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Abstract

Deployment of Machine Learning (ML) applications requires an Orchestrator
to create ML pipelines, where ML functions are connected. The project con-
sists of implementing an Orchestrator and demonstrating the deployment and
reconfiguration of ML pipelines. The Orchestrator will run an optimization
algorithm to assign the ML functions into datacenters and then coordinate
with the Virtual Infrastructure Orchestrator (VIO) and the Software Defined
Networking (SDN) controller to create the ML functions.
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Chapter 1

Introduction

A previous publication was done on this work on conference ECOC2021
referenced on [1].

The rise of Machine Learning (ML) algorithms for optical network automa-
tion entails analyzing heterogeneous monitoring data collected from monitor-
ing points in network devices. [2] Because network entities can be reconfig-
ured, e.g., lightpath rerouting, it is of paramount importance to link differ-
ent ML functions (i.e., performance data collection, pre-processing, analysis,
storage, visualization, etc.) among them to create an ML Pipeline and to
the related network entity (e.g., a lightpath).

In the context of Intent-Based Networking (IBN), where the intents of the
business layer are fulfilled by the intent layer, machine learning pipelines
can be deployed to ensure that the network continues to deliver the intent
(for example by predicting resource usage) based on the policies on it. [3]
Because of the amount of data and the almost real-time requirements of the
scenario, these ML pipelines, have to be orchestrated to optimize the network
utilization and delay.

On the other hand with the recent development of the IoT industry, it’s
important to have different levels of aggregation for automatic and intelligent
decision making. Edge/Fog computing is the concept of making part of these
decisions on the edge data centers to have a faster response time. This kind
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of complex ML pipeline needs a complex orchestration to place the different
ML functions in locations that fulfill certain constraints (for example the
response time for an autonomous car). Furthermore, IoT devices are many
times mobile, and the ML pipeline must adapt to this mobility, and at the
same time optimize resource utilization. [4]

These recent advances in multiple areas have drawn the attention of the
ML and 5G community into the definition and development of an orchestra-
tor specifically designed for ML, a Machine Learning Function Orchestrator
(MLFO), as shown by the ITU AI/ML in 5G Challenge – “Demonstration of
Machine Learning Function Orquestrator (MLFO) via reference implemen-
tations (ITU-ML5G-PS-024)”. [5]

The MLFO is a component in a more complex IBN framework, where it uses
data of the data lake, and interacts with the Multi-VIM Orchestrator and
the Network Orchestrator. [6]

The objective of this project is to implement a reference implementation of a
MLFO, that can deploy and reconfigure an ML pipeline, and demonstrate its
utilization by the orchestration of an example application on an example use
case. On top of that, take some reference measurements and design decisions
that can help future developments as a baseline to compare to or get ideas.

The example use case consists of the monitoring of a light path that collects
data from the monitoring points (on the optical switches) and aggregates
it to verify its correct functioning. When the lightpath is reconfigured, the
monitoring endpoints change, and the ML pipeline has to be reconfigured to
adapt to these changes. This scenario was selected because it makes use of the
deployment and reconfiguration, and because of the importance of allocating
resources efficiently to avoid impacts on the system’s performance.
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Chapter 2

Background

2.1 Containerization

Virtualization was first introduced to take better advantage of hardware re-
sources. More than one application can run on a mainframe machine, and
different applications have different requirements. By introducing a level of
isolation, better control over the resources used by each application can be
done, and compatibility issues can be avoided (i.e. by independent library
updates). Virtualization is a way to isolate multiple services by abstracting
from the underlying hardware. [7]

As shown in figure 2.1, a virtual machine (VM) uses a hypervisor to simulate
hardware and runs a fully functional operating system (OS) on top of it.
On the other hand, containerization, also known as Operating-system-level
virtualization, does not need a hypervisor and keeps a set of advantages by
sharing some libraries and the OS kernel with the host system. [8]

While VMs achieve a higher level of isolation, are more portable, and have
some features as snapshots; containers start faster, take better advantage of
hardware resources, and have smaller, more practical images. So depending
on the scenario one or the other option is better. [8]

Kubernetes is an open-source system that automates the deployment and
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Figure 2.1: Comparison between containerization and virtualization.[8]

management of containerized applications. It is composed of a series of
worker nodes where the containers run and a control plane that interacts
with the nodes to configure them. The control plane exposes an API through
which the different components and external users can communicate. [9]

The Kubernetes API lets an external user manipulate the state of the dif-
ferent resources through it, like the creation of new container instances, the
exposure of services, among many others.

2.2 Overlay Network

Overlay networks are a better option to replace Flooding-based systems that
do not scale well in bandwidth utilization. An overlay network is a net-
work that is built on top of another network. Nodes in the overlay network
can be thought of as being connected by virtual links, that correspond to a
path through one or more physical links in the underlying network. Overlay
networks do not require or cause any changes to the underlying network. [11]

A way to implement an overlay network is through tunneling. A tunneling
protocol is a communications protocol that allows abstracting the communi-
cation between two networks through another network that connects them
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Figure 2.2: Ejemplification of an overlay network using a VXLAN tunnel.
[10]

(such as the Internet) by encapsulating the payload.

One tunneling protocol, the Virtual Extensible Local Area Network (VXLAN),
was designed for a scenario with Layer 2 and Layer 3 data center network in-
frastructure in the presence of VMs in a multi-tenant environment. VXLAN
Network Ident (VNI) is in an outer header that encapsulates the inner MAC
frame. VXLAN is a Layer 2 overlay scheme on a Layer 3 network and could
also be called a tunneling scheme to overlay Layer 2 networks on top of Layer
3 networks. The end VXLAN Tunnel End Point (VTEP) can be located on
the hypervisor or a switch and is responsible for encapsulating and decapsu-
lating messages as can be seen in Figure 2.2. [10]

2.3 Software Defined Network

Multiple efforts have been made to define programmable networks, but the
one that has received the most attention lately is the SDN approach.

In figure 2.3 SDN architecture is divided into four layers. The application
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Figure 2.3: SDN architecture overview.2.3

plane communicates network requirements and desired network behavior to
the Control Plane through the NBI. The application plane may expose a
higher-level interface for network control. The control plane translates the
application layer requirements to the Data plane and provides the application
with an abstract view of the network. The control plane is sometimes also
known as Network Operating System. The data plane consists of network
devices that expose control over its forwarding and processing capabilities.
The Control to Data-Plane Interface (CDPI) is the interface defined between
an SDN Controller and an SDN Datapath. The SDN Northbound Inter-
face (NBI) is the interface between applications and SDN Controllers. The
Management plane covers the tasks that are better handled outside the appli-
cation, control, and data planes (e.g. monitoring, credentials, configurations,
SLA, element setup, etc). [12]

The best-known CDPI for switches is Openflow. Openflow is a protocol that
standardizes the way the SDN controller communicates with the switches
without requiring the vendors to provide a programmable platform or expose
information about the internal working. Openflow allows controlling the flow
tables on a switch by providing a standardized interface to add and remove
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flow entries. Flow entries are composed of a header that is used to match
packages, a counter, and an action to apply to the matching packages. When
the switch receives a package, it compares it against the flow table and if
matching is found the associated action is performed, otherwise the package
is forwarded to the controller that is responsible for determining how to
handle the package. [13]

2.4 Network Service Orchestration

Deploying and operating end-to-end services has traditionally been hard
work. SDN and NFV advances enabled new ways for network operators
to create and manage services. Orchestration refers to automatically man-
aging multiple resources, services, and systems to meet certain objectives.
[14]

Network Service Orchestration (NSO) can be defined as ”the automated man-
agement and control processes involved in end-to-end services deployment
and operations performed mainly by telecommunication operators and ser-
vice providers” [14], but there’s no full agreement on the term and multiple
definitions exist with a focus on different aspects of the orchestration of an
end-to-end service.

In general, an orchestrator manages Virtual Network Function (VNF) that is
software that runs over a virtual environment over generic hardware, Phys-
ical Network Functions (PNF) that is software that runs over specialized
hardware, and Virtual Link (VL) that are virtual connections between com-
ponents. These definitions are based on the Topology and Orchestration
Topology and Orchestration Specification for Cloud Applications (TOSCA)
template language, which is a standard language used by orchestrators to de-
fine network services and their relationships. [15] YANG is a complementary
technology with some overlap that is used mainly to define the configuration
of network devices. [16]

Two NSO frameworks deserve special attention because they are the strongest
in the market: Open Management and Orchestration (OpenMANO) and
Open Network Automation Platform (ONAP).
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OpenMANO is an open-source project. It follows the ETSI’s NFV ISG stan-
dardization and is used by Telefonica with a strong presence in Europe. Uses
an Information Model (IM) that is infrastructure agnostic, and YANG for
service configuration. It has an option to instantiate Kubernetes services as
part of a service using Helm charts. [17]

ONAP is a policy-based orchestrator that has more presence outside Europe.
It has integration with multiple hardware and virtualization software. It’s
more mature than OpenMANO. It uses TOSCA for the service design and
divides the orchestration labor into three stages: design, deployment, and
operations. The design would be the steps involved in the planification and
creation of a new TOSCA file. The deployment would be the stage where
the coordination with the cloud is done to deploy the corresponding services.
And finally, the operation is where the monitoring is done and some actions
are taken (ie. self-healing) based on events and the corresponding Event-
Condition-Action policies. [18]

Other orchestrators that are also interesting to look into are T-NOVA, Cen-
tral Office Re-architected as a Datacenter (CORD), and Cloudify. They are
not so well known, but each is specialized in a different aspect of orchestration
and introduces interesting ideas.

T-NOVA is an open-source orchestrator with a focus on being able to offer
network services through a marketplace. It divides the network function (NF)
lifecycle in on-boarding/deployment, instantiation, supervision, scaling, and
termination. Can define service-level agreement (SLA), and can react in
real-time to meet its requirements. [19]

CORD is an orchestrator with a focus on managing a single data center.
It has some support for Kubernetes. It is a framework that has multiple
implementations for different scenarios.

Cloudify is an open-source multi-cloud and edge orchestration platform. It
is focused on cloud services and has integration with Amazon web services
(AWS) and Azure. It has complete integration with Kubernetes with differ-
ent cluster managers. Uses blueprints to describe services, it uses infrastruc-
ture as a service. The downside is that the code repository is not independent
of the infrastructure, having for example different scripts to start the service
in different environments. [20]
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2.5 Discrete optimization

An optimization problem is a problem where the objective is to minimize a
function by finding the optimal values of a series of variables. Each variable
belongs to a domain, and a series of constraints may be defined over the
variables. Discrete optimization problems are optimization problems where
all variables are discrete, also called combinational problems. [21]

An integer programming problem is a mathematical optimization in which
some or all of the variables are restricted to be integers. It is also an integer
linear programming (ILP) if the objective function and the constraints are
linear. Integer programming is NP-complete. The Simplex method is a
popular algorithm to find an exact solution to integer linear programs. [22]

Since integer linear programming is NP-hard, heuristic methods can be used
instead for a faster but less optimal solution. Heuristics are a way to find a
rapid solution to a problem without any proof that it is the optimal solution.

One of the most basic heuristics is Greedy, which is a constructive algorithm
that on each step of the solution construction chooses the local optimal,
without caring if that step will prevent better steps later or even render the
solution impossible. [23]
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Chapter 3

The solution

This section will have details on the solution architecture. How the clus-
ter is configured and the different services involved in the deployment and
reconfiguration of the services.

3.1 Cluster Architecture

From Figure 3.1 it can be seen that the MLFO has a NBI to receive the in-
struction of deployment and reconfiguration. The MLFO has as southbound
interfaces the SDN controller, in charge of configuring the tunneling between
datacenters, and the VIO services, in charge of configuring the computing
instances. Each datacenter has one or more computing nodes where the in-
stances can run and a master switch, that is managed by the SDN controller,
where the tunneling between datacenters is configured. Each deployed appli-
cation can have one or more private networks (VLAN) that can be configured
to follow a tunnel (VXLAN). Another important component is the dynamic
configuration (ConfigMap) that can be attached to a computing instance and
modified on reconfiguration by the VIO.
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Figure 3.1: Details on the cluster configuration of the proposed solution,
showing the different components involved.

3.1.1 Virtual Interface Orquestrator

The VIO is responsible for managing the computing instances and the re-
sources on each cluster. Different technologies can be used, but for this
project, Kubernetes [v1.19.2] was used, with docker [v18.09.7] as the con-
tainer technology. These technologies were selected because of the advantages
of using containerization against virtualization, as the near-native perfor-
mance and the short startup time (that is important for the MLFO, because
of the near real-time scenarios), but at the same time, it maintains some of
the advantages of virtualization as the isolation and security (that are also
important because of the multitenancy characteristics of the MLFO).

The container images were stored on Docker Hub, but a local repository of
images may be better, because of the downloading time overhead added to
the deployment if the image is not in the cache.

For the dynamic configuration files, the Kubernetes ConfigMap was used,
mounted into Kubernetes containers as read-only files. This way of mounting
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the configurations allows having a dynamic configuration where the changes
made to it are replicated to the files on the containers where it is mounted.

A reverse proxy was configured on the core datacenter using the ingress-nginx
controller. The ingress exposes services through the MetalLB load balancer.
This allows the deployed applications to have a public User Interface (UI) or
Application Programming Interface (API).

For persistence, a Network File System (NFS) server was configured on the
core datacenter, and attached to the containers through the Persistent Vol-
ume Claim configuration.

The service exposure and the persistence features can only be used from
containers deployed to the core datacenter. If a computing instance needs
one of these features it can be added as a restriction and will only be able to
be deployed to the core datacenter. Other solutions can be found to make
this feature available on more than one datacenter, but it escapes the scope
of this project.

3.1.2 Software Defined Network

Part of the networking is configured through Kubernetes, part of it is pre-
configured and part of it is managed by the SDN controller.

The private networks (VLAN) are configured through the Multus CNI and
the Open Virtual Switch (OVS) plugins of the Container Network Interface
(CNI) [24] of Kubernetes. Each Kubernetes node has an open virtual switch
(OVS) [25] where the different VLANs are configured by Kubernetes. The
Multus plugin allows to have more than one network interface for each con-
tainer, and the OVS plugin allows to configure a VLAN on the OVS switch
through Kubernetes.

The switches on each datacenters are configured in a way that allows all
the messages generated on the datacenter to reach all other nodes on the
datacenter and the master switch. But the message will not be seen by
containers that do not belong to the same VLAN, allowing to have isolation
between applications.
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The tunneling technology used for the inter-datacenter tunnels is VXLAN.
Tunnels are preconfigured between datacenters, and each connection is as-
signed a VNI, then the master switch on each datacenter will decide which
packages to send through the tunnel and which not to. The master switch
will act as a VTEP, encapsulating and decapsulating the messages that go
through the tunnel.

For the SDN controller, OpenDayLight (ODL) [26] was used, which commu-
nicates with the master switch on each datacenter through the OpenFlow
protocol. The MLFO pairs the VLANs with VXLANs on each of the master
switches of the datacenters that are involved in a connection between two
containers through the switch OpenFlow tables. The tunnels will only for-
ward the messages belonging to a VLAN that is paired with the VXLAN
and that were generated on the datacenter.

A simplified example of how the pairing of the VLAN with the VXLAN is
done can be seen in the following code snippets:

1> ovs -vsctl show

2...

3Bridge "vtep"

4Controller "tcp:odl.mlfo.gco"

5is_connected: true

6Port "vxpatch"

7Interface "vxpatch"

8type: patch

9options: {peer=" patch1 "}

10Port "vtep"

11Interface "vtep"

12type: internal

13Port "ovry"

14Interface "ovry"

15type: vxlan

16options: {

17key=flow ,

18remote_ip=flow

19}

This first command-line snippet shows the ”vtep” bridge configuration of the
master switch (in this case an OVS switch), showing the configuration of the
SDN controller of the switch on line 4, and the VXLAN options that are
configured through the OpenFlow table on lines 17 and 18.
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1> ovs -ofctl add -flow vx "priority =20, tun_id =10, actions=output

:normal"

2> ovs -ofctl add -flow vx "priority =10, dl_vlan =104, actions=

resubmit (,1)"

3> ovs -ofctl add -flow vx "table=1, actions=set_field:metro1 ->

tun_dst ,set_field :10->tun_id ,output :300"

4> ovs -ofctl add -flow vx "priority=1,actions=output:normal"

The second command-line snippet shows the configuration of the OpenFlow
tabes, where line 1 says that if a message comes from the tunnel with id
10, it must be forwarded to the datacenter network, line 2 says that if a
message belongs to VLAN 104, it must be forward to table 1, where line
3 says that the message will be forwarded through tunnel 10 to the master
switch in datacenter ”metro1”, and line 4 says that the rest of the messages
should be treated as internal messages. This configuration allows adding new
instructions to forward other VLANs to the tunnel, and to have more than
one tunnel.

More pairings are added and stale pairings are deleted through the ODL
controller by the MLFO when an application is deployed or reconfigured.

3.2 Optimization algorithm

Two optimization algorithms were developed to compare results and set a
baseline for future implementations. Each solution has its advantages and
disadvantages that will also be shortly discussed.

3.2.1 Optimization problem

The problem we are trying to solve is to find the best pipeline and mapping
for a given application and infrastructure. The problem has two versions,
the first one is the deployment that is the one we will get into details in this
section, and the second one is the reconfiguration, which is almost the same,
but can also take into consideration the previous deployment to minimize
the number of changes to be made.
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(a) ILP. (b) Greedy.

Figure 3.2: Visual representation of the Integer Linear Program (ILP) (3.2a)
and the greedy (3.2b) algorithms. To the left of each image, we can see the
template with the dotted lines representing optional links and computing
instances (greedy does not allow optional resources). To the right of each
image is the result of the algorithm.

The problem can be formally stated as:
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Given:

• Infrastructure: graph I = (DC, T ), where DC represent data-
centers and T the tunnels between datacenters, both can have
information on constraints, i.e. maximum/available capacity for
a tunnel or hardware requirements for datacenters; and costs, i.e.
cost by instance or cost by megabyte.

• Pipeline template: graph PT = (CI,CC), where CI represents
the computing instances, and CC are the connections between
the computing instances, both computing instances and comput-
ing connections can be optional, also they may be some con-
straints on the graph as mutually exclusive arcs or the maximum
number of connections for a computing instance.

• Fixed instances: set F = {< ci, dc >| ∃ < ci, dc >∈ CI ×DC},
where each pair represents a computing instance that is fixed to
a datacenter.

Output: the pipeline P that is a subgraph of PT that satisfies the
graph restrictions, and the mapping M = {< ci, dc >| ∃ < ci, dc >∈
CI ×DC}, F ⊆M , that satisfies the infrastructure restrictions.
Objective: Minimize some utility function, i.e. a weighted sum (by
cost) of the resources used.

The algorithms were developed to solve a subset of the original problem, but
a subset big enough to be useful for a real application. Both solutions are
based on minimizing the cost of resources utilization.

3.2.2 Integer linear program solution

The python package PULP was used to solve the problem. A preprocessing
and postprocessing were implemented to transform the input and output
from/to JSON format.

The variables, objective function, and constraints with their explanation are
defined below:
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• Given variables:

– NCI number of computing instances.

– CI list of computing instances.

– DC list of datacenters.

– Uci 1 if computing instance ci is a singleton, 0 otherwise.

– Fci,dc 1 if computer instance ci has a fixed location in datacenter
dc, 0 otherwise.

– CCci1,ci2 1 if ci2 is a candidate for a mandatory connection from
ci1, 0 otherwise.

– TCdc1,dc2 capacity of the tunnel between cd1 and dc2, or 0 if no
tunnel exists.

– DCCdc the capacity of datacenter dc.

– DSdc the cost of running a process in datacenter dc.

– TSdc1,dc2 the cost of a connection between dc1 and dc2.

• Decision Variables:

– Eci 1 if computing instance ci will be allocated, 0 otherwise.

– Cci1,ci2 1 if a connection between ci1 and ci2 exists.

– Mci,dc 1 if computing instance ci is allocated on datacenter dc, 0
otherwise.

– Tdc1,dc2 is the number of connections between dc1 and dc2.

– ECci1,ci2,dc1,dc2 1 if connection between ci1 and ci2 should go through
a tunnel between dc1 and dc2, 0 otherwise.

ILP problem statement:

min
∑

ci∈CI,dc∈DC

Mci,dc ×DSdc +
∑

dc1∈DC,dc2∈DC

Tdc1,dc2 × TSdc1,dc2 (3.1)

Subject to: ∑
dc∈DC

Mci,dc = Eci,∀ci ∈ CI (3.2)
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∑
ci2∈CI

Cci1,ci2 × CCci1,ci2 = Eci1 ,∀ci1 ∈ CI (3.3)

∑
ci1∈CI

Cci1,ci2 ≤ Eci2 ×NCI ,∀ci2 ∈ CI (3.4)

Mci1,dc1 +Mci2,dc2 + Cci1,ci2 − 2 ≤ ECci1,ci2,dc1,dc2 ;

∀ci1, ci2 ∈ CI; dc1, dc2 ∈ DC | dc1 ̸= dc2 ∧ ci1 ̸= ci2
(3.5)∑

ci1,ci2∈CI

ECci1,ci2,dc1,dc2 = Tdc1,dc2 ,∀dc1, dc2 ∈ DC | dc1 ̸= dc2 (3.6)

Tdc1,dc2 ≤ TCdc1,dc2 , ∀dc1, dc2 ∈ DC | dc1 ̸= dc2 (3.7)∑
ci∈CI

Mci,dc ≤ DCCdc,∀dc ∈ DC (3.8)

Uci ≤ Eci,∀ci ∈ CI (3.9)∑
dc∈DC

Fci,dc ≤ Eci, ∀ci ∈ CI (3.10)

Fci,dc ≤Mci,dc,∀ci ∈ CI, dc ∈ DC (3.11)

The objective function (equation 3.1) is to minimize the cost of the connec-
tions plus the cost of the processors, subject to:

• Equation 3.2: If a computing instance is allocated assign to one, and
only one, datacenter.

• Equation 3.3: If a computing instance is allocated, it must have all
mandatory connections.

• Equation 3.4: If a computing instance has incoming connections then
it must be allocated.

• Equation 3.5: Allocate inter datacenter connections.

• Equation 3.6: Allocate datacenter connections for computer instance
inter datacenter connections.

• Equation 3.7: Ensure connections do not overpass tunnel capacity and
do not use unexisting tunnels.
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• Equation 3.7: Ensure that the number of computing instances does not
overpass the datacenter capacity.

• Equation 3.9: Force unique computing instances to exist.

• Equation 3.10: Force fixed computing instances to exist.

• Equation 3.11: Force fixed computing instances mapping to the corre-
sponding location.

In Figure 3.2a we can see a visual representation of the MIP algorithm. It can
be seen the different sets of unique computing instances and fixed computing
instances. It can also be seen how not all the computing instances are on
the solution to the right of the figure. Also in the solution, there is always a
path between the collectors and the processor, and the result is a tree.

This solution can’t model more complex applications with more than one
mandatory connection for each computing instance.

On the good side, the result it will generate will be optimal, reducing the cost
(resource utilization). The model can easily be extended to use the amount of
computation resources and the amount of bandwidth resource needed by each
computing instance and its connections instead of counting each computing
instance and each connection per unit.

3.2.3 Greedy solution

The greedy algorithm was developed in python and does not need any extra
package. It has two parameters that are the penalizer for pending connec-
tions (PENDING PENALIZER) and an incentive for the non-pending
connections (NON PENDING INCENTIV E). These parameters con-
trol how important it is to reduce the number of pending connections in each
step. The parameter PENDING PENALIZER was set to 1000 and the
NON PENDING INCENTIV E was set to 100.
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Algorithm 1 Greedy algorithm

1: S ← ∅
2: C ← computing instances ids.
3: D ← datacenters ids.
4: P ← computing instances that are not assigned to a datacenter.
5: F ← pair of computing instance id and datacenter id for each fixed

location computing instance.

6: datacenter(c)← the datacenter assigned to computer instance c
7: neighbors(c)← the computing instances that have a connection with c.
8: datacenter cost(d) ← the cost of running a computing instance on dat-

acenter d.
9: tunnel cost(d1, d2) ← the cost of using a tunnel or ∞ if no tunnel exist

between d1 and d2 or 0 if d1 = d2.

10: for < cid, did >∈ F do
11: S ← S

⋃
{< cid, did >}

12: while P ̸= ∅ do
13: H ← ∅
14: for cid ∈ C do
15: for did ∈ D do
16: cost← datacenter cost(d)
17: for nid ∈ neighbors(cid) do
18: if nid ∈ P then
19: cost← cost+ PENDING PENALIZER
20: else
21: cost ← cost + tunnel cost(did, datacenter(nid)) −

NON PENDING INCENTIV E
22: H[< cid, did >]← cost

23: if min<cid,did>∈C×D(H[< cid, did >]) ≥ ∞ then
24: return INFEASIBLE
25: < cid, did >← argmin<cid,did>∈C×D(H[< cid, did >])
26: S ← S

⋃
{< cid, did >}

27: P ← P − cid
28: return S
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The greedy solution is much faster than the ILP solution but as a drawback,
it may not find the solution in all cases. It also solves a subset of the problem,
where the template can’t have optional instances or connections, so in terms
of the problem, P = PT , but on the good side can solve the problem for
applications that are represented by graphs with cycles (not only trees as the
integer program solution).

A visual representation of the algorithm input and solution can be seen in
Figure 3.2b, where the numbers represent the order in which the computing
instances are placed.

3.3 Application Architecture

To demonstrate how the MLFO would work and take some baseline measure-
ments, an implementation was made. The application has two workflows:
deployment and reconfiguration, it was developed in python as a group of
microservices and has an external REST API that can be interacted with
through JSON messages.

3.3.1 Workflows

Figure 3.3 presents the workflows for the initial ML pipeline deployment and
any subsequent externally-triggered reconfiguration. Let us start with the
deployment workflow (WF1). The management application initiates WF1
by sending the deployment plan (message WF1/1 in Fig. 4). The descriptor
contains a template for the ML functions and the connectivity. Next, the
deployment is triggered (2) and the MLFO starts a series of steps. First, the
MLFO solves the optimization problem using the constraints, resulting in a
mapping between the ML functions and the datacenters, and the connectivity
and the deployment plan are computed. A list of iterations is generated that
includes the communication of the MLFO with the VIO (e.g., Kubernetes)
for the deployment of the ML functions (e.g., encapsulated into containers
[5]), and with the SDN controller for managing the connectivity among the
ML functions. The list iterations include i) the namespace creation (3);
ii) the configuration of an image repository storing the different computing
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Figure 3.3: Pipeline management showing pipeline template, deployment,
and reconfiguration.

images that are retrieved when a new ML function instance is deployed (4);
iii) the configuration of the ML pipeline network that entails creating the
VLAN (5) and pairing it to the VXLAN tunnels (6); iv) the creation of a
volume for the dynamic configuration of the computing instances (7); and v)
the deployment of the containers (8). Steps 6-8 are followed for every ML
function to be deployed (block A). A reply is eventually sent (9).

WF2 is triggered when the ML pipeline needs to be reconfigured. The man-
agement application initiates WF2 by sending a new set of constraints to
the MLFO (message WF2/1 in Figure 3.3). The optimization problem is
then solved considering the received configuration. Then, the MLFO finds
the changes to be performed and prepares a plan with the creation of new
ML functions (block A) and the removal of existing ones (block B). Besides,
the dynamic configs are updated to reflect the changes in the system (e.g.,
changes in the IP addresses) (2). When all the steps are executed, the result
is sent back to the management application (3).
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Figure 3.4: Microservice flow of information.

3.3.2 Implementation

In this project an MLFO was implemented using the following technologies:
For the MLFO NBI, a REST API that uses short JSON messages was im-
plemented. The MLFO code is developed in python [v3.8.6] and uses Flask
[1.1.2] framework and Gunicorn [v20.1.0] as WSGI. The MLFO uses the Ku-
bernetes API as a southbound interface through the python official client
library [v11.0.0].

The MLFO application follows a microservice architecture with well-defined
interfaces using JSON schemas as shown in Figure 3.4. The microservices
are:

• the main service that is the interface with the user and communicates
with the rest of the services;

• the optimization service that solves an optimization problem to mini-
mize the cost/use of the resources of the deployment and generates a
pipeline descriptor;

• the plan builder service that generates a detailed plan of steps to take
to make the pipeline descriptor reality;

• the plan runner service that runs each step of the plan through the step
runner service;
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• and the step runner service that expands the message using Jinja2
templates and communicates with the SDN controller and the VIO.

Main service

The main service will be the endpoint that the user or client application
will communicate with. It offers a REST API to the client that is described
in section 3.3.3 and communicates with the rest of the services. It also
calculates the difference between one pipeline descriptor and the previous
one when deploying an application that was already deployed.

Optimization service

Two implementations were made of the optimization service, one uses a ILP
to solve the optimal allocation of computing instances and networks, and the
other uses a greedy algorithm. The greedy implementation is faster, but may
not find the optimal solution, and may not find a solution at all even if one
exists. The problem and the algorithms are explained in section 3.2.1.

Plan builder service

This service will create a detailed plan of steps based on the pipeline descrip-
tor (for first deployments) or the pipeline diff (for subsequent deployments).
The steps of the plan can be seen in section 3.3.1.

It will also assign IP addresses and VLAN numbers to the different networks
and interfaces of the computing instances and assign the VLANs to the cor-
responding VXLANs to connect the corresponding computing instances.

It will also render some sections of the model that use Jinja2 templates like
the environment variables, dynamic config files, or reverse proxy endpoint
paths. This template allows having variables that depend for example on the
IP address of a service or the datacenter name that is not known beforehand
and are calculated on the optimization or the building of the plan.
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Plan runner service

This service will receive a plan and execute through the Step runner service
the steps of the plan, it is in charge of coordinating the dependency between
steps. In this version, all steps are dependent on the previous step, but this
could be changed.

Step runner service

This service acts as a bridge between the MLFO and the southbound in-
terfaces. It is responsible for extending the messages that only contain the
important information from the plan, using jinja2 templates to match the
format of the southbound interfaces.

It also knows the address of the southbound services and communicates with
them. It corroborates that each step took effect before returning.

3.3.3 North Bound interface

The north-bound interface of the MLFO application is a REST API, with
well-defined interfaces through JSON schemas. A description of a typical
workflow will be described, in which the manager first configures the services
and creates an application template, then the management application does
the first deployment and after that a reconfiguration, with some references
to example messages on the appendix.

Service configuration

The message shown in appendix A.1, the ”configure service message” is com-
posed of four sections: the repository configuration that defines the creden-
tials to connect to the image repository (”repositoryconfigs”), the range of IP
addresses to be used, and how to divide them between subnetworks (”subnet-
generator”), the VLAN range to be used by the applications (”vlan-range”)
and the connection between datacenters through tunnels (”tunnels”). This
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information will then be stored in a database to be used by the different
services of the MLFO, and updated accordingly (for example the VLANs are
marked as in-use or free).

Template creation

As can be seen in appendix A.2, the “create template message” is composed
of an application name (”appname”), a reference to a repository (”reposi-
toryconfig”), and two lists: the ”containers-models” list and the ”template”
list. The container-model list defines the different kinds of functions that an
application will use, and the template list defines how to instantiate them
and the connections between them.

Each container model is defined by a name (”name”) and an image name from
the image repository (”image”). They may optionally also include a readiness
prove (”readiness” were to request to see if the container is ready to start
working), some configurations that may be jinja2 templates that are filled
with data from the application (”configs”), a dynamic config file that is a file
that is mounted into the container and may change its content when changes
on the application are made (”dynamic-config-files” where jinja2 templates
can also be used), and/or an external endpoint to be able to access the service
from outside the infrastructure (”endpoint”).

Each template has a reference to a model from the ”container-model” list
(”model name”), a function name (”template function”), and an instantia-
tion type (”type”) that can be: unique (that means that only one instance is
permitted), custom (that means that the number of instances and location
must be defined by the user at the moment of the deployment) or auto (that
means that the number and location of this function will be defined by the
optimization function). Optionally they may also have the maximum num-
ber of allowed instances (”max” only for the auto instantiation type), a list
of connections where only one of them is mandatory (”connections”), and/or
a data section that can be used on the container configurations through the
jinja2 templates (”data”).
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Pipeline deployment

For the pipeline deployment, the message defined in appendix A.3 is used.
This message defines a mapping between the template functions (defined on
the template) and the datacenters, and a data section that is merged with
the data section defined on the template. This message will trigger the WF1,
as defined in section 3.3.1.

Pipeline Reconfiguration

For the pipeline reconfiguration, the same message as in pipeline deployment
is used. The difference is that the application is already deployed and it will
trigger WF2 this time.
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Chapter 4

Results

4.1 Example application

To experiment and show how the MLFO works a simple monitoring appli-
cation was developed. The application has five different ML functions:: i)
collector (Co) in charge of collecting monitoring data from activated monitor-
ing points (M); ii) aggregator (Ag) that collects measurements from several
different collectors and perform some not computationally intensive task, like
computing some statistics, e.g., max, min, and average; iii) processor (Pr),
which performs a more computational intensive task on the received data;
iv) a time series Database (DB), and v) an User Interface (UI) (Figure 4.1).

In the example application, the collector generates random data and pushes it
to the aggregator, the aggregator performs a sum aggregation over the values
and the number of measurements and push the data to the processor, the
processor does a final aggregation over all the data, the DB is a Prometheus
[27] that pulls the data from the processor and stores it in a persistent way,
and the UI is a Grafana [28] that shows graphs based on the data collected
(e.g. the number of messages collected from each source).

The collectors, aggregators, and processors use an output queue that does
not need persistence, but that is waited to be empty on the graceful shut-
down. The database is configured to use persistence, and the user interface
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Figure 4.1: Pipeline management showing pipeline template, deployment,
and reconfiguration.

is configured to expose itself through the reverse proxy.

4.2 Lightpath scenario

The scenario we will take as an example to demonstrate how the MLFO
implementation works, is the monitoring of a lightpath. The monitoring
data can then be used to reconfigure the lightpaths. The importance of state
information of each node to establish lightpath can be seen for example in
[29], [30] and [31]. The data needed to decide on these reconfigurations is of
heterogeneous sources and is collected from different sources on the lightpath.
All this monitoring information needs to be collected, processed, and then
available in a centralized place for the SDN controller to consult it and be
able to make the correct decisions on how to manage the lightpaths.

This data need to be collected and aggregated efficiently because of the kind
of validations over the data that can be done (for example anomaly detec-
tion that need almost real-time data), and because the monitoring data use
the network resources (as bandwidth and computation) that if not handled
correctly may impact the network performance.
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(a) Lightpath setup. (b) Lightpath rerouting.

Figure 4.2: Example showing the ML pipeline status before and after light-
path reconfiguration.

Furthermore, because the lightpath may be reconfigured the data sources may
change with time, the data collection pipeline has to adapt to the lightpath
reconfiguration as can be seen in Figure 4.2. In the figure a reconfiguration
of the lightpath triggers a reconfiguration on the ML pipeline, and only the
necessary changes are made using the same computing instances, and only
removing the ”Co2” from the old location, and adding the ”Co3” and ”Co4”
to the new locations.

All this justifies the utilization of an MLFO for this scenario. To synthe-
size, the scenario is the monitoring of a lightpath by collecting data from
different endpoints to feed ML algorithm (as an example can be anomaly
detection), that makes decisions on the lightpath reconfiguration through an
SDN controller. Then the data collection infrastructure has to adapt to the
reconfigured lightpath in a way that it does not lose information.

4.3 Empirical demonstration

This first experiment consists in demonstrating the functionality of the de-
veloped software by deploying and reconfiguring the example application. As
shown in Figure 4.1, first a ML pipeline with four collectors is deployed, and
for reconfiguration, two new collectors are added and one is deleted.
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(a) Deployment Workflow (WF1).

(b) Reconfiguration Workflow (WF2).

Figure 4.3: Message capture during workflows.

The experiment was run using the Greedy version of the algorithm. The
Kubernetes cluster was deployed over a set of VMs managed by OpenStack,
as well as the SDN controller, the OVS master switches, and the NFS server.
Six datacenters were defined inside the Kubernetes cluster, each managed
by a different Openstack cluster, and all connected by a physical switch.
Each microservice of the MLFO was deployed into a container on the core
datacenter.

Figure 4.3a shows the messages exchanged during WF1 to deploy the ML
pipeline; the number of the messages is shown in Figure 3.3 for the sake of
clarity. Total deployment time was about 1 min, with most of the time used
by Kubernetes to deploy containers.

Figure 4.3b shows the exchanged messages during WF2 to reconfigure the
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Figure 4.4: Message count after deployment and reconfiguration.

Algorithm Time(max) Time(mean) DC capacity(min) Infeasible count(mean)
MIP - exact 61.08 24.52 0.24 12
MIP - approx 39.25 25.38 0.26 14
Greedy - Template 1 0.01 0.01 0.44 30
Greedy - Template 2 0.06 0.01 0.33 27

Table 4.1: Algorithm comparison result table.

ML pipeline as in Figure 4.1. Just to mention that WF2 follows a make-
before-break approach, i.e., after the creation of new containers, the MLFO
waits for the container to be available before continuing with the next steps
to avoid losing monitoring samples. Total reconfiguration time was 8.5 sec,
most of this time is used waiting for deleted containers to stop gracefully.

Finally, Figure 4.4 8 shows the number of measurements collected in the DB
node of the ML pipeline to demonstrate ML pipeline deployment and its
reconfiguration

4.4 Algorithm comparison

The objective of this section is to compare the algorithms and set the basis
for future algorithms that solve this problem. The experiment consists of
an infrastructure shown in Figure 4.5, with 10 metro datacenters, 8 edge
datacenters, and one core datacenter. The core datacenter is connected by a
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Figure 4.5: Visual representation of the infrastructure used for algorithm
comparison, showing the cost and capacity of each datacenter and tunnel.

tunnel to each of the metro datacenters, the metro datacenters are connected
also to the adjacent datacenters, and the edge datacenters are connected each
to 3 metro datacenters. This is a simplistic model of how the datacenters
can be distributed in a city.

The experiment consist in deploying 50 applications (one at a time) using
each of the algorithms and seeing how the algorithms behave when the infras-
tructure starts to get saturated. Each application has 4 collectors randomly
distributed through the infrastructure datacenters following a uniform dis-
tribution.

For the ILP CPLEX solver [32] was used, through the Pulp python module
[33]. Two versions were considered, the exact version, that searches for the
optimal solution, and one with a relative gap tolerance of 0.5, this allows the
algorithm to stop as soon as it has found a feasible integer solution proved
to be within 50% of optimal.

For the greedy algorithm, two different templates were used, defined in Figure
4.6. The first one uses fewer resources but does not find a solution for every
collector distribution.

In Figure 4.7 and Table 4.1 the results of the experiment can be seen. From

33



(a) Greedy template 1. (b) Greedy template 2.

Figure 4.6: The different templates used for the greedy algorithm, showing
the disposition of the aggregators.

4.7a we can see that the greedy version is a lot faster than the ILP version,
but in Figure 4.7b we can see that it fails to find a feasible solution much
frequently. The difference in time taken by the exact and approximate solu-
tions of the MIP is not much (less than 1%), but the exact version for some
scenarios takes a lot longer than the approximate (more than 50% more),
from the first column of Table 4.1. From Figure 4.7e, it can be seen that the
greedy versions start failing to find feasible solutions before the datacenters
start to get saturated. Template 2 of greedy is better than template 1 at first,
but as it uses more resources it saturates the datacenters first. The exact
version is the best performer in finding feasible solutions, and from Figures
4.7d and 4.7c, is the one that can effectively exploit better the resources.

In general, the results from the ILP algorithms take an unacceptable amount
of time, but the greedy versions have an unacceptable infeasible count, more
work is needed to find an algorithm that uses an acceptable amount of time
and infeasible count, candidates are some of the well-known meta-heuristic.
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(a) Time taken by algorithm. (b) Infeasible solutions count.

(c) Porcentual datacenter capacity. (d) Porcentual tunnel capacity.

(e) Full datacenter cumulative count. (f) Full tunnel cumulative count.

Figure 4.7: Comparison of the different proposed algorithms on the scenario
described in Figure 4.5, by deploying fifty applications with four collectors
to saturate the infrastructure.
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Chapter 5

Planfication and costs

This section will cover a budget estimation for the project.

Role Annual Salary(€) Total including SS(€) Price per hour(€)
Project Manager 40000 52000 29,7
Software Developer 23347 30351,1 17,3
Researcher 33938 44119,4 25,2
Technical writer 25309 32901,1 18,8

Table 5.1: Salary by role estimated using Glassdoor platform.

In Table 5.1 we can see an estimation of the salary for each of the roles
considered on the project. Using this estimation the cost of human resources
needed for the development of the project will be calculated.
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Task ID Task Name Hours Role Cost(€)

1 Management 200 - 4523
1.1 Meetings 20 Manager 594
1.2 Planing 50 Manager 1485
1.3 Writing documentation 80 Writer 1504
1.4 Writing thesis 50 Writer 940
2 Research 240 - 6048
2.1 Research networking 70 Researcher 1764
2.2 Research orchestrators 50 Researcher 1260
2.3 Research Kubernetes 50 Researcher 1260
2.3 Research others 70 Researcher 1764
3 Implementation 550 - 9515
3.1 Datacenter configuration 100 Developer 1730
3.2 MLFO development 450 Developer 7785
4 Experimentation 210 - 4897
4.1 Example application development 50 Developer 865
4.2 Demos execution 100 Researcher 2520
4.3 Analyze results 60 Researcher 1512
- Total 1200 - 24983

Table 5.2: Task management table, with the number of hours dedicated to
each task and the cost calculated using Table 5.1

In Table 5.2 a breakdown of the hours invested on the project and an esti-
mation of the cost of the human resources needed to make this investigation
is done. The total cost of human resources for the project would be €24983.
On top of that, the cost of using the GCO-TESTBED datacenter for the
experimentation must be added, plus the use of the lab installations.
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Chapter 6

Conclusions

The importance of developing an MLFO was stated, and a reference imple-
mentation was developed and its functionality demonstrated.

To develop the application concepts from different areas of computer science
where used as optimization, orchestration, networking, machine learning,
virtualization, among others.

A NBI was defined for the MLFO, which is practical, well defined, and able
to express complex deployments in a declarative way.

The result in terms of deployment and reconfiguration time is good enough,
even though they can be further improved, and can be used as a baseline to
compare other implementations.

Two algorithms were presented to solve the optimization problem, one that
gives an exact solution but takes a lot of time to process and one that gives a
fast solution but is not optimal. Some tests were defined to measure how well
the algorithms would work on a complex scenario. The developed algorithms
can be used as a baseline for future algorithm development.

In general, efforts were made to develop a reference implementation that can
give ideas and some measurements to compare against for future implemen-
tations or the continuation of this project. A lot of work has to be done to
have a production-ready product. Some ideas for future work are given in
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the following section.

6.1 Future work and limitations

Some parts of the plan execution could be done in parallel. The current
solution executes all the steps sequentially. This improvement could further
reduce the time taken on each of the workflows.

Further work could be done on maintaining a consistent state when some
step of a deployment fails. In the current solution, only some scenarios were
taken into consideration, but not all. This consistency is especially important
in this kind of orchestrator because they are used by other applications and
not a human that can take actions in case of a failure.

This development assumes that a single VIO and a single SDN controller
are used. This can be a problem for very large areas, where the latency for
a single controller can be a problem. The solution could also be extended
to use multiple controllers distributed geographically to diminish the latency
between the controller and the different datacenters.

Right now the solution is not technology agnostic it uses Kubernetes and
ODL with VXLAN as tunnels. More work is needed for this solution to
become technology agnostic and become a generic framework where different
technologies can be used for each component. We selected this initial set of
technology because of its wide use and specific properties.

The work that was done on the optimization problem was exploratory, but
further work is needed to find an optimization algorithm that scales finding
a solution in near real-time and at the same time uses the resources in an
almost optimal way.

The security of the MLFO could be improved, encrypting the communica-
tion between the Management application and the MLFO and adding a more
sophisticated authentication method could be a good start. Security is impor-
tant in this application especially because of the multitenant characteristic
of the scenarios it tries to solve.
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Appendix A

Message details

A.1 Cofigure services

1{

2"repositoryconfigs":[

3{

4"id": "regcred",

5"cred": "XXX",

6"type": "dockerconfig"

7}

8],

9"subnet -generator":{

10"network":"192.168.30.0/24" ,

11"subnets -mask":"29"

12},

13"vlan -range":{

14"from": 1000,

15"to": 2000

16},

17"tunnels":[

18{

19"id": 200,

20"connection":[" metro2","core"]

21},

22{

23"id": 201,

24"connection":[" metro1","core"]
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25},

26.

27.

28.

29]

30}

A.2 Create template message

1{

2"appname": "mlpn",

3"repositoryconfig": "regcred",

4"containers -models": [

5{

6"name": "pr",

7"image": "gco/mlf -collector :2.1" ,

8"readiness": {

9"path": "/ping",

10"port": 80

11},

12"endpoint": {

13"host": "main.k8s.gco",

14"path": "/{{ appname }}/V{{ appversion }}(/|$)
(.*)",

15"targetport": 80

16},

17"configs": [

18{

19"name": "CONFIGS_SERVER_ID",

20"value": "processor"

21},

22.

23.

24.

25},

26{

27"name": "ag",

28"image": "gco/mlf -collector :2.1" ,

29"dynamic -config -files":[{

30"filename": "servers.yaml",

31"path": "/etc/configs",

32"data": [{
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33"name": "push -url",

34"value": "http ://{% set subnetsids =

container.subnets | map(attribute=’id ’) | list %}{{

containers | selectattr(’template_function ’,’in’,

container.data.pushfunction) | map(attribute=’subnets ’) |

flatten | selectattr(’id ’,’in ’,subnetsids ) | map(

attribute=’ip ’) | list | first }}/reg"

35}]

36}],

37.

38.

39.

40},

41{

42"name": "co",

43"image": "gco/mlf -collector :2.1" ,

44.

45.

46.

47}

48],

49"template":[

50{

51"template_function": "pr",

52"model_name": "pr",

53"type":"unique"

54},

55{

56"template_function": "ag2",

57"data":{

58"pushfunction": ["pr"]

59},

60"model_name": "ag",

61"type":"auto",

62"connections": ["pr"],

63"max": 5

64},

65{

66"template_function": "ag1",

67"data":{

68"pushfunction": ["pr", "ag2"]

69},

70"model_name": "ag",

71"type":"auto",

72"connections": ["pr", "ag2"],
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73"max": 10

74},

75{

76"template_function": "co",

77"data":{

78"pushfunction": ["ag1"]

79},

80"model_name": "co",

81"type":"custom",

82"connections": ["ag1"]

83}

84

85]

86}

A.3 Deploy application message

1{

2"dataceter_mappings":[

3{

4"template_function":"co",

5"data":{

6"name": "CoA"

7},

8"datacenterid": "metro2"

9},

10{

11"template_function":"co",

12"data":{

13"name": "Co1"

14},

15"datacenterid": "metro2"

16},

17.

18.

19.

20]

21}
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