Lingjia Tang, and Jason Mars. The architectural implications of autonomous driv-
ing: Constraints and acceleration. ACM SIGPLAN Notices, 53(2):751–766, 2018.

This work has been supported by the the CoCoUnit ERC Advanced Grant of the EU’s Horizon 2020 program
(grant No 833057), the Spanish State Research Agency under grant PID2020-113172RB-I00 (AEI/FEDER, EU),
the ICREA Academia program, and the grant 2020 FPI-UPC_033.

ACACES 2021 - Poster Abstracts120

