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Abstract—The aim of this work is to analyze the dynamic 
behavior of inverters powered by renewable energy sources 
(RES) operating under grid faults by means of a geometric point 
of view. To this purpose, a three-phase grid-connected inverter 
subject to voltage sags is analyzed. First, the mathematical 
equations that describe its electrical model under voltage sags 
are given in the complex form of the transformed Park 
components. Second, simulations results show the resemblance 
between the curve depicted by the transformed Park 
components of the injected currents in the complex plane and 
well-known geometric curves. Finally, the geometric-based 
approach is used to describe easily the dynamic behavior of 
grid-connected inverters under voltage sags. This new approach 
could be used to propose new control techniques to achieve fault 
ride-through (FRT) capability of three-phase inverters. 

Keywords—Distributed energy resource (DER), geometry, 
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I. INTRODUCTION 

In the current path towards a decarbonized society, the use 
of renewable energies (e.g. wind or photovoltaic (PV) energy) 
has emerged as the eco-friendly alternative to power the 
world. Studies reveal that about 60% of total generation in 
2050 might be produced by renewable energy sources (RES) 
[1]. As a result, numerous publications have arisen from the 
last two decades in order to deal with the integration of RES 
into the main grid, specially concerning the topics of grid 
synchronization [2], [3], operation  within microgrids [4], [5] 
and, with growing attention, their control under grid faults, 
which is comprehensively explained in [6]. 

Voltage sags (or dips) are mainly caused by grid faults and 
they are defined as a decrease in the rms value of voltage 
between 10% and 90% of the pre-fault steady state value for 
durations from a half cycle to one minute [7]. If this voltage 
decrease is the same in the three phases, the voltage sag is 
symmetrical. Otherwise, it is unsymmetrical. Table I (adapted 
from [8]) shows the voltage sag classification according to the 
grid faults that cause them. The effects of voltage sags on grid-
connected equipment are well known in the literature: torque 
peaks in rotating machines [9], saturation in transformers [10], 
and DC-link fluctuations in voltage-source inverter (VSI) 
adjustable-speed drives [11], among others.  

The voltage sag effects on grid-connected inverters 
powered by RES have been studied over the last years and 
different solutions have been proposed to limit the high 
current peaks, which can damage the system. Take the 
examples, among others, of  using a decoupled current control 
technique to govern, separately, the positive- and negative-
sequence components of the injected current [12], [13] or 
considering the grid code requirements to control both active 

and reactive currents [14], [15]. Other studies have focused 
their attention on providing an analytical study to describe the 
dynamic behavior of the system under voltage sags, such as 
doubly-fed induction generation (DFIG)-based wind turbines 
(WTs) under symmetrical and unsymmetrical voltage sags, 
respectively [16], [17]. 

It should be noted that recent analytical approaches in the 
technical literature regarding three-phase inverters under grid 
faults have paid special attention to justify a proper control for 
both positive- and negative-sequence components with current 
limitation to achieve fault ride-through (FRT) [18], [19]. 
However, there are no analytical studies in the technical 
literature that analyze the behavior of grid-connected inverters 
under voltage sags from a geometric perspective. This study 
uses the author’s previous works [20], [21] in order to develop 
a novel analytical approach, by means of which it is proved 
the correspondence between the limaçon of Pascal curve and 
the geometric figure drawn by the injected current in the 
complex plane during voltage sags. Then, this powerful tool 
can be used to propose new control techniques (or to improve 
the existing ones) to make three-phase grid-connected 
inverters achieve FRT in an understandable way. 

II. MODEL OF THE STUDIED GRID-CONNECTED INVERTER 

The studied three-phase grid-connected inverter is 
depicted in Fig. 1. It consists of: a constant current source, 
which emulates the RES (wind or PV), a DC link, a power 
converter (DC-to-AC, i.e., inverter), a resistive-inductive 
(RL) filter and the grid (which is modelled as an AC voltage 
source). The electrical equations that describe the behavior of 
the inverter in abc components can be written by the following 
matrix equation (assuming the generator-sign convention): 

      i abc abc g abcsv R i L v                        (1) 

where vi abc is the inverter output voltage, vg abc is the grid 
voltage, R and L are the filter resistance and reactance, 
respectively, iabc is the injected current and s = d/dt is the 
derivative operator. According to the author’s previous work 
[20], [21], if (1) is written in the complex form of the 
transformed Park variables, the following expression is 
obtained: 

  if f gfs jv R L i v                         (2) 

where ω = 2πf is the grid voltage pulsation (f is the grid 
frequency) and the subscript f stands for the forward 
component of the transformed Ku variable, which equals the 
complex form of the transformed Park variable, according to: 

 f d q
1

j
2

x x x          (3) 
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with x being the variable of interest, and subscripts d and q 
stand for the direct and quadrature components, respectively, 
of the transformed Park variable.  

It should be noted from (2) that the term vgf corresponds to 
the forward component of the transformed Ku grid voltage, 
which can be expressed as (see the [20], [21] for more details): 

j2
gf gf gf e tv v v                               (4) 

where vgf
+ and vgf

– are given by: 

 *gf gf3 2 ; 3 2v V v V          (5) 

with V + and V – being the sequence components of voltage 
sags, which are given in the rightmost column of Table I, and 
the superscript * stands for the complex conjugate. 

Assuming that the transformed inverter voltage (vif) equals 
its pre-fault steady-state value during all the entire transient, 
then (2) becomes a first-order ordinary differential equation 
(ODE) with constant coefficients, whose solution is (see the 
author’s previous works [20], [21]): 

 if gf st
f i;

j

v v
i t t

R L


 

 
      (6) 

      i ij j2
f i f1 2 3e e e ;R L t t t t ti K K K t t t            (7) 

      f fj
f f4 5e e ;R L t t t ti K K t t            (8) 

where the complex constants are given by: 

igf gf st gf if gfj2
1 2 2 3e ; ;

j j j
tv v v v v

K K K K
R L R L R L

  
  

   
     

 (9) 

   
    f i f i fj j2

4 1 2 6e e eR L t t t t tK K K K                       (10) 

+
if gf st gf st gf

5 6;
j j

v v v v
K K

R L R L

 
 

   
                               (11) 

where superscripts + and – stand for the positive- and 
negative-sequence components, respectively, of the 
transformed variable, ti (initial time) is the time when the sag 
starts, tf (final time) is the time when the sag ends and the 
subscript st stands for steady-state conditions. It should be 
noted that for symmetrical sags there is no negative-sequence 
component. So, the term with K2 is zero and there is no 
pulsation that equals twice the fundamental pulsation. It 
should also be noted that sags with abrupt (or instantaneous) 
voltage recovery are assumed for this study. The analysis of 
grid-connected inverters under voltage sags with discrete 
voltage recovery can be found in [20]. 

III. GRID-CONNECTED INVERTER SUBJECT TO SAGS 

 A 50-kW three-phase inverter operating with unitary 
power factor connected to a stiff grid with rated values 400 V 
(phase-to-phase) and 50 Hz is considered. The output filter has 
a resistance of 1 mΩ and an inductance of 5 mH. The inverter 
is simulated operating under steady-state conditions until a 
voltage sag occurs at t = 2T (where T = 1/f is the grid voltage 
period). All voltage sag types (Table I) have been simulated 
with a voltage decrease of 30 % (i.e. with a sag depth h = 0.7) 
and a duration of 5 cycles (i.e. Δt = 5T). 

 The analytical model (6)-(8) has been simulated by means 
of the MATLABTM software. The obtained simulation results 
are depicted in Fig. 2, where it is shown the behavior of the 
injected current by the inverter before the sag, during the sag, 
and once it has been cleared: time evolution of the abc 
components of the injected current (Fig. 2a), time evolution of 
real and imaginary parts of the transformed forward 
component (Fig. 2b), and real part vs. imaginary part in the 
complex plane (Fig. 2c). The results are shown in per unit 
according to: 

abcf 
f (pu) abc (pu)

N N

;
3 2 2

ii
i i

I I
   (12) 

with IN being the rated current of the inverter. 
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Fig. 1.  Electrical scheme of the studied grid-connected three-phase inverter
(generator-sign convention). 

TABLE I.  VOLTAGE SAGS (ADAPTED FROM [8]) 

Sag type Fault type Phasor Seq. components 

A 
3-phase fault 

3-phase-to-ground fault 
 

 

0 0V A  

V hV A  

0V  A  

B 1-phase-to-ground fault 

 

0 1

3

h
V V


 B  

2

3

h
V V 

B  

1

3

h
V V 

 B  

C 

2-phase fault 
 

1-phase-to-ground fault 
after a Dy transformer 

 

0 0V C  

1

2

h
V V 

C  

1

2

h
V V 

C  

D 

2-phase fault after a Dy 
transformer 

1-phase-to-ground fault 
after two Dy transformers 

 

0 0V D  

1

2

h
V V 

D  

1

2

h
V V 
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E 2-phase-to-ground fault 
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3
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V V


E  

1 2

3

h
V V 
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3
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F 
2-phase-to-ground fault 
after a Dy transformer 

 

0 0V F  
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3
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G 
2-phase-to-ground fault 

after two Dy transformers 
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Fig. 1.  Electrical scheme of the studied three-phase grid-connected inverter 
(generator-sign convention). 
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Fig. 2.  Injected currents by the studied three-phase grid-connected inverter subject to voltage sags. All sag types have been simulated with a depth h = 0.7, 
with a duration Δt = 5 cycles and with an initial time t = 2 cycles. (a) Time evolution of the abc components of the injected current, (b) time evolution of the 
transformed current (real and imaginary part), and (c) real part vs. imaginary part of the transformed current in the complex plane. 
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 Judging by the Fig. 2 results, the following comments can 
be made:  

(a) there is a noticeable increase in the current during the sag, 
which is due to the reduction in the rms value of the grid 
voltage;  

(b) the abc components of the current (Fig. 2a) are balanced 
before and after the sag (steady-state conditions), but they are 
unbalanced during the sag;  

(c) this imbalance in the abc components of the current causes 
a pulsation in the transformed current during the fault 
(Fig. 2b), which equals the fundamental pulsation in the case 
of symmetrical sags (A type) and twice the fundamental 
pulsation for unsymmetrical sags (B…G types), which is 
corroborated by the exponential term with –j2ωt shown  
in (7); 

(d) the most severe effects on the inverter are given by sag 
types A, C, E and G, because the current peaks are the highest 
ones;  

(e) sag types E and G cause the same behavior on the current 
(this is due to the fact that there is no zero-sequence 
component on the grid-connected inverter, so according to 
Table I the sequence components of the voltage for these sag 
types are the same);  

(f) sag types B and D cause similar behavior on the current 
(note from Table I that if there is no zero-sequence 
component, then sag type D with depth h from 1/3 to 1 has the 
same positive- and negative-sequence voltages as sag type B 
with depth h from 0 to 1);  

(g) although not properly seen in Fig. 2 results, both time 
evolution of the currents and its behavior in the complex plane 
present a damping, which is due to the time constant R/L 
attested in (7);  

(h) plotting the transformed currents in the complex plane 
(Fig. 2c) gives rise to geometric curves, which can be easily 
identified by their Cartesian and complex equations, as 
explained in the following section. 

IV. GEOMETRIC APPROACH 

A. Limaçon of Pascal 

 The limaçon (or limacon) of Pascal is defined 
geometrically as the conchoid of a circle of radius a with 
respect to an origin point on the circumference of the circle 
[22]. The limaçon of Pascal written in polar coordinates is: 

 cosr b a                 (13) 

where a is the radius of the circle, b is the parameter of the 
conchoid and θ is the angle of rotation. The Cartesian 

equations of the limaçon of Pascal can be obtained from the 
polar equation (13) by using x = rcos(θ) and y = rsin(θ), 
yielding: 

      cos cos cosx r b a       (14) 

      sin cos siny r b a        (15) 

which can be written according to the trigonometric identities

    2cos 1 cos 2 2    and      cos sin sin 2 2    as: 

   cos cos 2
2 2

a a
x b              (16) 

   sin sin 2 .
2

a
y b              (17) 

Finally, the limaçon of Pascal can be given in the complex 
plane by setting jz x y  . So, considering (16) and (17) and 

the Euler formula    jθe cos θ jsin θ  , we obtain: 

j j2j e e .
2 2

a a
z x y b                 (18) 

 Fig. 3 shows the curves that can be obtained by giving 
different values of a and b to the limaçon of Pascal (18). The 
following observations can be made from the graphic:  

(a) If b > a, the limaçon is a closed dimpled curve (Fig. 3a); 

(b) if b = a, the limaçon is a closed curve with a cusp, i.e., a 
cardioid (Fig. 3b);  

(c) if b < a, the cusp of the limaçon becomes an inner loop and 
the resulting curve crosses itself at one point (Fig. 3c);  

(d) if b = 0, the limaçon becomes a circle (Fig. 3d). 

B. Behavior of Grid-Connected Inverters under Voltage 
Sags Explained from a Geometric Perspective  

 As explained in Section III, the studied three-phase 
inverter injects currents during sags that perform geometric 
curves in the complex plane (Fig. 2c), although these curves 
are damped by the time constant R/L of the filter, as observed 
in (7). However, we could make the assumption that R << L, 
and given that the sag duration is assumed to be small (some 
cycles), then the damping can be neglected. By doing so, and 
considering that the initial time when the sag starts is ti = 0, 
the expression of the transformed current during the voltage 
sag (7) can be written as: 

    j j2
f gf if gf st gf gf gf

j
e et ti v v v v v v

X
                  (19) 

where X = ωL is the filter reactance. 

    
                           (a)    (b)               (c)            (d) 

Fig. 3.  Curves obtained by the limaçon of Pascal equation with different values of a and b. (a) Closed dimpled curve (b = 3/2 a); (b) cardioid (b = a); (c) curve 
with an inner loop (b = a/2); and (d) circle (b = 0). 



 The previous equation shows a resemblance with the 
complex equation of the limaçon of Pascal (18). There are 
only two differences. First, in (19) the equation is multiplied 
by j/X, which causes a rotation of 90 deg. in the complex plane 
(it can be observed if comparing the curves of Fig. 3 with the 
curves of Fig. 2c). Second, in (19) the exponential terms 
include –j, while in (18) the exponential term include j 
(however, it only indicates that in one case the curve is 
obtained counter-clockwise and in the other case the curve is 
obtained clockwise, but it does not change the curve itself). 
Then, by comparing (18) and (19), the following identities can 
be written: 

 
     

 

gf if gf gf if gf

gf st gf gf

j j 2j 2j

2
j

.

a
v v v a v v v

X X X X

b v v v
X

   

 

        

  
   

(20) 

 The behavior of three-phase grid-connected inverters 
under voltage sags could be explained just by equation (13) in 
polar coordinates or by equation (18) in the complex plane, 
where a and b are the complex constants given in (20). 
Moreover, depending on the values of a and b, the behavior of 
the injected current under voltage sags will be different. Then, 
by comparing the curves of Fig. 3 with the ones shown in 
Fig. 2c the conclusions summarized in Table II can be drawn. 

 Finally, it should be noted that the analysis explained in 
this work could also be done for modular multilevel converters 
(MMCs) operating under either balanced or unbalanced grid 
conditions. In order to do so, it is necessary first to obtain an 
equivalent MMC circuit that emulates the behavior of all 
diode-clamp submodules (SMs) plus the protection thyristors. 
By using this equivalent circuit, the upper arms of the MMC 
will behave like a three-phase half-wave rectifier when the 
protection thyristors are fired [23]. Note also that this kind of 
analysis might be especially important when analyzing the 
behavior of MMCs with floating capacitors [24] under 
unbalanced faults [25], because the device might be damaged 
due  to large current peaks and DC voltage ripples (which will 
appear as a consequence of twice the fundamental frequency) 
might cause a loss of controllability. 

V. CONCLUSION 

This paper has presented a new approach to predict the 
behavior of grid-connected three-phase inverters subject to 
voltage sags by means of using a simple equation that models 
a geometric curve. Both analytical model and simulation 
results of a three-phase inverter with an RL filter operating 
under a faulty grid with both symmetrical and unsymmetrical 
faults corroborate the resemblance between the behavior of 
the transformed current in the complex plane and the curve 
called limaçon of Pascal. This new approach could be used in 
an easy and understandable way to propose new control 
techniques (or to improve the existing ones) to achieve fault 
ride-through capability for three-phase inverters operating 
under grid faults. 
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