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Abstract. In this work we study three different dissipation mechanisms aris-
ing in the so-called Moore-Gibson-Thompson porosity. The three cases corre-
spond to the MGT-porous hyperviscosity (fourth-order term), the MGT-porous
viscosity (second-order term) and the MGT-porous weak viscosity (zeroth-
order term). For all the cases, we prove that there exists a unique solution
to the problem and we analyze the resulting point spectrum. We also show
that there is an exponential energy decay for the first case, meanwhile for the
second and third case only a polynomial decay is found. Finally, we present
some one-dimensional numerical simulations to illustrate the behaviour of the
discrete energy for each case.

1. Introduction. In the last decade, a big interest has developed about the so-
called Moore-Gibson-Thompson equation [10, 14, 15, 16, 21, 23, 24, 26, 28, 29]. This
equation was proposed in the context of fluid dynamics [33], but recently it has also
be used as a a heat conduction equation [31, 32]. Furthermore, it was obtained
from the viscous theories of classical and non-classical elasticity [1, 4, 5, 6, 11, 12,
13, 17, 19, 20, 22, 27].

On the other hand, in a recent paper Ieşan [18] proposed the theory of porous-
elasticity with strain gradient. The decay of solutions was studied when several
dissipative effects were introduced [2] and, more recently, the equation correspond-
ing to the porous part (without elastic effects) was considered including several
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dissipation mechanisms. A study of the point spectrum suggested that, when we
introduce porous hyperviscosity, porous viscosity or porous weak viscosity we should
obtain the exponential decay of solutions [3]. However, the position of the elements
in the point spectrum suggests that the most efficient mechanism corresponds to
porous viscosity.

In this paper, we consider a similar problem, but now the dissipation mechanisms
are of MGT-type. The equations are obtained from the suitable choice of the
relaxation functions. We will see that, in this case, the results are quite different. We
will obtain the exponential decay when we introduce a MGT-porous hyperviscosity,
but we will see that the decay is slow for the MGT-porous viscosity and MGT-porous
weak viscosity. In fact, we will prove the polynomial decay in these two last cases.
We will also see the point spectrum for each case and given constitutive parameters.
Finally, we will show some numerical simulations in the one-dimensional setting to
demonstrate the discrete energy decay.

2. Basic equations. In this section we recall the evolution and constitutive equa-
tions which govern the problems we study in this paper by following the ideas
proposed by Ieşan [18].

In this paper, we assume that B is a three-dimensional bounded domain with a
boundary smooth enough to allow the use of the divergence theorem. We consider
a rigid body where porosity is allowed to evolve. That is, we consider the equation
proposed for the porosity, but without the elastic deformation. In this case, the
evolution equation is

Jϕ̈ = Ξi,i − σij,ij + g.

Here, ϕ represents the volume fraction, Ξ is the equilibrated stress tensor, σ is the
equilibrated hyperstress tensor and g is the equilibrated body force. As usual, J > 0
is the product of the mass density by the equilibrated inertia.

The constitutive equations in the case of viscoelastic isotropic bodies are:

Ξi =

∫ t

−∞

α∗(t− s)ϕ̇,i ds,

σij =

∫ t

−∞

κ∗1(t− s)δij ϕ̇,rr(s) + 2κ∗2(t− s)ϕ̇,ij(s) + d∗(t− s)δij ϕ̇(s) ds,

g = −

∫ t

−∞

ξ∗(t− s)ϕ̇(s) + d∗(t− s)ϕ̇,rr(s) ds.

In this paper, we will consider three different cases:

Case (i) The constitutive functions are:

κ∗i (s) = κ∗i + (τ−1κi − κ∗i )e
−τ−1s i = 1, 2,

α∗(s) = α∗, d∗(s) = d∗, ξ∗(s) = ξ∗.

Case (ii) The constitutive functions are:

α∗(s) = α∗ + (τ−1α− α∗)e−τ−1s, d∗(s) = d∗ + (τ−1d− d∗)e−τ−1s,
κ∗i (s) = κ∗i , ξ∗(s) = ξ∗.

Case (iii) The constitutive functions are:

ξ∗(s) = ξ∗ + (τ−1ξ − ξ∗)e−τ−1s,
κ∗i (s) = κ∗i , d∗(s) = d∗, α∗(s) = α∗.
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If we assume that the volume fraction vanishes at time t = −∞ our equations
become:

Case (i) J(τ
...
ϕ + ϕ̈) = −(κ∗1 + κ∗2)∆

2ϕ− (κ1 + κ2)∆
2ϕ̇+ (α∗ − 2d∗)(τ∆ϕ̇+∆ϕ)−

ξ∗(τϕ̇+ ϕ).
Case (ii) J(τ

...
ϕ + ϕ̈) = −(κ∗1 + κ∗2)(∆

2ϕ+ τ∆2ϕ̇) + (α∗ − 2d∗)∆ϕ+ (α− 2d)∆ϕ̇−
ξ∗(τϕ̇+ ϕ).

Case (iii) J(τ
...
ϕ +ϕ̈) = −(κ∗1+κ

∗
2)(∆

2ϕ+τ∆2ϕ̇)+(α∗−2d∗)(∆ϕ+τ∆ϕ̇)−ξ∗ϕ−ξϕ̇.

We can simplify the notation to write the equations as:

Case (i) J(τ
...
ϕ + ϕ̈) = −κ∗∆2ϕ− κ∆2ϕ̇+ a∗(τ∆ϕ̇ +∆ϕ)− ξ∗(τϕ̇+ ϕ).

Case (ii) J(τ
...
ϕ + ϕ̈) = −κ∗(∆2ϕ+ τ∆2ϕ̇) + a∗∆ϕ+ a∆ϕ̇− ξ∗(τϕ̇ + ϕ).

Case (iii) J(τ
...
ϕ + ϕ̈) = −κ∗(∆2ϕ+ τ∆2ϕ̇) + a∗(∆ϕ+ τ∆ϕ̇)− ξ∗ϕ− ξϕ̇.

These equations will be studied in a three-dimensional bounded region B and we
will assume the following initial and boundary conditions:

ϕ(x, 0) = ϕ0(x), ϕ̇(x, 0) = ϕ1(x), ϕ̈(x, 0) = ϕ2(x) ∀x ∈ B, (1)

ϕ(x, t) = ∆ϕ(x, t) = 0 ∀x ∈ ∂B. (2)

In this paper, we assume that

J > 0, κ∗ > 0, a∗ > 0, ξ∗ > 0.

We note that, when we consider Case (i), we also assume that κ > τκ∗. In the Case
(ii) we assume that a > τa∗, and, for Case (iii), we suppose that ξ > τξ∗.

3. Cauchy problem for Case (i). In this section we prove the existence of solu-
tion as well as the exponential decay to the problem determined by Case (i) with
initial conditions (1) and boundary conditions (2). The remaining two cases will be
shown later.

We first consider the Hilbert space

H = H1
0 (B) ∩H2(B)×H1

0 (B) ∩H2(B)× L2(B).

If we denote by U = (ϕ, ψ, ζ) the elements in this space, then we can write our
problem as

dU

dt
= AU, U(0) = U0, (3)

where we have used the matrix operator A given by

A =







0 I 0
0 0 I

−κ∗∆2 + a∗∆− ξ∗

τJ

−κ∆2

τJ
+
a∗∆− ξ∗

J
−
1

τ






,

and U0 = (ϕ0, ϕ1, ϕ2).
In our Hilbert space H we define the inner product

< (ϕ, ψ, ζ), (ϕ∗, ψ∗, ζ∗) >=
1

2

∫

B

[

J(τζ + ψ)(τζ∗ + ψ∗) + κ∗(∆ϕ+ τ∆ψ)(∆ϕ∗ + τ∆ψ∗)

+τκ∆ψ∆ψ∗ + a∗(∇ϕ + τ∇ψ)(∇ϕ∗ + τ∇ψ∗) + ξ∗(ϕ + τψ)(ϕ∗ + τψ∗)
]

dV,
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where, as usual, a bar over an element of the Hilbert space means the conjugated
complex and κ = κ− τκ∗. We note that we can define the norm:

‖(ϕ, ψ, ζ)‖2 =
1

2

∫

B

[

J(τζ + ψ)(τζ + ψ) + κ∗(∆ϕ+ τ∆ψ)(∆ϕ + τ∆ψ)

+τκ∆ψ∆ψ + a∗(∇ϕ+ τ∇ψ)(∇ϕ + τ∇ψ) + ξ∗(ϕ+ τψ)(ϕ + τψ)
]

dV.

Moreover, we also point out that this is a scalar product which is the equivalent to
the usual one in the Hilbert space.

It is easy to show that the operator A has a domain

D(A) = {(ϕ, ψ, ζ) ; ζ ∈ H2(B)∩H1
0 (B), κ∗∆2ϕ+κ∆2ψ ∈ L2(B), ∆ϕ = 0 on ∂B},

and we can also obtain that

Re〈AU,U〉 = −
1

2

∫

B

κ|∆ψ|2 dV.

Now, we need to prove that zero belongs to the resolvent of the operator. Let
(f1, f2, f3) ∈ H and so, we must solve the system:

ψ = f1,
ζ = f2,
−κ∗∆2ϕ− κ∆2ψ + a∗τ∆ψ + a∗∆ϕ− ξ∗ϕ− ξ∗τψ − Jζ = Jτf3.

The solution for ψ and ζ is clear. Therefore, we can introduce them in the last
equation to find that

−κ∗∆2ϕ+ a∗∆ϕ− ξ∗ϕ = Jτf3 + κ∆2f1 − a∗τ∆f1 + ξ∗τf1 + Jf2.

It is clear that we can solve this equation for an ϕ ∈ H2(B) ∩H1
0 (B).

Therefore, an existence and uniqueness result follows.

Theorem 3.1. Therefore, for each U0 ∈ D(A), there exists a unique solution
U(t) ∈ C1([0,∞),H) ∩ C0([0,∞),D(A)) to problem (3).

In the remaining of this section we will prove the exponential decay of the solu-
tions. To this end, we will use the arguments of Prüss [30]. This kind of argument
has been used very often. Therefore, we will proceed in a fast way. First, we recall
the following theorem shown in the book of Liu and Zheng [25].

Theorem 3.2. Let S(t) = {eAt}t≥0 be a C0-semigroup of contractions on a Hilbert
space. Then S(t) is exponentially stable if and only the imaginary axis is contained
in the resolvent of A and

lim
|λ|→∞

‖(iλI − A)−1‖L(H) <∞. (4)

We are going to use this result in our situation. Let us assume that there exists
an element of the spectrum at the imaginary axis. Therefore, there will exist a
sequence of elements of unit norm in the Hilbert space H and a sequence of real
numbers λn such that λn → λ 6= 0 and

iλnϕn − ψn → 0 in H2(B),
iλnψn − ζn → 0 in H2(B),
iλnζnτJ + κ∗∆2ϕn − a∗∆ϕn + ξ∗ϕn + κ∆2ψn

−a∗τ∆ψn − ξ∗τψn − Jζn → 0 in L2(B).

From the dissipation inequality we obtain that ∆2ψn → 0 and so, λn∆
2ψn → 0

and λ−1
n ∆2ζn → 0.
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It follows that

iλnζnτJ − Jζn → 0 in L2(B).

If we divide by λn we see that ζn → 0 in L2(B), which is a contradiction.
We note that the arguments used previously can be adapted to show that the

asymptotic condition (4) also holds and therefore, we have proved the exponential
decay of the solutions.

Theorem 3.3. The operator A generates a semigroup exponentially stable. That
is, there exist two positive constants M,ω such that

||U(t)|| ≤Me−ωt||U0||

for every U0 ∈ D(A).

Finally, we consider the point spectrum in the one-dimensional case. Further-
more, we assume that B = [0, π]. So, if we consider solutions of the form:

ϕ(x, t) = eωt sinnx, n ∈ N,

then it follows that ω must satisfy

Jτω3 + Jω2 + (κn4 + a∗τn2 + ξ∗τ)ω + κ∗n4 + a∗n2 + ξ∗ = 0.

After a tedious calculation, we can obtain an explicit formula in this case. In Figure
1 we can see the roots for the following values of the constitutive parameters:

J = 1, τ = 1, κ∗ = 0.1, a∗ = 0.1, ξ∗ = 0.1, κ = 1.

We plot a range of 40 different roots beginning with n = 1 and taking a step of
n = 1 (up to n = 40). We can see how almost all the roots lie on the line x = −0.46
but far away of the imaginary axis.
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Figure 1. Roots behaviour for the fourth-order dissipation mechanism.
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4. Cauchy problem for Case (ii). This section is devoted to the study of the
corresponding equation to Case (ii) with suitable initial and boundary conditions.
We first note that if we denote by ϕ1 = ϕ+ τϕ̇ and a = a− τa∗ we can write our
equation in the following form:

Jϕ̈1 = −κ∗∆2ϕ1 + a∗∆ϕ1 + a∆ψ − ξ∗ϕ1, (5)

where ψ = ϕ̇.
We impose the initial conditions:

ϕ1(x, 0) = ϕ0(x) + τϕ1(x),
ψ(x, 0) = ϕ1(x),
ϕ3(x, 0) = ϕ1(x) + τϕ2(x),

(6)

where ϕ3 = ϕ̇+ τϕ̈, and we consider the boundary conditions:

ϕ1 = ∆ϕ1 = ψ = 0 on ∂B. (7)

It is clear that, given ϕ1, ψ and ϕ3, we can recover the volume fraction ϕ and
its derivatives.

We will study now the problem defined by equation (5), initial conditions (6)
and boundary conditions (7) in the Hilbert space

H = H2(B) ∩H1
0 (B) ×H1

0 (B)× L2(B),

where we consider the element (ϕ1, ψ, ϕ3).
In this space H we define the inner product:

< (ϕ1, ψ, ϕ3), (ϕ
∗
1, ψ

∗, ϕ∗
3) >=

1

2

∫

B

[

Jϕ3ϕ∗
3 + κ∗∆ϕ1∆ϕ∗

1 + a∗∇ϕ1∇ϕ∗
1

+τa∇ψ∇ψ∗ + ξϕ1ϕ∗
1

]

dV.

It is clear that it defines an inner product which is equivalent to the usual one in
the space.

Our problem can be written in the following matrix form:

dU

dt
= AU, U(0) = U0 = (ϕ1(x, 0), ψ(x, 0), ϕ3(x, 0)), (8)

where we have used now the matrix operator A given by

A =







0 0 I
0 −τ−1I τ−1I

−κ∗∆2 + a∗∆− ξ∗

J

a∆

J
0






.

We note that the domain of this operator A is

D(A) = {(ϕ1, ψ, ϕ3) ; ϕ3 ∈ H2(B)∩H1
0 (B), κ∗∆2ϕ1−a∆ψ ∈ L2(B), ∆ϕ1 = 0 on ∂B},

which is dense.
On the other hand, it follows that

Re〈AU,U〉 = −
a

2

∫

B

|∇ψ|2 dV ≤ 0.

In a similar way to the previous section, we can also prove that zero belongs to the
resolvent of operator A.

However, in this case we cannot obtain the exponential decay of the solutions.
In fact, we can show that we can find elements of the point spectrum as near as we
want to the imaginary axis.
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Let us consider solutions of the form:

ϕ(x, t) = eωtΦn(x), (9)

where Φn(x) is a solution of the problem:

∆Φn + λΦn = 0 in B,
Φn = 0 on ∂B.

We can see that ω must satisfy the equation

Jτω3 + Jω2 + (κ∗τλ2n + aλn + ξ∗τ)ω + κ∗λ2n + a∗λn + ξ∗ = 0.

Our aim is to show that there always exist elements at the point spectrum at the
right-hand of the line Im(z) = −ε, for every ε > 0 sufficiently small. To this end,
we change ω by ω − ε to obtain the equation

Jτω3 + (J − 3Jτε)ω2 + (κ∗τλ2n + aλn + ξ∗τ + 3Jτε2 − 2Jε)ω
+κ∗λ2n + a∗λn + ξ∗ − Jτε3 + Jε2 − (κ∗τλ2n + aλn + ξ∗τ)ε = 0.

We know that the necessary and sufficient condition to guarantee that the solutions
to the polynomial

A0ω
3 +A1ω

2 +A2ω +A3 = 0 (10)

are on the left-hand of the imaginary axis is that all the Ai are positive and

A1A2 −A0A3 > 0.

We note that in our case we obtain

A1A2 −A0A3 = −2Jτ2κ∗ελ2n +A∗
1λn +A∗

2, (11)

where A∗
1 and A∗

2 depend on the coefficients of the problem and ε.
As the sequence of λn becomes unbounded we can always find λn large enough

to guarantee that the expression (11) is negative. As the point spectrum of the
equation is as near as we want to the imaginary axis, we cannot obtain an uniform
exponential decay of the solutions.

Although we cannot expect the exponential decay of the solutions to our problem,
we will prove that the solution decays in a polynomial way. In fact, we will show
that the decay is controlled by a term of the form t−1/2.

Theorem 4.1. The semigroup S(t) generated by the operator A is polynomially
stable of order 1/2. That is, for every U ∈ D(A) there exists a positive constant C,
which is independent of the initial data, such that

‖S(t)U‖H ≤ C‖U‖D(A)t
−1/2. (12)

Proof. In order to show the decay it will be sufficient (see Borichev and Tomilov
[7]) to prove that the imaginary axis is contained in the resolvent of the operator
A and that the asymptotic condition:

lim
|λ|→∞

λ−2‖(iλI −A)−1‖L(H) <∞ (13)

holds.
We first suppose that the imaginary axis is not included in the resolvent. There-

fore, there will exist a sequence of real numbers λn → λ 6= 0 and a sequence
Un = (ϕ1n, ψn, ϕ3n), with unit norm, in the domain of the operator A such that

‖(iλnI −A)−1Un‖H → 0. (14)
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Hence, we have the following convergences:

iλnϕ1n − ϕ3n → 0 in H2(B), (15)

iλnψn + τ−1ψn − τ−1ϕ3n → 0 in H1(B), (16)

iλnϕ3n + κ∗∆2ϕ1n − a∗∆ϕ1n + ξ∗ϕ1n + a∆ψn → 0 in L2(B). (17)

In view of the dissipation inequality, we have ψn → 0 in H1(B) and then, using
(16) we find that ϕ3n → 0 in H1(B). As λn is bounded, we obtain from (15) that
ϕ1n → 0 in H1(B). Now, if we multiply convergence (17) by ϕ1n we obtain that
ϕ1n → 0 in H2(B) and we arrive to a contradiction. It follows that the imaginary
axis should be contained in the resolvent.

We now prove the asymptotic condition. Assume that it is not true. We see that
there exist a sequence of real numbers λn such that |λn| → ∞ and a unit norm
sequence of vectors at the domain of A, Un = (ϕ1n, ψn, ϕ3n), such that

λ2n(iλnϕ1n − ϕ3n) → 0 in H2(B), (18)

λ2n(iλnψn + τ−1ψn − τ−1ϕ3n) → 0 in H1(B), (19)

λ2n(iJλnϕ3n + κ∗∆2ϕ1n − a∗∆ϕ1n + ξ∗ϕ1n + a∆ψn) → 0 in L2(B). (20)

The dissipation inequality implies that λnψn tends to zero in H1(B). So, from (19)
we see that ϕ3n also tends to zero in H1(B) and, from (18), λnϕ1n also tends to
zero in H1(B). If we multiply convergence (20) by ϕ1n we conclude that ϕ1n → 0 in
H2(B) and we arrive again to a contradiction. Therefore, the asymptotic condition
also holds and the theorem is proved.

Finally, we consider again the point spectrum in the one-dimensional case when
B = [0, π]. Taking solutions of the form:

ϕ(x, t) = eωt sinnx, n ∈ N,

then ω must satisfy now the equation:

Jτω3 + Jω2 + (κ∗τn4 + an2 + ξ∗τ)ω + κ∗n4 + a∗n2 + ξ∗ = 0.

Proceeding as in the previous case, in Figure 2 we can see the roots for the following
values of the constitutive parameters:

J = 1, τ = 1, κ∗ = 0.1, a∗ = 0.1, ξ∗ = 0.1, a = 1.

We plot a range of 30 different roots beginning with n = 1 and taking a step of
n = 1 (up to n = 30). In this case, the roots tend to the imaginary axis when n is
large enough.

5. Cauchy problem for Case (iii). Last question we study in this paper corre-
sponds to the equation labelled as case (iii). If we consider the notation proposed
in the last section, we can write our equation as

Jϕ̈1 = −κ∗∆2ϕ1 + a∗∆ϕ1 − ξ∗ϕ1 − ξψ.

Again, we should consider the initial conditions (6) but we only impose the first
two boundary conditions in (7).

We can study this problem in the Hilbert space

H = H2(B) ∩H1
0 (B)× L2(B)× L2(B),
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Figure 2. Roots behaviour for the second-order dissipation mechanism.

and to consider the inner product:

< (ϕ1, ψ, ϕ3), (ϕ
∗
1, ψ

∗, ϕ∗
3) >=

1

2

∫

B

[

Jϕ3ϕ∗
3 + κ∗∆ϕ1∆ϕ∗

1 + a∗∇ϕ1∇ϕ∗
1

+ξ∗ϕ1ϕ∗
1 + τξψψ∗

]

dV.

Again, our problem can be written in the matrix form (8), where we have used now
the matrix operator A given by

A =







0 0 I
0 −τ−1I τ−1I

−κ∗∆2 + a∗∆− ξ∗

J
−
ξ

J
0






.

In this case, we can see that the domain of this operator A is

D(A) = {(ϕ1, ψ, ϕ3) ; ϕ3 ∈ H2(B) ∩H1
0 (B), ∆2ϕ1 ∈ L2(B), ∆ϕ1 = 0 on ∂B}.

It is clear that the domain is dense in H and we also have

Re〈AU,U〉 = −
ξ

2

∫

B

|ψ|2 dV ≤ 0.

It is not difficult to show that zero belongs to the resolvent of the operator and,
therefore, we can conclude the existence and uniqueness of the solutions.

Again, we can obtain that the decay is slow. In fact, if we consider functions of
the form (9), we find that ω must satisfy the equation:

Jτω3 + Jω2 + (κ∗τλ2n + a∗τλn + ξ)ω + κ∗λ2n + a∗λn + ξ∗ = 0.

After the change of ω by ω − ε we can obtain an equation of the form (10), where
A0 = J , A1 = J − 3Jτε, A2 = κ∗τλ2n + a∗τλn + ξ + 3Jτε2 − 3Jε and A3 =
κ∗λ2n + a∗λn + ξ∗ − Jτε3 + Jε2 − (κ∗τλ2n + a∗τλn + ξ)ε.

A direct calculation shows that

A1A2 −A0A3 = −2Jτ2κ∗ελ2n + other terms of order less than λ2n.

Again, we see that the decay cannot be of exponential type. However, it is also
possible to prove that the solutions decay as t−1/2. To this end, we can follow
the same argument proposed in the previous section. That is, to show that the
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imaginary axis is contained in the resolvent of the operator and that the asymptotic
condition (13) is fulfilled.

To prove that the imaginary axis is contained in the resolvent we follow the same
argument proposed in the analysis of Case (ii), and (14) leads to the convergences:

iλnϕ1n − ϕ3n → 0 in H2(B),
iλnψn + τ−1ψn − τ−1ϕ3n → 0 in L2(B),

iλnϕ3n + κ∗∆2ϕ1n − a∗∆ϕ1n + ξ∗ϕ1n + ξψn → 0 in L2(B).

Dissipation inequality implies that ψn → 0 in L2(B). Therefore, ϕ3n → 0 in L2(B)
and λnϕ1n → 0 in L2(B). If we multiply the last convergence by ϕ1n we see that
∆ϕ1n → 0 in L2(B) and so, we arrive to a contradiction.

We can also prove the condition (13) by a similar argument. In this case, the
convergences will be:

λ3n(iλnϕ1n − ϕ3n) → 0 in H2(B),
λ2n(iλnψn + τ−1ψn − τ−1ϕ3n) → 0 in L2(B),

λ2n(iλnϕ3n + κ∗∆2ϕ1n − a∗∆ϕ1n + ξ∗ϕ1n + ξψn) → 0 in L2(B).

Again, we obtain that λnψn tends to zero in L2(B) and then, ϕ3n and λnϕ1n also
converge to zero in L2(B). From the above last convergence, we also obtain that
ϕ1n → 0 in H2(B), and we arrive to another contradiction. Therefore, we have seen
that, in this case (iii), the estimate (12) also holds.

Remark 1. To finish the analysis of this section we consider the case when κ∗ = 0.
It corresponds to the porous deformations, but without the strain gradient effects.
We have the same initial conditions, but we do not assume that ∆ϕ1 vanishes at
the boundary. In this case, the Hilbert space is

H = H1
0 (B)× L2(B)× L2(B).

The matrix operator can be defined as previously (assuming κ∗ = 0), but the domain
is:

D(A) = {(ϕ1, ψ, ϕ3) ; ϕ3 ∈ H1
0 (B), ∆ϕ1 ∈ L2(B)}.

Existence and uniqueness can be obtained following similar arguments but, in this
case, we have

A1A2 −A2A3 = −2Jτa∗λnε+ terms of order zero in λn.

Therefore, the decay is also shown (not exponential), but we can also prove the
polynomial decay.

Finally, we also show the point spectrum in the one-dimensional case when B =
[0, π]. Thus, ω must satisfy now the equation:

Jτω3 + Jω2 + (κ∗τn4 + a∗τn2 + ξ)ω + κ∗n4 + a∗n2 + ξ∗ = 0.

Proceeding as in the previous cases, in Figure 3 we can see the roots for the following
values of the constitutive parameters:

J = 1, τ = 1, κ∗ = 0.1, a∗ = 0.1, ξ∗ = 0.1, ξ = 1.

We plot a range of 40 different roots beginning with n = 1 and taking a step of
n = 1 (up to n = 40). In this case, the roots tend to the imaginary axis when n is
large enough.
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Figure 3. Roots behaviour for the zero-order dissipation mechanism.

6. Numerical simulations for the three cases. In this final section, we describe
a finite element approximation of the problems studied in the previous sections, cor-
responding to cases (i), (ii) and (iii). Then, we derive their variational formulation.
For the sake of simplicity we restrict ourselves to the one-dimensional case and so,
let us consider the domain B = (0, 1) and denote by Y = L2(0, 1), and by (·, ·) the
scalar product in this space, with corresponding norm ‖ · ‖.

We note that we will only focus on the first case for the sake of clarity. It is
straightforward to obtain the fully discrete approximations in the remaining cases.

We must change the boundary conditions (2) as

ϕ(0, t) = ϕ(ℓ, t) = ϕx(0, t) = ϕx(ℓ, t) = 0. (21)

Therefore, after integrating by parts we obtain the weak form of problem given
by case (i), the initial conditions (1) and the modified boundary conditions (21).

Find the porous acceleration ξ : [0, T ] → H2
0 (0, ℓ) such that ξ(0) = ϕ2, and, for

a.e. t ∈ (0, T ) and r ∈ H2
0 (0, ℓ),

J(τ ξ̇(t) + ξ(t), r) + (κ∗ϕxx(t) + κψxx(t), rxx) + a∗(τψx(t) + ϕx(t), rx)
+ξ∗(τψ(t) + ϕ(t), r) = 0,

where the porous velocity ψ and the porosity ϕ are given by

ψ(t) =

∫ t

0

ξ(s) ds+ ϕ1, ϕ(t) =

∫ t

0

ψ(s) ds+ ϕ0.

Now, we show the fully discrete approximation of this variational problem in
two steps. In order to obtain the spatial approximation, let us assume that the
interval [0, 1] is divided into M subintervals a0 = 0 < a1 < . . . < aM = 1 of length
h = ai+1−ai = 1/M and so, we consider the finite dimensional space V h ⊂ H2

0 (0, 1)
given by

V h = {rh ∈ C1([0, 1]) ; rh|[ai,ai+1]
∈ P3([ai, ai+1]) i = 0, . . . ,M − 1,

rh(0) = rh(ℓ) = rhx(0) = rhx(1) = 0},

where P3([ai, ai+1]) denotes the space of polynomials of degree less or equal to three
in the subinterval [ai, ai+1]; that is, the space has C

1 and piecewise cubic functions.
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Here, h > 0 denotes the spatial discretization parameter. Moreover, we define the
discrete initial conditions ϕh

0 , ϕ
h
1 and ϕh

2 be defined as

ϕh
0 = Phϕ0, ϕh

1 = Phϕ1, ϕh
2 = Phϕ2,

where Ph is the classical finite element interpolation operator over V h (see [9]).
Secondly, in order to obtain the discretization of the time derivatives, we consider

a uniform partition of the time interval [0, T ], denoted by 0 = t0 < t1 < . . . < tN =
T , with step size k = T/N and nodes tn = n k for n = 0, 1, . . . , N .

Therefore, using the classical implicit Euler scheme, the fully discrete approxi-
mations of the above variational problem are the following.

Find the discrete porous acceleration ξhk = {ξhkn }Nn=0 ⊂ V h such that ξhk0 = ϕh
2

and, for all rh ∈ V h and n = 1, . . . , N ,

J(τ(ξhkn − ξhkn−1)/k + ξhkn , rh) + (κ∗(ϕhk
n )xx + κ(ψhk

n )xx, r
h
xx)

+a∗(τ(ψhk
n )x + (ϕhk

n )x, r
h
x) + ξ∗(τψhk

n + ϕhk
n , rh) = 0,

where the discrete porous velocity and the discrete porosity ψhk
n and ϕhk

n are now
recovered from the relations:

ψhk
n = kξhkn + ψhk

n−1, ϕhk
n = kψhk

n + ϕhk
n−1.

It is straightforward to obtain that this fully discrete problem has a unique
solution applying the well-known Lax Milgram lemma and the required assumptions
on the constitutive parameters.

In all the numerical simulations described below, we have chosen the discretiza-
tion parameters h = 0.025 and k = 10−5 and we have used the following data:

T = 100, J = 1, κ∗ = 0.1, a∗ = 0.1, ξ∗ = 0.1, τ = 1,

and the initial conditions, for all x ∈ (0, 1):

ϕ0(x) = 10x3(x− 1)3, ϕ1(x) = ϕ2(x) = 0.

We have assumed to vary the respective parameters κ, a and ξ for each case.
In the first example, we numerically study the dependence of the solution with

respect to parameter κ in the case (i) (i.e. it corresponds to the MGT-porous
hyperviscosity). Therefore, the evolution in time of the discrete energy given by

Ehk
n =

1

2

∫ 1

0

[

J(τξhkn + ψhk
n )2 + κ∗((ϕhk

n )xx + τ(ψhk
n )xx)

2

+τ(κ− τκ∗)(ψhk
n )2xx + a∗((ϕhk

n )x + τ(ψhk
n )x)

2 + ξ∗(ϕnk
n + τψhk

n )2
]

dx

is shown in Figure 4 for some values of parameter κ (κ = 0.2, 1, 10, 100) in both
natural and semi-log scales.

As can be clearly seen, an asymptotic exponential behavior is observed for the
discrete energy when κ is less than 5, which agrees with the theoretical result.
Moreover, we can also appreciate that, when higher values of parameter κ are
chosen, the asymptotic behavior degenerates. Even, for the largest value κ = 100
the decay is not observed because a much larger final time is needed.

In a second example, we consider now the dependence of the solution with respect
to parameter a in the case (ii) (i.e. it corresponds to the MGT-porous viscosity).
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Figure 4. Example 1: Dependence of the solution with respect to
parameter κ (fourth-order dissipation mechanism- Case (i)).

Therefore, the evolution in time of the discrete energy given by

Ehk
n =

1

2

∫ 1

0

[

J(ϕhk
3n)

2 + κ∗((ϕhk
1n)xx)

2

+a∗((ϕhk
1n)x)

2 + τ(a− τa∗)((ψhk
n )x)

2 + ξ(ϕnk
1n)

2
]

dx

is shown in Figure 5 for some values of parameter a (a = 0.2, 1, 10, 100) in both
natural and semi-log scales.
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Figure 5. Example 2: Dependence of the solution with respect to
parameter a (second-order dissipation mechanism- Case (ii)).

Again, we can see clearly the exponential decay of the discrete energy for all the
values of the parameter. However, it seems that there is a critical optimal value for
its decreasing between 10 and 100 since its ratio changes.

In the final example, we study the dependence of the solution with respect to
parameter ξ in the case (iii) (i.e. it corresponds to the MGT-porous weak viscosity).
Therefore, the evolution in time of the discrete energy given by

Ehk
n =

1

2

∫ 1

0

[

J(ϕhk
3n)

2 + κ∗((ϕhk
1n)xx)

2 + a∗((ϕhk
1n)x)

2

+ξ∗(ϕnk
1n)

2 + τ(ξ − τξ∗)(ψnk
n )2

]

dx
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is shown in Figure 6 for some values of parameter ξ (ξ = 0.2, 1, 10, 100) in both
natural and semi-log scales.
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Figure 6. Example 3: Dependence of the solution with respect to
parameter ξ (zeroth-order dissipation mechanism- Case (iii)).

As in the previous cases, the exponential energy decay is found for all the val-
ues although, contrary to the results of case (i), when parameter ξ increases the
convergence ratio becomes higher.
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