PRL: Standardizing Performance Monitoring
Library for High-Integrity Real-Time Systems

Jeremy Giesen™T, Enrico Mezzetti*, Jaume Abella*, Francisco J. Cazorla*
*Barcelona Supercomputing Center (BSC)
TUniversitat Politecnica de Catalunya

Abstract—The use of complex processors is becoming ubiqui-
tous in High-Integrity Systems (HIS). To deal with processor’s
increased complexity, Performance Monitoring Counters (PMCs)
are increasingly used to reason on software behavior and provide
the necessary evidence to support software certification. However,
the use of PMCs in HIS is relatively recent and hence far from
being standardized. As a result, software engineers are forced to
resort to highly-customized, low-level programming of platform-
specific PMC control registers, which is both error prone and
time consuming. To cover this gap, we propose building on the
PAPI library, a standardized performance monitoring solution in
the mainstream domain, and develop a PMC Reading Library
(PRL) for configuring and collecting traceable events while cap-
turing HIS specific requirements and peculiarities. We instantiate
PRL in a reference automotive configuration to show that PRL
meets key HIS requirements: negligible footprint, limited and
predictable overhead, and accuracy collecting hardware events
by filtering out the impact of interrupts and context switches.

Index Terms—Performance counters, embedded systems

I. INTRODUCTION

The use of multicore{] as main computing solution is
consolidating in HIS, including automotive and avionics. This
trend is driven by the use of performance-demanding software
applications involved in most new cutting-edge functionalities
of HIS embedded products, like AD (autonomous driving).

HIS undergo a strict verification and validation (V&V)
process to guarantee their deployment behavior is correct.
PMCs, present in most modern processors in the performance
monitoring unit (PMU), are gaining traction in HIS to achieve
both functional and timing V&V for software running on
multicore processors. PMCs can, for instance, help analyzing
functional issues related to the coherence [15], [16]. More
generally, measurement-based and hybrid timing analysis tools
are transitioning from exclusively timing information to in-
clude trackable events [19]]. Overall, PMCs are at the heart of
requirement-based testing in HIS to assess that the execution
behavior stays within the allotted bounds [19].

In mainstream domains, the use of PMCs is widespread:
a score of software tools and libraries [1]], [2] support per-
formance monitoring and debugging on top of modern PMU
for a wide spectrum of processor families. As a representa-
tive example, Performance Application Programming Interface
(PAPI) [|6] is a widely adopted, modular library supporting
mainstream targets and operating systems that has surged as
reference solution for application profiling.

'In this work we use the term multicore or multicore processor to refer to
MPSoC or multiprocessor system on chip.

In HIS the availability of a consolidated, reusable per-
formance monitoring interface is a fundamental enabler for
timing and functional V&V. Standardized PMC libraries would
allow to abstract away from low-level hardware and software
configuration details, and to get rid of onerous, over-tailored,
and error-prone custom solutions. However, libraries and tools
from the mainstream domain have not been ported to HIS for a
twofold reason. First, HIS have been traditionally perceived as
a niche market, deploying specific combinations of hardware
and real-time operating systems, which has discouraged any
effort towards standardization and reuse. And second, perfor-
mance monitoring solutions for HIS must meet specific re-
quirements determined by the usage scenario (i.e., granularity
and precision) and the inherent predictability and analyzability
concerns in HIS (e.g., footprint and overhead).

Another challenge in HIS is that validation often occurs
close to the end of the software development process where
the system is (almost) fully integrated so as to capture the
interactions among software components, e.g. multicore timing
interference. The collected PMC measures, however, mix
together the contribution of several software components that
have been executing within the observation window, thus
including several tasks and the operating system itself. A
fundamental requirement is thus the ability to filter out the
contribution of the different software elements.

In this paper, we define a baseline PMC Reading Library
(PRL) that can be effectively deployed to collect reliable and
consistent PMC readings while meeting the specific HIS re-
quirements. We analyze the specific requirements of a monitor-
ing solution for HIS and propose a reference implementation
for a PMC configuration and reading library for HIS building
on a subset of the PAPI library. This library has been tailored
and extended to meet HIS requirements and to support the
collection of observations at task-level, by filtering out the
contribution of the underlying operating system. We instanti-
ate PRL to a reference automotive configuration comprising
a TriCore target (AURIX TC297) and an OSEK-compliant
RTOS (ERIKA Enterprise v2). We asses PRL against the
identified requirements and show its use to support the analysis
of multicore timing interference on an illustrative scenario.

The rest of this work is structured as follows: Section
IT discusses the requirements for a performance monitoring
solution in HIS. Section III presents our PRL reference imple-
mentation, which we validate and assess in Section IV against
a representative non-functional analysis scenario. Section V
introduces related works, and Section VI concludes the paper.

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works. DOI 10.1109/ICCD53106.2021.00061

II. PERFORMANCE MONITORING LIBRARY FOR HIS

In HIS novel approaches are sought to complement existing
timing analysis solutions [12], [20] and counter the challenges
posed by multicores. PMCs are increasingly used to gain
insight on how applications interact as a central element to pro-
vide evidence of expected behaviors. This includes approaches
that build on PMC to modeling the impact of contention on
software time and approaches that use PMCs to set quotas to
the accesses tasks can do to different resources [5]], [[14].

The number of hardware events that can be collected with
PMC:s is increasing in modern platforms, thus satisfying an
growing need for detailed insight on the behavior of critical
software applications. For instance, the Arm AS53 cores im-
plements 63 event counters, while more modern processors
of the Arm A Cortex family, namely the A57 and A72, can
track 92 and 85 events respectively. Also, PMC support is
not homogeneous across hardware platforms, on the opposite,
actual PMC support is often implementation dependent and
may even vary within devices in the same family of processors.

This has motivated efficient abstractions capable of provid-
ing a standard, reusable set of PMC functionalities. In the
the mainstream domain this is captured via a standardiza-
tion effort that has led to the definition of debug interface
standards [3]], kernel-level utilities [1]], and dedicated cross-
platform performance monitoring API. In this line, PAPI is an
cross-platform middleware library for performance monitoring
that can be considered a de-facto standard for performance
profiling in mainstream computing. Despite their exceptional
level of diffusion, PAPI and other common tools have not
been ported to reference platforms and RTOS in the HIS
domain, nor equivalent solutions have been developed. The
lack of standard solutions for HIS configurations is not solely
explained by the only recent interest in PMC support but
it also ascribable to non-overlapping requirements on PMC
support. As a contribution to filling this gap, we present PRL,
a performance monitoring library specifically designed to meet
HIS requirements and provide the necessary support to PMC-
based timing analysis approaches.

A. Requirements on PMC support for HIS

A performance monitoring solution for HIS comes with a
specific set of requirements and constraints stemming from
both the specific operational constraints of embedded critical
systems (e.g. memory footprint) and the use of PMCs to
support diverse analysis approaches from HW characterization
to multicore timing interference analysis [5], [1O], [19] (e.g.
scope, precision, and intrusiveness).

Granularity and scope of profiling: the profiling infor-
mation is typically required at the level of single functions or
run-time entities (e.g., tasks or runnables, in the automotive do-
main) with finer-granularity only sought for specific functional
requirements or optimization purposes. From a timing analysis
perspective, we are interested in associating PMC readings
to specific unit of executions, which may require specific
solutions under various instantiations of RTOS/Hypervisor.

As already observed, blindly collecting observations within
a given interval of time (function or task body) has the effect
of factoring in multiple elements that are difficult to tell apart,
including the execution of the real-time kernel and of any
other functions that may be executing according to the specific
execution model (e.g., preemptions). A PRL solution shall
necessary support the capability to filter out the activity of both
the operating system and other concurrent run-time entities.

Multicore support: From a multicore perspective, the
PRL should also support the gathering of profiling concur-
rently from different cores.

Low and predictable overhead: stringent requirements
in HIS are set on timeliness, analyzability, and (time) pre-
dictability [17]]. The software layer realizing the PMC cannot
be jeopardizing analyzability and timing behavior of the appli-
cation under profiling. For these reasons, the profiling solution
is required to cause minimum and predictable (e.g., low
variability) overhead on the analyzed application, regardless
of whether the PRL functionalities are enabled or not. PRL
implementation shall follow the most conservative coding
standard and rules (e.g., [[13]]) to comply with domain-specific
requirements and favor PRL predictability and analyzability.

Privileges: Despite the PMC configuration may require
some degree of integration with the underlying operating
system, it is fundamental that PRL is offered as a user-
level API. It should be possible to exploit the PMC library
regardless of the execution privileges. Of course this does not
prevent from implementing more complex solutions as, for
example, virtualizing the PMU at the Hypervisor level [11].

Reduced footprint: Some classes of HIS are constrained
to a limited amount of resources and fine-tuned memory
allocations. For these reasons, the PRL should be implemented
as a lightweight software layer with minimal memory require-
ments in both code and data structures.

Operation: monitoring APIs in mainstream domain sup-
port an interactive mode. The latter, however, is irrelevant in
critical embedded systems where the PRL interface should
support fully static configuration of the PMCs. Additionally,
the way to extract PMC results from the system should be
configurable and adaptable to the available debug support.

III. PRL

PRL is a lightweight software layer that supports a minimal
yet sufficient set of performance monitoring functionalities and
is reusable across diverse hardware and software stacks. Also
PRL aims at identifying a common set functionalities that are
generally supported by PMUs in different processors, yet it
can be extended to build on configuration specific features.

The design and implementation of PRL is largely inspired
by PAPI [6]]. PAPI offers a multi-layered, portable, and effi-
cient API to monitor application performances exploiting the
typical hardware performance counters found on most modern
microprocessors. PAPI has been designed, and successively
evolved, to address the performance profiling requirements
on generic mainstream targets, including high-level average
performance metrics such as instructions per cycles, misses per

.]
o 1 | ||
T T l

Scheduler ‘ | | ‘ ‘ ‘

|
{PMmC}, {PMC,

Fig. 1: Task-level event filtering.

cycles and alike. In the scope of HIS, the performance moni-
toring solutions is mainly intended to support timing analyses
approaches and address more focused hardware events. At the
same time, some of the metrics and functionalities supported
by PAPI are not necessarily useful for HIS. PRL diverges
from PAPI to avoid unnecessary complexity and to cover HIS
specific profiling requirements.

The main focus on PRL is set on supporting timing analysis
tasks on MPSoCs where PMCs are advocated as the main
source of information for the characterization of multicore
timing interference [10], [12f, [14], [19]. This brings few
practical requirements on PRL design and functionalities. The
library shall be able to collect events and associate them to
specific run time entities (task, runnable or software partition).
The library shall not only provide access to focused counters
(e.g., capturing the stalls suffered or caused by a task when
accessing a shared hardware resource) but shall also be able to
associate hardware events to each task. This is a particularly
challenging when profiling is performed close to the end of
the development process, where multiple tasks are deployed
by an operating system or hypervisor on multiple cores. The
library shall support simultaneous multicore profiling of per
task events, thus being able to track the events in several cores
at the same time, while distinguishing between tasks scopes
and isolating the impact of the operating system. The last
aspect, which applies at both intra-core and inter-core levels,
is particularly critical to timing and response time analyses but
typically disregarded in mainstream PMC libraries.

The relevance of event filtering is exemplified in Figure [[jon
a relatively simple single-core scenario. Per-task event filtering
allows to capture PMCs that are relative to 7; execution while
plain PMC profiling would capture the effect of the execution
of 79 (preempting 7y) and the underlying scheduler, hence
including all events in 7; execution window. The difference
between the two is the same happening between task execution
time and response time. The capability of filtering events
directly, rather than an aftermath, is an essential feature that
distinguishes PRL from PAPI. PRL is conceived to be easily
integrated with the RTOS and other libraries, and allows asso-
ciating and profiling event sets to concrete run-time entities.

PRL’s design follows a three-layered structure, as illustrated
in Figure 2] Two layers are exposed to the user as high-
level and low-level PRL APIs. The high-level API provides
the minimal set of library functions to profile the behavior
of any piece of software. The low-level API instead provides
support for higher configurability and control over the profiling
activity. In fact, this layer is conformant with the low-level
API in PAPIL. The two layers are not mutually exclusive as
the outer layer directly interacts with the inner layer. A third

Core 0 —‘ Core 1 !‘ Core N
e
PRL low level PRL high level PRL low level PRL high level ;
]
]
PRL middle-layer PRL middle-layer !
RTOS RTOS :
]
]
Performance Monitoring Unit Performance Monitoring Unit H

Fig. 2: PRL architecture description.

layer, finally, act as a middle-layer between the PRL and the
underlying run-time. This layer is not visible to the user and
is responsible of the integration with the RTOS.

PRL main concept is the Event Set, borrowed from PAPI,
consisting in a user-defined group of hardware events that are
gathered over the monitored execution. The user is responsible
of specifying the set while PRL internally configures the PMU
to properly configure the performance monitoring counters.
The user interacts with PRL through a set of intuitive calls
made from a program’s body. PRL shares the same signature
as the PAPI library. This signature-level equivalence allow
users accustomed with PAPI to straightforwardly use PRL.

The PRL design specifically supports integration with the
underlying run-time by exposing a middle-level layer, whose
objective is to guarantee PRL is separately accounting for the
events triggered/incurred by each task under analysis. Such
feature is necessary in order to profile multiple tasks at the
same time on the same and different cores. PRL supports the
association of event sets and event counts to each entity or
task in the run-time with reduced overhead and footprint data
structures that allow to save the event set of a given task
whenever the task is preempted by an interrupt or a higher
priority task, and to restore it when the task resumes execution.

IV. EVALUATION

PRL has been instantiated on a hardware and software
configuration representative of the automotive domain, one of
the main market driver in HIS [4]. We assess the concrete
implementation against the requirements identified in Sec-
tion[[I-A] The evaluation strategy unfolds into two main sets of
experiments. First, we use small, carefully-designed synthetic
benchmarks to validate PRL with respect to correctness,
accuracy, overhead, and scalability in a single-core scenarios.
Second, we experiment on a multicore scenario to test PRL
on a more computationally representative scenario.

Portability and adaptability to different target configuration
inspired our PRL design as both are pivotal for the widespread
adoption of a performance monitoring library the in HIS.
Below we focus on the instantiation of PRL to one specific
configuration. We deploy PRL to a TriCore TC297 (1st gen),
which equips 3 cores and a crossbar that grants access to four
4MB independent Program Flashes (PFlash), one Data Flash
(DFlash) and a Local Memory Unit (LMU) composed by a
32KB RAM. All cores are superscalar, with integer, load-store,
and (zero overhead) loop pipelines. The target PMU comprises
two fixed PMCs for cycles and executed instructions, comple-
mented by four multiplexed PMCs to measure a set of events,

TABLE I: Absolute PMC values with and without PRL on TC297 and ERIKA v2.

No RTOS Erika v2
Direct PMU[PRL Direct PMU PRL

Isolation Isolation | 1 Preempf 1 Preempt® Tsolation| 1 Preempt]1 Preempt?] 2 Preempt] 3 Preempt] 4 Preempt]
CCNT 400,000,004 400,000,045| 400,047,005| 400,064,890 404,061,862(400,005,313| 400,005,303[400,005,297 400,005,291| 400,005,307 400,005,332|
ICNT 400,000,003] 400,000,035] 400,026,605] 400,040,692[404,037,065| 400,001,211] 400,001,211] 400,001,211] 400,001,211] 400,001,211] 400,001,211
pcache_hits 200,000,001{ 200,000,006| 200,015,397| 200,019,808 201,018,781| 200,002,045/ 200,002,037} 200,001,937| 200,002,021| 200,002,041| 200,002,065|
pcache_miss 1 1 18 46| 2 2 2 2| 2l 2
multi_issue 100,000,002(100,000,001{ 100,005,069| 100,008,303| 101,007,178| 100,000,403| 100,000,403| 100,000,404{ 100,000,405(100,000,404{ 100,000,407|
dcache_hits 0 0 400 728 732 0 0 0 0 0
dcache_miss 0| 0 0 2 0 0| 0| 0| 0 0
total_branches | 100,000,000| 100,000,002 100,006,869 100,010,463| 101,009,574{ 100,000,404{ 100,000,403| 100,000,405| 100,000,404| 100,000,405| 100,000,407
total_mem_stalls| 100,000,006 100,000,019 100,004,835| 100,005,852 101,005,114 99,999,832/ 99,999,852 99,999,852 99,999,854 99,999,855
pmem_stalls 7 19 3,160 2911 3,149 231 252 252 251 250 249
dmem_stalls 99,999,999 100,000,000, 100,001,675| 100,002,941| 101,001,965 99,999,601| 99,999,600, 99,999,644] 99,999,601| 99,999,604 99,999,606
IP_stalls 199,999,997/ 200,000,000 200,001,138| 200,004,002] 202,002,053| 199,999,799 199,999,800| 199,999,821| 199,999,800 199,999,799| 199,999,797
LS_stalls 1 1 9,579 12,045 12,003 1,204 1,203 1,004 1,202 1,201 1,200
LP_stalls 0 0 620 613 678 1,182 1,200 752 1,196 1,183 1,171

as summarized in Figure [3] These include events related to the
data and program cache (hits/misses) and different stall cycles.
IP-, LS- and LP-DISPATCH_STALL are incremented every
cycle in which the Integer, Load-Store and Loop dispatch units
are stalled, respectively. This same logic applies to PMEM-
and DMEM-STALL which are incremented on each cycle the
fetch or Load-Store units are requesting instructions or data
respectively and the memories are stalled.

Multiplexed PMC 1

Multiplexed PMC 2

Multiplexed PMC 3

Non-multiplexed
PMCs

IP_DISPATCH_STALL

LS_DISPATCH_STALL

LP_DISPATCH_STALL

CCNT

PCACHE_HIT PCACHE_MISS MULTI_ISSUE
DCACHE_HIT DCACHE_MISS_CLEAN | DCACHE_MISS_DIRTY o
TOTAL_BRANCH PMEM_STALL DMEM_STALL

Fig. 3: PMCs of the TC297 and TC397.

When is comes ot the RTOS layer, we addressed Erika
Enterprise OSEK-compliant RTOS [_8] v2, currently in pro-
duction in various automotive, industrial and HVAC systems.
It was developed with Hard Real-Time support for multi-core
microcontrollers. ERIKA v2 presents a reduced flash footprint
and requires one copy of the RTOS per core.

A. Validation experiments

We compare the PMC values gathered with and without
PRL when executing the same application under different sce-
narios. As target application, we considered synthetic bench-
marks that trigger a predefined set of hardware events. In this
work we report the results for a store data-intensive benchmark
in which most of the instructions are stores that miss in
the Data cache. While we experimented with several other
benchmark variants, they provide no additional insights over
the selected benchmark and are hereby omitted. Experimental
results are reported in Tables [where PMC readings for
AURIX PMU supported events are reported for each scenario.

1) Bare metal execution: The baseline scenario for assess-
ing PRL consists in a bare metal, single core setup where
the target application executes uninterrupted, i.e. without pre-
emptions. We compare the PMC values obtained over the
benchmark execution by directly configuring the AURIX PMU
with low-level instructions at the beginning at the end of the
task against those observed by exploiting PRL. This setup
matches the No RTOS columns in Table [By comparing the
first and second columns we see that the overhead in all PMCs

incurred because of the library (PRL column) is in all cases
negligible, and PRL can be deemed as accurate as the PMU.

2) RTOS impact: We analyze the case when the benchmark
under analysis is the only task running in a single core setup.
Table [I| reports the PMCs observed in ISOLATION for both
DIRECT PMU (column 3) and PRL (column 6). For ERIKA
v2, the overhead from reading PMCs on top of the RTOS
is larger than in the bare metal scenario. The overhead in
terms of timing and events is stemming from the impact of
the periodic interrupts. Nevertheless, PRL always incurs less
overhead than Direct PMU, thanks to its capability to filter
out the contribution of other run-time entities to the collected
events (including the RTOS itself).

3) Preemption impact: With the next set of scenarios
we evaluate the impact of preemptions on the performance
profiling and the robustness of PRL. In general, several tasks
are co-scheduled in the same core and depending on the
scheduling algorithm they can be preempted. We assess the
capability of PRL to isolate events from other tasks than the
one under analysis and the incurred overheads on every context
switch to save and restore counter values. To this purpose, we
deployed two reduced version of the analysis benchmark as
preempting tasks (preempt and preempt*). Results are reported
in Table [[] for both DIRECT PMU and PRL whit different
numbers of preemptions. We see that the Direct PMU solution
cannot filter out the contribution of the preempting task and
the PMCs values are including the execution of the preempted
tasks, and the RTOS impact. In the PRL setups, instead, we
observe that the impact of preemptions is essentially filtered
out and masked by small overhead from kernel interrupts. This
is because context switches happen within the kernel periodic
interrupts and PRL guarantees isolation between task events.

4) Multicore scenario: In this case we run a workload
comprising different applications, deploying kernels used in
many applications in critical systems [[18]. We experimented
with increasing number of contenders targeting the LMU
SRAM. We track the data memory and load-store dispatch
unit stalls. To increase the impact on the data memory, the data
caches are disabled. Each copy of the RTOS kernel is stored in
the core-local program flash. An instance of PRL is loaded into
each core-local program-scratchpad to reduce the overhead
in the system and avoid additional event counts and cache

pollution. The data structures accesses by the target programs
are mapped to the 32KB LMU SRAM. Table [lI| reports PMCs
collected when increasing the number of benchmark instances
running in parallel, with Expl matching the isolation scenario.

TABLE II: Multicore scenario on TC297 and Erika v2.

[Exp[Core ID] cent | icnt | total_br [pmem_st [dmem_st fip_s{ld_s{

1 |Core 0| 47409 | 14089 | 1282 6 37155 | 0 |25
5 Core 056629 | 14089 | 1282 6 46375 | 0 | 28
Core 158706 | 14089 | 1282 6 44356 | 0 | 29
Core 0| 71091 | 14089 | 1282 6 60837 | 0 | 32
3 [Core 16511814089 | 1282 6 54864 | 0 | 30
Core 2| 66764 | 14089 | 1282 6 56510 | 0 |31

These experiments demonstrate that PRL supports profiling
in parallel on multiple cores and events that are not meant
to depend on multicore execution (icnt, total branches) stays
the same across all scenarios. We observe a notable increase
in execution time (up to 40% with 3 corunners) which is
correlated to the increase in stalls incurred while accessing
the memory interface in the crossbar (dmem stalls). Pmem
stalls in this case are unaffected as code, including the RTOS
is on a reserved flash.

V. RELATED WORKS

PMCs has been increasingly considered in the scope of HIS,
to feed and support timing analysis tasks [S[], [1O], [12], [[14],
[19], an inescapable concern for time critical systems. From
the timing analysis perspective, PMCs has been mainly con-
sidered to support the analysis of multicore timing interference
when accessing shared hardware resources [5]], [10], [[19] and
to implement regulation mechanism to remove or control the
impact such interference [14]]. Both families of approaches rely
on accurate, low-overhead information from the PMCs, which
can often vary across platforms and software configurations.
A standardized low-level performance monitoring library is
beneficial to both types of approach, by providing access to
the PMC functionalities without requiring the specific solution
to deal with platform-specific issues.

In the mainstream domain, the Perf tools [1], perfmon [2],
and PAPI [7]] tools have quickly reached an exceptional level of
diffusion as they offer a generic abstraction layer to configure
and collect information from performance monitors. However,
the abstractions and functionalities offered by those tools often
result to be too generic and coarse-grained for the intended
use of PMCs in the HIS domain. In this respect, PRL offers
a lower-level abstraction (very close to the actual PMC layer)
and better support for reliable, fine-grained profiling.

In the HIS domain, the use of PMCs for timing charac-
terization is addressed in [[12], where also PMC validation
is considered to avoid potential inaccuracies. While the use
of PMC information is crucial in several timing analysis
approaches, no generic performance profiling library has been
proposed. In [9]] a preliminary porting of a subset of PAPI
functions to a relatively simple bare-metal setting while, in
this work, we analyze and implement RTOS level functions
and support capturing per-task events.

VI. CONCLUSIONS

A standardized performance reading library is increasingly
needed to support the use of PMCs for the validation of high-
integrity systems. In this work, we present PRL to contribute
to a reference performance reading library design capturing the
specific requirements of high-integrity systems. We assessed
our proposal a representative automotive configuration with
the Infineon AURIX TriCore TC297 and the OSEK-compliant
ERIKA Enterprise RTOS v2, against the high-integrity sys-
tems requirements and demonstrate its utility to support the
analysis of multicore timing interference. As a future work,
we plan to port PRL to different configurations and to extend
the support for low-level PMCs, such those provided by the
Multi Core Debug Solution (MCDS) layer in AURIX.

ACKNOWLEDGMENTS

This work has been supported by the Spanish Ministry of
Science and Innovation under grant PID2019-107255GBC21/
AEI/10.13039/501100011033, the European Unions Horizon
2020 Framework Programme under grant agreement No.
878752 (MASTECS), and the European Research Council
(ERC) grant agreement No. 772773 (SuPerCom).

REFERENCES

[1] perf: Linux profiling with performance counters. https://perf.wiki.kernel.
org/index.php/Main_Page.

[2] perfmon2: Improving performance monitoring on Linux.
perfmon?2.sourceforge.net/,

[3] Nexus 5001. IEEE-ISTO 5001™-2012, The Nexus 5001™ Forum
Standard for a Global Embedded Processor Debug Interface. https:
//bit.ly/2MIoJ Y 1.

[4] Deloitte. Semiconductors — the Next Wave Opportunities and winning
strategies for semiconductor companies, 2019.

[5] E. Diaz et al. Modelling multicore contention on the AURIX™ TC27x.
In DAC, 2018.

[6] K. London et al. The papi cross-platform interface to hardware
performance counters. Dept of Defense Users’ Group Conference, 2001.

[7]1 S. Browne et al. Papi: A portable interface to hardware performance
counters. 1999.

[8]1 Evidence. ERIKA Enterprise Manual V1.4.5, 2012.

[9] J. Giesen et al. ePAPI: Performance Application Programming Interface
for Embedded Platforms. In WCET Workshop, 2019.

[10] R. Inam et al. Bandwidth measurement using performance counters for
predictable multicore software. In IEEE ETFA, 2012.

[11] P. Liu et al. Sysoptic: A fine-grained monitoring system for virtual
machines based on pmu. In SOSE, 2019.

[12] E. Mezzetti et al. High-Integrity Performance Monitoring Units in
Automotive Chips for Reliable Timing V&V. IEEE Micro, 2018.

[13] MISRA. Guidelines for the Use of the C Language in Critical Systems.
2013.

[14] J. Nowotsch et al. Multi-core interference-sensitive WCET analysis
leveraging runtime resource capacity enforcement. In ECRTS, 2014.

[15] R. Pujol et al. Empirical Evidence for MPSoCs in Critical Systems: The
Case of NXP’s T2080 Cache Coherence. In DATE, 2021.

[16] N. Sensfelder et al. On How to Identify Cache Coherence: Case of the
NXP QorlQ T4240. In ECRTS, 2020.

[17] J. Stankovic and R. Krithi. What is predictability for real-time systems?
Real-Time Syst 2, 247-254, 1990.

[18] H. Tabani et al. A cross-layer review of deep learning frameworks to
ease their optimization and reuse. In ISORC, 2020.

[19] S. H. VanderLeest and S. R. Thompson. Measuring the impact of
interference channels on multicore avionics. In DASC, 2020.

[20] R. Wilhelm and J. Reineke. Embedded systems: Many cores - many
problems. In SIES, 2012.

http://

https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
http://perfmon2.sourceforge.net/
http://perfmon2.sourceforge.net/
https://bit.ly/2MIoJY1
https://bit.ly/2MIoJY1

	Introduction
	Performance Monitoring Library for HIS
	Requirements on PMC support for HIS

	PRL
	Evaluation
	Validation experiments
	Bare metal execution
	RTOS impact
	Preemption impact
	Multicore scenario

	Related Works
	Conclusions
	References

