
A multi-stage graph aided algorithm for
distributed Service Function Chain
provisioning across multiple domains
GODFREY KIBALYA1, JOAN SERRAT1, JUAN-LUIS GORRICHO1, DOREEN BUJJINGO 2 AND 
JONATHAN SERUGUNDA2

1Dept. Network Engineering, Universitat Politecnica de Catalunya, Barcelona - Spain (e-mail: Godfrey.mirondo.kibalya@upc.edu, serrat@tsc.upc.edu, 
juanluis@entel.upc.edu)
2Dept. Electrical and Computer Engineering, Makerere University, Kampala- Uganda (e-mail: doreenserene04@gmail.com,serugthan@gmail.com)

Corresponding author: Godfrey Kibalya (e-mail: Godfrey.mirondo.kibalya@upc.edu).

This work has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 
777067 (NECOS project) and the national project TEC2015-71329-C2-2-R (MINECO/FEDER). This work is also supported by the
"Fundamental Research Funds for the Central Universities" of China University of Petroleum (East China) under Grant 18CX02139A

ABSTRACT Network Service Providers (NSPs) envisage to support the divergent and stringent
requirements of future services by instantiating these services as service chains, commonly referred
to as Service Function Chains (SFCs), that are customized and configured to meet specific service
requirements. However, due to the limited footprint of the Infrastructure Providers (InPs), these SFCs
may have to transcend multiple InPs/domains. In this regard, determining the optimal set of InPs in which
to embed the SFC request emerges as a complex problem for several reasons. First, the large number of
possible combinations for selecting the InPs to embed the different sub-chains of the request makes this
problem computationally complex, rendering optimal solutions only after long computations, especially
in large scale networks, which is unfeasible for delay sensitive applications. Second, the unwillingness of
InPs to disclose their internal information, which may be vital for making embedding decisions, usually
implies the provisioning of single-domain solutions, which are unsuitable in this working scenario. In this
regard, this paper first formulates the multi-domain service deployment problem under multiple request
constraints, such as bandwidth or delay, among others. Then, due to the NP-hardness nature of the above
problem, this paper proposes an algorithm that is aided by a multi-stage graph for computing a request
embedding solution in a distributed manner, solving the problem in acceptable run-times. Results from
different simulations reveal that the proposed algorithm is optimized in terms of acceptance ratio and
embedding cost, with up to 60.0% and 88.7% improvements in terms of embedding cost and execution
time, respectively, for some scenarios, in comparison with a benchmark state-of-the-art algorithm.

INDEX TERMS Service Function Chaining, Distributed Algorithm, Multi-domain Embedding, Network
Function Virtualization.

network management by allowing multiple service-specific
virtual networks to be deployed on a shared infrastructure
[5], [6]. In this regard, end-to-end services will be instan-
tiated as service chains consisting of an ordered set of
Virtual Network Functions (VNFs), commonly refereed to
as Service Function Chains (SFCs), which can be easily and
dynamically deployed, scaled or migrated [7]–[9].

The problem of service deployment considering a sin-
gle administrative network infrastructure has been exten-
sively addressed in the literature [10]–[14]. However, for

I. INTRODUCTION

Network Function Virtualization offers great prospects for 
building logical networks with the ability to support the 
divergent and stringent requirements of future services 
through the softwarization of the network functions, hith-
erto implemented by middle-boxes coupled to proprietary 
hardware [1], [2]. By this approach, NFV provides the pos-
sibility of migrating those network functions from dedicated 
hardware appliances to general purpose computing, storage, 
and networking solutions [3], [4]. This facilitates a dynamic
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a number of practical scenarios such as Internet-of-Things
applications, the geographical location at which the data is
generated may be different from where it will be accessed,
processed or consumed [15], [16]. This, coupled with the
location dependencies of certain network functions, and
the limited footprint of InPs, may necessitate the SFCs
to transcend multiple domains, and then, involve several
infrastructure providers [17], [18]. Therefore, the end-to-end
service supporting such applications must be materialized by
a chain of service instances supported by different InPs. This
brings extra complexity regarding how to efficiently deploy
the different service chains onto an underlying infrastructure
belonging to multiple providers, while meeting the stringent
constraints associated with the requests in terms of both
required amount of resources and end-to-end delay. The
problem is further exacerbated by the unwillingness of the
different InPs to disclose information related to their internal
network topology, although, that information would be vital
to make efficient mapping decisions [19]. Fig. 1 shows an
example of several IoT systems in which information from
medical and road traffic domains are relayed to a core data-
center (with the possibility that there are multiple core cloud
servers belonging to different InPs) through several access
networks (wireless and optical) comprised of multiple InPs.

Algorithms for a multi-domain service deployment are
either centralized or distributed: centralized algorithms rely
on a centralized entity that uses global information to make
decisions about the different InPs for hosting the requests.
This may affect the scalability of such approaches when
considering large scale networks. Moreover, different enti-
ties cannot compute mapping solutions in parallel, affecting
the execution time of the algorithm [20]. On the other
hand, deciding the placement of any request when using
distributed algorithms involves the participation of different
InPs. Unlike centralized algorithms, as discussed in [21],
distributed algorithms are well suited when considering
dynamic network environments, and they are also suited to
protect the privacy of the different InPs, hence, working
with limited information disclosure as considered in this
work. However, distributed approaches are penalized by an
increasing processing delay and signaling overhead when
making request provisioning decisions as the number of
participating InPs increases, hence, compromising their scal-
ability. To overcome this challenge, this paper proposes an
algorithm for the distributed provisioning of service requests
across multiple infrastructure providers which incorporates
two innovative features: first, unlike other distributed algo-
rithms, such as in [22], where a messages exchange occurs
between any node and all its neighbors, the messages ex-
change in our work involves only a pre-computed set of can-
didate nodes, thanks to the use of a candidate extraction step;
secondly, we incorporate a message processing technique in
which, upon receiving message blocks from other InPs, each
candidate InP processes the received messages and forwards
only a single message, based on all the received messages,
to a given sub-set of InPs. This, significantly reduces the
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FIGURE 1: An illustration of multi-domain service deployment

computational overhead of the different InPs participating
in the solution to be computed. Moreover, it is possible to
detect unfeasible requests in early stages when running our
proposed algorithm, further enhancing the algorithm time
performance, hence, rendering a well suited approach for
delay sensitive applications. Moreover, different from ex-
isting works addressing the multi-domain service problem,
our work incorporates multiple intra-domain performance
parameters, such as processing costs, intra-domain delays,
VNF activation costs or energy costs, among others.

Therefore, our contributions in this work can be summa-
rized as follows:

1) An algorithm for the provisioning of service requests
in a distributed manner across an underlying infras-
tructure belonging to multiple InPs. The computation
of the solution is based on the use of a multi-stage
graph composed of a sub-set of InPs, enhancing its
execution time with no degradation in its performance.

2) A formal description and formulation of the SFC
placement problem across a multi-provider network
infrastructure while satisfying end-to-end delay con-
straints.

3) A candidate selection algorithm to pre-compute the set
of candidate InPs to participate in the solution com-
putation of the embedding algorithm. This minimizes
the number of InPs participating in the computation
of the embedding solution.

4) Extensive simulations considering both offline and
online scenarios. From the simulation results, the
proposed algorithm is found to be scalable when
increasing both the network size and the request
demand. Moreover, the proposed algorithm is also
found to be optimal in terms of some selected per-
formance metrics, including the provisioning cost and
the execution time, compared to a state of the art
benchmark algorithm.

The rest of the paper is organized as follows: section
II presents the related work. The network modeling and
problem description is presented in section III. The proposed
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multi-stage graph based distributed algorithm is described
in section IV. The performance evaluation of the proposed
algorithm is presented in section V. Finally, the conclusions
are summarized in section VI.

A. SOLUTION CONTEXT

the architecture options permit the exchange of information
among different domains, including IP addresses of the
distinct functional blocks to be interconnected, such as the
NFVO, the unique identifiers of the administrative domains
to be interconnected, and the administrative organization
they pertain to, among others. Moreover, the proposed ar-
chitecture options may allow for auto-discovery mechanisms
in which the different NFV-MANO functional blocks of the
different domains can advertise their own information which
can be exploited by the discovery mechanisms to establish
a connectivity relation [24].

The architecture option for the "Network Services pro-
vided using multiple administrative domains" use case is
shown in Fig. 3, which considers a case where there
is a single NFV Orchestrator (NFVO) per administrative
domain. In this case, a new reference point Or − Or is
proposed to be added to the NFV-MANO architecture to
facilitate the communication between the different NFVOs
in order to enable a life-cycle management of the de-
ployed composite service. In the shown architecture exam-
ple, NFVO-1 (which we denote as the master orchestrator
in our work) is in charge of the life-cycle management
of the composite service, including initiation of scaling
operations when necessary, while NFVO-2 and NFVO-3
are responsible for the life-cycle management of the nested
services (NSs) running inside their respective administrative
domains. However, NFVO-1 is unaware of the virtualized
resources in the host domains of both NFVO-2 and NFVO-
3, with the interaction between the VNFM of each domain
being limited to the respective NFVO of that domain. In this
regard, a service deployment algorithm that is cognizant of
the limited information exposure is well suited for service
deployment under this scenario. Moreover, abstracting the
internal topology of the different domains from the global
orchestrator has been found to result in a significant re-
duction in the solution computation time with a tenable
cost increment [18], [26], [27]. The authors in [26] and
[18], [27] analyzed the time reduction gain and provisioning
cost performance, respectively, resulting from abstracting
the internal topologies of the different domains in the multi-
provider service deployment problem.

II. RELATED WORK
There are significant contributions in the literature devoted
to solving the problem of the service embedding for single
domain environments; such as in [3], [28]–[31]. However,
such approaches rely on a full network topology exposure,
which is not a realistic consideration when extended to the
multi-domain scenario. The multi-domain service deploy-
ment problem has been addressed in the literature either as a
Virtual Network Embedding (VNE) problem or as a Service
Function Chain Placement (SFC) problem. We summarize
here the most representative works in both of these areas.

The authors in [17], [18], [27], [32], [33] adopt ap-
proaches based on obtaining exact solutions for the multi-
domain service embedding. However, although these ap-

The proposed solution is aligned with the "NFV Infras-
tructure as a service (NFVIaaS)" use case as described in 
[23], and the "Network Services provided using multiple 
administrative domains" use case described in [24], both of 
them applicable to scenarios where a single service provider 
is unable to meet the requirements of its consumers. This is a 
realistic scenario since, in practice, consumers may demand 
services with a global span, yet, many service providers 
may not have the capacity to deploy and provide resources 
around the globe due to different reasons, including financial 
or regulatory constraints, among others. Under such perspec-
tive, an effective approach for any service provider comes 
from using resources of different infrastructure providers. As 
articulated in [24], under the NFVIaaS use case, the tasks of: 
the VNF placement decision, the management of software 
images for the deployed VNFs, the SLA supervision or the 
management of the intra-domain VNF infrastructure, among 
others, are delegated to the NFVIaaS provider, with whom 
the NFVIaaS consumer establishes an "a priori" commercial 
agreement. This justifies o ur d istributed a pproach f or the 
targeted problem, since in practice, a given InP will have 
limited control and visibility of the network operations 
happening in another InP domain.

The different architecture options, through which the 
logical interconnection and service orchestration in a multi-
provider scenario can be supported, are proposed and de-
scribed in the ETSI report [24]. The ETSI NFV-MANO 
architectural framework described in [25], and shown in 
Fig. 2, serves as the basis for the aforementioned multi-
domain architecture options, with additional enhancements 
of the interfaces and reference points where necessary, 
depending on the specific a rchitecture o ption. T he ETSI 
NFV-MANO architectural framework is constituted of a set 
of functional blocks, data repositories used by these blocks, 
and the respective interfaces and reference points through 
which the different blocks can exchange information in 
order to effectively manage the virtualized infrastructure 
and the corresponding services within a given adminis-
trative domain. The key building blocks of the architec-
ture are: the NFV Orchestrator (NFVO), the Virtualized 
Infrastructure Managers (VIMs) and the VNF Manager 
(VNFM). The NFVO is responsible for the orchestration 
of NFVI resources across multiple VIMs and the life-
cycle management of the deployed network services. The 
VNFM is responsible for the life-cycle management of 
VNF instances, including VNF instantiation, modification, 
healing and termination, among others. On the other hand, 
the VIM is in charge of controlling and managing the NFVI 
compute, storage and network resources within a given 
domain. In order to achieve a multi-domain connectivity,
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FIGURE 2: NFV MANO architecture

proaches result in optimal solutions, they achieve that at the
expense of an increased processing time complexity, hence,
they are not well suited for delay sensitive applications as
envisaged in future networks, including 5G. Due to this
challenge, a number of alternative heuristic approaches have
been proposed in order to embed services across multiple
domains within a feasible run-time. In [21], [34]–[36]
several multi-domain algorithms are proposed considering
that the internal information within each InP is visible
from other InPs. However, in practice, due to security and
business competition issues, InPs are reluctant to share
their topological and internal policy information, hence,
these approaches are unsuitable for scenarios with restricted
information disclosure. The works in [5], [22], [37]–[39]
adopt heuristic approaches to map services across multiple
domains under limited information disclosure. In [5], the
algorithm uses the exposed boarder nodes to compute all
the feasible paths from source to destination. Then, for each
of these paths, the first InP on the path receives the SFC
request and selects a sub-SFC to bid for, and forwards
this and the SFC to the next InP along the path. Then,
the receiving InP also selects a sub-SFC among the non-
selected VNFs and also tries to compete for the sub-SFC
selected by the previous InP. This process continues until
the last InP along the path selects or competes for a sub-
SFC of the request. Then, the path for mapping the request
is chosen as the one which results in the least cost among
all candidate paths from source to destination. The work
in [38] adopts a similar approach in which the exposed
boarder nodes are used to obtain feasible abstracted paths
connecting the source node with the destination node. The
algorithm, then, partitions the SFC according to two criteria,

namely, according to the number of domains crossed by the
abstracted path, with the goal of minimizing the end-to-end
delay, and according to the available physical resources of
the different domains constituting the abstracted paths. The
authors of the above work adopt a similar approach in [40]
and [39], with the added goal of minimizing the energy
consumption. However, as revealed from the simulation
results of this paper, using the exposed boarder nodes to
compute all possible paths from source to destination has
a high time complexity, which greatly affects the running
time of the entire algorithm. The work in [37] introduces
pSMART, a privacy-aware SFC approach that targets to
jointly achieve privacy and a high multi-domain SFC orches-
tration efficiency. However, like most existing works, the
work adopts a centralised approach in which the solution is
evaluated based on computing the K shortest paths between
the ingress and egress nodes, using an abstracted topology.
However, in practice, the provisioning cost may be affected
by multiple intra-domain undisclosed costs, including en-
ergy, processing, link and QoS violations, among others. In
this way, the shortest path may not necessarily result in the
least provisioning cost. Moreover, obtaining a near-optimal
solution may require obtaining a large number of paths,
which compromises the execution time of the algorithm.

The work in [41] proposes a service deployment frame-
work which incorporates innovative features, such as: re-
source availability prediction and incremental learning,
among others, in order to realize a service deployment
solution that is adaptive to temporal variations in network
or request requirements states. In [42] the focus is set
on scheduling micro-services on multiple clouds, including
micro-clouds, that could belong to a single or multiple
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FIGURE 3: ETSI proposed architecture option for Network Services provided using multiple administrative domains use case
[24]. In this illustration, domain A is the originating domain of the service request with NFVO-1 being the master orchestrator
(MO) in charge of life-cycle management of the composite service. NFVO 2 and 3 are restricted to the life-cycle management of
the nested services inside their respective domains

algorithm execution entails a path computation step which
involves computing paths between all nodes, which is very
time consuming.

In [2], [26], [45], [46] different multi-stage based ap-
proaches are proposed for solving the service embedding
problem. The embedding solution in these works is ob-
tained by either applying the Viterbi-algorithm [45], [46],
or a flow based algorithm [2], [26], directly on the graph.
However, all these approaches require a centralized entity
which has a global view of the weights of the nodes and
links constituting the graph, something that is not feasible
under a scenario of partial information disclosure regarding
those node and link weights. Moreover, different from these
approaches, the multi-stage graph tool in our work is only
used to establish neighborhood relationships between the
different candidates, and it is not used for directly computing
the mapping solution.

III. SERVICE AND NETWORK MODELING - PROBLEM
DESCRIPTION

In this section we describe the mathematical modeling of
the SFC requests and the substrate network providing the
service. In addition, a description of the multi-domain ser-
vice embedding problem is given, also from a mathematical
perspective.

operators, using a fair weighted affinity-based s cheme to 
solve the scheduling problem. However, these works rely on 
a full knowledge of the resources used within the different 
clouds, which may not be accessible under partial infor-
mation disclosure. While considering a distributed cloud 
environment under a multi-stakeholder setting, the authors 
in [43] target to optimise the utility of users, Service 
Providers and the Infrastructure Providers by adopting an 
ILP formulation that leverages a multi-layered auxiliary 
graph built for each request to be provisioned.

In [22] a distributed algorithm is proposed in such a 
way that, upon the arrival of a request, the centralized 
orchestrator forwards the request to the different partici-
pating InPs. Then, following their internal policies, each 
InP selects the sub-SFC it can map. All the intra-domain 
mappings are then forwarded to the orchestrator, and this 
one will select the optimal InPs for hosting the request 
with the goal of minimizing the overall provisioning cost. 
However, during the distributed computation, the algorithm 
requires the different InPs to forward signaling requests 
to all their reachable neighbors, increasing the time for 
making a mapping decision, especially as the number of 
InPs increases. In [44], a distributed embedding algorithm 
is proposed for the single VNE problem. In this case, 
each node behaves as an autonomic agent. However, the 
messages exchange overhead is unavoidable as the number 
of substrate nodes increases, since, even the unfeasible 
nodes participate in the solution computation. Moreover, the
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TABLE 1: Notations and variables

Notation Description
K Number of InPs in the substrate network
K A set of all InPs
Gs Substrate network topology graph
Gk

s Substrate network topology graph for domain/InP k
Ns, Es Set of all substrate nodes and edges respectively
Nk

s , Ek
s Set of all substrate nodes and edges respectively for InP k

Ψr Tuple of all request attributes
nk
s Substrate node in domain K

xs
n, ys

n x and y coordinate respectively for node ns

fnk
s Set of function types that can be deployed on nk

s

c
nk
s

res Amount of residual resources on nk
s

C
nk
s

max CPU capacity of nk
s

ζkns
Cost for processing a packet rate unit on nk

s

ek A physical link inside domain k
Eint Set of all inter-domain links
Bek

max Bandwidth capacity of edge ek

Bwek

res Residual bandwidth on edge ek

δe
k

propagation delay on ek

ζe
k

Cost for transmitting a packet rate unit on ek

Gr
v Set of ordered VNFs that request r ∈ R must traverse

np
v Request virtual node of type p

P Set of all function types
ρr Requested packet rate of request r ∈ R
τr
s , τr

d Ingress and egress node respectively for r ∈ R
τr
f Life-time of r ∈ R
ReqrNv

Set containing requirements of the virtual nodes of r ∈ R

C
np,r
v

dem CPU resource requirement of node np
v of request r ∈ R

rn
p
v Acceptable location region of np

v ∈ Nv of request
ρrnp

v
Packet rate traversing np

v

Cρ Amount of CPU for processing each unit of packet rate
Delrsd Delay requirement for r ∈ R
luv Request virtual link between virtual nodes u and v
Bwr

luv
Bandwidth requirement for luv

RA Set of all admitted requests
σe
luv

∈ {0, 1} σe
luv

=1 if luv is provisioned by e ∈ Es, zero otherwise
y
np
v

nk
s
∈ {0, 1} y

np
v

nk
s

=1 if virtual node np
v is provisioned by substrate node nk

s ,zero otherwise.

γ
nk
s

p ∈ {0, 1} γ
nk
s

p =1 if VNF m of type p has been provisioned by substrate node nk
s ,zero otherwise.

eidlenk
s
, ebusy

nk
s

Idle and peak power consumption of node nk
s

δpvnf Processing delay at VNF of type p
Υp

vnf Set of all substrate nodes that can provision a VNF of type p
zmp ∈ {0, 1} zpmp = 1 if VNF m is of type P, zero otherwise.
Candrs Set of candidate InPs for request r ∈ R

Candn
p
v Set of candidate InPs for virtual node np

v

dist(ns, i) Euclidean distance between substrate node ns and virtual node loc(i)

A. SFC REQUEST

Considering a set of R requests, each request r ∈ R is mod-
eled as a tuple Ψr= < Gr

v, ReqrNv
, ρr, Delrsd, τ

r
s , τ

r
d , τ

r
f >

where Gr
v is the SFC graph of the VNFs the user traffic

must traverse, including the virtual links interconnecting
those VNFs. We refer to each of such required VNFs as a
request virtual node or virtual node for convenience, denoted
by np

v ∈ Nv , where Nv denotes the set of all such nodes,
and p ∈ P denotes the function type (e.g. firewall or NAT,
among others) of this node. The parameter ρr is used to
denote the requested packet rate of the user input traffic from

the ingress node τ rs to the egress node τ rd . ReqrNv
denotes a

set capturing the requirements of the different request virtual
nodes in terms of CPU resources and location constraints,
with C

np
v,r

dem and rn
p
v denoting the CPU resource requirement

and acceptable location region of np
v ∈ Nv , respectively.

In practice, the amount of CPU resources required by a
node np

v is proportional to the packet rate to be processed
by that node, i.e. C

np
v,r

dem = ρr
np
v
× Cρ, where C

np
v,r

dem is the
amount of CPU resources required by np

v , with ρr
np
v

and
Cρ denoting the packet rate traversing np

v and the amount
of CPU resources required to process each unit of packet
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rate by that node, respectively. The terms Delrsd, τ rs , τ rd , τ rf
are used to denote the end-to-end delay requirement of the
request, the ingress node, the egress node, and the request
life-time, respectively. Similarly, we denote by luv ∈ Lv

the request virtual link between request virtual nodes u and
v, and we denote the bandwidth requirement for such a
link by Bwr

luv
. Note that the amount of required bandwidth

may vary across different links, since the packet rate may
be altered by the traversed virtual nodes, for instance, as
a result of filtering or splitting of packets due to applying
some kind of networking functionality.

B. SUBSTRATE NETWORK
The substrate network considered in this work consists of
K InPs modeled as a weighted undirected graph Gs =
(Ns, Es) where Ns, Es denote the set of all physical nodes
(e.g. servers) and physical links, respectively. The substrate
network of a given domain k ∈ K is modeled as a weighted
undirected graph Gk

s = (Nk
s , E

k
s ), where Nk

s and Ek
s denote

the set of substrate nodes and intra-domain substrate links
within that domain, where Gk

s ∈ Gs, Nk
s ∈ Ns and

Ek
s ∈ Es. Each physical node nk

s ∈ Nk
s in the kth domain is

characterized by: i) a location specification locn
k
s , modeled

as a point p(xs
n, y

s
n), where xs

n and ysn are the x and y
Cartesian coordinates; ii) a set of function types that can
be deployed onto this node, denoted as fnk

s ; iii) its residual
CPU resources at a given time, denoted by c

nk
s

res; iv) a CPU
resource capacity, denoted by C

nk
s

max; and finally, v) the cost
of processing each unit of packet rate at this node, denoted
by ζkns

. Similarly, we denote each physical link by ek ∈ Ek
s

within domain k. We also use eint ∈ Eint to denote an
inter-domain link, where Eint ⊂ Es denotes the set of all
inter-domain links. Each link ek ∈ Ek

s or eint ∈ Eint is
characterized by: i) a bandwidth capacity Bek

max or Beint
max;

ii) a residual bandwidth at a given time, denoted by Bwek

res

or Bweint
res ; iii) a propagation delay δe

k

or δeint , and iv) a

InP, the request splitting task focuses on selecting a sub-set
of feasible InPs, among all possible candidates, in order to
optimize the mapping objective, e.g. the cost. In this paper,
such a task is implemented by a messages exchange among
the candidate InPs obtained from the first task. Once the
optimal InPs for embedding the request are identified, the
binding task carries out the reservation and allocation of the
necessary intra-domain and inter-domain resources along the
selected InPs in order to instantiate the end-to-end service.
In this work, the target of the service provisioning algorithm
is to minimize the average provisioning cost for each
admitted SFC request. Moreover, we consider a scenario
where the cost for each unit of any node or link resource
may vary across different InPs. In principle, minimizing the
provisioning cost of any request minimizes the operational
cost of the service provider and maximizes the resultant
net revenue. We consider the provisioning cost of any
request to be influenced by: i) the energy consumption
cost associated with running the different VNFs onto the
substrate nodes of the different domains; ii) the transmission
cost of transferring the user traffic from the ingress node to
the egress node along all the intermediate links; and iii)
the processing cost incurred for processing the user traffic
at the different VNFs traversed. Note, however, that other
cost components, such as VNF instantiation, could be easily
integrated into the adopted cost model of the algorithm.
Therefore, the multi-domain service provisioning problem
target can be expressed as:

Minimize C(Gv) (1)

where C(Gv) denotes the average provisioning cost per
admitted SFC request, defined as follows:

C(Gv) =
1

|RA|
∑
r∈RA

Cr
p(Gv) (2)

where Cr
p(Gv) is the provisioning cost for a request r ∈

RA, and RA denotes the set of all admitted requests, with
|RA| being the cardinality of that set. In order to evaluate
Cr

p(Gv), we define the following variables: σe
luv

∈ {0, 1} is
a binary variable, equal to 1 if the request virtual link luv
is provisioned by the intra-domain edge e ∈ Ek

s of domain
k ∈ K, zero otherwise; σeint

luv
∈ {0, 1} is equal to 1 if the

request virtual link luv is provisioned by the inter-domain
edge eint ∈ Eint, zero otherwise; yn

p
v

nk
s
∈ {0, 1} is equal to 1

if the request virtual node np
v is provisioned onto substrate

node nk
s , zero otherwise. Then, the request provisioning cost

can be evaluated as:

Cr
p(Gv) =

∑
luv∈Lv

∑
k∈K

∑
ek∈Ek

s

σek

luv
× ζe

k

× ρr

+
∑

luv∈Lv

∑
eint∈Eint

σeint

luv
× ζeint × ρr+∑

np
v∈Nv

∑
k∈K

y
np
v

nk
s
× ζkns

× ρr + χw

∑
k∈K

∑
nk
s∈Nk

s

Enk
s

(3)

cost for transmitting a packet rate unit ζe
k 

or ζeint .

C. MULTI-DOMAIN SFC PROVISIONING PROBLEM -
DESCRIPTION AND FORMULATION
Given a service request to be provisioned, and an underlying 
substrate network owned by multiple InPs whose internal 
network topology and pricing information is considered 
confidential, o ur o bjective i s t o o btain a  s et o f I nPs that 
satisfies the request requirements while resulting in the least 
request provisioning cost. In a general sense, this problem 
can be decomposed into three main sub-tasks: the candidates 
search, the request splitting and the request binding. The 
candidates search task identifies a  s et o f I nPs t hat can 
potentially serve that request, either partially or in full, by 
exploiting the public information disclosed by all the InPs 
and the requirements of the request. In this regard, this paper 
proposes a Candidate InPs Identification A lgorithm (CIIA) 
that performs this task. Since this task may associate each 
request virtual node with more than one possible candidate
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where the first and second terms of Eqn. 3 correspond to
the transmission costs due to the use of the intra-domain
and inter-domain edges, respectively, and the third and
fourth terms correspond to the processing costs, due to the
use of the selected substrate nodes, and the energy costs,
respectively. The parameter Enk

s
from the energy cost term

denotes the energy consumption at node nk
s , and χw denotes

the cost per unit of energy consumption. Enk
s

is computed
using the model adopted in [47] as follows:

Enk
s
= eidlenk

s
+ [ebusy

nk
s

− eidlenk
s
]× U

nk
s

til (4)

where eidlenk
s

, ebusy
nk
s

denote the idle and peak power consump-

tion of the node nk
s . The term U

nk
s

til refers to the utilization
of substrate node nk

s .

In order to increase competitiveness, the mapping inside
each domain is done with the objective of minimizing
the mapping cost for the sub-SFC that is bid for by the
corresponding domain. Complementary, the optimization
criterion expressed in Eqn. 1 should adhere to a number
of constraints, including the following:
• The total bandwidth consumption on a given edge ek ∈
Ek

s and eint ∈ Eint should not exceed the capacity of that
edge: ∑

r∈R

∑
luv∈Lv

σek

luv
×Bwr

luv
≤ Bek

max ∀ek ∈ EK
s (5)

∑
r∈R

∑
luv∈Lv

σeint

luv
×Bwr

luv
≤ Beint

max ∀eint ∈ Eint (6)

• The end-to-end delay should not exceed the acceptable
delay of the request:∑
luv∈Lv

∑
k∈K

∑
ek∈Ek

s

σek

luv
δe

k

+
∑

luv∈Lv

∑
eint∈Eint

σeint

luv
δeint

+
∑

np
v∈Nv

y
np
v

nk
s
× δpvnf ≤ Delrsd ∀r ∈ R

(7)

where δpvnf denotes the processing delay experienced by a
packet at a VNF of type p. The first and second terms of
equation 7 correspond to the propagation delay of the intra-
domain and inter-domain edges, respectively, and the third
term corresponds to the processing delay at the different
VNFs being traversed by the user traffic.
• The CPU consumption at a given substrate node should
not exceed the node resource capacity:∑

r∈R

∑
np
v∈Nv

y
np
v

nk
s
× C

np
v,r

dem ≤ C
nk
s

max ∀nk
s ∈ Nk

s , k ∈ K (8)

• Each request virtual node must be mapped onto a single
substrate node:∑

k∈K

∑
nk
s∈Nk

s

y
np
v

nk
s
= 1 ∀np

v ∈ Nv (9)

• Each request virtual node should be provisioned on a
substrate node that is within its acceptable geographical

location:

dist(nk
s , n

p
v) ≤ dev(np

v) ∀ np
v ∈ Nv (10)

where dist(nk
s , r

np
v ) denotes the distance of substrate node

nk
s from the desired location of virtual node np

v and dev(np
v)

denotes the maximum acceptable deviation from such a
location.
• Each VNF of type p should be provisioned on a substrate
node capable of supporting that type of VNF:

γ
nk
s

p = 1 iff nk
s ∈ Υp

vnf ∀ p ∈ P (11)

where Υp
vnf is a set containing all nodes that can provision

a VNF of type p.
• Similarly, a request virtual node np

v is provisioned by
substrate node nk

s only if there is a VNF of type p already
provisioned on that node.

y
np
v

nk
s
= min{yn

p
v

nk
s
, γ

nk
s

p } (12)

The problem as formulated above becomes an NP-hard
problem. As such, solving it using conventional solvers like
CPLEX or Gurobi is not feasible in terms of execution
time, especially when dealing with large scale networks.
Therefore, this paper proposes a heuristic approach that is
able to achieve near-optimal solutions within feasible run-
times.

IV. PROPOSED MULTI-STAGE GRAPH BASED
DISTRIBUTED SERVICE PROVISIONING ALGORITHM
This section introduces the proposed multi-stage graph
based algorithm (MuL) for multi-domain service deploy-
ments. Specifically, the steps involved in the algorithm
execution, including their corresponding pseudo-codes, are
described here. For the multi-domain service deployment
problem, the service embedding algorithm targets to obtain a
set of InPs that minimizes the service deployment cost while
satisfying the request requirements. Given the large number
of possible combinations for mapping the different VNFs
of the request, this problem is computationally intractable.
Hence, looking for exact solutions becomes unfeasible,
especially for large network scenarios. This is further ex-
acerbated by the reluctance of InPs to disclose information
related to their internal topology or policies. This way, it
makes conventional heuristics, such as those based on node-
ranking, unfeasible for this problem. With this motivation,
this paper proposes an approach that obtains the provi-
sioning solution in three phases that will be subsequently
described, with the aim to reduce the problem dimension
successively. The proposal is able to obtain near-optimal
solutions in practical run-times while preserving the privacy
of the different InPs. The algorithm consists of 3 main steps:
a Candidate InP identification, a Message exchange and a
Consensus step. The proposed algorithm uses a candidate
search technique to identify potential InPs that can host a
fraction or the whole request. Then, these candidate InPs
are used to build a multi-stage graph, where, at each stage,
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span of that InP must include the acceptable location of this
virtual node. Similarly, for two consecutive request virtual
nodes i and j to be hosted by InP A and InP B, where
A¬B, there should exist an inter-domain path between InP
A and InP B that satisfies the constraints of virtual link
i−j. If we denote by Γk, rn

p
v and ηkvnf as the geographical

span of InP k, the desired location of virtual node np
v , and

a set of VNF types that can be provisioned inside InP k
respectively, then an InP is considered a potential candidate
for virtual node np

v iff :

rn
p
v ∈ Γk (13)

p ∈ ηkvnf (14)

Equation 13 requires that the acceptable location of virtual
node np

v lies within the coverage span of InP k. From
equation 14, such an InP should support the resource type
required by np

v . The pseudo-code of the candidate InPs
Identification step is shown in Algorithm 1. The algorithm
starts by initializing the set of candidate InPs for the
request, Candrs, to an empty set. Then, for each virtual node
np
v ∈ Nv of the request, the algorithm extracts all InPs that

satisfy the resource type constraint, location constraint and
also have a feasible connection (in terms of bandwidth and
delay) between the source node Sn and destination node
Tn, as potential candidates for this virtual node np

v , and
stores these in the set Candn

p
v . In the case that any VNF

has no potential candidate, the request is rejected at this
point. Otherwise, the algorithm returns the candidate set
Candrs made up of candidates for all the virtual nodes of
the request. Note that, although the requirement to have a
feasible path between candidate InPs for adjacent VNFs can
be evaluated within Algorithm 1, we propose to evaluate
this at the message exchange step. In this way, the number
of such path computations between InPs is reduced due to
the pruning of candidate nodes by virtue of location and
resource type constraints.

B. MESSAGE EXCHANGE STEP
The Message exchange step can also be viewed as a
distributed computation step involving each candidate InP
of the request forwarding Message Blocks (MBs) to a given
sub-set of candidate InPs in order to deduce a mapping
solution. The Message exchange is guided by a multi-stage
graph constructed by the MO and based on the obtained
candidate InPs. The leftmost stage in the graph corresponds
to the source node (originating InP) and the rightmost stage
corresponds to the destination node (terminating InP). Each
intermediate stage of the graph corresponds to a specific
required VNF of the request. The nodes considered at each
stage of the multi-stage graph are the candidate InPs for the
provisioning of the VNF at that stage.

An example of such a multi-stage graph is shown in Fig. 4
for a request in which the traffic has to traverse three VNFs,
a single source and a single destination, and candidate
sets for the VNFs being: VNF1={A,B}, VNF2={A,C},

all the candidate InPs of a given VNF are represented as a 
different node, and the interconnecting edges between the 
nodes of consecutive stages are the available inter-domain 
substrate paths. Using this multi-stage graph, a message 
block is constructed at the leftmost stage (source end) and 
propagated upstream towards the destination node. Each 
node, through which the message block passes, updates 
the received message block by increasing the cumulative 
mapping cost, the total cumulative delay and the list of 
traversed nodes, before forwarding this message block to 
all the nodes of the next stage. At the output end, the 
message block associated with the least cost value is chosen 
as the optimal message block, and the nodes through out 
which this message block was transiting are chosen as the 
optimal nodes/InPs for embedding the request. A detailed 
description of these three steps follows below:

A. CANDIDATE INPS IDENTIFICATION STEP
This step exploits that each request virtual node of a given 
SFC is constrained by a function/resource type and location. 
Similarly, the corresponding virtual links between any two 
virtual nodes are considered to be constrained by a delay and 
a bandwidth requirement. Therefore, each request virtual 
node of a given request may only be served by a sub-set 
of the available InPs that satisfy the associated constraints. 
The aim of this step is to associate each request virtual node 
with a set of InPs that can satisfy its associated constraints. 
Different to approaches such as in [22], in which all do-
mains participate in the distributed solution computation, 
selecting a subset of InPs to participate in the solution 
computation minimizes the execution time of the algorithm 
and the amount of signaling information exchanged among 
the involved participants.

Whenever a request arrives, we take the orchestrator of 
the domain receiving that request as the Master Orchestrator 
(MO), and we assume that this orchestrator has access 
to the global information disclosed by all the InPs. This 
information includes the type of resources available in each 
domain and the boarder nodes of the different domains, 
which can be used to infer the span of a given domain. 
However, note that we are considering a restricted infor-
mation disclosure. The amount of available resources, their 
location, the network topology or the price of each unit of 
resource is assumed to be private information. In this regard, 
the MO is responsible for comparing the specifications of 
the request with the global information disclosed by the 
orchestrators of the different administrative domains, with 
the goal of identifying the potential domains that could 
host the SFC request. The set of candidate InPs is obtained 
by matching the virtual nodes location and resource type 
constraints with the disclosed information of each InP, and 
also by matching the virtual links’ constraints with the inter-
domain links’ attributes. Thus, for an InP to be among the 
candidate set of InPs for a given request virtual node i, 
the set of offered resource types disclosed by this InP must 
include the function type of node i, and the geographical
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ϕA 

ϕB 

ϕD ϕA 

ϕC ϕE 

VNF1 VNF2 VNF3

InP A InP A

InP B InP C

InP D

InP E

ωAA ωAD

ωAC

ωBC

ωAE

ωCE

ωCDωBA

sn
tn

FIGURE 4: An illustration of a multi-level graph for a request whose traffic must traverse three VNFs from the ingress to egress
nodes. In this case, each request virtual node has 2 InPs as potential candidates for provisioning its required VNF type, with InP
A being a candidate for provisioning the VNFs for the first and second request virtual nodes

Algorithm 1: Candidate InPs Identification Algo-
rithm
Input:Gs,Gv

Output: Candidate set,Candrs
Initialise: Candrs=∅
for Each virtual node np

v ∈ Nv do
Candn

p
v = ϕ

for Each Inp k ∈ K do
if rn

p
v ∈ Γk AND p ∈ ηk

vnf then
if dijkstra(k,Sn ) AND dijkstra(k,tn )̸= Inf

then
Add k to Candn

p
v ;

end
end

end
if Candn

p
v = ϕ then

Reject Request
end
else

Add Candn
p
v to Candrs

end
end

VNF3={D,E}. The connection between any two InP nodes
X and Y from adjacent stages of the graph, where X¬Y ,
corresponds to the physical path connection between the
peering nodes connecting InPs X and Y . As such, the
weight parameter ωXY stands for the weight of that path
in terms of features such as delay, residual bandwidth, and
monetary cost, among others. For the particular case of the
same InP being a candidate for two consecutive VNFs,
(i.e. X=Y), the connection path and weight metric ωXY

corresponds to the intra-domain path between the candidate
hosting nodes of these VNFs. Each node k in the graph
is characterized by a parameter ϕk which represents the
undisclosed information matrix of the corresponding InP.
This includes the cost per unit of resource and the internal
topology, among others, attributes that are only known by
the specific domain orchestrator.

To understand the executed procedure of this step, and
using Fig. 4 as an illustrative example of a possible multi-
stage graph for an SFC with 3 VNFs, we define the
following terms:
• Message Block (MB): This denotes a single message unit
built as a tuple <IDtrack,Edgetrack, Costcum, Delcum>.
The IDT rack component, which is initialized as an empty
list, stores all the IDs of the nodes/InPs that have modified
the message block at the different stages (i.e. feasible candi-
dates for the different VNFs through which the MB has tra-
versed) from source to destination. As an example, if a mes-
sage block from the source InP traverses InPs B,C,D before
reaching the terminal node, then, the IDT rack for this MB
at the terminal node will be , IDT rack = [sn, B,C,D, τn].
The Edgetrack, initialized as an empty list, stores all
the inter-domain edges that have been traversed by the
message block from source to destination. Considering the
above example in which IDT rack = [sn, B,C,D, τn], then
Edgetrack = [sn−B,B−C,C−D,D−τn at the terminal
node. The Costcum and Delcum components, initialized to
zero both of them, capture the cumulative cost and delay re-
spectively along the different paths traversed by the message
block (computing for both nodes and links) from source to
destination. Note that each message block corresponds to a
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possible mapping solution from the source node to the VNF
corresponding to the last index in IDT rack. We denote by
MBm

n the message block sent from node n to node m. Note
that, in this case, the stage of node n has to be to the left
of that of node m.
• Message Block Set (MBS): This denotes a set of one or
more message blocks.
• Optimum Message Block (MBopt): This denotes the
message block from the message block set that has the least
cost value among all valid message blocks in that set.
• Pushing node set, knpush: The pushing node set of a given
node k ∈ K at stage n of the multi-stage graph denotes the
set of all nodes in the preceding stage (n− 1) to which the
node k has a feasible connection. Any node in such a set
is called a pushing node with respect to k. As an example,
the pushing node sets for the nodes in the third and fourth
stages of Fig 4 are: A3

push = {A,B}, C3
push = {A,B},

D4
push = {A,C}, E4

push = {A,C}
• Receiving node set, knrec: A receiving node set with
respect to node k ∈ K at stage n refers to the set of all
nodes in stage (n+1) to which the node k has a feasible
connection. As an example, the receiving node set for node
C is C3

rec = {D,E}.
Then, the execution of the Message exchange step is as

follows:
Starting from the leftmost stage (source node), the MO

initializes N message blocks, where N is the number of
candidate InPs at the next stage (i.e. the size of the receiving
node set for the MO), with each message block MBn

MO

intended to be forwarded to a specific receiving node n.
Then, for each receiving node n, it computes the shortest
available path from the source node to node n, and obtains
the delay, cost and the inter-domain edges constituting this
path. Then, for each message block MBn

MO to be forwarded
to each receiving node n, the MO appends: its index into
the IDT rack component, the obtained inter-domain edges
into the Edgetrack component, and the cost and delay
values to Costcum and Delaycum components, respectively.
Then, the MO forwards to each receiving node n the
corresponding MB, i.e. MBn

MO, for further processing. On
receiving the MB, each node n at stage l (l = 1 if received
from the source stage) identifies the receiving node set
(i.e. the candidate nodes at stage (l + 1)) from the multi-
stage graph. Note that these are the candidates of the VNF
to be enumerated in the next round. Then, for each node
m, among the receiving candidates, node n performs the
following steps:
• Obtains the optimal message block MBn,m

opt from all the
message blocks it has received. The MBn,m

opt refers to the

additional intra-domain delay to the substrate node where
the VNF is to be mapped inside node n does not exceed
the acceptable delay.
• Obtains the available shortest path from node n to node
m. Note that this path should not include already used
edges that appear in the Edgetrack of the MBn,m

opt . This is
done in order to guarantee that the user traffic from source
to destination does not traverse the same edge twice. The
intra-domain delay and the intra-domain cost (for nodes and
links) is evaluated and added to the delay and cost of the
obtained shortest path from n to m. These are then used
to increase the Delaycum and Costcum, respectively, of the
MBn,m

opt . Also, the index of node n is added to the IDT rack
component.
• Forwards MBn,m

opt to node m. Node m and the following
ones will also execute the same steps until the message
blocks will reach the last stage. In the case that a node
is unable to push a message block to at least one of the
nodes of the next stage, that node mutes all the received
MBs and sends back a mute message to the MO. In the
event that all the candidate nodes at a given stage have
responded with a mute message, the request is rejected, and
the algorithm execution stops, since this means that there is
no feasible connectivity between the current VNF and the
VNF corresponding to the next stage.

C. CONSENSUS AND BINDING STEP
Once the node at the last stage of the graph has computed
its associated MBopt, it forwards its MBopt back to the
MO, the MO then selects the IDtrack component of the
message block with the lowest cost as the definitive mapping
solution for the SFC request. This is constituted by IDs
of InPs that result in the least mapping solution from the
source to the destination. Finally, the resources across the
inter-domain links and those inside the selected domains are
reserved for deploying the request.

In possible situations where the last stage could be associ-
ated with multiple nodes (e.g. in case of multiple alternative
servers in which the user may access content), then each
of the nodes in the last stage computes its corresponding
MBopt and forwards it to the MO. This, then, selects
the MBopt with the least cost as the definitive mapping
solution. If this algorithm is to be executed in a fully
distributed fashion, the execution of this step implies that
the candidates of the last stage know each other (through
the multi-stage graph which can be shared by the MO with
all the candidate nodes). Then, once each node in the last
stage of the graph has done its internal computation and
evaluation, it forwards a copy of its resulting MBopt to
each of the other candidates in this stage. Then, each node
inspects all the MBopt messages at its disposal including
its own. If the MBopt of such a node has the lowest cost
value, the node sends a “back−off” message to all the rest
of the nodes, and it forwards its own MBopt to the MO
from which the definitive mapping solution is chosen as the
IDtrack component of the MBopt, with the Edgetrack

message block at node n with the least cost among the 
feasible message blocks to be propagated to node m. A 
message block is feasible to be forwarded to node m of 
the next stage if: i) the node m is not already part of the 
IDtrack, unless it is the same as the current sending node 
(i.e. it is a candidate for both the current VNF and the next 
VNF, implying m=n); ii) the sum of Delaycum and the
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indicating the inter-domain edges of the solution.

Algorithm 2: Distributed Computation Step
Input: Multi-level Graph, Gv

Output: Mapping Solution
j=0
while j < J do

for Each level j ∈ J do
for Each recepient node m at level (j + 1) do

RecMBm=[] ▷ Collect received MBs
for Each forwarding node n at level j do

Evaluate the optimal MB,
MBopt ∈ RecMBn

Update MBopt

if n==Terminal node then
Return MBopt ▷ Chosen mapping

solution
end
else

Forward MBopt to RecMBm

end
end

end
if RecMBm ∀ m at level (j+1) then

Reject request
end
j=j+1

end
end

For the intra-domain evaluation and mapping of the
assigned sub-SFCs, an InP can use any single-substrate
SFC provisioning algorithm such as [10]–[14] depending on
its intra-domain policies. Moreover, under a multi-domain
setting, it is possible that different InPs run different intra-
domain algorithms for service provisioning. In this paper,
we adopted the algorithm proposed in [10] for SFC pro-
visioning with some minor modifications to suit the sub-
SFC mapping. Using the intra-domain candidate nodes and
links for the assigned sub-SFC, the algorithm constructs
a multi-stage graph similar to the one in Fig. 4, with
the chosen peering nodes serving as the fictitious ingress
and egress nodes. The feasible nodes and links associated
with the least cost between the fictitious ingress and egress
nodes, considering both resource and energy consumption,
are chosen for hosting the assigned sub-SFC. We refer the
interested reader in the details of the algorithm to consult
reference [10].

D. TIME COMPLEXITY ANALYSIS
The main steps of the proposed algorithm are: the com-
putation of the candidate sets of InP for each VNF of the
request; the processing and forwarding of message blocks
from each node at each stage towards the receiving nodes
of the next stage; and the selection of the InP set for
the provisioning of the request. The time complexity of
extracting a candidate set of InP for each request virtual
node is linear in terms of the number of InPs K, Θ(K).
The messages exchange step involves the use of the Dijkstra
algorithm to compute the shortest path between each node i

at stage n and each node j at stage (n+1) of the multi-stage
graph, where i ̸= j, as well as the evaluation of the intra-
domain cost for the mapping of the VNF corresponding to
stage n. The time complexity associated with the shortest
path computations can be approximated as Θ((2CN +(M−
3)C2

N ) × |K|log(|K|)) ≈ Θ((V − 3)C2
N ) × |K|log(|K|)),

where CN is the number of candidate nodes for each VNF
(in practice, this may be different for the different VNFs,
and the same InP may be a candidate of more than one
VNF). V is the number of stages in the graph, including
those corresponding to the ingress and egress nodes. The
time complexity of the intra-domain cost evaluation depends
on the specific single domain algorithm used for the intra-
domain mapping. In general, the time-complexity of the
entire proposed algorithm is guaranteed to be less than
Θ([(V − 3)C2

N ) × |K|log(|K|)] + [K × (|Nv| − 3)Ns) ×
|Ns|log(|Ns|)]), where Nv is the number of VNFs and Ns

is the number of substrate nodes for an InP. In practice, the
different InPs can only support a finite number of VNFs,
hence, limiting the number of candidates for each VNF.
Moreover, due to the finite number of VNFs that can be
supported by each InP (due to resource type and capacity
constraints), the number of possible candidates for each
VNF decreases as the SFC size increases, binding the time
complexity of the algorithm as the SFC size increases.

V. PERFORMANCE EVALUATION
This section describes the performance evaluation of the
proposed algorithm including a description of the simulated
scenarios and a discussion of the obtained results. The
evaluation of the proposed algorithm is made against the
following bench-mark algorithms:
• Distributed Network Service Embedding (DistNSE) al-
gorithm proposed in [5]. This work exploits the disclosed
public information to compute feasible paths between source
and destination, and from that the path with the least cost
is chosen for mapping the service request. Considering
all possible paths from source to destination to obtain all
feasible solutions, the benchmark DistNSE algorithm is
optimal in terms of acceptance ratio, hence, it becomes a
suitable algorithm for performance benchmarking. In our
comparison we considered the best performance scenario of
the DistNSE algorithm, in which all feasible paths from the
ingress to the egress nodes are evaluated, and from them
the best path was selected.

• Multi-level Aggregation Algorithm (MuL-Ag). We de-
signed this as a benchmark algorithm with its execution
being similar to the proposed MUL. However, at each
stage, instead of each node evaluating the optimal message
block to be forwarded to the nodes of the next stage, that
node aggregates/combines all the received messages into a
message set and forwards all these to the next stage nodes as
it is the case adopted by distributed algorithms in literature
[22]. The target is to demonstrate the gain resulting from
our proposed technique of only sending a single message
from a node to another given node.
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A. PERFORMANCE METRICS
We evaluate the performance of the proposed algorithm
considering a number of performance metrics discussed
below:

1) Average acceptance ratio, AR
This is computed as the ratio of the number of successfully
accepted requests to the total number of arriving requests,
i.e., the sum of both accepted and rejected. The AR metric
is a direct indicator of the algorithm efficiency in using
the underlying resources. Therefore, a service deployment
algorithm should target a high AR performance in order
to maximize the revenue returned to the Network Service
Provider. This is computed as follows:

AR =
No. of embedded requests

Total number of requests
(15)

2) Average provisioning cost, C(Gv)
The C(Gv) is the average cost incurred by the MO on
provisioning the SFCs across different domains from source
to destination. This cost captures the cost of node mapping
and link mapping, and it is evaluated as shown in equation
2.

3) Average revenue, Rev
This metric is used to express the average revenue, over
time, obtained by the MO. This is computed as the
monetary return from the use of the demanded CPU and
bandwidth resources. If we denote by revr(Gv) as the
revenue received by a service provider from embedding a
request r ∈ RA, then, the total from all admitted requests
is defined as:

Revtotal =
∑
r∈RA

revr(Gv) (16)

Then, the average revenue obtained from each admitted
request can be evaluated as:

Rev =
1

|RA|
∑
r∈RA

revr(Gv) (17)

If we denote by γnv
c and γev

bw as the revenue received by a SP
for each unit of cpu and bandwidth resource, respectively,
charged for each virtual node and virtual link of the request,
the revenue obtained after embedding a given SFC request
r ∈ RA at time t ∈ T can be defined as below:

revr(Gv, t) =


∑

nv∈Nv γnv
c demnv

cpu+∑
∀ev∈Ev

γev
bwdem

ev
bw if zrt =1

0 otherwise
(18)

where zrt ∈ {0, 1} is a binary variable equal to 1 if resources
are assigned to request r ∈ R at time t ∈ T , zero otherwise.
Therefore, the total revenue obtained in serving a request r
throughout its life-time is computed as:

revr(Gv) =
∑
t∈T

zrt × revr(Gv, t) (19)

where the term
∑

t∈T zrt ≤ τd denotes the total service time
of the request.

4) Average request provisioning time, Avg_T
This is the average time it takes to the service deployment
algorithm to compute a mapping solution for any admit-
ted request. Aware that future services will have stringent
latency start-up requirements, a useful service deployment
algorithm must work with a low Avg_T . This is computed
as:

AvgT =
1

|RA
|
∑
r∈RA

timr
prov (20)

where RA ∈ R denotes the set of all admitted requests, and
timr

prov denotes the time taken by the algorithm to obtain
a deployment solution for request r ∈ R.

B. SIMULATION ENVIRONMENT AND SETTINGS
Network topology: Depending on the particular experi-
ment carried out, this work considers a substrate network
composed of InPs varied from 4 to 12 participants, and
with a connectivity probability between InPs fixed to 0.5.
Each InP is modeled by a real network topology, namely
a BIC topology as explained in [48], composed of 33
nodes and 41 edges. The resource capacity of the different
intra-domain links and nodes follows a uniform distribution
U(200, 300). Any intra-domain link delay, specified in
milliseconds, follows a uniform distribution U(1, 6). The
above settings are similar to those adopted in [38]. The cost
of transmitting and processing 1 GB of data (approximately
16,384 packets of 64 KB size each) is considered to follow a
uniform distribution of U($0.05, $0.12) and U($0.15, $0.22),
respectively, as also adopted in [49]. This is aligned with
common charging prices like those applied by Amazon EC2.
The processing delay of a packet at each NF follows a uni-
form distribution U(0.045ms, 0.3ms), with the processing
delay of a service chain being the sum of the processing
delays of the constituent NFs.
SFC requests: Each request r ∈ R is generated with a
random source τ rs and a random destination τ rd from Gs,
with τ rs ̸= τ rd , and with a packet rate demand ρ measured
in packets/s following a uniform distribution U(400, 4000).
The end-to-end delay requirement of each request follows a
uniform distribution U(10ms, 30ms). We consider 5 cate-
gories of network functions: Firewalls, Proxies, NATs, DPIs
and Load Balancers, with their computing resource demands
adopted from [50]. The number of VNFs constituting each
SFC instance is set different depending on the scenario
under consideration. Considering the online case, the arrival
rate of requests follows a Poisson distribution with a mean
value varied from 2 to 10 requests per window of 100 time
units, but this is also dependent of the experiment under
consideration. Similarly, the life-time of such requests is
exponentially distributed with a mean value of 1000 time
units.

All simulations were carried out on a desktop computer
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running a Windows Operating System with the following
features: Intel(R) Core(TM) i7-8700K CPU @ 3.70GHZ
and 64GB of RAM.

C. RESULTS AND DISCUSSION
This section presents and discusses the results obtained
from different online and offline experiments. Under the
offline scenario, all the requests to be served, including
their attributes, are known in advance. And these, once
admitted, do not leave the system until the simulation ends.
Therefore, the resources allocated to these requests cannot
be reused by other requests. The offline scenario is useful
because it gives us a clear insight into the algorithm’s ability
to deal with permanent loading stress conditions [2]. For
the online scenario, the requests continuously arrive to the
system according to a given arrival distribution, besides,
any request will have a finite life-time, shorter than the
simulation window. For this last scenario, the resources
assigned to an accepted request are reclaimed upon the
ending of the service. For each arriving request, the different
steps of the algorithm are executed to provision such a
request. The obtained results are discussed below.

1) Offline scenario
This section presents and discusses the results obtained from
different experiments considering the offline scenario:

In Experiment 1, whose results are shown in figure 5,
the impact of the demand size on the performance of the
algorithms is analysed. From figure 5(a), the 3 algorithms
have the same competitiveness (within a 4% margin) in
terms of acceptance ratio, with an average value of: 27.0%,
23.5% and 24.5% for MuL-Ag, DistNSE and MuL, respec-
tively, averaged across all the tested demand sizes. However,
the DistNSE algorithm results in the worst performance
in terms of average mapping cost per admitted SFC, with
an average value of 5.45$, which is approximately a 60%
higher compared to MuL and MuL-Ag, whose average cost
values are: 2.11$ and 2.15$, respectively, averaged across
the different demand sizes. The poor performance of the
DistNSE algorithm in terms of mapping cost is attributed
to the fact that in DistNSE, InPs can compete only for the
previously mapped sub-SFC, as opposed to the multi-stage
algorithms, in which an InP can compete for any sub-SFC
of the request as long as it is a valid candidate. The results
in figure 5(c) demonstrate the superior performance of MuL
algorithm in terms of average processing time per admitted
request, with an average value of 1.35 seconds across all
demands. This translates into a performance improvement
of 44.1% and 88.79% compared to MuL-Ag and DistNSE,
respectively, whose average values are: 2.45 seconds and
12.1 seconds. For the MuL algorithm, each node at a given
stage forwards a single message block to each receiving
node at the next stage, this results in a lower processing
load at the receiving nodes, hence, reducing the execution
time compared to MuL-Ag, in which each node forwards
all aggregated message blocks to each receiving node at the

next stage. In terms of average revenue per admitted request,
MuL is as competitive as MuL-Ag (within a 2% margin),
and results in a 4.4% improvement compared to DistNSE,
as shown in figure 5(d). Moreover, the average revenue for
each admitted request tends to decrease when increasing the
demand size, due to the decreased resources in the network,
making it increasingly difficult to admit requests with high
revenue. In summary, experiment 1 has demonstrated that
MuL results in a better performance in terms of mapping
cost and execution time compared to DistNSE. In terms of
AR, cost and average revenue per admitted request, it is
found to be as competitive as MuL-Ag, yet, achieving up
to a 44.1% improvement in terms of execution time.

Experiment 2, whose results are shown in figure 6,
analyses the impact of the request size, in terms of number
of VNFs, on the performance of the different algorithms.
Considering the results of mapping cost shown in figure
6(a), the average mapping cost per admitted request for
all the 3 algorithms tends to increase as the number of
VNFs per SFC increases. This is something expected since
SFCs with more VNFs are associated with a higher con-
sumption of both node and link resources, resulting in a
higher provisioning cost. However, like in experiment 1,
DistNSE results in the worst performance in terms of cost,
with an average value of 9.97$, which is 33% higher than
MuL-Ag, whose average value is 6.67$, and 44.7% higher
than MuL, whose average cost value is 5.52$. The poor
performance of the DistNSE in terms of mapping cost is
largely attributed to the inability of the different InPs along
the different paths to compete for all the sub-SFCs that
they could potentially map, as they only compete for the
previously mapped sub-SFC. The results of total revenue
from the admitted requests is shown in figure 6(b), where
the average values for DistNSE, MuL-Ag and MuL are:
10524.93$, 11486.16$, 9913.99$, respectively. This shows
that the MuL is competitive in this metric with only a
5% and 13% difference compared to DistNET and MuL-
Ag respectively. The results in figure 6(c) demonstrate the
superior performance of the MuL compared to MuL-Alg
in terms of average execution time per admitted request. In
general, the average execution time per admitted SFC grows
with the increase in the number of VNFs per SFC for the 3
algorithms. This is expected since each additional VNF (and
hence, virtual link) comes with an extra processing time of
any intra-domain mapping. However, as observed, the time
complexity of MuL-Ag tends to grow exponentially when
increasing the SFC size, resulting in an average value of
17.03 seconds, which is 86.3% worse than the MuL, whose
value is 2.33 seconds, averaged across all SFC sizes. This is
attributed to the fact that, as the number of VNFs increases,
the number of stages of the multi-stage graph increases. As
a result, the number of messages received by each node
increases drastically for the MuL-Ag algorithm, especially
for the nodes at the rightmost stages, this increases the
computational load at these nodes, resulting into extremely
high execution times. On the other hand, for the MuL
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FIGURE 5: Experiment1: Results of experiment 1 of the offline scenario in which the number of demands is varied from 100 to
600 considering 10 InPs.

resource requirements, which are associated with higher
costs. Moreover, the probability of traversing multiple inter-
domain paths between ingress and egress nodes increases
as the number of InP increases. However, this figure also
reveals that MuL results in a 52.5% improvement in terms
of average mapping cost per admitted request compared to
DistNSE, with an average value of 2.54$ compared to 5.35$
from DistNSE. The MuL-Ag results in an average value
of 2.70$, representing a 5.6% difference with respect to
MuL. Moreover, in terms of execution time, MuL results
in a significant gain, especially as the number of InPs
increases, with an average value of 0.69 seconds, averaged
across the different number of InPs, as shown in figure
7(c). This translates into a performance improvement of up
to 15.9% and 98.0% compared to MuL-Ag and DistNSE,
respectively, whose average processing times per admitted
request are: 0.83 seconds and 34.4 seconds, respectively.
The exponential growth in execution time of the DistNSE
algorithm results from the path computation step of the
DistNSE, which requires computing all paths from source to
destination, which tends to grow fast as the number of InPs
increases. In a similar way, as the number of InPs increases,

algorithm, each node forwards only a single message block 
to each node at the next stage. Therefore, the number of 
messages received by a given node at a given stage is only 
dependent on the number of pushing nodes in the preceding 
stage, and not on the stage depth of the node. The DistNSE 
algorithm results in a 83.4% increase in terms of execution 
time compared to MuL, with an average value of 14.17 
seconds.

In Experiment 3 of this scenario, whose results are 
shown in figure 7 , t he impact of t he substrate network size 
is analyzed by varying the number of InPs from 4 to 12. 
The 3 algorithms have a close performance in terms of AR 
(an approx. 4% difference) with average values of: 37.0%, 
33.0% and 35.8% for the MuL-Ag, DistNSE and MuL 
algorithms, respectively. Moreover, the AR performance of 
the algorithms slightly improves as the number of InPs 
increases due to an increase in the amount of available 
resources. The results in figure 7 (b) s how t hat t he average 
mapping cost per admitted SFC for the 3 algorithms tends to 
increase as the number of InPs increases. This is attributed 
to the fact that, increasing the number of InPs, increases 
the prospects of admitting requests with more VNFs and
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FIGURE 6: Experiment 3: Variation of number of VNFs for offline Scenario: Results of experiment 2 of the offline scenario in
which the number of VNFs per SFC request is varied from 3 to 13 considering 8 InPs and demand size of 100 requests.

the number of candidate InPs (hence, nodes at each stage of
the multi-stage graph) increases. This increases the number
of aggregated messages that are forwarded between the
different nodes of the multi-stage graph, hence, affecting
the computational complexity of the MuL-Ag algorithm,
since, each node forwards all feasible message blocks to its
receiving nodes under this approach. The total revenue from
the three algorithms is almost the same across the different
substrate network sizes, as shown in figure 7(d).

The results from the above offline experiments have
demonstrated that the MuL algorithm is only 3% inferior
compared to DistNSE and MuL-Ag considering the worst
case scenario across all applied metrics, yet, resulting in up
to 86.3% and 98.0% improvements in terms of execution
time with respect to MuL-Ag and DistNSE, respectively, in
some cases. Moreover, all the experiments revealed that the
MuL algorithm executes in linear time. Finally, the DistNSE
algorithm results in more than a 44.7% increase in terms of
provisioning cost per admitted request compared to MuL
for all considered experiments.

2) Online scenario
In this section we analyze the results obtained from the
experiments conducted while considering online requests.
The results of the different experiments for this scenario
are discussed below:

Experiment 4, whose results are shown in figure 8,
analyses the impact of the arrival rate of the requests. The
AR performance results shown in 8(a) reveal that the AR
for all algorithms decreases when increasing the arrival rate.
This is expected since increasing the arrival rate results in
an earlier exhaustion of the available resources, leading to
an increase in the request rejection rate. Moreover, DistNSE
and MuL have shown to have the same competitiveness (i.e.
within less than a 1% difference) in terms of AR, with
average values of: 36.03% and 37.2% for DistNSE and
MuL respectively, averaged across all arrival rates. MuL-
Ag results in a higher performance with an average value
of 42.45% (a 5.3% improvement over MuL) , due to the fact

that it forwards all possible messages, increasing chances of
finding better solutions, albeit at the cost of higher run times.
In terms of average cost per accepted SFC, as shown in
figure 8(b), the average values of the DistNSE, MuL-Ag and
MuL are: 4.80$, 3.01$ and 2.64$, respectively. Therefore,
MuL results in a 44.9 % improvement in terms of mapping
cost compared to DistNSE, and a 12.2% improvement
compared to MuL-Ag. Moreover, all the algorithms execute
in polynomial time for this scenario, with each algorithm
executing even in a fraction of a second, with average values
of: 42.76 milliseconds, 39.89 milliseconds and 39.67 mil-
liseconds, for the MuL-Ag, DistNSE and MuL, respectively,
as reflected in figure 8(c). The DistNSE algorithm is able
to achieve this performance because this experiment uses
7 InPs, which is a relatively small number of InPs. For
all the algorithms the average processing time per admitted
request tends to decrease with an increase in the arrival rate.
This is due to the fact that, as the arrival rate increases, the
number of feasible links and nodes with enough resources
decreases, resulting in a decreasing number of paths to be
considered for the solution computation. From the results
of 8(d), the average revenue per admitted request decreases
as the arrival rate increases. This is expected since, as the
rate increases, the available resources decrease, hence, the
prospects of admitting requests returning a high revenue
(i.e. usually those with a high number of VNFs and a high
resource demand specification) decreases, hence, affecting
the average revenue per admitted request. The average
revenues per admitted request, averaged across the different
arrival rates, for the different algorithms, are: 595.8650141$,
570.1003804$ and 577.0008115$, for MuL-Ag, DistNSE
and MuL, respectively. Therefore, the MuL behaviour is
inferior to MuL-Ag for less than 4%, and within a 1%
margin with respect to DistNSE, in terms of revenue per
admitted SFC.

In Experiment 5, whose results are shown in figure 9,
the impact of the substrate network size on the algorithms’
performance is analyzed. MuL and DistNSE result in similar
performance in terms of average AR, with average values
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FIGURE 7: Variation of number of InPs for offline Scenario: Results of experiment 3 of the offline scenario in which the number
of InPs is varied from 3 to 12.

increases the prospects of admitting requests with more
VNFs and resource requirements, which are associated with
higher costs. This is evident in figure 9(d) where the average
revenue per admitted request increases with increase in
substrate size. In this scenario, MuL results in a 48.0% and
15,2% improvement in terms of average mapping cost com-
pared to DistNSE and MuL-Ag, respectively: 2.98$, 4.86$
and 2.52$, for MuL-Ag, DistNSE and MuL, respectively.
The results of the average revenue per accepted VNR are:
612.4$, 554.0$ and 552.7$ for MuL-Ag, DistNSE and MuL,
respectively, revealing a close performance (within less than
a 10% difference) among the three algorithms in terms of
this metric. The average revenue per admitted request among
all the algorithms increases when increasing the number of
InPs. This is expected, since, with an increased availability
of node and link resources, the different algorithms are
able to map SFCs with a higher number of VNFs, hence,
producing a greater revenue.

The results from both online and offline experiments
reveal that the proposed algorithm performance is optimized
in terms of acceptance ratio, execution time and embedding
cost. Moreover, the simulation results further reveal that

of: 51.25% and 51.81% respectively. MuL-Ag results in a 
7% improvement in terms of AR with an average value 
of 58.64%. Moreover, the AR performance of all the algo-
rithms is shown to increase when increasing the number of 
InPs. This is expected since increasing the number of InPs 
results in an increase in both node and link resources, hence, 
improving the AR performance. For the considered number 
of InPs, the average execution times in seconds per admitted 
request, for the three algorithms, are: 0.84, 4.54, and 0.73, 
for the MuL-Ag, DistNSE and MuL algorithms, respec-
tively, averaged over all InP values as reflected in figure 9(c). 
This result reveals that MuL results in a 13.6% and a 83.9%
improvement compared to MuL-Ag and MuL, respectively. 
Moreover, the execution time for all the algorithms increases 
when increasing the number of InPs. This is expected since 
this leads to an increased number of paths from source to 
destination for the DistNSE algorithm, and an increase in 
the number of nodes at each stage of the multi-stage graph 
of the MuL and MuL-Ag algorithms. From figure 9(b), 
the average mapping cost per admitted request for all the 
algorithms tends to increase with the number of InPs. This 
is attributed to the fact that, increasing the number of InPs,
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FIGURE 8: Experiment 4: Results of experiment 4 considering the online scenario with the arrival rates varied from 2 to 10 for
each 100 time units for a total of 10000 time units and considering 7 InPs.

the strategy of, for each InP node in the graph, processing
the received message blocks to only forward the least cost
message block, significantly reduces the execution time of
the algorithm without degrading its performance.

3) Computation Overhead

In general, distributed algorithms have an inherent drawback
of high signalling overhead in terms of messages exchanged
between participating nodes, especially with increasing net-
work and request sizes. In order to evaluate the message
exchange overhead involved in the proposed MuL algo-
rithm, we denote by Cv

n as the number of candidate InPs for
the VNF corresponding to stage v of the multistage graph,
and denote by Cv+1

n as the number of candidate nodes for
the stage v + 1. Since each node in a given stage of the
multi-stage graph forwards a single message to each node
of the following stage of the graph, the number of messages
forwarded from stage v to stage v + 1 of the graph is
evaluated as follows:

Msgv+1
v = Cv

n × Cv+1
n (21)

In this way, the total number of messages exchanged
throughout the graph is evaluated as follows:

Msgtot =
v=V−1∑
v=1

Cv
n × Cv+1

n (22)

where |V | is the total number of stages in the multi-stage
graph, including those corresponding to the ingress and
egress nodes. If we denote by βv as the probability that
a given InP k ∈ K is a candidate node for the VNF
corresponding to stage v, then, Cv

n can be approximated
as βv × K, where K is the total number of InPs. There-
fore, from Eqn. 22, the number of messages involved in
the distributed computation of the provisioning solution is
increased as the number of VNFs of the request increases,
since this results in an increase in the number of stages of
the multi-stage graph, as shown in Fig. 10(c). Additionally,
as the number of substrate nodes in the network increases,
the number of possible candidates for each VNF increases,
further increasing the number of messages. Therefore, by
limiting the number of nodes at any stage of the graph,
the total number of messages can be reduced, which is
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FIGURE 9: Variation of the number of InPs for online scenario: Results of experiment 2 of the online scenario with the number
of InPs varied from 4 to 10 considering arrival rate of 5 requests for each 100 time units for a total of 10000 time units.

computations of those paths. Moreover, even nodes that are
not feasible candidates for the solution receive the sub-SFC
for intra-domain provisioning evaluation during the solution
computation, as long as they are part of a potential solution
path.

VI. CONCLUSION
This paper has proposed a multi-stage graph based algo-
rithm for provisioning SFCs across multiple domains while
considering a limited disclosure of information from the
involved InPs. The multi-stage graph is constructed from
a pre-computed set of InPs obtained by a candidate search
technique which enhances the run-time complexity of the
algorithm thanks to reducing the set of InPs involved in the
solution computation. Moreover, the simulation results have
also revealed that the proposed algorithm can result in up
to a 7.9 % improvement in terms of acceptance ratio, while
spending a shorter execution time, in comparison with a
state-of-the-art benchmark algorithm. Considering different
offline and online experiments, our multi-stage algorithm
is found to be scalable when increasing both the substrate
network size and the request demand.

the motivation behind the candidate extraction step, which 
targets to consider only feasible candidates to participate 
in the solution computation. An elaborate evaluation of the 
effect of the substrate network size and SFC request size on 
the signalling overhead of distributed algorithms is given in 
[22].

In experiment 10, whose results are shown in Fig. 10, we 
evaluate the performance of the proposed MuL algorithm 
against DistNSE in terms of the number of nodes/InPs that 
participate in the computation of the provisioning solution 
for each request and the number of messages received by 
each node for to make a computation. From Fig. 10(a), 
on average, the number of InPs participating in the so-
lution computation are 7.3 and 8 (all InPs) for MuL and 
DistNSE, corresponding to an 8.2% improvement of MuL 
over DistNSE. Moreover, from Fig. 10(b), each participating 
InP receives 5 and 106 messages for processing for MuL 
and DistNSE respectively. This performance is attributed to 
the fact that DistNSE relies on computing paths between 
ingress and egress nodes using an abstracted topology of 
peering nodes. In this way, it is possible for a given InP 
to be part of the different paths, hence participating in the
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FIGURE 10: Experiment 10: Analysing the message exchange performance with increase in VNF size considering 8 InPs with
inter InP connectivity set to 0.3

In this work, we have considered the requests to be
characterized by immutable requirements in terms of link
and node resources throughout their life-time. However, in
practice, such requirements may have temporal variations,
requiring the embedding algorithm to intelligently adapt
to such dynamism. Moreover, an elastic behaviour when
considering a limited information disclosure is non-trivial,
requiring the elasticity algorithm to intelligently rely on the
partially disclosed information and its past experience to
infer short-term future resource availability or any request
requirements alteration. These last considerations will be
leading our immediate future work.
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